Communication in data parallel languages

Bryan Carpenter
NPAC at Syracuse University

Syracuse, NY 13244
dbc@npac.syr.edu

January 2, 2000

Abstract

We start by discussing the patterns of communication needed to im-
plement various constructs in High Performance Fortran. Then several
communication libraries that have been developed to support these kinds
of communications will be reviewed. Finally, as a case study a, scheme
for implementing the array remapping operation used in general array
assignments is described in detail.

Contents

1 Patterns of communication
1.1 Array assignmentso ool
1.2 Stencil problems and ghost areas
1.3 Reductions and other transformational intrinsics
1.4 General subscripting in array parallel statements
1.5 Accessing remote data in task-parallel code

2 Libraries for distributed array communication
2.1 The PARTI primitives
2.2 Multiblock PARTT
2.3 The Global Array Toolkit

3 Adlib
3.1 Background and functionality
3.2 Case study: implementation of the Remap schedule

S o0 =1 Ot W W

1 Patterns of communication

In this section we will discuss some patterns of communication that arise in
when a language like HPF is translated to a SPMD program. First we will cover
the regular communication patterns that arise from simple array assignments,
nearest-neighbour problems, and array intrinsics. Then the irregular commu-
nication patterns implied by data-parallel statements with non-linear subscript
expressions will be introduced. Finally we cover some essentially task-parallel
codes that can be translated most effectively in terms of “one-sided communi-
cation”.

1.1 Array assignments
In HPF, variants of the innocent-looking assignment,
A =B

hide a variety of interesting communication patterns. The terms A and B may
be any conforming arrays. Let’s run through some examples.
As a first example consider:

'HPF$ PROCESSORS P(4)

REAL A(50), B(50)
'HPF$ DISTRIBUTE A(BLOCK) ONTO P
'HPF$ DISTRIBUTE B(BLOCK) ONTO P

A (1:49) = B (2:50)

The assignment variable and expression are sections of arrays with the same
distribution. But the alignments of their elements are shifted by one place
relative to each another. In translating this assignment, some communication
between neighbouring processes will be needed. The situation is illustrated in
Figure 1. In a translation to a SPMD program, the communications might be
implemented using the point-to-point primitives MPI_SEND and MPI_RECV, or in
a single call using MPI_SENDRECV.

The “shift” pattern of communication is actually quite common in practical
situations, and the next subsection will discuss it in more detail. But it is
slightly contrived as an example of an array assignment. Usually the right- and
left-hand-side arrays will not have such a simple alignment relationship. Here
is another example involving array sections':

'HPF$ PROCESSORS P(4)

REAL A(50,50), B(50)
'HPF$ DISTRIBUTE A(*, BLOCK) ONTO P

1 As a matter of fact, any communication pattern in HPF involving array sections can
be reproduced using whole arrays. One just has to give those arrays suitable alignments to
templates. We choose to work with sections because they seem more concrete.

A (1:49)

= [24] 25] 28] [27] 28] 20]T) ~ [37] 38[30

ENENEX ||
N

NS
y

ﬂz [s m”|11|12|1an [14] 15|16m"|24|25|2en [27] 28] 29

i i

B (2: 50)

[40] 41] 42|~ ~ [48] 49
[SREC NG
N

[N

[N
Vo \

Vo Voo

\ \

.
y

’|37|38|39H [40] 1] 42m”|48|49| 50“

(= A L

Figure 1: Assignment involving a shift in alignment. Heavy arrows represent
interprocessor communication.

'HPF$ DISTRIBUTE B(BLOCK) ONTO P

A (:, 1) =B

In this case the first dimension of A is collapsed, so the target of the assignment
is a section that lives entirely on one processor. The communication pattern is
visualized in Figure 2 You may recognize this as being essentially the commu-
nication pattern implemented by the MPI collective operation MPI_GATHER (or
MPI _GATHERV). If the direction of the assignment had been reversed:

B=4 (:, 1)

then the communication pattern would correspond to the MPI operation MPI_SCATTER
or MPI_SCATTERV. If the assignment target had a replicated, collapsed alignment:

REAL A(50,50), B(50), C(50)
'HPF$ DISTRIBUTE A(*, BLOCK) ONTO P
'HPF$ DISTRIBUTE B(BLOCK) ONTO P
'HPF$ ALIGN C(I) WITH A(I, *)

C=8B

the communication pattern would be to broadcast all elements of the distributed
array B to all processors—we recognize this as being like the MPI collective
MPI_ALLGATHER or MPI_ALLGATHERV.

Finally we can easily write assignments that behave like MPI_ALLTOALL or
MPI_ALLTOALLV. As an exercise the student may wish to verify that the following
example qualifies:

REAL A(50,50), B(50,50)
'HPF$ DISTRIBUTE A(*, BLOCK) ONTO P
'HPF$ DISTRIBUTE B(BLOCK, *) ONTO P

A =B
as does:

REAL A(50), B(50)

A1

[0 F—— _ - o
N T —
14911 —
48[—— -
-‘V_ [- —
| | | | | |
| | | Al Al ‘\\ \ \\ \\ | \\ \ \\ S \ | |
-\ AN
X, ARRRN
ELS e A AA
l \ \‘ T I I ! T
- \ _ 1 L | J—
¥ [o
! P
1 1 | I I I
[1]2]3]] [[a[12]xs] [14]as]as]] ~[[24]25[26] [27]28[2e]] ~[[7]38]30] [4o]4a[42]] ~
B

Figure 2: Assignment involving gathering array data to a single processor.

'HPF$ DISTRIBUTE A(BLOCK) ONTO P
'HPF$ DISTRIBUTE B(CYCLIC) ONTO P

A =B

On the one hand these examples illustrate the power of the HPF language.
The effect of a complicated collective call in MPI can often be expressed very
concisely in HPF as a simple array assignment. On the other hand, we get an
idea of how complicated the communication patterns implied by simple-looking
HPF statements can be.

1.2 Stencil problems and ghost areas

Stencil updates, in which each element of an array is updated in terms of some
fixed footprint or “stencil” of neighbouring elements, have been an important
target for parallel computing. They are quite common in practise, arising for
example in solution of partial differential equations, simulation of cellular au-
tomata, and image processing applications. This situation is certainly amenable
to massive parallelism, but it does require some communication.

These problems can be reduced to the kinds of array assignment discussed
in Section 1.1. The well-known example:

FORALL (I = 2:N-1, J = 2:N-1)
& U(I,J) = 0.25 * (U(I,J-1) + U(I,J+1) + U(I-1,T) + U(I+1,T))

can be recast as:

U(2:N-1, 2:N-1) = 0.25 * (U(2:N-1, 1:N-2) + U(2:N-1, 3:N) +
& U(1:N-2, 2:N-1) + U(3:N, 2:N-1))

The compiler could translate the array assignment code by introducing a series
of temporary arrays T1, ..., T1 all aligned with the section U(2:N-1, 2:N-1):

T1 = U(2:N-1, 1:N-2)

T2 = U(2:N-1, 3:N)

T3 = U(1:N-2, 2:N-1)

T4 = U(3:N, 2:N-1))

U(2:N-1, 2:N-1) = 0.25 * (T1 + T2 + T3 + T4)

Due to the alignment of the temporary arrays, the last statement is purely local
computation; the first four assignments absorb all communication. If the the
arrays here have been distributed in the BLOCK style—usually optimum for
this kind of problem—these communications follow a pattern similar to Figure
1

In terms of the volume of interprocessor communication this is a reason-
able approach. But it has two big drawbacks. First it uses a lot of temporary
storage—four whole arrays. Secondly, although the first four assignments in-
volve no computation and only a modest amount of communication at the edges,
they introduce a lot of extra memory-to-memory copying.

A sequential version of the original loop has good locality properties in terms
of its use of memory and cache. Because the elements on the left-hand-side and
the operands in the right-hand-side of each assignment are typically clustered
together in memory (spatial locality), and because elements are often reused in
consecutive iterations, or iterations not far apart in iteration space (temporal
locality), a straightforward transcription of the algorithm is likely to make good
use of the cache of a modern microprocessor [3]. But if the program is split into
consecutive array assignments as indicated above, much of this locality will be
lost. Generally whole arrays will not fit in cache memory. Cache will be loaded
from main memory and flushed back for each of the five loops associated with
the five array assignments.

In fact this is a generic problem for the “array syntax” style of programming
encouraged by Fortran 90. As we have seen in preceding lectures, this style
evolved in large part to support a generation of SIMD and vector processors.
On contemporary microprocessors, memory access costs usually dominate over
the costs of arithmetic. Ironically a compiler may end up working quite hard to
fuse the array assignments of a Fortran 90 program into sequential loops that
have good memory locality.

A better approach than copying whole arrays of neighbours is to allocate the
local segments of the distributed array U with a small amount of extra space
around the edges—so-called ghost regions. The translation of the FORALL
statement above could be something like:

REAL U(0 : BLK_SIZE1 + 1, 0 : BLK_SIZE2 + 1)
REAL T(BLK_SIZE1, BLK_SIZE2)

. Update ghost regions of U with values from neighbours

DO L1 = 1, BLK_COUNT1
DO L2 = 1, BLK_COUNT2

T(L1, L2) = 0.25 * (U(L1, L2 - 1) + U(L1, L2 + 1)

& + U(L1 - 1, L2) + U1 + 1, L2))

)

5o
/ ! ,
= W d -0 [
| I
I
| |
. " — A ,J‘ -
h L | I
- gl - --
! i
i
- _ . .
| I
“ _ -5 [
| |
’ _ _ 4 L_
\ i
| |
_1 [
A
[A B Sy B RO oL _L_a__
AT TrSToAT ST orTToAaT e e e e e R
[R N R H B B [R
L
- Lo
|
I
|
- [
]
! |
_1 -
! I
_J [
i
I
I
L
- Lo
|
I
|
- [
i
! |
_1 -
! I
_1 [
| | : |
_J Lo [

Figure 3: Communications needed to update ghost regions. Only communica-
tions involving the top left-hand processor are shown.

ENDDO
ENDDO

. Copy T to interior part of U (local copying)

The communications required to update the ghost regions are illustrated in
Figure 3. For the sake of definiteness we will refer to the interior part of the local
segment—the non-ghost part—as the physical segment. The communication
pattern illustrated here updates the cells in the ghost regions with the values
from the corresponding cells in the physical segments.

1.3 Reductions and other transformational intrinsics

Fortran implementations come with a set of built-in functions and subroutines
called the intrinsics. The transformational intrinsics are a subset of the intrin-
sics that peform functions on whole arrays, sometimes returning whole array
results. In HPF these functions can operate on distributed arrays, implying
new patterns of communication.

Some of the transformational intrinsics just reshuffle elements of arrays in
regular ways. For example if the CSHIFT, EOSHIFT, TRANSPOSE and SPREAD in-
trinsics are applied to distributed arrays, they imply patterns of data remapping
that are quite similar to patterns in the array assignments of section 1.1. The re-
duction intrinsics, including SUM, PRODUCT, MAXVAL, MINVAL, ALL, ANY and several
others, introduce qualitatively different communication patterns. They reduce
an array either to a scalar or a lower-rank array by arithmetically combining el-

ements along some or all dimensions. Typically the associated communications
occur on some spanning tree. In MPI terms they are related to, and might be
implemented in terms of, MPI_REDUCE.

Parallel prefirz operations can also be expressed. The HPF standard includes
them as standard library functions (rather than intrinsics). They can also be
expressed in terms of FORALL statements:

FORALL (I =1 : N) RES (I) = SUM(A (1 : I))

The ith element of the result contains the sum of all elements in A up to and in-
cluding its ¢th element. The pattern of communication needed to implement the
prefix algorithm efficiently is different to the one used in global reduction opera-
tions?. In MPI terms parallel prefixes are related to, and might be implemented
in terms of, MPI_SCAN.

1.4 General subscripting in array parallel statements
Quite often a parallel program needs to execute some code like
FORALL (I = 1 : 50) RES (I) = 4 (IND (I))

where A is one distributed array, and IND is some other distributed array. The
special feature is that some subscript expressions (the subscripts for A in this
case) are not a simple linear functions of the index variables. This operation
cannot be reduced to the kind of a simple array assignment described in Section
1.1. Even in the most favourable case, when the arrays RES and IND are identi-
cally aligned, the data movement cannot be reduced to a single MPI collective
operation.

Assuming RES and IND are aligned, the owner of the element RES(I) also
owns the subscript IND(I). So the processor that holds the target variable of
the assignment can compute where the required element of A lives. This is
generally on some other processor. Unfortunately that other processor—the
one that owns the A element—does not have the information to tell the value is
required by the first processor. It seems that there must be at least two phases
of communication—one in which the target processors send out requests to the
owners of the required data, and one in which the owners return the data. The
situation is illustrated in Figure 4 for the case

'HPF$ PROCESSORS P(4)

REAL A(50)
'HPF$ DISTRIBUTE A(CYCLIC) ONTO P

REAL RES(50)

INTEGER IND(50)
'HPF$ DISTRIBUTE RES(BLOCK) ONTO P
'HPF$ DISTRIBUTE IND(BLOCK) ONTO P

IND = (/ 5, 41, 7, ... /)

2The CM Fortran compiler, for example, could recognize the kind of FORALL statement
above as a parallel prefix and translate it appropriately.

A

[sIsTo). _[Teafasfas] [2]o[uof]_[[aelae[s0] [5]7 [uaf]__[[aa47] [a]e]uz]] _[[aa]e]

5417 .- — . -
E 3/]_ [14] 15[16]] [[24] 25| 26| [27]28[20]] || 37]38[30] [40[41][42]] |[[50]
o / IND

vy L __ __ __
[1]2]3]] [J11]12[13] [14[15[16]] [[24]25[26] [27[28[20]] [[37]38[30] [40]41]42]] [[s0]

RES

Figure 4: Assignment involving an indirect reference.

The first processor can deal with the assignment of the values A(5) and A(41)
to the first two elements of RES locally. But the element A(7) lives on the third
processor, and initially the third processor has no way to know that this element
is needed by the first. Some two-way communication is needed.

There are many generalizations of this problem. The non-linear subscript
expressions may appear on the left-hand-side rather than the right-hand-side:

FORALL (I =1 : 50) RES (IND (I)) = A (I)

(More generally, non-linear subscripts may appear on both sides.) The non-linear
subscript may be a function or expression rather than an indirection array. The
irregularly subscripted arrays may be multidimensional:

FORALL (I =1 : 50) RES (I) = A (IND1 (I), IND2(I))

As a special case it may be that the subscripts are actually be linear, but because
the subscripts in orthogonal dimensions are not independent, the assignment can
still not be reduced to a simple array assignment:

FORALL (I =1 : 50) RES (I) = A (I, I)
The loop itself may be multidimensional:

FORALL (I =1 : 50, J =1 :50) RES (I, J) = A (IND (I, J))
These examples are special cases of two (rather complicated) general families:

FORALL (¢; =1 : n1, ..., tr =1 : ngr)
& RES (i1,...,ir) = SRC (IND; (#1,...,%IR), ..., INDs (41,...,1R))

where the IND arrays are aligned with the RES array, and

FORALL (¢; =1 : ny, ..., 1s =1 : ng)
& RES (IND; (%1,...,18), ..., INDm (i1,...,1is)) = SRC (i1,...,1s)

where the IND arrays are aligned with the SRC array. We will call these gener-
alized gather and generalized scatter operations respectively®. A large class of

3Note that these operations are not related to the must simple MPI_GATHER and MPI_SCATTER
operations—MPT’s use of the terms “gather” and “scatter” is slightly unconventional.

FORALL statements can be reduced to a series of generalized gather and scatter
operations, interspersed with some ordinary array assignments (although there
is no guarantee that this is always the most efficient way to translate a FORALL
statement).

1.5 Accessing remote data in task-parallel code

All the previous examples considered patterns of communication occurring in ar-
ray parallel statements—array assignments or FORALL statements. These com-
munication patterns are quite naturally treated as generalized collective opera-
tions. But there are situations in HPF—and in general SPMD programming—
where this approach is not readily applicable.

One example is the INDEPENDENT DO loop of HPF, which takes the form:

'HPF$ INDEPENDENT
DO i =1, 10

END DO

The INDEPENDENT directive asserts that there are no data dependences be-
tween individual iterations of the following loop, and the iterations may therefore
be executed in parallel*. Unlike the FORALL statement, which explicitly limits
the code executed in parallel to simple assignments, the body of an INDEPEN-
DENT DO can involve any Fortran construct, including conditionals, loops and
procedure calls. So the patterns of access to remote data inside parallel “itera-
tions” may vary in unpredictable ways from one iteration to the next. It may
become difficult to do any advance orchestration of data exchanges. An HPF
the compiler is free to ignore the INDEPENDENT directive if it decides the
loop is too complex to parallelize. But this may deprive the programmer of one
of the few options in HPF for expressing the task-farming style of parallelism.

Actually there is at least one other way to express task parallelism in HPF.
A user-defined procedure with the PURE attribute can be called from within a
FORALL statement:

PURE REAL FUNCTION FOO(INTEGER I)
END

FORALL (I = 1 : N) RES (I) = FOO(I)

There are quite strict restrictions on PURE procedures, but nothing to prevent
a procedure from reading elements of global distributed data—a distributed
array in a COMMON block, for example. Unfortunately this makes it difficult
or impossible for the compiler to determine at the point of call of FOO exactly
what remote variables it will access. For example, the actual behaviour of the
program might be similar to the first example of Section 1.4:

4Bear in mind that this independence at the logical variable level implies nothing about
the home processors of accessed variables, and thus nothing about whether interprocessor
communications are needed to translate statements.

10

PURE REAL FUNCTION FOO(INTEGER I)

REAL RES(50)
INTEGER IND(50)
'HPF$ DISTRIBUTE RES(BLOCK) ONTO P
'HPF$ DISTRIBUTE IND(BLOCK) ONTO P
COMMON /GLOBALS/ RES, IND

RETURN RES (IND (I))
END

But by the time RES(IND(I)) is accessed, instances of the function FOO have
already been dispatched to execute independently across the available set of
processors. In a real sense, once inside FOO processors are no longer sharing a
single “loosely synchronous” thread of control. It is difficult to see how the par-
allel invocations of FOO can behave collectively. In particular if the underlying
model is MPI point-to-point communication it is difficult to see how the owner
of a particular array element can always be ready to send an element when its
value is accessed by a peer processor.

INDEPENDENT DO loops have similar problems, compounded because
they do not have the restrictions on PURE procedures that prevent them from
writing to global variables. If this sort of code is to be compiled to run in parallel
the most practical approach is probably to assume the availability of one-sided
communication. The MPI 2 standard added this functionality to MPI, but it is
still not widely implemented.

2 Libraries for distributed array communication

As we have seen, the communication patterns implied by languages like HPF can
be complex. Often it is impractical for a compiler to generate all the low-level
message passing instructions needed to execute these communications. Instead
the compiler may choose to emit code with calls to higher-level libraries for
manipulating distributed array data. By analogy with the run-time support
libraries used for memory management (and so on) in sequential languages, the
data parallel compiler’s library for handling distributed arrays is often called its
run-time library.

In this section we will discuss some libraries that have been used, or could
be used, in this role.

2.1 The PARTI primitives

The CHAOS/PARTI series of libraries was developed at the University of Mary-
land.

The original PARTTI library was designed to deal with irregular scientific
computations. A classic example is a physical problem discretized on an un-
structured mesh. A characteristic inner loop for this kind of problem might look
something like:

11

P1 PO P1

346
| LI 1| epcei[a]1[2]2] [3[4]3

| L1 [| epce2(2[s|53] [4]6]6

Figure 5: An irregular problem graph, exhibiting locality of reference.

DO I = 1, NEDGE

Y(EDGE1(I)) = Y(EDGE1(I)) + F(X(EDGE1(I)), X(EDGE2(I)))
Y(EDGE2(I)) = Y(EDGE2(I)) + G(X(EDGE1(I)), X(EDGE2(I)))
ENDDO

We assume the problem is defined on some graph (or mesh). The arrays X and
Y are defined over the nodes of the graph. The Ith edge in the graph connects
the nodes EDGE1(I) and EDGE2(I). The value of Y at a node is a sum of terms,
each depending on the value of X at the ends of an edge connected to the node.

PARTT is particularly optimized for problems that have some “locality of
reference”. It assumes that a mapping of nodes to processors can be chosen such
that most edges connect pairs of nodes on the same processor. The situation
is illustrated in Figure 5. The local loops will be over the edges held on each
processor. Here only one the edge (2, 3) held on processor PO causes non-local
references.

Figure 5 is copied from one of the illustrations in [2]. Tt assumes an irregular
distribution of X and Y: elements 1, 2, 5 of the data arrays are stored on the
first processor and elements 3, 4, 6 are stored on the second processor. This
property is not particularly important to the discussion here. We could assume
that the node numbering is permuted so that arrays like X and Y have a block
distribution.

In any case the important point is that there is a class of problems with the
following property: edges and nodes of the problem graph can be partitioned
in such a way that most references become local. To be specific, they can be
partitioned so that the majority of locally held elements of indirection vectors
like EDGE1, EDGE2 reference locally held elements of data arrays, like X and Y.

Based on this observation, PARTT assumes irregular loops are parallelized by
a technique similar to the method of ghost regions discussed for regular stencil
problems in section 1.2. First the indirection vectors are preprocessed to convert
global index values to local subscripts. The locality property of the partition
implies that the majority of these local subscripts refer to locally held data
elements. If the global index actually referenced a data element held on another
processor, the local subscript references an element in a “ghost extension” of
the local data segment. These ghost regions are filled or flushed by suitable
PARTT primitives: collective communication routines, called outside the local
processing loop.

Here is a simpler sequential loop with irregular accesses:

C Create required schedules (Inspector):

CALL LOCALIZE(DAD_X, SCHEDULE_IA, IA, LOCAL_IA, I_BLK_COUNT,
OFF_PROC_X)

CALL LOCALIZE(DAD_Y, SCHEDULE_IB, IB, LOCAL_IB, I_BLK_COUNT,
OFF_PROC_Y)

C Actual computation (Executor):
CALL GATHER(Y(Y_BLK_SIZE + 1), Y, SCHEDULE_IB)
CALL ZERO_OUT_BUFFER(X(X_BLK_SIZE + 1), OFF_PROC_X)

DO L = 1, I_BLK_COUNT
X(LOCAL_IA(I)) = X(LOCAL_IA(I)) + Y(LOCAL_IA(I))
ENDDO

CALL SCATTER_ADD(X(X_BLK_SIZE + 1), X, SCHEDULE_IA)

Figure 6: PARTI code for simple irregular loop.

pDOI=1, N
X(IA(CI)) = X(IA(I)) + Y(IB(I))
ENDDO

A parallel version (from [1]) is given in Figure 6.

The first call to the subroutine LOCALIZE deals with the X(IA(I)) terms. It
does two things. It translates the I_BLK_COUNT global subscripts in IA to local
subscripts, returned in the array LOCAL_IA, and it sets up a communication
schedule. A handle to this data structure is returned in SCHEDULE TA.

A communication schedule is created by analysing the requested set of ac-
cesses, sending lists of accessed elements to the processors that own them where
necessary, detecting appropriate aggregations and redundancy eliminations, and
so on. The end result is some digested list of messages that must be sent and
received, including the local sources and destinations of the data in those mes-
sages.

Another input parameter to LOCALIZE is the distribution of the data array—
DAD X in the first call. Another output parameter is the number of elements in
the ghost region that will actually be needed—0FF_PROC X here.

The second call to LOCALIZE performs a similar analysis for the term Y(IB(I)).

Together these calls comprise what is called the inspector phase for the loop.
It is followed by the executor phase, in which results are actually computed and
data is actually communicated.

The collective call to GATHER communicates necessary element values from
physical segments of Y—the second argument—into the target ghost regions for
Y, which starts at Y(Y_BLK_SIZE + 1)—the first argument. The third argument

13

is the communication schedule for this operation. The call to ZERO_OUT_BUFFER
just sets all elements in the ghost region of X to zero.

The main loop is self-explanatory. Contributions to locally owned X(IA)
elements are accumulated directly into the local physical segment of X. Contri-
butions to non-locally owned elements are accumulated into the ghost region of
X.

Finally the call SCATTER_ADD sends the values in the ghost region of X to
the relevant owners, where they are added to the appropriate elements in the
physical region of the array segment. This is an example of a combining scatter
operation.

Besides the PARTT software, a major contribution here is the elaboration
of the inspector-executor model, and the insight that construction of communi-
cation schedules should be separated from execution of those schedules. One
immediate benefit of this separation arises in the common situation where the
form of the inner loop (the pattern of subscripting) is constant over many it-
erations of some outer loop. The same communication schedule can be reused
many times—in other words the inspector phase can be lifted out of the main
loop.

The importance of the inspector-executor model and the idea of communica-
tion schedules are not tied to the details of the PARTI primitives. For example
they are not dependent on the particular assumptions about locality, or the spe-
cial use of ghost regions, or even particularly specific to irregular computations.

2.2 Multiblock PARTI
2.3 The Global Array Toolkit

3 Adlib

3.1 Background and functionality
3.2 Case study: implementation of the Remap schedule

References

[1] Raja Das, Mustafa Uysal, Yuan-Shin Hwang, and Joel Salz. Communication
optimizations for irregular scientific computations on distributed memory
architectures. Journal of Parallel and Distributed Computing, 22, 1994.

[2] Ravi Ponnusamy, Yuan-Shin Hwang, Raja Das, Joel H. Salz, Alok Choud-
hary, and Geoffrey Fox. Supporting irregular distributions using data-
parallel languages. IEEFE Parallel and Distributed Technology, Spring, 1995.

[3] Michael Wolfe. High Performance Compilers for Parallel Computing.
Addison-Wesley, 1996.

14

