Common Compiler and Data Movement Interface Specification

Parallel Compiler/Runtime Consortium: Task 6

November 18, 1996

1 Overview

The Message Passing Interface standard [3] is a powerful, flexible, portable generic solution
to the requirements of general-purpose message-passing codes. MPI’s signal achievement
was the compilation of most common communications functionality under one roof, for the
convenience of the parallel programmer.

Performance vs Flexibility Nonetheless, the design of software standards inevitably
trades away the high performance of a tailored solution in favor of the portability and flex-
ibility of a generic solution. The combined performance and portability requirements of a
specific family of applications may be better met by considering only a subset of a more
generic standard.

One such family of applications are the parallel runtime systems targeted by major parallel
compiler environments for languages such as HPF ([1, 5, 2] and pC++ ([4]). The node codes
created by these compilers are, by and large, variants of the single-program, multiple-node
(SPMD) programming model. Their runtime requirements for communication tend to be
regular, to follow idiomatic patterns such as the owner-computes rule, nearest-neighbor shift,
and reduction.

These systems each offer significantly different programming models to the compiler and
enduser: regular arrays and array sections from Adlib and F90D, irregular arrays from
Parti/CHAOS, and parallel element collections from pC++. Nonetheless, they implement
enough common functionality internally to share some runtime communication requirements.
As a result, we speculated that a compiler data movement interface for these systems could
omit large parts of the MPI standard, and focus instead on the MPI subset required to
implement the standard idioms of distributed regular- and irregular-array runtime behavior.

Organization In the following report, we describe some empirical results comparing the
specific common runtime requirements of four PCRC software systems.

We then summarize these results in terms of a “laundry list” of common communications
functionality, and a summary of superfluous MPI features which can safely be omitted from a
common communications interface. Finally, we summarize these results in terms of PCCMPI:
a Parallel Compiler Common MPI standard.

2 Survey: PCRC Runtime Applications

We collected all the MPI constant and function call data from four PCRC applications: Kiv-
anc Dincer’s MPI CHAOS port, Xiaoming Li’s F90D MPI runtime port, Bryan Carpenter’s
MPI Fortran support, and Dennis Gannon’s MPI pC++ runtime libraries. We then extrac-
ted raw coverage data (reproduced in Appendix A) for the MPI functions and constants, and
analyzed them to uncover common requirements. In addition to the core MPI functional-
ity shared by all these systems, two “annexes” emerged. Each of these annexes represents
an additional group of MPI functionality which was central to the success of one survey
application, but excluded by the other three.

2.1 F90D MPI Runtime System

The Fortran 90D runtime system [5], ported to MPI by Xiaoming Li of NPAC, provides
runtime support for the Fortran 90D compiler [6]. The D compiler generates Fortran 77
SPMD node codes, which call the D runtime system to allocate local arrays and carry out
collective communication over the global arrays they represent.

2.2 MPI CHAOS Runtime System

The MPI port of Parti/CHAOS [2], by Kivanc Dincer of NPAC, augments the basic F90D
runtime system. CHAQOS supports runtime scheduling of irregular computations by imple-
menting the inspector/executor model.

2.3 MPI Adlib Runtime System

The Adlib runtime system ([1]), developed by Bryan Carpenter of NPAC, provides a set
of abstract data types representing parallel arrays. Written in C++, Adlib provides the
runtime support for the Subset HPF compiler system. As in HPF, an Adlib array can be
distributed over a logical process array, which the library maps transparently to available
physical processors. Adlib also provides control abstractions for data-parallel array traversal,
as well as common collective communication patterns such as remap, gather-scatter, and
arithmetic reduction.

2.4 MPI pC++ Runtime System

The pC++ system [4], developed by Dennis Gannon et al of Indiana University, extends
C++ to support data-parallel operations over collections of objects. These collections can
then be aligned and distributed over the memory hierarchy of the parallel machine. pC++
also includes a mechanism for encapsulating SPMD-style computation in a thread-based
computing model. The MPI-based implementation of the pC++ runtime system allows pro-
cessor threads to access remote elements from any processor via the pC++ program’s shared
name space. On behalf of the pC++ user, the MPI runtime system handles allocation of
collection classes, the management of element accesses, and termination of parallel collection
operations.

3 Analysis of Coverage Data

For each of the four parallel runtime systems, we derived lists of calls to MPI functions.
We then compared the usage patterns of each runtime system. Some parts of the MPI
specification (the “core”) were exercised by the majority of codes; other parts were used by
only one client. These we divided into “spontaneous” uses of MPI functionality (those which
could potentially be avoided by using a more standard call) and “annexes” of functionality
(clearly systematic usage patterns for MPI functions unused by others). Finally, large regions
of MPI went unused by any runtime system.

3.1 Core MPI Functionality

A handful of MPI functions were used by at least three of the four surveyed systems. As might
be expected, they cover the basics of MPI operation: initialization, extracting communicator
information, and (of course) basic message passing.

e MPI_Init, MPI_Finalize. These functions initialize and terminate the MPI execution
environment, respectively; they were used by all four runtime systems. F90D also used
the MPI_INITIALIZED test to make sure that MPI_INIT has been properly called.

e MPI_Get_count, MPI_Comm size, MPI_Comm _rank. The first function returns
the number of “top level” elements, the second finds the size of a group associated with
a communicator, and the last determines the rank of the caller in the communicator.
Collectively, these three functions serve to define the bounds of the computation space
and support global-to-local and logical-to-physical mappings.

e MPI_Send, MPI_Recv. These basic, blocking message passing functions were used
nearly universally, although Adlib uses the asynchronous versions instead throughout.

e MPI Irecv. Three of four systems also called the nonblocking (asynchronous) version
of the receive function, allowing the overlap of communication with computation. Per-
haps due to the prevalence of the owner computes model, or the idioms of distributed
data-parallel computation, the asynchronous send counterpart (MPI_Isend) was used
only rarely, by Adlib. The nonblocking test for message arrival, MPI_Iprobe, was
used by both Adlib and pC++.

3.2 Non-core MPI Functionality

In addition, the following MPI functions were used by at least two of the four surveyed
systems.

e MPI_Abort. This function brings the MPI execution environment to an abrupt halt.
Error and exception handling has not been a primary focus of most dataparallel codes.
Adlib and pC++ both use MPI_Abort to escape from unexpected situations.

e MPI_Barrier. This routine blocks all processes in a barrier synchronization. The
pC++ and CHAOS runtime systems used explicit barrier synchronization, while Adlib
and FOOD/RT relied instead on the completion of regular, all-to-all synchronous com-
munication patterns to create natural collective barriers.

e MPI COMM RANK, MPI_COMM SIZE, MPI. COMM _CREATE, MPI_.COMM _GROUP.
The first two functions determine the rank of the calling process in the communicator,
and the size of the group associated with the communicator, respectively. The CREATE
and _GROUP functions create a communicator and access the associated group. Both
the F90D and pC++ systems used these functions, creating new communicators and
groups to help implement array structures; by contrast, Adlib relied on its own internal
data structures to track these values.

e MPI Wait. Adlib and pC++ used this routine, which waits for a send or receive
to complete. Adlib also used MPI_Waitany, which waits for any specified send or
receive to complete.

e MPI _Test. CHAOS and pC++ used this routine, which tests for the completion of a
send or receive without waiting.!

"The pC++ runtime system also uses MPI_Testany, which could instead be implemented directly by
the compiler as a loop over outstanding requests, performing a nonblocking MPI_Test operation on each, and
escaping from the loop on first success.

3.3 Systematic, unique usage patterns.

These sets of MPI functions were called by only one of the four surveyed systems, but clearly
represent a style of usage which cannot be “patched around” to recast the code in terms
of more standard functions. We think of these as alternative “annexes” of the PCCMPI

standard which are clearly useful, but not universally applicable.

e MPI_ CART CREATE, MPI_CART _COORDS, MPI CART GET, MPI_CART RANK,
MPI_CART_SHIFT. These functions all support use of relatively high-level Cartesian
topology information that can be associated with a communicator. Only the F90D
runtime system uses these functions. Adlib, by comparison, uses its own internal data
structures to keep track of more-or-less equivalent information.

e MPI Type_commit, MPI_Type_contiguous, MPI_Type free, MPI_Type_hindexed,
MPI_Type_hvector, MPI_Type_indexed, MPI_Type_struct. These MPI routines
allow the creation and management of indexed datatypes (structures, vectors) with off-
sets in bytes. These are used extensively by Adlib, and only by Adlib.

e MPI _Buffer_attach, MPI_Bsend. User-defined buffer space was only an issue in
pC++, the runtime system whose interface is closest to the enduser (programmer).
The first routine allows the programmer to attach a user-defined buffer for sending,
and then execute the basic send with this user-specified buffering.

3.4 Possibly redundant MPI functionality.

Still other MPI functions were called by only one of the four surveyed systems, and could
potentially be replaced by more standard strategies based on the more common functions
listed in previous sections.

e MPI _Probe, MPI _Ssend. Blocking test for a message and basic synchronous send;
used only by pC++.

e MPI_Address. Gets the location of an address in memory into an MPI_Aint. Like
the MPI_Aint type itself, used only by Adlib.

e MPI SENDRECV, MPI_ ALLGATHER, MPI_GROUP INCL. The first func-
tion simultaneously sends and receives a message; the second gathers data from all
tasks and delivers it to all tasks. The last one produced a new group by reordering an
existing group and taking only the listed members. All three routines are used only
by F90D, for specific optimizations. The compiler could potentially replace these calls
with lower-level primitives to achieve the same functionality with roughly the same
performance.

e MPI _Testany. Only pC++ used this routine, which tests for completion of any
previously initialized communication in a supplied array of requests. This function
could be alternatively implemented directly by the compiler as a loop over outstanding
requests, performing an MPI_Test operation on each, and escaping from the loop on
first success.

3.5 Unused MPI functionality.

The remaining MPI functions never seem to be used by any of the four surveyed runtime
systems. This is not to say that they are not useful portions of the MPI specification; just
that they were not found to be immediately useful to four parallel runtime system designers
working independently.

e Key-attribute database functions. That is, MPI_Attr * and MPI Keyval *.

e Error handlers. MPI supports the association of an error handler with each commu-
nicator (MPI_Errhandler), but no runtime system found this useful.

e Graph topology. While F90D used Cartesian topologies extensively, the more general
Graph topology (MPI_Graph *) went unused by all systems. This is a clear example of
a mismatch between an overly general tool (MPI) and the more specific application it
supports (distributed array management).

e General-purpose groups. While FO0D used some basic Group support, the more
esoteric MPI_Group_* operations (intersection and union, for example) were unused.

e Intracommunicators. No system found any use for intracommunicators (MPI_Intercomm).

e MPI _Pack, MPI_Unpack. No system wasted time packing or unpacking datatypes
to and from contiguous memory.

¢ Ready sends. Ready sends (MPI_rsend *) went unused.

e Persistent request handles. Nobody used MPI_Start or MPI_Startall.

4 Summary

The results that emerge from our survey of the four runtime systems are not as clear-cut,
perhaps, as we had hoped at the start of the project. While all four systems do use a nontrivial
core of MPI routines to carry out common functionality, there are still significant differences
in the style and level at which they manage their internal affairs.

Most significantly, the F90D runtime system tended to use the high-level, all-to-all com-
munications facilities built into MPI, and then took advantage of the opportunity to associate
Cartesian topology information with MPI communicators. By contrast, Adlib used lower-
level functions to implement all-to-all communications directly, and used MPI’s support for
defining new indexed datatypes to represent its local arrays and array sections.

Parallel Compiler Common MPI. We define “core PCCMPI” as the subset of MPI
functionality that excludes data descriptor concerns (the debate between Adlib’s MPI defined
datatypes and F90D’s Cartesian communicator topologies). That is, PCCMPI includes only
those 19 functions listed in sections 3.1 and 3.2, plus perhaps pC++’s 2 user-defined buffering
functions from section 3.3. To these 21 functions, then, we optionally add the two data
description annexes from section 3.3: Adlib’s use of MPI’s defined datatypes (7 functions),
and F90D’s use of MPI’s Cartesian topologies (5 functions).

In total, then, PCCMPI consists of 33 routines, out of the 129 defined in the MPI standards.
Whether this economy of expression would translate into improved performance depends on
the quality of the reimplementation of the PCCMPI communication layer. We can assert
that the PCCMPI implementor would benefit from the ability to focus on optimizing a few
selected alternative forms of each communication routine, rather than the broad space of
routines demanded by symmetry and universality,

Appendix A. MPI Constant and Function Coverage Information

Fn or Constant Adlib | F90D | CHAOS
MPI_Finalize
MPI_Init
MPI_Get_count
MPI_Comm size
MPI_Comm rank
MPI_Irecv
MPI_Send -
MPI_Recv -

CHt

he}

oA

S I I e
><|

o
el
el

Table 1: MPI Functions and Constants used by at least 3 of 4 runtime systems.

Fn or Constant Adlib
MPI_.COMM_WORLD X
MPI_ALLREDUCE -
MPI_ANY_SOURCE X
MPI_DOUBLE_PRECISION | -
MPIINTEGER -
MPI_MAX -
MPI_MIN -
MPI_REAL -
MPI.SUM -
MPI_WTIME -
MPI_Abort X
MPI_Barrier - -
MPI_Iprobe - -
MPI_Test - -
MPI_Wait

s>
)
S
)

CHAOS | pC++

e l

Il I
R

!
KK K

o

Table 2: MPI Functions and Constants used by 2 of the 4 runtime systems.

Fn or Constant Adlib | F90D | CHAOS | pC++
MPI_2DOUBLE_PRECISION | - -
MPI2INTEGER - X - -
MPI_2REAL -
MPI_Address X
MPI_Aint X
MPI_all -
MPI_ALLGATHER -
MPI_any -
MPI_ANY_TAG -
MPI_BAND -
MPI_LBCAST -
MPI_LBOR -
MPI_LBOTTOM
MPI_Bsend -
MPI_Buffer_attach -
MPI_LBXOR -
MPI_LBYTE -
MPI_CART_COORDS -
MPI_CART_CREATE -
MPI_CART_GET -
MPI_CART_RANK -
MPI_CART_SHIFT -
MPI_CHAR X
MPI_.COMM_CREATE -
MPI_.COMM_GROUP -
MPI_.COMM_RANK -
MPI_COMM_SIZE -
MPI_COMPLEX -
MPI_count -
MPI_Datatype X
MPI_dotproduct -
MPI_END -
MPI_GROUP_INCL -
MPI_Initialize -
MPIINITTALIZED -

A A A A A g

>

A

oA A A A g
I><><I I [

oA A A

oA A

b

>

Table 3: MPI Functions and Constants used by only 1 of 4 runtime systems.

10

Fn or Constant Adlib | F90D | CHAOS | pC++
MPILINT X - -

MPI_Isend X
MPI_LLAND -
MPI_LOGICAL -
MPI_LOR -
MPI_LXOR -
MPI_MINLOC -
MPI_msg - - -
MPI_msgEmpty
MPI_Probe
MPI_PROC_NULL -
MPI_PROD -
MPI_Request
MPI_REQUEST_NULL
MPI_SENDRECV
MPI_SOURCE
MPI_Ssend
MPI_Status X - - -
MPI_STATUS_SIZE
MPI_Testany
MPI_Type_commit
MPI_Type_contiguous
MPI_Type_free
MPI_Type_hindexed
MPI_Type_hvector
MPI_Type_indexed
MPI_Type_struct
MPI_Waitany
MPI_wrapper

oA A A A

><><||
B A

A A
|><||
|||><

>

>

A A A A 4 g

>

Table 4: MPI Functions and Constants used by only 1 of 4 runtime systems (cont’d).

11

References

[1] Bryan Carpenter. Adlib. 1995.
[2] Kivanc Dincer. Parti/CHAOS for MPI. 1995.

[3] Message Passing Interface Forum. MPI: A message-passing interface standard. Interna-
tional Journal of Supercomputer Applications, 8(3/4), 1994.

[4] D. Gannon and P. Beckman et al. pC4++. 1995.
[6] Xiaoming Li. F90D Runtime System. 1995.
[6] NPAC. The F90D Compiler. 1995.

12

