Java’s Role in Distributed Collaboration

Marina Chen James Cowie

Cooperating Systems Corporation

Chestnut Hill, MA 02167

Abstract

In this white paper, we sketch some techniques for using Java to improve the state-of-the-
art in scalable collaboration management for scientific and engineering applications. We
arque that flexibility, cost containment, and support for large-scale collaboration must join
raw performance as metrics for successful, scalable HPC software. Finally, we summarize
our experience with large-scale Web-based collaboration, and describe some plans for future
work.

1 Introduction

The last two years have witnessed a significant realignment in the market for hardware and
software support for High Performance Computing (HPC), as distributed problem-solving
environments have emerged to supplement more centralized approaches. In large part, this
transition was an inevitable consequence of the demand for more mature HPC technologies
to support commercial ventures.

As HPC left the laboratory in search of sustainable business applications, it shed some of
the vestigial characteristics of a fetal software process (emphasis on weak prototypes, poor
development tools, and special-purpose languages and programming models). By contrast,
marketable HPC solves problems by maximizing the throughput of a distributed collabora-
tion.

The new goal of scalable software is to contain the development cost of scientific and
commercial collaborations as they grow in size, degree of distribution, and complexity. Con-
taining the magnitude of these costs is not as important as the ability to predict their trend
and factor HPC costs into long-range business plans.

From this perspective, “high performance” hardware and software can either reduce costs
(by resolving computational bottlenecks in distributed collaborations) or simply increase
them. Depending on how they are integrated, investment in special-purpose tools and tech-
nologies can restrict the flexibility of collaborative teams to adapt to new challenges.

1.1 Java and HPC: Opportunity

The Java standards (language definition, virtual machine, and standard library implemen-
tations) have arrived at the right time to help HPC practitioners bridge the collaboration



gap. By themselves, none of the claimed advantages of Java are radical or unique. Object-
orientation didn’t help C++4 conquer the distributed computing world, the capability to
construct rapid prototypes didn’t propel Smalltalk or Tcl/Tk or Perl 5 to the forefront, and
neither strong typing, nor type-safe exceptions, nor garbage-collection could entice Standard
ML out of the laboratory.

Java offers all these features, but adds standard packages for multithreading, network
access, and user interface construction. Even more important, Java programs execute atop a
standard virtual machine using bytecode interpretation, and can be guaranteed to be safely
portable across a wide space of platforms without recompilation.

1.2 Java and HPC: Shortcomings

“Giving up on assembly language was the apple in our Garden of Eden: Languages
whose use squanders machine cycles are sinful. The LISP machine now permits LISP
programmers to abandon bra and fig-leaf.” (Epigrams in Programming, ACM SIGPLAN
Sept 1982)

Performance puritans have been raising this alarm for many years. There’s a reason,
however, why hardware and software development and maintenance costs are on radically
different curves. Humans simply aren’t as good at managing generational transitions in
software products as they are in hardware products, and as a result, rational developers
should be willing to pay in short-term performance to improve the real long-term bottom line:
predictability of project costs through improved interoperability, portability, and support for
distribution and maintenance.

Why, then, hasn’t the HPC community leapt aboard the Java bandwagon? Perhaps HPC
practitioners are so intimately familiar with painful tradeoffs to achieve raw performance
that they are naturally suspicious of solutions that give back any of those cycles. In Java’s
case, let’s examine the reasons for their suspicions in more detail.

Performance Obstacles 'The obvious reason to adopt a “wait-and-see” approach to Java
has been its lack of traditional scalability: less-than-stellar speed on a single processor,
and no inherent support for either task-parallelism across multiple address spaces or data-
parallelism. In terms of base performance, Java’s virtual machine approach cannot compete
head-to-head with either C++/f77/MPI (for high-performance scalar and NOW environ-
ments) or F95/HPF (for SMP and special-purpose MPP environments). Java suffers in the
comparison, not only in terms of the raw speed of bytecode interpretation, but also because
the virtual machine lives in a single address space, requiring additional overhead of a thick
library layer (JIDL, HORB, etc.) to exchange data among multiple VMs.

In the short term, these are valid criticisms. But our concern lies in the broader definition
of scalability: controlling acquisition and maintenance costs for scalable collaborative HPC
efforts. If we can determine which performance criticisms are long-term, and which are
short-term, we can determine whether Java’s strengths in rapid prototyping and portability
can outweigh temporary performance glitches. We shall differentiate among three classes of
performance obstacles: engineering challenges for Java implementators, availability problems
for Java developers (missing software components), and fundamental flaws in the design of



the Java standards, in order to estimate Java’s long-term impact on the costs of developing
HPC software.

1.2.1 Engineering Challenges.

Reducing the overhead of bytecode interpretation is an obvious place to start improving
Java’s performance, and there’s no shortage of commercial and academic efforts targeted
at techniques for Just In Time (JIT) compilation. These techniques will be most success-
ful for intensive regular iterations over statically allocated memory, and fairly successful
at intraprocedural/peephole optimizations within general-purpose scalar code. Without
application-specific compilation assistance, JI'T' techniques probably won’t give much help
on convoluted, irregular computations over adaptive data structures. (This roughly parallels
the history of “traditional” compiler technology for traditional HPC languages such as HPF
and HPC++.)

But it’s safe to predict that Java’sinner-loop performance over statically allocated memory
(the same codes that HPC languages handle best) will soon fall within 2 or 3 times that of
C. Other languages are now being compiled to Java VM bytecodes (for example, Ada 95);
this extra attention will help further improve the performance of interpretation.

Java Memory Management. Java’sdynamic memory management is another sore spot
which is amenable to careful engineering. With time, the (currently significant) penalties for
allocating, deallocating, and garbage-collecting at runtime will also help close the scalar per-
formance gap with C. Java’s emphasis on designing and reusing standard packages will help
as well. For example, matrix packages typically perform intensive allocation and deallocation
of temporary arrays. The designer of such a package may pay special attention to recycling,
rather than abandoning and reallocating, large temporaries. Java’s garbage collection allows
the designer to concentrate on managing references to recyclable temporaries during their
lifetimes — preventing them from escaping the package and ceasing to be safely recyclable
— rather than the mechanics of allocation and deallocation (where most C and C++ codes
go down in flames).

Java Threads and SMP. Along with scalar speedups, Java implementators are making
good progress on two other fronts: the use of native OS threading packages to implement
Java threads, and implementation of the Java VM atop shared memory multiprocessors. The
primary application programming challenges for such systems have always involved trading
off multithread safety against performance (by minimizing the size of the critical sections of
code which must be locked to manipulate shared resources safely).

What might seem at first glance like a strike against Java (increased programming com-
plexity, and performance hits for sloppy use of threading) actually applies more strongly
to languages like C whose thread support is patched on as a runtime library afterthought.
Since threading is central to Java, and standardized within the language and its VM, its per-
formance impacts are subject to engineering improvement. Careful Java VM implementors
can minimize the overhead of these locking constructs and Java’s thread policy mechanisms.
As a result, we expect that Java will emerge as one of the easiest, cheapest ways to take



advantage of the parallelism of large SMP servers that will form the backbone of distributed
HPC collaborations.

1.2.2 Missing Components.

As Java implementors deliver on these engineering challenges, they will pass on transparent
speedups to the application developers. To lock in these performance improvements for
endusers, these application developers must then supply some critical software links which
are not provided by the Java VM or standard packages. Globally shared namespace support
(providing Java clients with access to CORBA objects, and allowing Java servers to provide
access to their own objects) is one such missing link; application-dependent communication
protocols (for on-the-fly compression, synchronization, and recovery of multimedia data, for
example) are another.

These are specific cases of a general problem which has not been adequately addressed by
any proposed HPC language (up to and including Java). High performance in a distributed
collaboration can rely as much on application-dependent strategies for communication, and
on management of shared names and resources, as on the performance of each individual
component. We will return to this problem in our description of a Java-based distributed
HPC simulation environment.

1.2.3 Fundamental Difficulties.

Not all of Java’s performance difficulties can be solved by hacking improvementsinto the VM
implementation or extra packages. Some of Java’s weaknesses are fundamental to its design,
although none are insurmountable. Most visibly, Java lacks C++’s operator overloading
and templates. Without operator overloading, it’s difficult to implement syntactically clean
support for data-parallel array constructs in Java, as the “obvious” array arithmetic oper-
ators cannot be rebound. Similarly, Java’s lack of templates makes it harder to implement
many fruitful task-parallel techniques based on iteration over collective container classes.
(Approaches which cast all objects in a collective class to and from Java’s generic Object
class can restore some of this functionality, but incur significant overhead from two-way
casting on every store to or retrieval from such a container.) Neither of these criticisms
is a show-stopper, and solutions have been proposed[8§]; they only make it marginally more
difficult to construct data- and regular task-parallel codes in the same syntactic style as HPF
or HPC++.

Other Java features may impose fundamental difficulties on some specific HPC application
classes. Designers of realtime HPC codes will be frustrated by Java’s reliance on garbage-
collected memory, for example. The ability to omit C++’s class destructors, or C’s free
statement, is convenient (and prevents many bugs, thereby containing maintenance costs).
However, garbage collection is costly enough (at least tens of milliseconds) that realtime HPC
applications will need the option to manually deactivate asynchronous garbage collection,
schedule it synchronously, and bound its timing in advance. Because of the relatively small
size of the realtime HPC market, these goals may not be satisfied immediately.

Java also deliberately omits function pointers, which form the backbone of many promi-
nent C and C++ idioms for low-latency active messaging, discrete event simulation, and
callbacks within a framework.



Technically, of course, Java programmers can (and should) replace idioms that use func-
tion pointers with cleaner, safer object-oriented solutions with little loss in performance.
Supporting function pointers in Java would have been practically impossible without open-
ing the door to other pointer mischief, and wouldn’t have been portable across platforms, or
even between two Java VMs on the same platform. Still, it’s a significant language restriction
that singlehandedly wipes out some favorite tools from the HPC programmer’s arsenal.

Summary With a few exceptions, then, we can assert that Java’s performance problems
vis-a-vis C and C++ are (1) short-term, easily fixed by the enormous commercial market
which has sprung up on the strength of industry hype, and (2) more than compensated for
by Java’s strengths in rapid prototyping and cross-platform portability. In the following sec-
tions, we propose some specific sources of HPC development cost that Java can help control.
We then describe some ongoing experience with Java as a basis for building distributed high
performance collaborative tools.

2 Putting Java to Work in Distributed Collaboration

We have already discussed HPC’s ongoing realignment from centralized solutions toward
distributed environments. At the same time, the “space of expertise” among producers and
consumers of computing technology has become intricately segmented. Hardware, operating
systems, compilers, and runtime libraries used to cover known computational space. In recent
years, entirely new categories of expertise have arisen: computational scientists, financial
engineers, database technicians, and decision support systems specialists are just a few of
the new microdomains represented in the classified ads.

A large part of the difficulty in constructing collaborative high performance computing
applications lies in resolving the “impedance mismatches” between these different groups of
experts. By default, each team brings a different set of skills to a collaboration — chained
to a different set of prejudices about how software should be built, and swearing allegance
to a different set of underlying design assumptions and tools.

Collaborative software development cost overruns arise because of the complexity of re-
solving these differences to reach common goals. This resolution can be visualized as taking
place in three continuous collaborative processes: (1) interface prototyping, (2) dataflow sim-
ulation and task mapping, and (3) software integration. These processes are interdependent
and continuous; breakdowns in any one can contribute to cost overruns in the others. We are
studying how Java-based development environments, in particular, can help scientific and
engineering application developers contain costs and promote scalability on all three fronts.

Rapid prototyping. Complex collaborative efforts require quick proof-of-concept demon-
strations and validations of basic assumptions about the shared design. Building scientific
and engineering codes, like other collaborative processes, relies in large part on the ability to
construct mockups of user interfaces and the interactions between components long before
the details of their implementation have been filled in. Java’s portable graphics support
allows a prototype graphical user interface to execute in all participants’ home environments
from day one.



Such a GUI might model each top-level task (or “role”) within a collaboration as an
onscreen entity, supporting a specified set of symbolic actions or operations (control, visu-
alization, input consumed, output produced). Each team would then independently create
Java code that simulates, schematically represents, or actually implements the functionality
of each of their roles in the collaboration.

All other teams can load this code over the network, linking it with the GUI classes to
create a complete application at each site, or each team can publish their code as a local
service running atop appropriate local resources. As the fidelity of the simulation provided
by each component increases, what started as a simple graphical mockup becomes a useful
tool for participants to monitor their own development progress relative to others, and to
identify and resolve specific problems with component interoperability. The net effect is that
of a distributed visual editor for building collaborations, in which all participants can view
the progress of the work as a whole, while providing incrementally improved content for their
own components.

Simulation of adaptive dataflow. By providing, in essence, a coarse-grained simulation
of distributed application dataflow, this prototyping process helps to establish lower bounds
on the required bandwidth and computational throughput of each participant in the dis-
tributed application. It also helps map application tasks appropriately onto heterogeneous
resources and collaborators’ specific expertise. Java can help promote top-down design of
this process, starting with the partition of the collaboration into tasks, specification of the
public interfaces of solutions for those tasks, and initial binding of those interfaces to a pub-
lication “home” at one of the collaborative institutions. Those tasks can then be partitioned
into subtasks and mapped to specific Java packages, and local resources identified to serve
as hosts for the implementations of those packages.

Integration of software. As collaboration partners use their specific skills to solve their
subset of the collective tasks, they then need to publish code and documentation for those
solutions in a standard format. Web technologies (HTML and its standard browsers) make
hyperlinked code and documentation available to all participants; Java completes the picture
by allowing publication of packages of executable code along with their APIs. The test and
validation role forms another primary task within the collaboration; success or failure are
measured by the ability of the integrated collection of components to respond appropriately
to a real or synthetic workload supplied by the testers.

At all times, control over source and object code remains with the original developers,
because their remote partners can load the Java code over the network each time it is used.
This allows implementation improvements to be transparently propagated as they are filled
in by the primary developers of the package.

3 Initial Experiences with Distributed Collaboration

To gain some perspective on why these elaborate design techniques are warranted, and
to understand why Java in particular seems to offer great promise as a portable tool for
implementing them, it always helps to look backward.



We have been studying the emergent problems of scalable distributed collaboration in
earnest for several years. Over that period, we moved through a sequence of prototype
projects and thought experiments (WebHPL in early 1995, giving rise to WebWork/WWVM
in late 1995 and WebFlow in 1996, all in partnership with the Northeast Parallel Architecture
Center at Syracuse University). We started by focusing on a model (WebHPL) in which
standard HPC codes were simply wrapped in a veneer of Web technology (at the time,
primitive Perl 4 scripts via the CGI interface of HTTP-based Web servers).

This didn’t provide the necessary control over shared namespace management, or flow
control for links between components. It sidestepped collaboration design issues, and didn’t
really answer questions about security and resource management; it simply assumed that
coarse-grain pipelining of data between monolithic Fortran kernels would suffice. For some
sets of assumptions (high performance Intranets, and a close-knit workgroup composed of
people with similar expertise), we expect that this approach is still valid.

Later projects (WebWork, segueing into WebFlow) shifted emphasis away from the HPC
kernels per se, toward design of the collaborative infrastructure — the “glue” that supports
shared namespaces among HPC applications, and provides dataflow mechanisms for tim-
ing progress among coupled components. WebWork specified a model of computation in
which a pool of HPC codes, wrapped as network services, acted as each others’ clients in a
compute web[6]. The Responsive Web Computing project began to explore ways in which
Web-integrated applications could provide and receive quality-of-service guarantees, by im-
plementing appropriate realtime resource management techniques and protocols[1]. Mean-
while, the WebFlow design added explicit dataflow to manage geographically distributed
data-intensive applications.

3.1 RSA130: Factoring By Web

In 1995 we constructed FAFNER, a proof-of-concept prototype of a distributed collabo-
rative environment for factoring RSA-130, the 130-digit composite challenge number[3, 4].
FAFNER’s job was automation and coordination of the flow of tasks and subsolutions within
a globally distributed network of anonymous sieving clients. The NF'S sieving code itself was
crafted at Bellcore[7], starting with a pair of irreducible polynomials derived during exten-
sive sieving experiments at the University of Saarland, and ultimately feeding a large sparse
matrix solver running on a Cray-C90 at the SARA Computer Center in Amsterdam.

The project attracted the interest of browsers from over 500 different Internet hosts; 20
percent of those hosts stayed to participate in the sieving stage. These ranged from SLIP-
connected home computers to high-performance corporate workstation clusters, and literally
covered the globe. Browsers from 28 countries, from AT (Austria) to ZA (South Africa), left
their prints on the project. In all, FAFNER clients donated over 17% of the cycles used to
crack RSA130, whose prime factors were finally revealed to the world in April 1996[5].

The FAFNER Web-factoring package received the “most geographically distributed /most
heterogeneous” award in the High Performance Computing Challenge at Supercomputing
'95[2]. Despite all that, it was a fairly primitive aggregation of Perl 5 and C code, with
limited support for reconfiguring the computation as it proceeded, and was very much a
special-purpose problem solving environment for performing the Number Field Sieve.

Clients in the factoring-by-Web collaboration could get project documentation and register



themselves anonymously through a large collection of Web pages generated by CGI scripts.
These pages generated a mix of canned and custom Perl and C code for each user to download
and build, drawn from multiple sources (some developed and resident at CSC, the rest at
Bellcore). Clients could elect to become FAFNER servers (installing a personalized package
of Perl code on their own Web server) or just act as sieving clients. Sieving contributors
were required to build and execute the (very large) C codes we provided them, at their own
risk, using their own C compiler. Every time a bug was found in the client code, we were
forced to reinstall it as the standard version on the FTP server, and contact each sieving
client to alert them to the availability of the “improved” code.

These factors combined to convince us that the state of the art in Web technology circa
1995 (e.g., Perl CGI scripts for server-side code, and downloadable C source code for client-
side code) was woefully insufficient. We were exposed to serious security violations due to
latent bugs in the server-side Perl scripts we executed on behalf of clients. We had no real
control over client-side code once we had shipped it and clients had put it to work. We
had no way to revise the structure of the collaboration (for example, by introducing new
roles for third-party archivists, or offering multiple variants of sieving code) without shutting
down the entire project, redesigning and rebuilding, and starting back up. Worst of all, we
required clients to take unnecessary security risks to perform what was, after all, an act of
altruism (donating cycles to a worthy cause).

4 Future Directions

Just as we were closing down the RSA130 effort, Java began to emerge as a potential so-
lution to many of these problems. If we could provide at least the network client code in
Java, sieving volunteers would be able to restrict the applet’s access to their local filespace.
Some parts of the code (the large numeric codes which carry out the sieving operation)
would still be distributed as C code, more because of the impossibility of rewriting than for
performance’s sake. Still, any step which reduces the size and complexity of the code that
users have to trust is a major improvement.

4.1 Java-based factoring collaboration.

We have now started designing FAFNER 11 to support a future factoring project which
will tackle a 512-bit encryption modulus. The Web server that provides documentation and
registration will be written in Java, as will the client graphical interfaces, and the wrapper
that makes the legacy numeric code (itself still in C) network-capable and more fault-tolerant.
As client sieving applets periodically consult the central server for new tasks to perform, they
can also process notifications of software updates, dynamically downloading authenticated
revisions to their own code.

Incremental Protocol Extension. We have also constructed a Java-based Web server
that supports incremental protocol extension via dynamic class loading; this allows the Web
server to “branch out” to temporarily offer new services on an allocated port drawn from an
auxilliary pool. For example, after initial negotiation via HT'TP, a network client and task
service may elect to communicate on a new port using a private protocol optimized for their



application-specific content. The Web server manages dynamic loading of the server-side
class files that implement the service, manages the pool of extra server ports, and allows
the server administrator to monitor resources (CPU utilization and network bandwidth)
expended by each secondary service.

4.2 Distributed Simulation of Telecommunications Networks

We have also begun to study how Java-based collaboration tools can be applied to par-
allel discrete-event simulation (PDES). Even compared to more traditional HPC software
domains, PDES systems remain heavily dependent on application- and platform-specific
techniques for performance improvements[9]. Again, a conflict of emphasis arises between
two definitions of scalability: industry research pursues cross-platform integration of mul-
tiple scalar simulators, while academic research focuses on speedup within a single parallel
simulator.

To build a scalable telecommunications simulation framework, we’d like to determine
ways to map sub-simulations (that is, simulations of subnetworks, or even individual pieces
of telecommunications equipment) onto distributed resources (individual simulators), and
use a Web-based dataflow model to propagate events between them. Experience has shown
that it can be extremely difficult to get good performance out of such a dataflow scheme,
because of the requirement that subsimulations never process events out of time-order. This
can result in very fine-grained synchronization requirements to prevent causality violations,
which kill any performance improvements won through distribution.

Java’s role in PDES. It seems clear that the key is not to use Java to construct generic
parallel simulation engines, but to provide more sophisticated tools for describing and par-
titioning the simulated telecommunications architecture, and map its subsimulations onto
simulating resources in such a way that long-distance synchronizations are minimized. These
tools will need to capture a wealth of application-specific information about the event pat-
terns emitted by each component within a simulated architecture, so that distributed com-
ponents can make proper lookahead promises to each other. Unlike C, or C++, or HPF, Java
actually provides the proper combination of object-oriented features, dynamic class loading,
and cross-platform portability via bytecode interpretation required for this task.

A challenging distributed simulation might use Java (or C codes wrapped as native meth-
ods in Java) to simulate a global-scale telecommunications network, combining wireless (cel-
lular), wireline (ATM), and low-earth-orbit satellite links, driven by a call placement model
synthesized from a profile of civilian and military traffic. The domain decomposition and
mapping process will take advantage of structural information about this simulated domain
at all levels.

At the network level, we can block-partition the physical environment to which wireless
callers are aligned (geographic distribution, or radio spectrum utilization) to attempt to block
subsimulations with interdependencies onto the same simulating resource. At the network
architecture level, we can map subnetworks with the highest degree of internal connectivity
to the same simulating resource, and abstract discrete traffic to a flow-based model between
subsimulations. At the functional level, we can further decompose the simulated civilian or
military activity which provides the telecommunications network stress (Mother’s Day, or a



missile launch).

4.3 Three Concurrent Collaborative Processes for PDES

This collaborative process brings together telecommunications domain specialists, scalar and
parallel network simulation experts, user interface designers, and application specialists. The
challenges can be analyzed in terms of our three concurrent interdependent tasks described
in section 2.

1. Interface prototyping. A complexsimulation can be viewed from several perspectives,
each corresponding to a particular level of abstraction. One view shows the collection of
application functions (military or civilian) that generate telecommunications traffic, as they
place and receive calls according to their program of simulated activity. Another view details
the events generated by call placement and routing, as they flow through the simulated
network of networks. A third view details the inner state of each subsimulation in more
detail, providing more information about its accumulated state, number of calls dropped
or rejected, and resource utilization. We are using Java’s standard graphics, threading, and
networking packages to construct multiperspective visualization tools for each of these views,
plus a standard “simulation browser” framework to link them together and provide realtime
updates to all participants.

2. Dataflow simulation and task mapping. In addition to the direct views of sim-
ulated activity, other views provide “metainformation” about the availability of software
components from each team for each region of the simulation, and about the health of each
simulation component and its resource utilization. Components which have no implementa-
tion at all will simply “swallow” event dataflow; these will quickly be replaced by schematic
flow-based simulations, to give a first approximation of the behavior of each region of the
global network, and then by more detailed event-based simulations which will gradually
improve in fidelity. This incremental process allows collaboration partners to prioritize com-
ponents for code development, and identify bottlenecks in the mapping of components to
simulating resources. Java’s OO design and dynamic class loading allow us to start with
skeletal implementations of this dataflow web, and fill in details and improve fidelity over
time. The goal is to minimize idle time — either on the part of developers waiting for
each other, or on the part of invididual simulation components waiting for events from their
overloaded neighbors.

3. Software integration. The final goal of a Java framework for distributed simulation is
to provide the pluggable infrastructure into which these simulation kernels can be embedded,
and help those kernels negotiate ways to exchange dataflow information and thus minimize
the time spent in fine-grained synchronization. We also hope to use Java to integrate two
pieces traditionally missing from telecommunications simulation: network management and
visualization capabilities. Finally, the ability to dynamically load and instantiate new Java
classes gives us some leverage to support on-the-fly application-specific synchronization pro-
tocols between subsimulations. The recipient of events can ask the provider of those events to
install an event notification filter on its behalf, so that it receives more precise early warning

10



about the lower bound on the next arrival time of a relevant event. This improved guarantee
then helps to maxmize the time spent on internal simulation without fear of an out-of-order
event arriving.

4.4 Conclusion

Raw performance, once the holy grail of scientific computing, actually plays a very small
part in achieving the goals of large-scale scientific collaboration. Designers of distributed
collaborations should instead optimize the throughput of the entire organizational process
in order to minimize the variability of software development costs.

Java doesn’t offer any truly new features, and has some short-term performance draw-
backs. Nonetheless, HPC developers should start to take advantage of its nearly universal
availability, support for cross-platform portability, and combination of object-orientation
with standard packages for graphics, multithreading, and networking.

Our experience to date suggests that initial Web technologies by themselves (e.g., HTML,
HTTP, CGI) were insufficient to support the software engineering requirements of significant
distributed scientific collaborations. Java arrived just in time to fill in the remaining gaps:
tools to construct user interface prototypes, interactive dataflow analysis and task mapping,
and integration of software from diverse teams of experts.

References

[1] A. Bestavros, M. Chen, M. Crovella, A. Heddaya, S. Sclaroff, and J. Cowie. Responsive
Web Computing: resource management, protocol techniques, and applications. Technical
Report BU TR96-008, Boston University and Cooperating Systems Corporation, 1996.

[2] S. Bhatt, M. Chen, J. Cowie, G. Fox, W. Furmanski, and A. Lenstra. Factoring on
the World-Wide Computer (WWC). Supercomputing 95 3rd Annual High-Performance
Computing Challenge, December 1995.

[3] J. Cowie. FAFNER: Web server support for factoring RSA130. Technical Report CSC
TR-049601, Cooperating Systems Corporation, April 1996.

[4] J. Cowie. GNFSD: the general number field sieve daemon. Technical Report CSC TR~
049602, Cooperating Systems Corporation, April 1996.

[5] J. Cowie, B. Dodson, M. Elkenbracht-Huizing, A.K. Lenstra, P.L. Montgomery, and
J. Zayer. A world wide number field sieve factoring record: On to 512 bits. ASIACRYPT
’96, November 1996.

[6] G.C. Fox, W. Furmanski, M. Chen, C. Rebbi, and J. Cowie. Webwork: Integrated
programming environment tools for national and grand challenges. Technical Report
NPAC SCCS-715, Northeast Parallel Architecture Center, June 1995.

[7] A.K. Lenstraand H.W. Lenstra Jr. The development of the number field sieve. In Lecture
Notes in Math, volume 1554. Springer-Verlag, Berlin, 1993.

11



[8] A. Myers, J. A. Bank, and B. Liskov. Parameterized types for Java. In ACM Symposium
on Principles of Programming Languages, pages 132-145, January 1997.

[9] D. M. Nicol and P. Heidelberger. Parallel execution for serial simulators. ACM Trans-
actions on Modeling and Computer Simulation, 6(3):210-242, July 1996.

12



