A Note on Native Level 1 BLAS in Java*

Aart J.C. Bik and Dennis B. Gannon
Lindley Hall 215, Computer Science Department, Indiana University
Bloomington, Indiana 47405-4101, USA
ajcbik@cs.indiana.edu

Abstract

In this research note, we explore the potential of extend-
ing the Java Application Programming Interface with some
mathematical primitives to improve the performance of cer-
tain operations in Java programs while maintaining porta-
bility. In particular, we show that providing straightforward
native implementations of primitives from Level 1 BLAS can
already improve the performance substantially. On multi-
processors, combining this native Level 1 BLAS with the
multi-threading mechanism of Java may even provide a sim-
ple and portable way to obtain a Java program that runs
faster than compiled serial C code.

1 Introduction

The portability of the Java programming language [13] is
obtained by compiling Java programs into architectural neu-
tral instructions (bytecode) of the Java Virtual Machine
(JVM) [16], rather than into native machine code. Byte-
code runs on any platform that supports an implementa-
tion of the JVM. Although the interpretation of bytecode
is substantially faster than the interpretation of most high
level languages, still a performance penalty must be paid
for this portability. Clearly, for Java applications that are
computational intensive, it would be desirable to reduce this
performance penalty without sacrificing the portability of
the language. One approach, for example, is to optimize
the Java bytecode [3, 5], either at compile-time (where a
machine independent bytecode to bytecode optimization is
added as additional phase to the Java compiler), or at run-
time (where optimizations that require knowledge of the
target machine are applied before execution). Some im-
plementations of the JVM further improve performance by
means of ‘just-in-time compilation’ (JITC), where, at run-
time, bytecode is compiled into native machine code.

In this note, we explore a way to speedup certain oper-
ations in Java programs using ideas from the mathemat-
ical software community. Here, it has been widely ac-
cepted that adopting a set of basic routines for problems
in linear algebra can help in improving the clarity, porta-
bility, modularity, maintenance, robustness, and even the
efficiency of mathematical software. The most well-known

*This project is supported by DARPA under contract ARPA
F19628-94-C-0057 through a subcontract from Syracuse University.

example of such a set of routines is formed by the Basic
Linear Algebra Subprograms [10, ch5]. The original set
of vector-vector operations is now commonly referred to
as Level 1 BLAS [14, 15]. The set has been extended to
Level 2 BLAS [8, 9] and Level 3 BLAS [6, 7] to provide
more opportunities to exploit vector processing facilities for
matrix-vector operations and memory hierarchies or paral-
lelism for matrix-matrix operations, respectively. Once an
efficient implementation of BLAS is available, new mathe-
matical software can be easily build on top of the primitives.

Obviously, a similar approach can be taken for Java by
extending the Java API (Application Programming Inter-
face) with an appropriate set of mathematical primitives.
In first instance, a Java implementation can be provided for
all these primitives to preserve the portability of all Java
programs in which the mathematical primitives are used.
On a particular machine, however, the performance of all
Java software that uses these primitives is simply improved
by providing native implementations of the mathematical
primitives. Although providing a broad range of highly op-
timized mathematical primitives would offer the best poten-
tial to exploit all characteristic a particular target machine,
this approach would also require the most programming ef-
forts to port the mathematical primitives in the API to dif-
ferent machines. Therefore, in this research note, we explore
the potential of extending the API with straightforward na-
tive implementations of Level 1 BLAS only. We will see
that this extension alone already can improve performance
substantially, while combining these native Level 1 BLAS
with multi-threading in Java may even provide a simple
and portable way to outperform compiled serial C code on
multi-processors.

In section 2, we briefly discuss how native methods are
integrated in Java. In section 3, we present the results of a
series of experiments, followed by conclusions in section 4.

2 Native BLAS

In Java, if the keyword native appears as part of a method
definition (without an implementation), then this implies
that the method is implemented in another language. A set
of primitives from BLAS, for instance, can be defined using
the following class that provides a shared library loader that
will load the actual implementation when required as well
as definitions of all primitives in the set:

class Blas {
// Shared Library Loader

static {
System.loadLibrary("blas");
}

// Level 1 BLAS

native static double ddot(int n,
double[] x, int xoff, int incx,
double[] y, int yoff, int incy);
native static void daxpy(int n, double alpha,
double[] x, int xoff, int incx,
double[] y, int yoff, int incy);

}

Above, method definitions of DDOT (d « # 7§ in double
precision) and DAXPY (¢ « aZ+¢ in double precision) are
shown.! Alternatively, as stated earlier, Java implementa-
tions of the primitives could be given in first instance.

In figure 1, the integration of native methods in Java is il-
lustrated. Using JDK1.0.2, first the source file Blas. javais
compiled into Blas.class using the Java compiler javac.
Subsequently, the tool javah is used to generate a stubs
file Blas.c and a header file Blas.h. The latter file con-
tains C prototypes for all native methods in the class. The
actual implementation of these methods is given in a file
BlasImp.c.

Method ddot (), for example, can be implemented in C
as follows, where the macro unhand () is used to dereference
an object handle:

#include <StubPreamble.h>
#include "Blas.h"

double Blas_ddot(struct HBlas *this, long n,
HArrayOfDouble *x_, long xoff, long incx,
HArrayOfDouble *y_, long yoff, long incy) {
double *x = unhand(x_)->body;
double *y = unhand(y_)->body;
double d = 0;

if (n > 0) {
if ((incx == 1) && (incy == 1)) { /* Unit strides */
int i;
for (i=0;i < n; i++)
d += x[xoff+il*y[yoff+il;
}

else { /* Non-Unit strides */

}
}
return d;

}

Eventually, the files Blas.c and BlasImp.c are compiled
into a shared library. The way in which this is done and
the naming convention of shared libraries depends on the
target architecture (under Solaris, for instance, the shared
library is created as cc =G -0 -I $JAVA_HOME/include -I
$JAVA HOME/include/solaris Blas.c BlasImp.c).

As illustrated in the second picture in figure 1, integrat-
ing native methods in JDK1.1 is slightly different. Only
a header file Blas.h which contains the appropriate pro-
totypes is generated using javah -jni. The actual imple-
mentation of methods is, again, given in a file BlasImp.c

1Because Java does not support passing of arbitrary sub-arrays,
offsets into arrays are added as additional parameters (cf. [11]).

JDK1.0.2: JDK1.1:
Blasjava Blasjava
Blas.class Blas.class
javah -stubs . javah
Blas.c Blash ------ > Blasimp.c Blash ------- > Blasimp.c

{ J

libblas.so libblas.so

Figure 1: Integration of Native Methods

Method ddot (), for example, can be implemented in C as
follows, where functions GetDoubleArrayElements() and
ReleaseDoubleArrayElements () are used to obtain and re-
lease a double array that cannot be moved by the garbage
collector:

#include "Blas.h"

JNIEXPORT jdouble JNICALL Java_Blas_ddot
(JNIEnv *env, jclass class, jint n,
jdoubleArray x_, jint xoff, jint incx,
jdoubleArray y_, jint yoff, jint incy) {

jdouble *x = (*env)->GetDoubleArrayElements(env, x_, 0);
jdouble *y = (*env)->GetDoubleArrayElements(env, y_, 0);
jdouble d = 0;
if (@ > 0) {
if ((incx == 1) && (incy == 1)) { /* Unit strides */
int i;

for (i=0;i < n; i++)
d += x[xoff+il*y[yoff+il;
}

else { /* Non-Unit strides */

}
}
(*env)->ReleaseDoubleArrayElements(env, x_, x, 0);
(*env) ->ReleaseDoubleArrayElements(env, y_, y, 0);
return d;

}

Eventually, this file is compiled into a shared library.

More details on integrating native methods in Java can
be found on the Web [17].

3 Experiments

In this section, we present the results of a series of ex-
periments that have been conducted on an IBM RS/6000
G30 with four PowerPC 604 processors using the AIX4.2
JDK1.0.2B (with JITC) and the AIX4.2 JDK1.1beta (with-
out JITC), a Sun with two 175MHz. ultra SPARC pro-
cessors using the Solaris 2.5 JDK1.0.2dp (with JITC), and
an SGI Indy 4600 with one 133 MHZ IP22 Processor us-
ing the TRIX6.2 JDK1.0.2 (without JITC). All Java and C
programs are compiled using the flag ‘-0’. Bytecode is in-
terpreted using the flag ‘“-noasyncgc’ and, if available, with
“just-in-time compilation’ (JITC) enabled.

3.1 Some Mathematical Operations

In the first series of experiments, we compare the perfor-
mance a pure Java implementation, a Java implementation
that uses native Level 1 BLAS (and possibly parallelism by
means of Java multi-threading), and a compiled C imple-
mentation of an ©(N) DAXPY-operation, an ©(N?) matrix
times vector operation, and an ©(N?) matrix times matrix
operation.

Below we show the pure Java implementation of the
DAXPY operation (¢ < aZ + %), and the Java implemen-
tation that uses a primitive from Level 1 BLAS:

pure Java:

for (int i = 0; i < N; i++)
y[i] += alpha * x[i];

Java + Level 1 BLAS:

Blas.daxpy(N, alpha, x, 0, 1, y, 0, 1);

The inner product Java implementation of matrix times
vector and a Java implementation that uses a call to Level 1
BLAS DDOT (d « #7%) are shown below:

pure Java:

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
blil += alil[j] * x[j1;

Java + Level 1 BLAS:

for (int i = 0; i < N; i++)
b[i] = Blas.ddot(N, a[il, 0, 1, x, 0, 1);

Finally, the product of two matrices can be computed us-
ing either the pure Java fragment shown below, or a similar
Java fragment that uses a call to DAXPY:

pure Java:

for (int i = 0; i < N; i++)
for (int k = 0; k < N; k++)
for (int j = 0; j < N; j++)
c[il[j] += alil[k] * b[kI[j];

Java + Level 1 BLAS:

for (int i = 0; i < N; i++)
for (int k = 0; k < N; k++)
Blas.daxpy(N, alill[k], b[kl, 0, 1, c[il, 0, 1);

The performance of the fragments for matrix times vec-
tor and matrix times matrix with Level 1 BLAS may be fur-
ther improved by parallelization of the outermost i-loop. In
earlier work [1, 2], we have shown how loop parallelization
can be expressed in Java by means of multi-threading. In
this manner the transformed Java program remains portable
(i.e. the parallelized version still runs on uni-processors with
only a slight overhead), while the programming efforts of
the parallelization are reduced substantially with respect to
exploiting parallelism in a native language. The versions
with a parallel outermost loop are labeled as ‘parallel’ in
the subsequent figures.

The C versions of the three mathematical operations are
similar to the pure Java implementations.

In figures 24 and figures 5-7 we show the execution
times for varying values of N on the IBM using the ATX4.2
JDK1.0.2B (with JITC) and the A1X4.2 JDK1.1beta (with-
out JITC), respectively. Here we see that with JITC, pro-
viding Level 1 BLAS primitives only suffices to obtain per-
formance that is close to the performance of native C code.
Moreover, because IBM’s implementation of the JVM sup-
ports the actual parallel execution of threads, the parallel
versions with native Level 1 BLAS even outperform serial
C code. Without JITC, however, the ©(IN3) operation still
suffers from much overhead, and here it would probably be
desirable to provide primitives from Level 2 BLAS as well.

In figures 8-10 the execution times on the Sun using the
Solaris 2.5 JDK1.0.2dp (with JITC) are shown. Now, in all
cases the performance is even slightly better than the perfor-
mance of native C code. Obviously, Sun’s implementation
of the JVM does not support the actual parallel execution
of threads yet.

In figures 11-13 the execution times on the SGI using
the TRIX6.2 JDK1.0.2 (without JITC) are shown. Again,
without JITC, the performance of ©(/N?3) matrix times ma-
trix operations is substantially less than the performance
of compiled C code. Obviously, on this uni-processor, no
speedup can be expected from loop parallelization.

3.2 Linpack Benchmark

In this section, we present some performance numbers for a
Java Linpack benchmark [11] that solves a system of linear
equations (i.e. factorization followed by forward and back
substitution).

n JDK1.0.2

500 Mflops: 3.3 Time: 25.8 s. Norm Res: 5.28

1000 | Mflops: 3.2 Time: 210.9 s. Norm Res: 9.61
JDK1.0.2 + native Level 1 BLAS

500 Mflops: 8.1 Time: 10.3 s. Norm Res: 4.50

1000 | Mflops: 7.6 Time: 88.5 s. Norm Res: 11.13
JDK1.0.2 + native Level 1 BLAS (parallel factorize)

500 Mflops: 9.7 Time: 8.6 s. Norm Res: 4.50

1000 | Mflops: 15.6 Time: 43.0 s. Norm Res: 11.13

Table 1: Linpack benchmark on the IBM

In tables 1-3, we show the results on the IBM, Sun, and
SGI, respectively, for a pure Java implementation of this
benchmark and an implementation that uses native imple-
mentation of the primitives DDOT, DAXPY, DSCAL and
IDAMAX from Level 1 BLAS. For the IBM, we also present
the performance of a version in which loop parallelization
has been applied to the elimination step in the factorization.

Again, it is clear that providing native Level 1 BLAS can
improve the performance substantially. Note, however, that
the mapping between Java and C data types may cause a
change in precision of the computed result. Loop paral-
lelization, on the other hand, does not affect the semantics
of the program.

n JDK1.0.2

500 Mflops: 8.5 Time: 9.9 s. Norm Res: 5.17

1000 | Mflops: 8.5 Time: 78.6 s. Norm Res: 10.10
JDK1.0.2 + native Level 1 BLAS

500 Mflops: 18.4 Time: 4.6 s. Norm Res: 5.77

1000 | Mflops: 18.6 Time: 35.9 s. Norm Res: 10.44
Table 2: Linpack benchmark on the Sun

n JDK1.0.2

500 Mflops: 0.3 Time: 265.4 s. Norm Res: 5.17
JDK1.0.2 + native Level 1 BLAS

500 Mflops: 7.3 Time: 11.6 s. Norm Res: 5.77

1000 | Mflops: 7.0 Time: 95.9 s. Norm Res: 10.44

Table 3: Linpack benchmark on the SGI

4 Conclusions

In this research note, we have explored the potential of ex-
tending the Java Application Programming Interface (API)
with a native implementation of Level 1 BLAS to improve
the performance of certain mathematical operations in Java
programs. Because, in first instance, a Java implementa-
tion of the primitives can be provided, the portability of
Java is maintained. We have shown that for implementa-
tions of the Java Virtual Machine (JVM) that support ‘just-
in-time compilation’ (JITC), providing straightforward na-
tive Level 1 BLAS already suffices to obtain performance
that is close to the performance of native C code for ©(N),
O(N?), and ©(N?) mathematical operations. In case JITC
is not supported, the performance difference of the latter
operations is more profound, and here it would be desirable
to provide higher level primitives as well. In addition, we
have shown that combining native Level 1 BLAS with the
multi-threading mechanism of Java may provide a simple
and portable way to obtain a Java program that runs faster
than compiled serial C code.

In conclusion, although it is obvious that more speedup
can be expected by providing hightly optimized native im-
plementations of a broad range of mathematical primitives,
in which characteristics of the target machine (such as
multiple processors, memory hierarchies or vector process-
ing facilities) are fully exploited at native level, providing
straightforward native implementations of Level 1 BLAS
alone already can help in improving the performance of
mathematical operations in Java.

References

[1] Aart J.C. Bik and Dennis B. Gannon. Automatically ex-
ploiting implicit parallelism in Java. To Appear in a Special
Issue of Concurrency, Practice and Ezperience, 1997.

[2] Aart J.C. Bik, Juan E. Villacis, and Dennis B. Gan-
non. javar manual. Computer Science Depart-
ment, Indiana University, 1997. This manual and

3l

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

the complete source of javar is made available at
http://www.extreme.indiana.edu/hpjava/.

Zoran Budimlic and Ken Kennedy. Optimizing Java — the-
ory and practice. To Appear in a Special Issue of Concur-
rency, Practice and Ezxperience, 1997.

Bryan Carpenter, Yuh-Jye Chang, Geoffrey C. Fox, Don-
ald Leskiw, and Xiaoming Li. Experiments with HP Java.
To Appear in a Special Issue of Concurrency, Practice and
Ezperience, 1997.

Michal Cierniak and Wei Li. Optimizing Java bytecodes.
To Appear in a Special Issue of Concurrency, Practice and
Ezperience, 1997.

Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and
Tain Duff. A set of level 3 basic linear algebra subpro-
grams. ACM Transactions on Mathematical Software, 16:1—
17, 1990.

Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and
Tain Duff. A set of level 3 basic linear algebra subprograms:
Model implementation and test programs. ACM Transac-
tions on Mathematical Software, 16:18-28, 1990.

Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and
Richard J. Hanson. An extended set of FORTRAN basic
linear algebra subprograms. ACM Transactions on Mathe-
matical Software, 14:1-17, 1988.

Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and
Richard J. Hanson. An extended set of FORTRAN basic
linear algebra subprograms: Model implementation and test
programs. ACM Transactions on Mathematical Software,
14:18-32, 1988.

Jack J. Dongarra, Iain S. Duff, Danny C. Sorensen, and
Henk A. van der Vorst. Solving Linear Systems on Vector
and Shared Memory Computers. Society for Industrial and
Applied Mathematics, 1991.

Jack J. Dongarra et al. Java Linpack Benchmark.
http://www.netlib.org/benchmark/linpackjava/.

Geoffrey C. Fox and Wojtek Furmanski. Java for parallel
computing and as a general language for scientific and en-
gineering simulation and modelling. To Appear in a Special
Issue of Concurrency, Practice and Ezperience, 1997.

James Gosling, Bill Joy, and Guy Steele. Java Programming
Language. Addison-Wesley, Reading, Massachusetts, 1996.

C.L. Lawson, R.J. Hanson, D.R. Kincaid, and F.T. Krogh.
Algorithm 539: Basic linear algebra subprograms for FOR-
TRAN usage. ACM Transactions on Mathematical Soft-
ware, 5:324-325, 1979.

C.L. Lawson, R.J. Hanson, D.R. Kincaid, and F.T. Krogh.
Basic linear algebra subprograms for FORTRAN usage.
ACM Transactions on Mathematical Software, 5:308-323,
1979.

Tim Lindholm and Frank Yellin. The Java Virtual Machine
Specification. Addison-Wesley, Reading, Massachusetts,
1996.

Beth Stearns. Integrating Native Code and Java Programs.
http://java.sun.com/nav/read/Tutorial/nativel.1/.

Execution Time (secs) Execution Time (secs)

Execution Time (secs)

1.2

1.2

0.8

0.6

0.4

0.2

1.2

_:555:,'.'75" o i
le+06 2e+06
Figure 2: DAXPY on the IBM
IBM RS/6000 G30
- JDK1.0.2 —-— 1
native DDOT -+
i C e |
parallel -x
,:::Ef:f?h"
L ,;.,5'-‘-";5":‘ _ X
w‘m»«ﬁ“"?:ﬁe:—;g‘ff oo o
500 1000 1500 2000
N
Figure 3: Matrix x Vector on the IBM
IBM RS/6000 G30
- JDK1.0.2 ——]
native DAXPY -+
C = /]
parallel - .
* 'D;’ i
S
/l,ﬂ"
%/,(E”,m B
150 200

IBM RS/6000 G30

r JDK1.0.2 ——
native DAXPY —+—
C &

Figure 4: Matrix x Matrix on the IBM

Execution Time (secs) Execution Time (secs)

Execution Time (secs)

IBM RS/6000 G30

1.2 ¢ JDK1.1 —— i
native DAXPY -+
1F C & |
0.8 | »
0.6 X :,E;j‘;;ff.a“ |
,—:rﬁf""r‘gi :
04 ,,rt.‘fﬁjiﬁ“ 4
,ﬁzﬁr:ﬁ”"’ﬁtv"
0.2 fﬂﬁﬁﬁ,ﬁi* |
0
1e+06 2e+06
N
Figure 5: DAXPY on the IBM
IBM RS/6000 G30
1.2 ¢ JDK1.1 —— ,
native DDOT —+—
1t C o]
parallel -x
0.8 E
0.6 D |
04 /{;,’,E,,.]
02 r) *j‘rv’;,:;’ﬂw"x . X |
/_1’5’.’7)5(?" R e
0 hmamtE L
500 1000 1500 2000
Figure 6: Matrix x Vector on the IBM
IBM RS/6000 G30
1.2 + JDKLL — |
native DAXPY -
Ly C oo g i
parallel -/ B
0.8 /f/ 5
/ =3 E g
0.6 /+l,,+’ 'E"'D N |
04 %/j‘ D‘i']
,*"%(,m’gx
0.2 +/+x+’*’*/ Xﬁﬁﬁ'aﬂ' |
/4/*’*’ x _é,ﬁé a’
0 A A
50 100 150 200
N

Figure 7: Matrix x Matrix on the IBM

Execution Time (secs)

Sun ultra SPARC SGI Indy 4600

Execution Time (secs)

Execution Time (secs)

12 ¢ JDK1.0.2 —— 1 12 ¢ JDK1.0.2 —— 1
native DAXPY -+ native DAXPY -+
1t C e - ? 1t C e -
(]
o
0.8 1 o 0.8 1
g e
- P
0.6 | . c 0.6 e
9 A+ ‘; e
5 47 g ’J;/' i
2 04 T 1
> el
11| = e
0.2 e ,
. e “
0
le+06 2e+06 1le+06 2e+06
N N
Figure 8: DAXPY on the Sun Figure 11: DAXPY on the SGI
Sun ultra SPARC SGI Indy 4600
12 ¢ JDK1.0.2 —— 1 12 ¢ JDK1.0.2 —— 1
native DDOT -+ native DDOT -+
C o i —~ | C o i
1 parallel -x g 1 parallel -
| E’ 0.8 L /,3;,).]
S A
=
1 c 0.6 | K .
| o x*j,,m'
a 5 ,)*",jj‘v
..'i:‘,x“' b 8 0.4 (/xm"’f..ﬂr 1
x K
w e
b 0.2 y‘_ér;i)g"" b
LB
_ i g
500 1000 1500 2000 500 1000 1500 2000
N N
Figure 9: Matrix x Vector on the Sun Figure 12: Matrix x Vector on the SGI
Sun ultra SPARC SGI Indy 4600
1.2 JDK1.0.2 —— 1 12 ¢ JDK1.0.2 —— i 1
native DAXPY -+ native DAXPY -+ 4
C oo , 7 , C oo o
1 parallel -x § 1 parallel - ﬁ E
2 7 h
o Y a5
] qE,) 08 r 4 F;
et c 0.6 ¥ .
gx o 2{?{ s
,',%' 5 i
5 S 04t I]
F = A X
v(g{.@ L x% m"D
7 0.2t ,¥/¥”¥, 2® “ 1
0 **&%&’?ﬁfﬁf?ﬁfﬁﬂﬂﬂ»(ﬂﬂr
150 200 50 100 150 200
N

Figure 10: Matrix x Matrix on the Sun

Figure 13: Matrix x Matrix on the SGI

