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Abstract

This paper describes a framework for providing the ability to use multiple specialized data
parallel libraries and/or languages within a single application. The ability to use multiple
libraries is required in many application areas, such as multidisciplinary complex physical
simulations and remote sensing image database applications. An application can consist of
one program or multiple programs that use different libraries to parallelize operations on
distributed data structures. The framework is embodied in a runtime library called Meta-
-Chaos that has been used to exchange data between data parallel programs written using
High Performance Fortran, the Chaos and Multiblock Parti libraries developed at Maryland
for handling various types of unstructured problems, and the runtime library for pC++,
a data parallel version of C++ from Indiana University. Experimental results show that
Meta-Chaos is able to move data between libraries efficiently, and that Meta-Chaos provides
effective support for complex applications.

1 Introduction

It is notoriously difficult to achieve good performance from complex data parallel programs
running on distributed memory parallel machines. Therefore a number of runtime libraries
targeted at particular application domains have been developed over the last several years. These
libraries often provide capabilities that do not exist in widely available data parallel languages,
such as High Performance Fortran (HPI') [14]. Examples of such data parallel runtime libraries
include AMR++ and P44 [17, 20] for adaptive grid applications, Grids [9] for structured and
unstructured grid problems, Multiblock Parti [1] and GMD [11] for multigrid and multiblock
codes, LPARX [15] for codes using adaptive finite difference methods, Chaos [7] and PILAR [16]
for unstructured grid problems, GA [18] for computational chemistry and Aztec [12], PETSc [10],
ScaLAPACK [5, 6] and Syisda [3] for linear algebra operations.

Although this list is not exhaustive, it shows the amount of effort that has gone into develop-
ing data parallel runtime libraries optimized for various types of applications. However, a major

*This research was supported by NASA under grant NASA #NAG-1-1485 (ARPA Project Number 8874),
by ARPA under grant #F19628-94-C-0057. The Maryland IBM SP2 and Digital AlphaServer used for the
experiments was provided by NSF CISE Institutional Infrastructure Award #CDA9401151 and grants from IBM
and Digital Equipment Corporation.



weakness of all these libraries is the inability to communicate with any other of the libraries in an
efficient and user-friendly manner. Interoperability between such libraries is highly desirable for
at least two reasons. First, interoperability allows a single application to use multiple libraries
for different data structures within the same program. An example of this scenario would be a
computational fluid dynamics (CFD) code that requires both a structured and unstructured grid
to model the space around a surface with complex geometry. Different libraries could be used
to efficiently parallelize the computations on the two grids, but some mechanism is required to
transfer data between the grids at their boundaries. We present such a mechanism in this paper.
Second, interoperability would allow separate programs, parallelized using different libraries, to
communicate using either a client-server or peer-to-peer model. One example of a peer-to-peer
model is a complex physical simulation, such as shipboard fire modeling. Such an application
would require communication between the different libraries that were used to parallelize the
structural mechanics code used to model the ship walls, the CFD code used to model airflow
through the room with the fire, and the flame code used to provide a detailed simulation of the
fire. Again, the framework described in this paper provides the mechanisms needed to perform
the communication.

Many scenarios can be described for a client, running sequentially or in parallel, that could
use the services of a parallel server, on the same or another (parallel) machine. Such servers
could provide functionality that is not available in the client (e.g a database, or computational
routines), or provide additional computational power to make the client run significantly faster.
An example of this scenario is an image processing client that wants to access data from one
or more satellite image database parallel servers. The servers could return all the data for
a query to the client, with the client computing an output image, or the servers might also
be used as computational engines to produce a partial output image, with the combination of
partial output images from the various servers occurring in the client. The framework described
in this paper also provides the mechanisms required for direct communication in client-server
applications. We will return to a version of the client-server scenario in the experiments describe
in Section 5.4.

This paper addresses the problem of allowing interoperability between various data parallel
runtime libraries, and introduces a runtime library called Meta-Chaos that can be used to solve
the problem. The role of Meta-Chaos is to allow efficient and transparent interoperability be-
tween data structures distributed by a user (or compiler) using multiple data parallel libraries
and/or data parallel languages. The multiple data parallel libraries can be used within a single
program, or can be used in multiple programs. In either case, Meta-Chaos is able to transfer
data between the various data parallel libraries directly and efficiently, as will be shown from
the experimental results in Section 5.

Meta-Chaos hides the distribution of data across the processors by one data parallel library
from other such libraries. The key concept in Meta-Chaos for allowing the data distribution to
be hidden is wirtual linearization. Linearization is the method by which Meta-Chaos organizes
data structures into a canonical form, so that any data parallel library that provides functions to
order the individual elements of a data structure (e.g. an array) can communicate with any other
data parallel library that also provides the functions required by Meta-Chaos. The underlying
communication layer required by Meta-Chaos is a point-to-point message passing library, such
as MPI [24] or PVM [8], or a vendor-specific library such as MPL for the IBM SP2.

The rest of the paper is organized as follows. Section 2 presents an example application that
requires communication between two data parallel libraries in a single program, while Section 3



discusses several potential solutions to the problem of interoperating data parallel libraries.
Section 4 discusses the concepts used both to implement the Meta-Chaos runtime library and to
employ Meta-Chaos in an application. Section 5 presents several experiments both to quantify
the overheads encountered in using Meta-Chaos and to describe the behavior of programs using
Meta-Chaos to structure their computations. We conclude in Section 6.

2 A motivating example - interaction between a structured
and an unstructured mesh

! Loop 0: timestep loop
do time=time_start,time_stop
! Loop 1: sweep over a structured mesh
forall ( i = 2:ni1-1:1 , j = 2:n2-1:1 )
a(i,j) = a(i,j-1)+a(i-1,j)+a(i+1,j)+a(i,j+1)
end forall
! Loop 2: exchange boundary information
! between the structured and unstructured mesh
forall ( i = 1:Reg2IrregDim:1 )
x(Reg2Irreg_Irreg(i)) = a(Reg2Irreg _Regl(i),Reg2Irreg_Reg2(i))
end forall
! Loop 3: sweep over an unstructured mesh
forall ( i = 1:Nedges:1 )

y(ia(i)) = y(ia(i)) + (x(ia(i))+x(ib(1)))/4
y(ib(i)) = y(ib(i)) + (x(ia(i))+x(ib(1)))/4
end forall

! Loop 4: exchange boundary information
! between the unstructured and structured mesh
forall ( i = 1:Reg2IrregDim:1 )
a(Reg2Irreg_Regl(i),Reg2Irreg Reg2(i)) = x(Reg2Irreg_Irreg(i))
end forall

end do

Figure 1: A program that uses both regularly and irregularly distributed data

In computational fluid dynamics (CFD) flow solvers, different types of meshes may be used
to represent different physical structures. For example, the space around an airplane body may
be modeled with a structured mesh, while the nose, wing and tail may be modeled with an
unstructured mesh. The data parallel numerical solution techniques used for the flow fields
employ algorithms specifically designed for each type of mesh and often use runtime library
support optimized for a particular solution technique. To allow interactions between the different
meshes at their shared boundaries, it is necessary for the different parallel libraries that distribute
the meshes to exchange data. However, such functionality is not easily achieved for arbitrary
libraries.

The HPF-like pseudo-code in Figure 1 represents a simplified version of a code that uses
two interacting meshes. Loops 1 and 3 in the code show sweeps through a structured and an
unstructured mesh, respectively. These loops are similar in form to loops found in structured



and unstructured CFD codes. Loops 2 and 4 in the figure show the copies of data between the
two meshes.

The structured mesh is represented by array a, and is regularly distributed (e.g. by blocks in
each dimension) across the processors of the parallel machine. The node data in the unstructured
mesh is represented by arrays z and y, which are irregularly distributed across the processors,
both with the same distribution. xz and y are accessed through the indirection arrays ¢a and 1b.
ta and b are regularly distributed across the processors, and represent the edges connecting the
nodes in the unstructured mesh.

The interface between the two meshes is defined by a mapping between elements of a
and elements of x. The mapping is represented in Figure 1 by the arrays Reg2lireg_Irreg,
Reg2lrreg_Regl and Reg2lrreg_Reg2. For index i of the mapping, Reg2lrreg_Irreg(i) provides
the index of z that corresponds to indexing a with Reg2lrreg_Regl(i) in the first dimension and
Reg2Irreg_Reg2(i) in the second dimension.

The techniques presented in this paper can be used to describe the mapping defined by the
various Reg2lIrreg arrays in the example, and also to copy the data between the ¢ and z arrays.

This can be implemented as one data parallel program or can be implemented as two data-
parallel programs interacting with one another. This last interaction can utilize a peer to peer
interaction model or a client-server model.

3 Mechanisms to support interoperability

There are at least three potential solutions to provide a mechanism for allowing data parallel
libraries to interoperate. The first approach is to identify the unique features provided by
all existing data parallel libraries and implement those features in a single integrated runtime
support library. Such an approach requires extensive redesign and implementation effort, but
should allow for a clean and efficient integrated system. However, existing runtime libraries cover
only a subset of potential application domains, and it would be difficult to reach a consensus on
an exhaustive set of features to provide in an all-inclusive library. Another major problem with
such an approach is extensibility.

A second approach is to use a custom interface between each pair of data parallel libraries
that must communicate. This approach would allow a data copy between two libraries to be
expressed by a call to a specific function. However, if there are a large number of libraries that
must interoperate, say n, this method requires someone to write n? communication functions.
So this approach also has the disadvantage of being difficult to extend.

The third approach is to define a set of interface functions that every data parallel library
must export, and build a so-called meta-library that uses those functions to allow all the libraries
to interoperate. This approach is often called a framework-based solution, and is the one we
have chosen to implement in the Meta-Chaos runtime library. This approach gives the task
of providing the required interface functions to the data parallel library developer (or a third
party that wants to be able to exchange data with the library). The interface functions provide
information that allows the meta-library to inquire about the location of data distributed by
a given data parallel library. Providing such functions does not prevent a data parallel library
developer from optimizing the library for domain-specific needs.

To summarize, we have adopted the framework-based approach for several reasons:

o It is very difficult to define an all-encompassing interface that supports all application



domains efficiently.

e We expect that interactions between libraries will be relatively infrequent and restricted
to simple coarse-grained operations, such as copying a large section of an array distributed
by one library to a section of an array distributed by another library. This encourages the
use of specialized and optimized libraries in the computation portions of an application,
to provide the best possible performance.

e This approach does not preclude the use of the custom interface method. Whenever a
custom interface function is not available for two libraries, the framework-based approach
can be used to perform the communication.

¢ Adding a new data parallel library to interoperate with all existing libraries is relatively
simple, since the code for no other library must be modified. All that is required is
to provide the interface functions for the new library. Therefore this approach is easily
extensible.

4 Meta-Chaos

Program P1 Program P1 Program P2

A distributed using LibX LibX A distributed using LibX LibX B distributed using LibY
T call Li - Bl=some elements of B
call LibX.Fct(A) call LibX.Fct(A) API—Ii MG Roo/(B)

Al=some elements of A Al=some elements of A Meta-Chaos -

Bl=some elements of B MC_Send(A1) — call LibY.Fct(B)
MC_Copy(B1,A1) il

i

call LibY.Fct(B) LibX LibY

end

Figure 2: Meta-Chaos for communi- Figure 3: Meta-Chaos for communicating between li-
cating between two libraries within braries in two different programs
the same program

This section is divided into three parts. We first describe in detail how Meta-Chaos works,
concentrating on the concept of a wirtual linearization that completely describes the mapping
between the source and destination data structures. We then discuss the Meta-Chaos library
interface from the viewpoint of a user who wants to use multiple data parallel libraries through
either a compiler or in a hand parallelized application, and finally provide a short example of
using Meta-Chaos to copy data between two data parallel programs written in HPF.

4.1 Meta Chaos Mechanism Overview

Figures 2 and 3 provide a high-level view of interoperability between two data parallel libraries
using Meta-Chaos, for two different scenarios. Suppose we have programs written using two
different data parallel libraries named libX and libY, and that data structure A is distributed



by libX and data structure B is distributed by libY. Then the scenario presented in Figure 2
consists of copying multiple elements of A into the same number of elements of B, with both A
and B belonging to the same data parallel program. On the other hand, the scenario presented
in Figure 3 copies elements of A into elements of B, but A and B belong to different programs.
In either scenario, Meta-Chaos is the glue that binds the two libraries, and performs the copy.

The two examples show the main steps needed to copy data distributed using one library to
data distributed using another library. More concretely, these steps are:

1. Specify the elements to be copied (sent) from the first data structure, distributed by libX.

2. Specify the elements which will copied (received) into the second data structure, distributed

by libY.

3. Specify the correspondence (mapping) between the elements to be sent and the elements
to be received.

4. Build a communication schedule, by computing the locations (processors and local ad-
dresses) of the elements in the two distributed data structures.

5. Perform the communication using the schedule produced in step 4.

The goal of Meta-Chaos is to allow easy data parallel library interoperability. Meta-Chaos
provides functions that support each of the 5 steps just described. In the following sections,
we describe the mechanisms used by Meta-Chaos to specify the data elements involved in the
communication (steps 1 and 2), the virtual linearization (step 3), and the schedule computation
(step 4). Step 5 uses the schedule computed by step 4 to perform data copy, and uses system-
specific transport routines (e.g. send and receive on a distributed memory parallel machine).

4.1.1 Data specification

We define a Region as a compact way to describe a group of elements in global terms for a given
library. A Region is an instantiation of a Region type, which must be defined by each data
parallel library.

For example, High Performance Fortran (HPT') [14] and Multiblock Parti [1, 25] utilize ar-
rays as their main distributed data structure, therefore the Region type for them is a regularly
distributed array section. Chaos [7, 13, 23] employs irregularly accessed arrays as its main
distributed data structure, either through irregular data distributions or accesses through indi-
rection arrays. For Chaos a Region type would be a set of global array indices.

A Region type is dependent on the requirements of the data parallel library. The library
builder must provide a Region constructor to create regions and a destructor to destroy the
Regions specified for that library. The library builder also implicitly defines a linearization of a
Region, as we will discuss further in Section 4.1.2. Depending on the needs of the data parallel
library, Regions are allowed to consist of collections of arbitrarily complex objects. However,
throughout this paper, we will concentrate on Regions consisting of arrays of objects of basic,
language-defined types (e.g. integer, real, etc.).

Regions are gathered into an ordered group called a SetOfRegions. A mapping between
source and destination data structures therefore specifies a SetOfRegions for both the source
and the destination.

Figure 4 shows an array A. For this example, a Region for the array is a regular section. Two
Regions, rYy and r? are illustrated. Together they define a SetOfRegions 4.
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Figure 4: Regions and SetOfRegions for a distributed array A

4.1.2 Linearization

Linearization is the method by which Meta-Chaos defines the mapping between the source of
a data transfer distributed by one data parallel library and the destination of the transfer
distributed by another library. The source and destination data elements are each described by
a SetOfRegions.

One view of the linearization is as an abstract data structure that provides a total ordering
for the data elements in a SetOfRegions. For example, the linearization of a Region that is owned
by a single processor would be defined by the memory order of the region. More specifically,
if the Region is an array section, and the array is laid out in row major order (as for C-style
arrays), then the linearization of the section is the row major ordering of the elements of the
regular section. This can be extended to a data structure distributed across multiple processors
by viewing the data structure as existing in the memory of a single abstract processor, and
producing the linearization from the viewpoint of that memory.

In the example in Figure 4, an array A and two Regions, rl; and r% were shown. The
linearizations for ry and r% are illustrated in Figure 5 by LT}a and L,z , respectively.

To extend the concept of a linearization to a SetOfRegions, we define the linearization of a
SetOfRegions as the linearization of the first Region in the set followed by the linearization of
the remaining Regions.

In Figure 4, we introduced a SetOfRegions 5S4 that is the aggregation of the two Regions rl
and r%. In Figure 5, we represent the linearization of the SetOfRegions S4 by Ls, .

We represent the operation of translating from the SetOfRegions 54 of A, to its linearization,
Lgs,, by £, and the inverse operation of translating from the linearization to the SetOfRegions
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Figure 5: Linearization for Regions and SetOfRegions

as £~

Ls, ={(54)
(54) =€ (Ls,)

Then moving data from the SetOfRegions S4 to the SetOfRegions Sp can be viewed as a
three-phase operation:

1. Ls, =0(54)
2. Ls, = Ls,

3. (SB) =€ (Lsy)

The only constraint on this three-phase operation is to have the same number of elements
in S4 as in Sp, in order to be able to define the mapping from the source to the destination
linearization (the second operation).

We show in Figure 6 a 2-dimensional array B, with 3 Regions. The three Regions are gathered
into a SetOfRegions Sp. Ls, is the linearization of Sg. Figure 7 shows the result of a data copy
operation applied to source 54 and destination Sg.

The concept of the linearization has several important properties:

e It is independent of the structure of the data, and thus very flexible. Any data structure
can be transferred to any other data structure, so long as a mapping can be specified.

¢ It does not require the explicit specification of the mapping between the source data and
destination data. The mapping is implicit in the separate linearizations of the source and
destination.

e It is only an abstract, not a physical object. No space is allocated for the linearization of
a SetOfRegions in the memory of either the source or destination program. Meta-Chaos
transfers data directly from the source SetOfRegions to the destination SetOfRegions, never
building a data structure for the linearization.
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Figure 6: Array B, regions rk, r4 and 3, , setOfRegion Sp, and the linearization of Sg, Ls,

4.1.3 Communication schedule computation

The communication schedule describes the data motion to be performed. Meta-Chaos uses the
SetOfRegions specified by the user to determine the elements to be moved, and where to move
them. Meta-Chaos applies the (data parallel library-specific) linearization mechanism to the
source SetOfRegions and to the destination SetOfRegions. The linearization mechanism generates
a one-to-one mapping between each element of the source SetOfRegions and the destination Set-
OfRegions. The high-level algorithm for computing the communication schedule is shown in
Figure 8.

The implementation of the schedule computation algorithm requires that a set of procedures
be provided by both the source and destination data parallel libraries. These procedures are
essentially a standard set of inquiry functions that allow Meta-Chaos to perform operations such
as:

o dereferencing an object in a SetOfRegions to determine the owning processor and local
address, and a position in the linearization,

e manipulating the Regions defined by the library to build a linearization, and

e packing the objects of a source Region into a communication buffer, and unpacking objects
from a communication buffer into a destination Region.

A major concern in designing Meta-Chaos was to require that relatively few procedures
be provided by the data parallel library implementor, to ease the burden of integrating a new
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Figure 7: Result of moving data from 54 to Sp
For each object 7 in the source SetOfRegions:

1. Determine the corresponding object belonging to the destination SetOfRegions using the
source and destination linearizations.
Call this object j.

2. Determine the owner (processor and local address) of object i, P;, using the inquiry func-
tions provided by the source data parallel library.

3. Determine the owner of j, P;, using the inquiry functions provided by the destination data
parallel library.

4. In the schedule for P;, insert a send of object i to P;

5. In the schedule for P;, insert a receive into object j from P;
Figure 8: Meta-Chaos schedule computation algorithm

library into the Meta-Chaos framework. So far, implementations for several data parallel libraries
have been completed, including the High Performance Fortran runtime library, the Maryland
CHAOS and Multiblock Parti libraries for various types of irregular computations, and the
pC++ [4] runtime library, Tulip, from Indiana University. The pC++ implementation of the
required functions was performed by the pC+4 group at Indiana in a few days, using MPI as
the underlying message passing layer, which shows that providing the required interface is not
too onerous.

4.1.4 Moving data using a communication schedule

Meta-Chaos uses the information in the communication schedule in each processor of the source
data parallel library to move data into contiguous communication buffers. Similarly, Meta-
-Chaos uses the information in the schedule to extract data from communication buffers into
the memory of each processor of the destination data parallel library. The communication
buffers are transferred between the source and destination processors using either the native
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message passing mechanism of the parallel machine (e.g. MPL on the IBM SP2), or using a
standard message passing library on a network of workstations (e.g. PVM or MPI). Messages
are aggregated, so that at most one message is sent between each source and each destination
processor.

A set of messages crafted by hand to move data between the source and the destination
data parallel libraries would require exactly the same number of messages as the set created by
Meta-Chaos. Moreover, the sizes of the messages generated by Meta-Chaos are also the same
as the hand-optimized code. The only difference between the two set of messages would be in
the ordering of the individual objects in the buffers. This ordering depends on the order of
the bijection between the source objects and the destination objects used by Meta-Chaos (the
linearization), and the order chosen by the hand-crafted procedure.

The overhead introduced by using Meta-Chaos instead of generating the message passing by
hand is therefore only the computation of the communication schedule. Since the schedule can
often be computed once and reused for multiple data transfers (e.g. for an iterative computation),
the cost of creating the schedule can be amortized.

4.2 Meta-Chaos applications programmer interface (API)

An applications programmer can use Meta-Chaos to copy objects from a source distributed
data structure managed by one data parallel library to a destination distributed data structure
managed by another data parallel library. The distributions of the two data structures across
the processors of the parallel machine or network of workstations are maintained by the two
data parallel libraries.

There are four steps that an applications programmer must perform to completely specify a
data transfer using Meta-Chaos:

1. specify the objects to copy from the source distributed data structure,

2. specify the objectsin the destination distributed data structure that will receive the objects
sent from the source,

3. compute the communication schedule to move data from the source to the destination
distributed data structure, and

4. use the communication schedule to move data from the source to the destination dis-
tributed data structure.

The first two steps require the user to define the objects to be sent from the source distributed
data structure and the objects to be received into at the destination. This is done using Regions,
as was described in Section 4.1.1. A Meta-Chaos routine is then used to gather multiple Regions
into a SetOfRegions. The applications programmer must create two SetOfRegions, one for the
source and one for the destination distributed data structure.

The third step is to compute the communication schedule, both to send data from the
source data structure and receive data into the destination. Meta-Chaos provides the routine to
compute the schedule for the user, given the source and destination SetOfRegions. The sender
SetOfRegions is mapped to the receiver SetOfRegions using the linearization (as described in
Section 4.1.2).

The final step is to use the communication schedule to perform the data copy operation.
Meta-Chaos provides functions for efficiently moving data using the schedule.
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4.3 Example

Figure 9 illustrates the sequence of calls required to allow two HPF programs to exchange data

using Meta-Chaos.

program source

integer , dimension(200,100) :: B
'hpf$ distribute B (block,block)
integer, dimension(2)::Rleft,Rright

! define the source array section
Rleft (1) =50 Rleft(2) =50
Rright (1) =100 Rright(2) =100
regionId=CreateRegion_HPF(2,

Rleft (1) ,Rright (1))
src_set0fRegionId=MC_NewSetOfRegion()
MC_AddRegion2Set (RegionId,

src_setO0fRegionId)

! compute the schedule
schedId=MC_ComputeSched(HPF,

B, src_setOfRegionId)
! move data from the source using
! the schedule schedId
call MC_DataMoveSend(schedId,B)

program destination

integer , dimension(50,60) :: A
'hpf$ distribute A (block,block)
integer, dimension(2)::Rleft,Rright

! define the destination array section
Rleft(1) =1 Rleft(2) =10

Rright (1) =50 Rright (2) =60
regionId=CreateRegion_HPF(2,

Rleft (1) ,Rright(1))
dest_set0fRegionId=MC_NewSetOfRegion()
MC_AddRegion2Set (Regionld,

dest_setOfRegionId)

! compute the schedule

schedId=MC_ComputeSched(HPF,
A,dest_setOfRegionId)

! move data into the destination using

! the schedule schedId

call MC_DataMoveRecv(schedId,A)

Figure 9: Example of HPF inter-program communication using Meta-Chaos

Two programs are shown in Figure 9, a source program and a destination program. Each
owns one HPF distributed array, and the programs use Meta-Chaos to copy an array subsection
from the source to the destination. The program performs the following operation, in Fortran90
array syntax:

A[1:50:1,10:60:1] = B[50 : 100 : 1,50 : 100 : 1]

In the HPF programs, the user defines the source and destination array sections with the
CreateRegion HPF interface function provided by the implementor of HPF runtime library inter-
face functions. The Meta-Chaos functions MC NewSetOfRegion and MC_AddRegion2Set are used to
create the SetOfRegions for the source and destination. Building the communication schedule
is then performed by the call to the Meta-Chaos MC_ComputeSched function, which is a collective
operation across the processors of both the source and destination program. The Meta-Chaos
MC DataMove calls then perform the communication between the source and destination, using
the schedule. This is also a collective operation across both the source and destination, with
the source program using a call for sending data and the destination program using a call for
receiving data.

The communication schedule can be computed once and then reused, for example in an
iterative computation. The communication schedule is also symmetric, meaning that it can be
used to copy data either from the source program to the destination program, or to copy data
from the destination to the source. The only change required would be to switch the calls to
MC DataMoveSend and MC DataMoveRecv between the programs.
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5 Experimental Results

We present two classes of experiments to evaluate the feasibility of using Meta-Chaos for ef-
ficient interaction between multiple data parallel libraries. The first class of experiments, in
Sections 5.1, 5.2 and 5.3, provide a set of application scenarios that quantify the overheads
associated with using Meta-Chaos. We have designed these experiments to allow a comparison
with the performance of highly optimized and specialized data parallel libraries, in this case the
Maryland Chaos and Multiblock Parti libraries. The second class of experiments, in Section 5.4,
is designed to show the benefits that Meta-Chaos can provide by allowing a sequential or parallel
client program to exploit the services of a parallel server program implemented in a data parallel
language (HPF).

The first set of experiments, in Sections 5.1 and 5.2, shows two data parallel libraries exchang-
ing data between a structured mesh (distributed by Multiblock Parti [1]) and an unstructured
mesh (distributed by Chaos [7]), both within a single program and between two separate pro-
grams. These experiment are designed to quantify the overhead of using Meta-Chaos, first by
comparing the cost of exchanging the data using Meta-Chaos vs. using a data parallel library
(Chaos) to copy data within a single program (although Chaos is not optimized for moving
regular meshes) and second by allowing the program to be split into two separate programs that
exchange data using Meta-Chaos. The next experiment, in Section 5.3, describes a single pro-
gram that uses two regular meshes as its main data structures. The two meshes are distributed
by the same data parallel library (Multiblock Parti), so that copying data between the meshes
can also be performed using only Multiblock Parti. This experiment quantifies the overhead of
using Meta-Chaos compared to using the specialized and optimized Multiblock Parti library (in
exactly the way the data parallel library was designed to be used). The last set of experiments,
in Section 5.4, explores the interaction between two programs, one written in HPF and the other
using Multiblock Parti. The two programs interact using a client/server programming model,
with the HPF program acting as a computational server for the Multiblock Parti program. These
experiments show the feasibility of using Meta-Chaos, on a network or in a parallel machine, for
direct data transfers between a (sequential or parallel) client and data parallel programs running
as data or computational servers.

5.1 Interaction between a structured and an unstructured mesh in the same
program

The program for this experiment iterates over a sweep through a regular mesh followed by a
sweep through an irregular mesh. Both meshes are defined in the same program, but the regular
mesh is distributed by the Multiblock Parti library while the irregular mesh is distributed by
the Chaos library. The algorithm is the one shown in the example from Figure 1. The algorithm
has four phases: a sweep through a regular mesh, a remapping from the regular to the irregular
mesh, a sweep through the irregular mesh and a remapping back from the irregular to the regular
mesh. The four phases are placed inside a time-step loop, as they would be to use an iterative
method for solving a partial differential equation.

For each parallel loop in the algorithm, neither the loop bounds nor the communication
pattern change between iterations of the time-step loop. Therefore communication schedules
can be generated before the first iteration of the time-step loop and re-used for all time-steps. To
effectively parallelize the algorithm, each parallel loop is transformed into two loops, an inspector
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loop and an executor loop [22]. The inspector loop computes a communication schedule and is
executed only once. The executor loop performs both the computation from the original loop
and the communication required by the schedule, for every time-step. All three libraries (Meta-
Chaos, Multiblock Parti and Chaos) separate the function of building a communication schedule
from using one to copy data. Multiblock Parti and Chaos schedules are used to communicate
within a distributed mesh and Meta-Chaos schedules are used to copy data between the meshes.

The data distribution, partitioning of the computation and the communication generation
related to computation within a mesh are performed by calls to Multiblock Parti and Chaos
functions. Copying data between the regularly distributed and the irregularly distributed meshes
requires a specification of the points to be redistributed in each mesh, and also a specification
of the mapping between the points in the meshes. Meta-Chaos is used to perform the copy, by
specifying the Multiblock Parti SetOfRegions from which the data will be sent and the Chaos Set-
OfRegions that will receive the data. The mapping between the two SetOfRegions is provided by
the linearization of the Regions. Meta-Chaos generates a communication schedule by inquiring
about the distribution of data distributed by each of the two data parallel libraries. The schedule
is used multiple times, twice per time-step, to perform the data copies. All that must be done
is to select the proper source and destination of each the data copy, so that Meta-Chaos can
generate message sends from the source mesh and receives into the destination mesh.

It is also possible to compute the communication schedule by treating the regular mesh
generated by Multiblock Parti as an irregular mesh. To do that, a Chaos-style translation table
has to be created to describe the pointwise data distribution. The translation table can be
utilized by Chaos to directly compute a communication schedule for moving data between the
regular and irregular meshes. However, the correspondence between the points in the regular
mesh and the Chaos representation of the mesh must be stored explicitly.

To demonstrate the efficiency of using Meta-Chaos, we consider the following factors:

e the time to compute the schedule to remap the data using Meta-Chaos compared to the
time required using Chaos functions, and

o the time to remap data using the schedule generated by Meta-Chaos compared to the time
required for the schedule generated by Chaos.

These comparisons allow us to show the efficiency of Meta-Chaos as compared to that of the
Chaos library. Since Chaos has been highly optimized for various types of irregular communica-
tion, it should provide a good standard against which to compare the efficiency of the Meta-Chaos
library.

For this experiment, the parallel programming environment is a 16 processor IBM SP2. The
data is a two-dimensional array of double precision floating point numbers of size 256x256,
regularly distributed by blocks in both dimensions onto the processors, using the Multiblock
Parti data distribution routines. The irregular mesh contains 65536 points, stored into a Chaos
array irregularly distributed among the processors. The two data parallel libraries are both
called from the same program.

The time for the Multiblock Parti and Chaos inspector and executor loops, for the sweeps
through the regular and irregular meshes, have been totaled and are presented in Table 1.
These times are provided to show the cost of performing the mesh sweeps, including intra-mesh
communication, for comparison to the cost of the inter-mesh communication. Table 2 shows
the time required to build the communication schedule for copying data between the regular
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Number of processors

2 | 4 [ 8 [ 16

inspector 1533 1340 667 684

executor 91 66 65 53

Table 1: Inspector time (total) and executor time (per iteration) for regular and irregular meshes
in one program on IBM SP2, in msec

and irregular meshes, using either Meta-Chaos or Chaos functions. The copy time is the time
required to copy data using the schedule from the regular mesh to the irregular mesh and back,
for one complete time-step.

There are two different ways to compute a schedule using Meta-Chaos; in Table 2 they are
called cooperation and duplication. The terms refer to the way Meta-Chaos computes sched-
ules. For cooperation, Meta-Chaos computes ownership of the source objects (processor, local
address, etc.) in the processors running the source program using the functions provided by the
source data parallel library. That information is sent to the processors running the destination
program, which also compute the corresponding information for the destination objects using
the destination parallel library functions and then compute the complete schedule for both the
source and destination processors. The computed schedule is then sent to the source processors.
On the other hand, when Meta-Chaos computes schedules with duplication, the source and des-
tination processors first exchange data descriptors for both source and destination distributed
data structures. This method assumes that, for two separate programs using Meta-Chaos to
exchange data, both the source and destination processors know how to interpret the data de-
scriptors (i.e. both sides have the code for both data parallel libraries). With both sets of data
descriptors available, the communication schedule can be computed separately in the processors
running the source and destination programs. The duplication method is not practical for some
cases, such as when Meta-Chaos is used to communication between two separate programs and
at least one of the programs does not have a compact data descriptor (e.g. a Chaos translation
table, which is the same size as the data array).

The cost of the schedule computation for Chaos is dominated by the calls to the Chaos
dereference function, which performs the translation from a global (sequential) array index
into a processor number and local address. The Meta-Chaos implementation with cooperation
also uses the same Chaos dereference function, which is why the schedule computation costs
for the two methods are very similar. On the other hand, the Meta-Chaos implementation
with duplication must call the Chaos dereference function twice, which explains why the cost
of building the schedule with that method costs about twice as much as for the other two
implementations.

The major difference in the data copy using Chaos and using Meta-Chaos is that the Chaos
implementation internally requires an extra copy of the data and also an extra level of indirect
data access. These extra operations are necessary to implement the correspondence between
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Number of processors

2 | 4 | 8 [16

schedule || 1099 | 830 437 | 215
Chaos
copy 64 52 38 33

Meta Chaos | schedule || 1509 | 832 436 | 215
with
cooperation copy 71 50 32 21

Meta Chaos | schedule || 2768 | 1645 | 1025 | 745
with
duplication copy 70 50 33 21

Table 2: Schedule build time (total) and data copy time (per iteration) for regular and irregular
meshes in one program on IBM SP2, in msec

the regular mesh representation of each array element for Multiblock Parti and the pointwise
representation of the same element for Chaos. These factors cause the Chaos data copy to
usually cost somewhat more than the Meta-Chaos version. However, the actual communication
of the data, in terms of the messages generated by all 3 methods, is essentially identical: all the
methods use the same total number of messages and the messages are the same size.

From this experiment, we see several advantages of Meta-Chaos over trying to use a single
data parallel library in a manner for which it was not designed:

e smaller memory requirements (Meta-Chaos does not have to explicitly maintain the map-
ping between the regular mesh representation of an array element and the pointwise rep-
resentation - that is done implicitly in the linearization),

e case of use (no extra memory allocation, no explicit mapping between objects in the two
data parallel libraries), and

¢ the data copy performs better (no extra internal copy, no extra indirect access).

5.2 Interaction between a structured and an unstructured mesh in two sep-
arate programs

The applicability of Meta-Chaos is not limited to communicating between two data parallel
libraries in the same program. Meta-Chaos can also be used to communicate between data
parallel libraries in two different programs. Implicitly controlling the coupling between two
data parallel programs, using Meta-Chaos to perform the communication, has been explored in
another recent paper [21]. To show the performance of this feature, the same algorithm that
was described in the previous section has been implemented in two separate programs. The first

16



Number of processors Number of processors
for Pirreg for Pirreg

2 | 4 | 8 2 | 4 | 8

Number | 2 || 1350 | 726 396 Number | 2 63 61 66
of of

processors | 4 || 1377 | 738 403 processors | 4 55 33 36
for for

Preg 8 || 1381 | 718 398 Preg 8 61 32 21

Table 3: Time for Meta-Chaos schedule Table 4: Time for the Meta-Chaos data
computation for 2 separate programs on copy for 2 separate programs on IBM SP2,
IBM SP2, in msec in msec per iteration

program, called P,..,, performs the regular mesh computation using Multiblock Parti, while the
second program, called P;,,.,, performs the irregular mesh computation. A data copy between
the regular and irregular meshes must be divided into one operation for each program : a send
operation from the source program and a receive operation into the destination program. In one
time-step, each program acts as the source for one data copy and the destination for another
copy.

The meshes are the same as in the previous example. The two programs were run on non-
overlapping nodes of the 16 node IBM SP2, for up to 8 nodes for each program. The timings
for building the communication schedule and copying the data for each time-step are presented
in Tables 3 and 4, respectively. The Meta-Chaos cooperation implementation for building the
schedule is used for the timings, because the duplication method would require transferring a
Chaos translation table between the programs, which is very expensive.

Since the Meta-Chaos schedule computation is done with the cooperation method, most of
the work is performed in P;.,..,. Therefore increasing the number of processors for P,.., does
not decrease the time for computing the schedules. However the time does decrease when using
more processors for P4, almost linearly for these experiments.

First, the time for the data copy is symmetric from the viewpoint of either P.., or P, eq.
That is because in one iteration both programs are both the source and destination for the
data copy. Second, the performance of the data copy operation is limited by whichever program
runs on fewer processors, say Pjcq. For a fixed number of processors for P4, increasing the
number of processors for P,., (for cases in which P, runs on more processors than Pj,,.,) does
not decrease the data copy time. One processor for P, will send and receive the same total
amount of data, no matter how many processors are used by P,.,. However, the number of
messages sent and received will increase, because the communication is all-to-all. But adding
more processors to P, increases the total bandwidth available for communication on the SP2.
For this experiment, these two factors effectively canceled each other out, keeping the total time
constant for increasing numbers of processors for P,.,.

5.3 Interaction between two structured meshes in the same program

The first set of experiments showed that Meta-Chaos is able to copy objects distributed by
different data parallel libraries however they are distributed. However, the high cost of the Chaos
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Number of processors

2 [ 4] 8 |16

schedule 19 11 10 9
Block
Parti copy 467 | 195 | 101 | 53

Meta Chaos | schedule 29 29 20 | 25
with
cooperation copy 396 | 198 | 102 | 52

Meta Chaos | schedule 24 20 14 13
with
duplication copy 396 | 198 | 102 | 52

Table 5: Schedule build time (total) and data copy time (per iteration) for two structured meshes
in one program on IBM SP2, in msec

dereference function prevented us from getting a true estimate of the overhead generated when
using Meta-Chaos. We will now try to evaluate the overhead of using Meta-Chaos with another
experiment.

In this experiment, there is one program with two regular mesh data structures distributed
by Multiblock Parti, and the program copies a section of one mesh to a section of the second
mesh once per time-step. This scenario would occur, for example, in a multiblock computational
fluid dynamics code, where inter-block boundaries must be updated at every time-step [2]. The
copy operation can be completely expressed using Multiblock Parti functions, for both building
the communication schedule and moving the data. This allows us to compare both the cost of
computing a schedule and moving the data with Meta-Chaos to the cost of computing the same
schedule and moving the data using only one data parallel library.

Table 5 shows the times to compute a schedule using Multiblock Parti, and using Meta-
-Chaos with both the cooperation and duplication implementations. The table also shows the
time required to perform the data copy operation for all three methods. The programs was run
on up to 16 processors on an IBM SP2. The two dimensional arrays of double precision floating
point numbers for the meshes are each 1000x1000, and each array is distributed by blocks in
each dimension across all the processors. Half of the data in each array was involved in the data
copy.

As was explained for the previous experiment, the time to compute the schedule with Meta-
-Chaos using the cooperation method is around twice the time required when using Multiblock
Parti. Neither Multiblock Parti nor Meta-Chaos using the duplication method require any com-
munication to build a communication schedule for this experiment. The overhead for building
the schedule using Meta-Chaos is a little higher than for Multiblock Parti, which is not surprising
since Multiblock Parti is optimized to build schedules for moving regular sections. On the other
hand, the Meta-Chaos cooperation implementation requires some communication, since parts of
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Figure 10: Total time for a sequential client. Figure 11: Total time for a two-process client
The server runs on four nodes, with up to four running on two separate nodes. The server
processes per node (at most one per proces- runs on four nodes.

sor).

the schedule are not computed on the processors that use it, so those parts must be sent to the
right processors. Even though the cost of the communication for this method is not large, it
still causes the schedule build to cost more than for the other two methods.

Since the data copy operations for Multiblock Parti and for both Meta-Chaos implementations
are exactly the same (they all effectively generate the same schedule), the times for the data copy
are essentially the same for all three methods. The only difference is that Meta-Chaos handles
data copies within a processor (when parts of the source and destination mesh are on the same
processor) more efficiently than Multiblock Parti. Meta-Chaos performs a direct copy between
the storage for the source and destination, while Multiblock Parti requires an intermediate buffer.
This is only an issue for the two-processor case, because a large percentage of the data is copied
locally, requiring no communication.

These results are encouraging because they show that the more general Meta-Chaos library
is able to generate a communication schedule with very little extra overhead compared to gen-
erating the same schedule using a special-purpose data parallel library that has been optimized
to generate such schedules.

5.4 Client/server program interaction

This experiment presents the results of client/server-style program interaction. The interesting
part of such an experiment for Meta-Chaos is that each of the client and server programs can
be run as either a sequential or a parallel program. Such a scenario is important because it
shows that Meta-Chaos can be utilized to perform direct communication between a client and a
server program. The structure of the data on the client and the server is completely managed by
Meta-Chaos, meaning that neither needs to know anything about the structure of the data (e.g.
whether or how it is distributed across multiple processors) in the other program. From this
point of view, Meta-Chaos provides an analogue of a Unix pipe for the programmer to transfer
data between the client and server programs.

To illustrate client/server interaction we have chosen a scenario in which the client uses the
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Osend/recv vector
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W send matrix
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Time (msec)
Time (msec)
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Figure 12: Total time for a four-process client Figure 13: Total time for twenty vectors for
running on four separate nodes. The server a one-process client. The server runs on four
runs on four nodes. nodes.

server as a high performance computation engine for performing a matrix operation. Specifically,
the client may be either a sequential or a parallel program, and the server program performs a
matrix-vector multiply, with the client sending one matrix to the server, then sending multiple
vectors to the server (one at a time) and in return receiving multiple result vectors (also one at
a time).

Meta-Chaos is used to perform the copy operations for the matrix and the vectors, after
computing the required communication schedules. There are three schedules to compute: to
copy the matrix from the client to the server, to copy the operand vector from the client to the
server, and to copy the result vector from the server to the client. These schedules are computed
once and stored for reuse as needed.

We have implemented this scenario on an eight-node Digital Alpha farm of four-processor
SMPs, connected via OC-3 links to a Digital ATM Gigaswitch. The client program is a Fortran
program and, if it is parallel, uses Multiblock Parti to distribute the matrix and vectors across
the processors. The client program builds the matrix and multiple vectors, then sends data
to the server program and receives results. It does none of its own computation. The server
program is an HPF matrix-vector multiply program that distributes the matrix and vector
across the processors, gets a matrix from the client, then repeatedly gets a vector from the
client, computes the result vector and returns it to the client. The client and server are run on
disjoint sets of nodes on the Alpha farm, with each program allocated its own set of up to four
nodes (16 processors). Meta-Chaos and Multiblock Parti access the ATM switch via PVM, while
HPF uses a high performance Digital implementation of the UDP protocol.

To simplify analysis of the results, the experiment has been performed using a 512x512
matrix of double precision floating point numbers. Since the matrix is square and Meta-Chaos
schedules are symmetric (i.e. they can be used to copy data either from the source program to
the destination program, or to copy data from the destination to the source), only two schedules
must be computed: one schedule for copying the matrix from the client to the server, and one
schedule for copying a vector either way between the client and the server.

Figures 10, 11 and 12 show the times to:
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Figure 14: Total time, broken down by vari- Figure 15: Break-even number of exchanged
ous functions, for varying numbers of vectors vectors, for a sequential and a two-process
exchanged between the client and server. The client, with one client process per node. The
client runs sequentially and the server is an server runs on four nodes, with up to four
eight-process program running on four nodes processes per node (one per processor)
(using two processors per node).

e compute the schedules to copy the matrix and the vectors between the client and the
server, measured on the client,

e the time to send the matrix from the client to the server, measured on the client,
e the time to perform the matrix-vector multiply on the server, measured on the server, and

e the time to copy both the operand and the result vectors between the client and the server,
computed by measuring in the client the total time to send the operand vector, compute
in the server, and receive the result vector and subtracting the time spent in the server
(from the previous measurement).

To smooth out variations in the timings, the programs were run 100 times, and the average
measured values were used. The three figures are for varying numbers of client processes, up to
four (one per node). In all these experiments, the server is running on four nodes, with up to
four processes per node (one per processor).

As is shown in the figures, the best performance is obtained from a server running with
eight processes. This is because that configuration achieves the best balance between commu-
nication and computation. The time to compute the communication schedules decreases with
increasing numbers of server processes, up to four server processes and increases thereafter, be-
cause of contention for the ATM network among multiple server processes on the same node.
In addition, building the schedules requires an all-to-all communication between the client and
server processes, and a relatively small amount of data is sent, so adding more server processes
increases the total number of messages required. The same all-to-all communication is required
for copying the matrix and the vectors between the client and server. All these factors lead to
the performance behavior shown, namely that, beyond eight server processes, the speedup from
running the matrix-vector multiply on more server processors is offset by increased communica-
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tion overhead. In addition, the HPF server program does not speed up beyond eight processors,
because of increased internal communication costs in performing the matrix-vector multiply.

A more realistic determination of the benefits that can be achieved from Meta-Chaos requires
performing more computation in the server, to amortize the cost of exchanging data between
the client and server. Figures 13 and 14 show the results of performing many matrix-vector
multiplies using the same matrix. In that case, the communication schedules must only be
computed once and the matrix is only sent once from the client to the server. The figures show
the time to compute the schedules to copy the matrix and vector between the client and the
server, to send the matrix to the server, to perform the matrix-vector multiply operation and
to copy both the operand and the result vectors between the client and the server for varying
numbers of vectors and server processes. Figure 13 shows these times for twenty matrix-vector
multiplies, when the client is a sequential program and the server runs on four nodes (up to 16
processors). Figure 14 shows total time as a function of the number of matrix-vector multiplies
when the client is a sequential program and the server is an eight-process program running on
four nodes (the best case for the HPF server). From the results shown in Figure 13, we can
compute that a speedup of 4.5 is achieved when the server is an eight-process program, relative
to performing the same computation in the client. Figure 14 emphasizes the point that, in many
cases, much of the overhead from using a computation server (the time to compute schedules
and to send the matrix) can be amortized over multiple computations.

Figure 15 provides another view of the results from Figures 10 and 11. The figure shows
the number of vectors that must be multiplied by the same matrix to amortize the overhead
of using a separate server program rather than computing the matrix-vector multiply within
the client processes (e.g. with a library routine). For example, when the client is running on
only one processor, and when the server is running on 4 processes, the cost of computing the
schedule and sending the matrix and vectors is amortized after about two matrix-vector multiply
operations. This means that, for this configuration of client and server processes, if more than
two vectors will be multiplied by the same matrix, it is faster to use Meta-Chaos to copy data
between the client and server and perform the computation in the HPF server program, rather
than do the computation in the client. No result is shown for the two-process client, two-process
server, because in that case the communication overhead would never be amortized. The best
break-even points shown are obtained for an eight-process server, which is not surprising since
that configuration provides the best overall server performance.

From the results shown in Figure 15, we see that a sequential (or parallel) program could
benefit greatly from using a parallel server to perform an expensive computation, using Meta-
-Chaos to do the communication between the programs. In this experiment, the server is not
executing a particularly expensive computation, but performance gains are still possible after
only a small number of matrix-vector multiply computations are done to amortize the cost of
sending the matrix.

6 Conclusions and Future Plans

In this paper we have addressed the problem of interoperability between different data parallel
libraries. With the mechanisms we have described, multiple libraries can exchange data in the
same data parallel program or between separate data-parallel programs. We have introduced the
concept of a wvirtual linearization that defines a canonical form for distributed data structures.
Using this canonical form, we can build software to copy data structures between data parallel
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libraries.

We have implemented the interoperability mechanism in a library called Meta-Chaos and have
explored the behavior of the approach for several programs on two different parallel architec-
tures. OQur experimental results show that our framework-based approach can be implemented
efficiently, with Meta-Chaos exhibiting low overheads, even compared to the communication
mechanisms used in two specialized and optimized data parallel libraries. In addition, we exhib-
ited the flexibility of the approach, and good performance, for applications using a client/server
execution model.

We plan to make Meta-Chaos publicly available and encourage developers of data parallel
libraries to provide the interface functions needed for Meta-Chaos to access data distributed using
those libraries. We plan to apply the framework-based approach to new application areas, and
are currently studying ways to incorporate distributed data parallel objects into the CORBA [19]
object model, so that data parallel programs could interoperate with distributed object systems.
Meta-Chaos could be used as the underlying mechanism for such an extension.
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