Sumatra: A Language for Resource-aware
Mobile Programs *

Anurag Acharya, M. Ranganathan, Joel Saltz
Department of Computer Science
University of Maryland, College Park 20742
{acha,ranga,saltz}@cs.umd.edu

Abstract. Programs that use mobility as a mechanism to adapt to re-
source changes have three requirements that are not shared with other
mobile programs. First, they need to monitor the level and quality of
resources in their operating environment. Second, they need to be able
to react to changes in resource availability. Third, they need to be able to
control the way in which resources are used on their behalf (by libraries
and other support code). In this chapter, we describe the design and im-
plementation of Sumatra, an extension of Java that supports resource-
aware mobile programs. We also describe the design and implementation
of a distributed resource monitor that provides the information required
by Sumatra programs.

1 Introduction

Mobile programs can move an active thread of control from one site to an-
other during execution. This flexibility has many potential advantages. For ex-
ample, a program that searches distributed data repositories can improve its
performance by migrating to the repositories and performing the search on-site
instead of fetching all the data to its current location. Similarly, an Internet
video-conferencing application can minimize overall response time by position-
ing its server based on the location of its users. Applications running on mobile
platforms can react to a drop in network bandwidth by moving network-intensive
computations to a proxy host on the static network. The primary advantage of
mobility in these scenarios is that it can be used as a tool to adapt to variations
in the operating environment. Applications can use online information about
their operating environment and knowledge of their own resource requirements
to make judicious decisions about placement of computation and data.

Many systems provide some form of support for program mobility. The sim-
plest form of support is the ability to download code and execute it to comple-
tion at a single site — as provided by systems like Omniware [3], Safe-TCL [6],
Java [14]. Other systems like Avalon [11], NCL [13] REV [18] and Obliq [9] allow
programs in execution to initiate computation on remote nodes and wait for their
completion. The most sophisticated support is provided by systems like Agent

* This research was supported by ARPA under contract #F19628-94-C-0057, Syracuse
subcontract #353-1427

TCL [15], Emerald [17], Mole [24], Aglets [20], TACOMA [16] and Telescript [26]
which permit an executing program to move while it is in execution.

Programs that use mobility as a mechanism to adapt to resource changes
have three requirements that are not shared with other mobile programs. First,
they need to be aware of their execution environment. In particular, they need
to monitor the level and quality of resources in their operating environment. We
refer to this as the awareness requirement. Second, they need to be able to react
to changes in resource availability. We refer to this as the agility requirement.
Third, they need to be able to control the way in which resources are used
on their behalf (by libraries and other support code). We refer to this as the
authority requirement.

In this chapter, we describe the design and implementation of Sumatra, an
extension of Java that supports resource-aware mobile programs. We also de-
scribe the design and implementation of a distributed resource monitor that
provides the information required by Sumatra programs.

We first discuss the constraints that the requirements of awareness, agility
and authority place on languages for mobile programs. We then describe Suma-
tra and discuss how its design decisions have been guided by these constraints.
Next, we discuss the considerations that guide the design of resource monitors,
in particular, fault-tolerance and the need to allow applications to control the
use of resources on their behalf. We describe Komodo, a distributed resource
monitor and discuss how well its design meets the requirements. Both Sumatra
and Komodo have been implemented and are available to individuals and orga-
nizations with a Sun JDK license. We provide implementation details wherever
appropriate.

In this chapter, we assume that the reader is familiar with mobile code lan-
guages (like Java, Obliq, Agent-Tcl). Several chapters in this book provide ex-
cellent introductions to this class of languages and the mechanisms used to im-
plement mobility.

2 Design constraints

In this section, we discuss the language design constraints that arise from the
desire to be resource-aware and the use of mobility as a mechanism to adapt
to changes in resource availability. We discuss the requirements of awareness,
agility and authority and the constraints each of them generates. In the next
section, we describe Sumatra and discuss how its design has been guided by
these constraints.

2.1 Awareness

Resource-aware programs need to be able to monitor the availability and qual-
ity of the resources in their environment. A resource can be monitored either
on-demand or continuously. Both kinds of monitoring are useful. On-demand
monitoring is useful in three kinds of situations. First, if the resource in question

is used infrequently but is expensive to use — e.g. an application on a mobile
host that uses a cell-modem to periodically scan incoming mail being held at a
post-office machine. Second, if the availability of the resource in question changes
infrequently — e.g. an application that chooses the location from which it mon-
itors a process based on the amount of disk space available at that location.
Third, if the resource is expensive to monitor and the cost of monitoring out-
weighs the potential gains — e.g. an application that accesses large volumes of
data over a very slow link. Continuous monitoring is useful if the resource is
frequently used or if the resource changes frequently or is cheap to monitor.

On-demand monitoring is, by necessity, synchronous. The request for infor-
mation does not return till the information is available. Continuous monitoring
can, on the other hand, support both synchronous and asynchronous interfaces.
A synchronous request would return immediately with information about the
current availability of the resource in question whereas an asynchronous request
would monitor the resource and notify the application only when the resource
availability no longer satisfies an application-specified predicate. A synchronous
interface is suitable, for example, for an application that sends a sequence of
large messages and checks the state of the network before sending each message.
An asynchronous interface is useful, for example, for an application that uses
a resource continuously (like receiving a video stream over the network) or an
application that does not use the network itself but calls library routines which
may do so. An asynchronous interface is also useful to inform applications about
a qualitative change in the operating environment, for example if the platform
is mobile and may need to switch between multiple wireless networks [19].

For continuous monitoring, an important decision is the granularity at which
resource change i1s to be monitored. The simplest alternative is to report every
change to the requesting application. This is often impractical as most resource
levels have some jitter which usually has little impact on application perfor-
mance. The next simplest alternative is to use a jitter threshold and track only
those changes that larger than this threshold. Jitter-threshold-based schemes
have been proposed by several researchers as a way of dealing with resource
variability on mobile platforms [7, 8]. Jitter-threshold-based schemes work well
if changes in the resource levels are usually stable. Transient changes (usually
just spikes) in the resource levels can cause spurious responses. The alternative is
to augment the jitter-based scheme with a filter that eliminates transients. This
allows the applications to track only the stable changes. It is therefore important
to allow applications to register application-specific (or resource-specific) filters
that determine which changes in resource availability /quality should be reported
to the requesting application.

To summarize, languages for resource-aware mobile programs should pro-
vide a resource-monitoring interface that allows on-demand monitoring as well
as continuous monitoring. For continuous monitoring, the resource-monitoring
interface should allow programs to register a application-specific filter which
determines which resource changes should be reported.

2.2 Agility

To achieve agility, a mobile code language should provide mechanisms that allow
programs to react quickly to asynchronous events like revocation of allocated
bandwidth/memory or qualitative changes in network connectivity (e.g. on a
mobile host). Two mechanisms are required. First, the ability to receive the
event in an asynchronous manner (a la Unix signals) and second, the ability to
take appropriate action in response to such events including moving program
execution to a different site.

The requirement that programs be able to move within event handling code
constrains the choice of mobility mechanisms. There are two major alternatives:
(1)ago() (or a jump) primitive that freezes execution at current site and resumes
execution at target site; and (2) a function-call-like mechanism which allows
programs to execute a procedure at a specified site. Most mobile code languages
have selected one of these two alternatives. Agent-Tcl [15], Telescript [26] and
Aglets [20] use a go-based mechanism whereas Obliq [9], Avalon [11], NCL [13]
REV [18] and TACOMA [16] use a function-call-based interface. To ensure a
prompt response to asynchronous events, a function-call-based interface would
require one of two things: (1) either the language automatically captures the
continuation at the point at which an event occurs and makes it available for
use within the corresponding event handler; or (2) the programmer emulates this
functionality by writing a large number of functions that represent continuations
at different points in the programs. In both cases, the language has to allow the
use of a continuation-passing style. We believe a go()-based interface is simpler
to use; the astute reader has probably already noted that the first option has
exactly the same effect as a go().

2.3 Authority

The requirement of authority is, by far, the most demanding. It requires that
language allow programs to control the way in which resources are used on their
behalf by system support as well as by libraries. In effect, it requires that module
boundaries not be completely opaque and that they allow resource-usage related
restrictions to pass through and enforced as a part of execution.

There is a trade-off between the extent to which programs are allowed to
control resource-use and ease of programming. At one extreme, a language can
require that operations that use resources of interest be performed only after
they have been explicitly authorized. This allows complete control over resource
usage. Unauthorized accesses would raise an exception. A scheme similar to this
is used by Java applets to control access to local resources (see Figure 1 for
an example). This works well for Java applets as the level of access to local
resources is not usually changed during the execution of a program and there is
no advantage in retrying the operation.

On the other hand, it is entirely possible that the response to authorization
failure for resource-usage can be (and in many cases, will be) to change the
level of authorization. In such cases, retrying the operation would be desirable.

This can be a problem if authorization failures occur deep in library code. It
may or may not be possible to restart the operation if the failure is delivered
as an exception. For example, consider the code in Figure 2. For this example,
assume that the resource of interest is the number of sockets. If the first call to
checkCreateSocket() succeeds and the second fails (say the program has already
created as many sockets as it was permitted to), an exception will be raised.
A common response to this situation would be to negotiate with the resource
manager for a higher limit on the number of sockets and to restart the operation.
However, a clean restart for createTwoSockets() is not possible as the first
socket has already been created.

This situation can be dealt with by treating resource-use violation as an
asynchronous event and allowing programs to associate a handler with every
restriction on resource-use. The handler would be executed in the same context
as the operation that caused the violation and would allow the operation to be
restarted, if that is what is desired.

To summarize, both forms of control over resource use are desirable: (1)
checking all operations that might use resources of interest for authorization and
delivering an exception if the usage is not authorized; (2) considering resource-
use violation as an asynchronous event and allowing programs to associate event
handlers to resource-use restrictions which execute in the same context as the
faulting operation.

public boolean mkdir() {
SecurityManager security = System.getSecurityManager();
if (security != null) {
security.checkWrite(path);

}

return mkdir0();

}

public boolean renameTo(File dest) {
SecurityManager security = System.getSecurityManager();
if (security != null) {
security.checkWrite(path);
security.checkWrite(dest.path);

}

return renameToO(dest);

}

Fig. 1. Excerpts from Java class libraries that illustrate how access to local resources
is controlled. The actual operations of creating a directory and renaming a file are
performed by mkdir0() and renameTo0().

public boolean createSocket(String host, int port, boolean stream) {
ResourceManager resource = System.getResourceManager();
if (resource != null) {
resource.checkCreateSocket (host,port,stream) ;

}

return Socket (host,port,stream);

}

private Socket socketl;
private Socket socket?2;

public void createTwoSockets(String host1l,String host2,int port,
boolean stream) {

socketl = createSocket (hostl,port,stream);
socket2 = createSocket (host2,port,stream); // fails authorization check

}

Fig.2. Sample Java code to illustrate the problem with restarting operations that
fail authorization checks. This code assumes that Java is extended with a Resource
Manager similar to its current Security Manager.

3 Design and implementation of Sumatra

Sumatra is an extension of Java that supports resource-aware mobile programs.
Platform-independence was the primary rationale for choosing Java as the base
for our effort. In the design of Sumatra, we have not altered the Java language.
Sumatra can run all legal Java programs without modification. All added func-
tionality was provided by extending the Java class library and by modifying the
Java interpreter, without affecting the virtual machine interface.

Sumatra adds four programming abstractions to Java: object-groups, exzecution-
engines, resource-monttoring and asynchronous events. An object-group is a dy-
namically created group of objects. Objects can be dynamically added to or
removed from object-groups. All objects within an object-group are treated as
a unit for mobility-related operations. This allows the programmer to customize
the granularity of movement and to amortize the cost of moving and tracking
individual objects. Object-groups also allow the programmer to control the life-
time of objects. Objects that are included in an object-group continue to live on
a host even after the thread that created them completes execution or migrates
to some other host. Objects that do not belong to an object-group are subject
to garbage-collection as usual.

An execution-engine corresponds to the notion of a “location” in a distributed
environment. In concrete terms, it corresponds to an interpreter executing on a
host. Multiple engines can exist on a single host. Sumatra allows object-groups to

be moved between execution-engines. An execution-engine may also host active
threads of control. Currently, multiple threads on the same engine are scheduled
in a run-to-completion manner. We plan to implement other scheduling strategies
in future. Threads can move between engines.

The resource-monitoring support in Sumatra allows programs to either query
the level of resource availability or to control the extent to which various re-
sources are used by the program itself as well as library code it is linked to.
Both on-demand as well as continuous monitoring is supported. For continuous
monitoring, the resource-monitoring interface allows programs to register jitter
thresholds which determine which resource changes should be reported.

In Sumatra, asynchronous events are used to notify executing programs about
urgent changes in their execution environment. These notifications can come ei-
ther from the interpreter or from the external environment (the operating system
or some other administrative process). We expect that the interpreter would
use asynchronous events to notify the program about violations of resource-
restrictions requested by the program itself; we expect that the external envi-
ronment would use asynchronous events to inform the program about changes
in the environment of the interpreter including resource revocation. Sumatra
allows programs to register handlers for asynchronous events. The handlers for
asynchronous events are able to inspect the current state of execution and can
take appropriate action including moving away from the current execution site
or changing the resource-restrictions in force.

In Sumatra, computation begins at a single site and spreads to other sites
in three ways: (1) remote method instantiation, (2) remote thread creation, and
(3) thread migration. Remote method instantiation corresponds to the familiar
notion of RPC (remote-procedure-call) whereby the calling thread is suspended
while an operation is performed, on its request, at a remote site. Remote thread
creation differs from remote method instantiation in that the new thread is inde-
pendent of the creating thread; the creating thread continues execution once the
creation is complete. Finally, thread migration involves stopping the execution
of the calling thread at the current site, transferring its state to another site and
resuming execution at that site.

In the following subsections, we describe the design and implementation of
Sumatra. The first three subsections describe the programming abstractions
mentioned above. The final subsection discusses how the design decisions have
been guided by the constraints described in the previous section.

3.1 Execution-engines

Execution-engines correspond to interpreters and are identified by a hostname
and a port number that they listen on. They are created by specifying these pa-
rameters to the constructor. Several error conditions are possible — the remote
host could be unreachable (due to a network partition), the remote host could
be down, the remote host may not allow creation of interpreters, the desired
port number could be in use. An exception is returned for each of these error
conditions along with an error message that provides additional information.

Other possible error conditions include authorization errors. Execution-engines
support three operations: thread migration, remote thread creation and down-
loading code. Figure 3 presents the execution-engine interface.

Sumatra allows explicit thread migration using a go() method that bundles
up the stack and the program counter and moves the thread to the specified
execution-engine. Execution is resumed at the first instruction after the call to
go. To automatically marshal the stack, the Sumatra interpreter maintains a type
stack parallel to the value stack, which keeps track of the types of all values on
the stack. When a thread migrates, Sumatra transports with it all local objects
that are referenced by the stack but do not belong to any object-group. Objects
that belong to an object-group move only when that object-group is moved.
Stack references to the objects that are left behind (i.e were part of some object-
group) are converted to proxy references. After the thread is moved to the target
site, it is possible that 1ts stack contains proxy references that point to objects
that used to be remote but are now local. These references are converted back to
local references before the call to go returns. Several error conditions can occur
during the execution of go — the remote host could be unreachable, the remote
host may be down, the interpreter implementing the execution-engine might have
died, the remote site may not have all the local classes that this program might
need while executing on that site. An exception is returned for each of these error
conditions along with an error message that provides additional information.

A new thread can be created by rezec’ing the main method of a class existing
on a remote engine. The arguments for the new thread are copied and moved to
the remote site. Remote thread creation is non-blocking and the calling thread
resumes immediately after the main method call is sent to the remote engine.
Note that remote calls to the main method are blocking — the calling thread
is suspended till the execution of main completes. Remote thread creation is
different from thread migration as it creates a new thread at the remote site
that runs concurrently with the original thread; thread migration moves the
current thread to the remote site without creating a new thread. Concurrent
threads communicate using calls to shared objects. The thread creating a new
thread can share objects with the child by passing it references to these objects
as arguments to main.

Sumatra does not automatically move code for either the go operation or
the rexec operation. The downloadClass method can be used to download
the class template for an object (and the associated bytecode) to an execution-
engine. This allows programs to control their environment to some extent — for
each class, a program can decide whether to use its own implementation or an
implementation provided by the host on which it is executing. Downloaded class-
templates are cached; the ClassLoader checks this cache before checking the
local file system. The host, however, retains complete control over which classes
can be downloaded and can reject downloadClass operations that attempt to
replace critical classes.

Implementation We use a mechanism similar to the familiar inetd daemon to
manage the creation of execution-engines. A master daemon runs on all machines
that allow creation of execution-engines and listens on a well-known socket.
When a execution-engine creation request is received, it creates a new inter-
preter process which attempts to bind to specified socket. If either of these oper-
ations fail, an exception value is returned. The master daemon is also responsible
for checking authorization. Currently, no authorization checks have been imple-
mented. Execution-engine operations are currently implemented in C (as native
methods). Figure 4 shows the interface for the Sumatra communication package
which 1s used to implement these operations. Note that except saveState(),
none of these need to be in C — invokeRPC() can be implemented using Java
RMT [25] and the others can be layered on other Java classes. Java RMI was not
used as it was not available when we were implementing Sumatra. Since Java
does not provide a user-level primitive to serialize the stack, saveState() has
to be implemented in C.

public final class Engine {
public String hostname;
public int port;

public Engine(String hname,int portno);

public void downloadClass(String Classname) ;

public void go();

public native void rexec(String classname, String[] args);

Fig. 3. The Sumatra engine interface

3.2 Object-groups

There are three primary properties of object-groups. First, they are aggregates.
That is, they move only as a group. Second, they are sticky. That is, they can
only be moved by an explicit move-object-group operation; they do not move
with migrating threads. Third, they are persistent. That is, they are not garbage-
collected. As long as an object is a member of some object-group, it is spared
by the garbage-collector.

Figure 5 presents the Sumatra object-group interface. A string name can be
associated, at creation time, with each object-group. The name can be used to
identify different object-groups. Sumatra does not check for system-wide unique-
ness of this name. It does, however, check for local uniqueness — attempts to
create an object-group with a name that is in-use raises an exception.

public final class Comm {

/* save state of current thread and transmit */

public static native void saveState(String hostname,
int portno);

/* invoke an rpc call, walks stack to get arguments */

public static native Object invokeRPC()
throws ObjectMovedException;

/* Download a class to an execution engine */

public static native void downloadClass(String classname,
Engine engine);

/* Start an execution engine at a given machine */

public static native void startEngine(String hostname,
Engine engine);

/* Find my current engine */

public static native Engine myEngine();

Fig.4. The Sumatra communication package

Objects can be dynamically added to or removed from an object-group using
the checkIn() and checkOut() methods respectively. The moveTo() method
is used to move the object-group to a different execution-engine. Membership
of object-groups is explicit, that is, every member of an object-group must be
checked in explicitly. Also, moveTo() does a shallow move — only the objects
that have explicitly been checked in are moved. This is in accordance with the
authority requirement — no communication takes place without an explicit re-
quest.

Thread objects cannot be checked into an object-group. This restriction is
imposed as including a thread object in object-group would require the thread
to move along with the object-group. This causes two problems. First, this could
cause migration of executing threads at arbitrary points. Restricting migration
to syntactically marked program points has advantages (see [2] for one such ad-
vantage). Second, since moving a thread could cause other objects to be moved,
it would violate the authority requirement.

During a moveTo() operation, objects in an object-group are automatically
marshaled using type-information stored in their class templates. When an object-
group is moved, all local references to objects in the group (stack references and
references from other objects) are converted into prozy references which record
the new location of the object. Some objects, such as I/O objects, are tightly
bound to local resources and cannot be moved. References to such objects are
reset and must be reinitialized at the new site. Several error conditions are pos-
sible — the remote host could be unreachable (due to a network partition), the
remote host could be down, the remote execution-engine may not contain the
classes corresponding to the objects being moved and the remote execution-

engine may already contain an object-group with the same name. An exception
is returned for each of these error condition along with an error message that
provides additional information.

Method invocations on proxy objects are translated into calls at the re-
mote site. Type information stored in class-templates is used to achieve remote-
procedure-call functionality without a stub compiler. Exceptions generated at
the called site are forwarded to the caller. In accordance with the authority re-
quirement, Sumatra does not automatically track mobile objects. Requesting
a remote method invocation on an object that is no longer at the called site
results in an object-moved exception at the calling site. To facilitate application-
level tracking, the exception carries with it a forwarding address. The caller can
handle the exception as it deems fit (e.g., re-issue the request to the new lo-
cation, migrate to the new location, raise a further exception and so on). This
mechanism allows applications to locate mobile objects lazily, paying the cost
of tracking only if they need to. It also allows applications to abort tracking if
need be and pursue an alternative course of action.

It 1s also possible for an application to specify that an exception should be
delivered on all methods invoked on proxy objects. This allows the application
to avoid communication if it so desires. Furthermore, Sumatra does not support
direct access to instance variables of remote objects. Such variables should be
accessed through remote invocation of access methods that return the values of
instance variables. This is in keeping with the authority requirement.

Implementation Object-groups are implemented as lists of objects. Each
execution-engine has a list of such lists. The object-group operations have been
implemented in C (as native methods). The main reason for this is the interac-
tion between object-groups and the garbage-collector. Objects that belong to an
object-group are not garbage-collected. It is, however, possible to re-implement
this feature portably using a keep-alive thread that lives forever and exists for
the sole purpose of keeping these objects from being garbage-collected.

public final class ObjGroup {
public String groupname;

public ObjGroup (String name);

public native void checkIn(Object object);
public native void checkOut(Object object);
public native void moveTo(Engine engine);
public native Engine location();

private native void internGroup();

Fig.5. The Sumatra object-group interface

3.3 Resources and asynchronous events

Sumatra provides two resource-monitoring interfaces, one that allows the appli-
cation to poll the state of a particular resource and the other that allows it to
request asynchronous notification when the availability of a resource goes outside
a specified threshold. Figure 6 presents the interface for on-demand monitoring.
A program indicates its interest in a resource by creating a Resource object with
appropriate arguments. If the resource to be monitored is associated with a sin-
gle host (e.g. server load), the last argument is ignored. A request for continuous
monitoring consists of a pair of values defining a range of resource availability
(e.g. upper and lower bounds on bandwidth), an upper bound on frequency of
polling and a function to be called when the resource availability is no longer
within the range (this uses the interface for asynchronous events which will be
presented shortly).

Sumatra provides a single interface (shown in Figure 7) for handling all kinds
of asynchronous events. To create an event handler, the user creates a new
subclass of the Callback class, creates an object of that class and registers it
using System.registerCallback(). The event handler function is specified by
overriding the callback() method. Note that this method has been declared to
be abstract and every subclass has to override 1t. After the callback() method
completes, control returns to the point where the interruption happened. If a call
to go() is embedded in a callback() method, execution resumes on the target
host.

Three kind of asynchronous events are currently supported — asynchronous
notification for continuous resource monitoring, violation of resource-restrictions
and external events in the form of Unix signals. The first class of events require
upper and lower bounds and a frequency bound which are specified using the
setLow(), setHigh() and setFreq() methods. The second class of events re-
quires only an upper bound. The third class of events, Unix signals, require
only the signal number. Signals can be used by the external environment (the
operating system or some other administrative process) to inform the applica-
tion about urgent asynchronous events, in particular resource revocation. Using
a handler, the application can take appropriate action including moving away
from the current execution site.

Implementation Sumatra assumes that a local resource monitor is available
which can be queried for information about the environment. When an appli-
cation makes a monitoring request, Sumatra forwards the request to the local
resource monitor. If the monitor does not support the requested operation, or
if no monitor is available, an exception 1s raised. The communication between
Sumatra and the monitor is via a well-known shared memory segment. This
allows Sumatra to cheaply acquire rapidly changing resource information. On-
demand monitoring requests are implemented by directly reading this segment.
For on-demand monitoring, default polling frequency of the resource monitor is
used.

Event handlers need to be registered explicitly. Depending on the type of
the event being registered, different structures are set up inside the interpreter.
Asynchronous notification for continuous monitoring is implemented using Unix
signals. The interpreter uses the same handler for all Unix signals - the identity
of the signal is saved and an event is queued. The event queue is checked between
every Java virtual machine instruction.

Resource-restrictions are implemented within the interpreter by activating
counters that keep track of resource usage. These counters have been collected
in a single module which is currently implemented in C. It is easy to re-implement
this entirely within Java/Sumatra, much along the same lines as the Security
Manager. Currently, only the “memory-use” restriction is implemented.

public final class Resource {
public Resource(String type, String from, String to);
public int read value();

Fig. 6. The Sumatra on-demand monitoring interface.

public abstract class Callback {
/* these callbacks are used for asynchronous notification */
public Callback(Resource rsid);
/* these callbacks are used for external event handlers */
public Callback(int type);
public void SetLow(int low);
public void SetHigh(int high);
public void SetFreq(int freq);
public Resource get_resource();
abstract public void callback();

Fig.7. The Sumatra event handling interface.

3.4 Discussion

In this section, we discuss the ways in which the design of Sumatra is influenced
by the agility and authority requirements.

— Calls to go() can occur anywhere: In particular, they can be embed-
ded inside callback methods. This allows Sumatra programs to react quickly
to asynchronous events like revocation of allocated bandwidth/memory or
qualitative changes in network connectivity (e.g. on a mobile host). The de-
sign alternative to using a go()-like interface was to allow migration only
at function-call boundaries. To ensure a prompt response to asynchronous
events, this would require one of two things: (1) either the language auto-
matically captures the continuation at the point at which an event occurs
and makes it available for use within the corresponding callback method ; or
(2) the programmer emulates this functionality by writing a large number of
functions that represent continuations at different points in the programs. In
both cases, the language has to allow the use of a continuation-passing style.
We believe, the go()-based interface provided by Sumatra is both simpler
to use and easier to implement.

— All remote accesses can be trapped: there are two parts to this. First,
Sumatra does not allow programs to access instance variables of remote
objects. Attempts to do result in an exception being raised. Second, programs
can request that an exception be raised for all methods invoked on proxy
objects. Using both these features, a program can turn off all communication
if it so desires.

— Objects moved and tracked in groups: this allows application to control
the granularity of both operations.

— Object-groups are tracked lazily: and under application-control. Re-
questing a remote method invocation on an object that is no longer at the
called site results in an object-moved exception at the calling site. The ex-
ception carries with it a forwarding address which allows the application to
continue tracking by re-issuing the request to the new location or to abort
tracking if it so desires.

— Membership of object-groups is explicit: only those objects that have
been explicitly added to an object-group belong to it. If an object with one
or more component objects is added to an object-group, only the top-level
object becomes a member of the object-group. To include the component
objects in the object-group, each of them has to be explicitly added. This
allows the application to precisely control which objects are moved and when.

— No distributed garbage-collection: Sumatra provides no distributed
garbage-collection. It is the responsibility of the application to ensure that
objects that are no longer needed are removed from object-groups. Note that
Sumatra does provide local garbage-collection.

— Object-groups are sticky: Objects that belong to an object-group move
only when that object-group is moved. When a thread migrates, Sumatra
transports with it all local objects that are referenced by the stack but do
not belong to any object-group.

— Life-time of an object can be controlled: Object-groups and their mem-
ber objects are not subject to garbage-collection. This is implemented by
adding the list of object groups to the set of roots used by the garbage-

collector. This ensures that all objects that belong to object-groups (and
their transitive closure) are spared by the garbage-collector. This allows ap-
plications to temporarily deposit data at intermediate execution sites as well
as to extend existing servers by downloading objects that extend current
functionality. It is legal for an object to belong to multiple object-groups.
Membership of multiple object-groups can be useful in situations where there
are multiple reasons to keep an object alive. This can, however, lead to un-
expected communication if one of the object-groups moves and takes the
object with 1t. It is, however, the programmer’s responsibility to ensure that
multiple membership does not lead to unwanted communication.

— Location of an object can be queried: Sumatra allows programs to query
for the location of an object. This allows programs to selectively control
communication — if desired, a program can allow critical remote operations
while restricting all other remote operations.

— Memory use can be bounded: Sumatra programs can specify an upper
bound on memory allocation. Attempts to allocate memory beyond this
bound results in an asynchronous event which be handled if so desired.

3.5 Example

In this section, we provide a feel for the Sumatra programming model using a
simple example. The task is to scan through a database of X-ray images stored
at a remote site for images that show lung cancer. This task can be performed in
two steps. In the first step, a computationally cheap pruning algorithm is used
to quickly identify lungs that might have cancer. A compute-intensive cancer-
detection algorithm is then used to identify images that actually show cancer.

One way to write a program for this task would be to download all lung
images from the image server and do all the processing locally. If the absence
of cancer in most lung images can be cheaply established, this scheme wastes
network resources as it moves all lung images to the destination site. Another ap-
proach would be to send the selection procedure to the site of the image database
and to send only the ”interesting” images back to the main program. If the se-
lection procedure is able to filter out most of the images, this approach would
significantly reduce network requirements. A third, and even more flexible, ap-
proach would allow the shipped selection procedure to extract all the interesting
images from the database but return only the size of the extracted images to the
main program. This information can be be used, in conjunction with information
about network bandwidth between the current location and the database site to
estimate the transfer time for the selected images. If the estimated time is too
large, the program may choose to move itself to the database site and perform
the cancer-detection computation there rather than downloading all the data.
This avoids downloading most images at the cost of (possibly) slower processing
at the server. On the other hand if the transfer time is small enough, the data
can be shipped over and processed locally. Figure 8 shows code for the third
approach.

filter object = new Lung filter();
cancerobject = new Lung_checker(filterobject);
myengine = System.comm.myEngine();

// Create a engine at the xray database site.
remote_engine = new Engine("xrays.gov");

// Indicate interest in monitoring bw to xrays.gov
bw = new Resource("bandwidth'",myengine.hostname,"xrays.gov");
// Send the lung_filter class to the remote engine
remote_engine.downloadClass ("Lung filter");
// Create a new object group.

objgroup = new ObjGroup("lung filter_group");
// Add the lung_filter_object to the object group
objgroup.checkIn(filter object);

// Move the object group to the database site
objgroup.moveTo(remote_engine) ;

// a remote method call selects interesting xrays
size = filter_object.query(db,"DarkLungs") ;

// compute estimated time to transfer images
transfer_time = size * bw.read_value();
// Does it take too long?
if (transfer_time > threshold) {
// Migrate thread, process images and return.
remote_engine.go();
result = cancer.object.detect_cancer();
myengine.go();
}
else {
// the estimated transfer time is small enough
// Fetch them and process locally.
objgroup.moveTo(myengine) ;
result = cancer.object.detect_cancer();

}

// display result locally
System.display(result);

Fig. 8. Excerpt of a Sumatra program that migrates depending on the time required
to transfer data.

Sumatra assumes that a local resource monitor is available which can be
queried for information about the environment. In the next section, we de-
scribe Komodo, a distributed resource monitor which can provide information
for Sumatra applications.

4 Komodo: a distributed resource monitor

For different applications, different resource constraints are likely to govern the
decision to migrate - for example network latency, network bandwidth, server
load (as in number of server connections available), CPU cycles etc. We have
propose that a single monitor be used for all resources. Using a single monitor
facilitates applications that might need information about multiple resources. It
also reduces communication requirements for distributed monitoring as informa-
tion about multiple resources can be sent in the same message.

In our design, each host runs a monitor daemon which communicates with
peers on other hosts. The monitoring daemons are loosely-coupled and use UDP
for communication as well as for monitoring the network. A simple timeout-based
scheme 1s used to handle lost packets and re-transmissions.

Applications register monitoring requests with the local daemon. If the re-
source mentioned in the request can be monitored from the current host then
the local daemon handles the request. Requests that cannot be handled locally,
for example, network latency between two remote sites, are forwarded by the
local daemon to the daemon on the appropriate host.

Applications can request the current availability of a resource (on-demand
monitoring) or they can request periodic checks on resource availability (contin-
uous monitoring). On-demand monitoring returns a single snapshot. Continuous
monitoring applies a resource-specific filter to eliminate jitter in resource lev-
els. Eliminating jitter helps reduce the reporting requirements (and therefore
the communication needed) without impacting application performance. Data
corresponding to remote requests for continuous monitoring is forwarded to the
requesting sites as and when the filtered value of the resource changes. Requests
for continuous monitoring may also specify a sampling frequency, subject to an
upper bound. Komodo enforces an upper bound on this frequency to keep the
monitoring cost at an acceptable level.

Each daemon supports a limited number of monitoring requests. This limit
applies to both local and remote requests. Together with the limit on sampling
frequency, this ensures the monitoring load on individual hosts is within accept-
able limits.

Each request has an application-specified time-to-live. There is an upper
bound on the time-to-live which allows the daemons to clean-up requests made
by applications or hosts that have since crashed. Applications need to refresh
requests within the fzme-to-live. Requests that are not refreshed are dropped. If
a daemon runs out of entries in its monitoring table, the least recently requested
entry is ejected.

Monitoring requests are passed from Sumatra to the local Komodo daemon
using a well-known Unix domain socket. The resource information is made avail-
able by the daemon in a read-only shared memory segment. This allows appli-
cations to rapidly access the latest available monitoring information.

4.1 Implementation

The current implementation of Komodo monitors network latency. Each Komodo
daemon pings a network link for which it has received monitoring requests, by
sending a 32-byte UDP packet to the daemon on the other end of the link of
interest. If an echo is not received within an expected interval, (the maximum
of the ping period or five times the current round trip time estimate) the packet
is retransmitted.

To eliminate short-term variation in latency measures, we developed a filter
based of an extensive study of Internet latency [1]. This study revealed that: (1)
there is a lot of short-term jitter in the latency measures but in most cases, the
jitter is small; (2) there are occasional jumps in latency that appear only for a
single observation; and (3) In most cases, a short window of values around the
mode contains a large fraction of the observations (this indicates that the mode
would be a good characteristic value for RTT distributions). Based on this, we
have developed a filter for latency measures that returns a moving window mode
if there is a well-defined mode, else it returns a moving window mean.

We plan to extend Komodo, in the near future, to monitor network band-
width and server load (number of available server connections).

4.2 Discussion of the design of Komodo

In this section, we discuss the design of Komodo and how it has been influenced
by the awareness and the authority requirements.

Komodo provides both on-demand and continuous monitoring. It allows ap-
plications to select the monitoring mode on a per-resource and a per-host basis
(or host-pair basis for network latency and bandwidth). For resources that are
monitored in a continuous mode, Komodo allows applications to control the fre-
quency with which the resource is monitored. This allows the applications to
control how much effort is spent in monitoring on their behalf and is in keeping
with the authority requirement. To safeguard hosts from malicious or runaway
applications, Komodo enforces an upper bound on the monitoring frequency.

Komodo provides both a synchronous interface and an asynchronous inter-
face. In the current implementation, asynchronous notification is implemented
using UNIX signals. For the asynchronous interface, Komodo allows resource-
specific filters which pre-process the information about individual resources; indi-
vidual applications do not have to replicate this functionality. They can, however,
control its operation by providing their own values for the filters’ parameters.
This allows the applications to track only the stable changes.

For network-related resources, there i1s the choice of active versus passive
monitoring. Komodo provides only active monitoring. It assumes that passive

monitoring is the responsibility of the applications. For applications that do not
coordinate their operations, this can lead to some loss of information. For exam-
ple, if two applications independently access the same server, they could share
information about the network connection to server but if they have not been
designed to cooperate in this manner, they will not be able to utilize the infor-
mation acquired by the other. Since Komodo is a user-level monitoring system,
it can keep track of network performance for other programs in only two ways:
(1) applications are required to measure performance for every network access
and supply the information to the local Komodo daemon or (2) all messages
are routed through Komodo. Neither of these are attractive options. We believe
that cooperating applications should share such information instead of requir-
ing all applications to acquire/provide it. Such an approach was been used by
Mummert et al [22] in the Coda file system which is able to adapt to changes in
network connectivity. Individual components of Coda cooperate in monitoring
the bandwidth and maintain the information in a shared location.

5 Discussion

Currently, much of the core support for resource-awareness has been imple-
mented in C. As has been discussed in individual sections, much of this can
be re-implemented as Java/Sumatra libraries with relative ease. In particular,
the resource-restrictions can be implemented using a Resource Manager sim-
ilar to the current Security Manager module. It is, however, not possible to
re-implement all of Sumatra in a portable manner. The primary limitation is
the lack of a portable way to save and restore the stack. Another limitation is
support for handling external events like Unix signals.

Process migration and remote execution have been proposed, and have been
successfully used, as mechanisms for adapting to changes in host availability [10,
12, 21, 27]. Remote execution has also been proposed for efficient execution of
computation that requires multiple remote accesses [11, 13, 18] and for efficient
execution of graphical user interfaces which need to interact closely with the
client [5]. Both these application scenarios use remote execution as a way to avoid
using the network. Most proposed uses of Java [14] also use remote execution to
avoid repeated client-server interaction. In these applications, decisions about
the placement of computation are hard-coded. To the best of our knowledge,
Sumatra (together with Komodo) is the first system that allows distributed
applications to monitor the network state and dynamically place computation
and data in response to changes in the network state.

Network-awareness is particularly important to applications running on mo-
bile platforms which can see rapid changes in network quality. Various forms
of network-awareness have been proposed for such applications. Application-
transparent or system-level adaptation to variations in network bandwidth has
been successfully used by the designers of the Coda file system [22] to improve
the performance of applications. The Odyssey project on mobile information
access plans to provide support for application-specific resource monitoring and

adaptation. The primary adaptation mechanism under consideration is change
in data fidelity [23]. Athan and Duchamp [4] propose the use of remote execu-
tion for reducing the communication between a mobile machine and the static
network. In all these systems, location of the various computation modules is
fixed; adaptation is achieved by changing the way in which the network is used.

Two other recent Java-based systems, Aglets [20] and Mole [24] provide some
support for mobility. Both these systems have been implemented using Java and
Java RMI and as such are unable to provide true thread migration. They provide
only object mobility. A weak form of process migration can be achieved by
programmers by explicitly unwinding the stack and copying whatever is needed
into appropriate instance variables. Both systems provide an explicit restart
method that is called to start the processing at the destination site. Sumatra
provides true thread migration but requires C code to do so. This distinction can
be eliminated if future versions of Java provide a portable way to pack the stack.
Other major features of Sumatra that are not provided by Mole and Aglets are
object-groups, support for application-level tracking of object-groups (or objects
in their case), control over lifetime of objects (which is needed to implement
distributed garbage-collection at the application-level). Neither system provides
resource-monitoring facilities. Nor do they provide the capability to cleanly move
within exception handlers (it is hard to unwind the stack in such a situation).
Finally, Aglets proposes asynchronous mobility requests. Sumatra guarantees
that threads will not be moved without an explicit request.

A point to note is that the constraints introduced by the awareness and au-
thority requirement are common to all resource-aware programs, in particular
programs that execute on resource-limited platforms like mobile computers. No-
ble, Price and Satyanarayanan [8] as well as Badrinath and Welling [7] propose
notification-based schemes for tracking resource changes for mobile hosts. Both
propose an interface that allows applications to specify a jitter threshold. The
constraints introduced by the agility requirement, however, are specific to mobile
programs.

Acknowledgments

We would like to thank Shamik Sharma for many thought-provoking discussions.
We would like to thank Mustafa Uysal for being our resident skeptic.

References

1. A. Acharya and J. Saltz. A Study of Internet Round-Trip Delay. Technical Report
CS-TR-3736, University of Maryland, December 1996.

2. A. Acharya and J. Saltz. Dynamic Linking for Mobile Programs, chapter unknown.
Springer Verlag, 1997. Jan Vitek and Christian Tschudin (eds).

3. A. Adl-Tabatabai, G. Langdale, S. Lucco, and R. Wahbe. Efficient and Language-
Independent Mobile Programs. In Proceedings of the SIGPLAN’96 Conference on
Programming Language Design and Implementation, pages 127-36, May 1996.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

A. Athan and D. Duchamp. Agent-mediated Message Passing for Constrained
Environments. In Proceedings of the USENIX Mobile and Location-independent
Computing Symposium, pages 103—7, Aug 1993.

. K. Bharat and L. Cardelli. Migratory Applications. In Proceedings of the Eighth

ACM Symposium on User Interface Software and Technology, pages 133-42, Nov
1995.

. N. Borenstein. Email With a Mind of its Own: The Safe-TCL Language for En-

abled Mail. In Proceedings of IFIP Working Group 6.5 International Conference,
pages 389-402, Jun 1994.

. B.R.Badrinath and Girish Welling. Event Delivery Abstractions for Mobile Com-

puting. Technical Report LCSR-TR-242, Rutgers University, 1996.

. Brian D. Noble and Morgan Price and M.Satyanarayanan. A Programming Inter-

face for Application-Aware Adaptation in Mobile Computing. Proceedings of the
Second USENIX Symposium on Mobile and Location Independent Computing, Feb.
1995.

. L. Cardelli. A Language With Distributed Scope. In Proceedings of the 22nd ACM

Symposium on Principles of Programming Languages, Jan. 1995.

J. Casas, D. Clark, R. Konuru, S. Otto, and R. Prouty. MPVM: A migration
transparent version of PVM. Computing Systems, 8(2):171-216, Spring 1995.

S. Clamen, L. Leibengood, S. Nettles, and J. Wing. Reliable Distributed Comput-
ing with Avalon/Common Lisp. In Proceedings of the International Conference on
Computer Languages, pages 169-79, 1990.

F. Douglis and J. Ousterhout. Transparent Process Migration: Design Alternatives
and the Sprite Implementation. Software - Practice and Ezperience, 21(8):757-85,
Aug 1991.

J. Falcone. A Programmable Interface Language for Heterogeneous Systems. ACM
Transactions on Computer Systems, 5(4):330-51, Nov. 1987.

J. Gosling and H. McGilton. The Java Language Environment White Paper, 1995.
R. Gray. Agent TCL: A Flexible and Secure Mobile-agent System. In Proceedings
of the Fourth Annual Tcl/Tk Workshop (TCL 96), July 1996.

D. Johansen, R. van Renesse, and F. Schneider. An Introduction to the TACOMA
Distributed System Version 1.0. Technical Report 95-23, University of Tromso,
1995.

E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-Grained Mobility in the Emer-
ald System. ACM Transactions on Computer Systems, 6(2):109-33, Feb. 1988.
J.W. Stamos and D.K. Gifford. Implementing Remote Evaluation. IEFFE Trans-
actions on Software Engineering, 16(7):710-722, July 1990.

R. Katz. The Case for Wireless Overlay Networks. Invited talk at the ACM
Federated Computer Science Research Conferences, Philadelphia, 1996.

D. Lange and M. Oshima. Programming Mobile Agents in Java. In progress, 1996.
(ch 2,3).

M. Litzkow and M. Livny. Experiences with the Condor Distributed Batch Sys-
tem. In Proceedings of the IEEFE Workshop on Experimental Distributed Systems,
Huntsville, Al., 1990.

L. Mummert, M. Ebling, and M. Satyanarayanan. Exploiting Weak Connectiv-
ity for Mobile File Access. In Proceedings of the Fifteenth ACM Symposium on
Operating System Principles, Dec. 1995.

M. Satyanarayanan, B. Noble, P. Kumar, and M. Price. Application-aware Adap-
tation for Mobile Computing. Operating Systems Review, 29(1):52—5, Jan 1995.

24.

25.

26.

27.

M. Strafer, J. Baumann, and F. Hohl. Mole - A Java Based Mobile Agent System.
In Proceedings of the FCOOP’96 workshop on Mobile Object Systems, 1996.

Sun Microsystems. Java Remote Method Invocation.
http://chatsubo.javasoft.com/current/rmi/index.himl.

J. White. Telescript Technology: Mobile Agents, 1996. hitp://www.genmagic.com-
/Telescript/Whitepapers.

E. Zayas. Attacking the Process Migration Bottleneck. In Proceedings of the

Eleventh ACM Symposium on Operating System Principles, pages 13-24, Nov.
1987.

This article was processed using the IATpX macro package with LLNCS style

