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Abstract

We consider the problem of efficiently coupling multiple data-
parallel programs at runtime. We propose an approach that
establishes mappings between data structures in different
data-parallel programs and implements a user-specified con-
sistency model. Mappings are established at runtime and
can be added and deleted while the programs being cou-
pled are in execution. Mappings, or the identity of the pro-
cessors involved, do not have to be known at compile-time
or even link-time. Programs can be made to interact with
different granularities of interaction without requiring any
re-coding. A-priori knowledge of consistency requirements
allows buffering of data as well as concurrent execution of the
coupled applications. Efficient data movement is achieved
by pre-computing an optimized schedule. We describe our
prototype implementation and evaluate its performance us-
ing a set of synthetic benchmarks. We examine the variation
of performance with variation in the consistency require-
ment. We demonstrate that the cost of the flexibility pro-
vided by our coupling scheme is not prohibitive when com-
pared with a monolithic program that performs the same
computation.

1 Introduction

In the sequential programming world, inter-application data
transfer facilities abound. Applications can use simple ab-
stractions such as sockets, pipes or shared memory segments
to move data between address spaces. There are no restric-
tions on the programming language used to develop the com-
municating applications. This provides flexibility and recon-
figurability for sequential applications. Similar facilities are
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not available for data parallel programs. The obvious tech-
nique of using a shared file system is not efficient.

In this paper, we propose an approach that achieves di-
rect application-to-application data transfer. Our approach
is library-based and is independent of the programming lan-
guage used to develop the communicating applications. Pro-
grams written to use this approach are required to adhere
to a certain discipline with respect to the data structures
involved in the interaction, but they do not need to know
either the identity or the number of programs they interact
with.

Our approach is built around the notion of mappings be-
tween data structures in different data-parallel programs.
Mappings are established at runtime. Every mapping has
a consistency specification which mandates the logical fre-
quency with which the mapped structures are to be made
mutually consistent. Mappings, or the identity of the pro-
cessors involved, do not have to be known at compile-time
or even link-time. A-priori knowledge of the consistency re-
quirements at run-time allows concurrent execution of inter-
acting programs by buffering the data being communicated.
Efficient data movement is achieved by pre-computing an
optimized plan (schedule) for data movement. Our pro-
totype implementation uses a generalized data movement
library called Meta-Chaos [3] and is able to couple data-
parallel programs written in different languages (including
High Performance Fortran (HPF) [2], C and pC++ [1]) and
using different communication libraries (including Multiblock
PARTTI [12] and CHAOS [6]).

By coupling multiple concurrently executing data par-
allel applications, we gain the added benefit of combining
task and data parallelism. In contrast to other approaches
that require language extensions to achieve this [4, 11], our
approach can work with off-the-shelf language implementa-
tions as long as the implementations provide a small num-
ber of query functions about the distributions of data struc-
tures [3].

We have developed a prototype implementation based on
this approach. Our implementation currently runs on a clus-
ter of four-processor Digital Alpha Server 4/2100 symmet-
ric multiprocessors. Our results indicate that data-parallel
programs can be coupled together in a flexible fashion with
acceptable overhead.



2 Basic Concepts

Central to our approach is the notion of mappings between
individual data structures belonging to the programs be-
ing coupled. A mapping binds a pair of data structures of
equal size and identical shape, and has an associated consis-
tency specification that specifies the frequency with which
the mapped data structures are to be made mutually con-
sistent. Consider the example of a pair of simulations which
work on grids corresponding to neighboring regions in space
and which periodically exchange data at the boundary. In
this case, the array sections in the two programs that cor-
respond to the shared boundary would be mapped to each
other. The consistency specification would depend on the
requirements of the physical process being simulated and
the accuracy desired; the strongest consistency requirement
would be exchange data every time-step and the weakest
never exchange data. For a different kind of interaction,
consider the coupling of a program that simulates a phys-
ical process and a visualization program that displays its
state. In this case, the mapping would be between the array
containing the state of the simulation and the array used
to hold the data points for visualization. The consistency
would depend on the closeness of monitoring desired - for
instance, display every time-step, or display as many frames
as possible without slowing down the simulation.

The frequencyreferred to above is logical. It refers to the
number of times execution in either program crosses spe-
cific user (or compiler) identified synchronization points. In
the example of interacting simulations, the synchronization
points could be the bottom of the respective time-step loops;
in the coupling between a simulation and a visualization pro-
gram, the synchronization points could be the bottom of the
time-step loop in the simulation program and the end of the
frame buffer update in the visualization program.

Mappings are established at runtime. New mappings
may be added between programs while they are in execu-
tion and existing mappings may be deleted. For example,
dynamic mapping addition could be used to attach a visu-
alization program to a long running simulation long after it
has commenced execution.

Our approach derives its efficiency from buffering and
asynchronous transfer of data, as well as precomputation
of optimized schedules. A schedule consists of a plan for
moving the data from the sending processors to the receiving
processors. Schedules are optimized to minimize the number
of messages transmitted.

While our approach is general enough for a variety of
data structures, in this paper we restrict ourselves to arrays
and array sections. We do this for two reasons. First, at this
stage in our research, we would like to focus on maximizing
flexibility and reconfigurability rather than on specification
of complex data structures. Restricting our focus to ar-
rays allows us to use simple existing techniques to describe
the data structures of interest. Second, the primary data
structures in most data-parallel programs in use today are
arrays. Therefore the restriction does not significantly limit
the practical applicability of our approach.

3 The Programming Model

The programming model provides two primary operations:
exporting individual arrays and establishing a mapping be-
tween a pair of exported arrays. Arrays are exported by

application writers, who use a set of primitives to identify
exported arrays and to specify the points in the application
program at which consistency operations can be safely ap-
plied. Mappings between exported arrays are established by
users who wish to couple the corresponding applications.

3.1 Exporting arrays

Four primitives are provided for exporting arrays
register() and unregister () to control the visibility of the
array outside the application and acquire() and release()
to specify the points in the application code at which con-
sistency operations can be safely applied.

The following are the primitives in our model:

e register(array, mode,name): binds array to the
system-wide unique identifier name and makes it ” vis-
ible” to other applications. array is a ”distributed
array descriptor”. It describes the distribution of the
distributed array among the processors of the calling
program. There are two possible values for mode, in
and out. Data can only be transferred into arrays
that have been marked in. Similarly, data can only be
transferred out of arrays which have been marked out.
register returns a handle that can be used to refer to
the exported array in subsequent code.

e unregister(handle): permanently hides the (previ-
ously exported) array associated with handle.

e acquire(num_handles, set_of_handles): All consis-
tency operations involving an array for which the
acquire call has been issued must be completed before
the acquire call returns. For an array exported in the
in mode, all transfers into the array that are required
for maintaining the desired consistency must complete
before the acquire returns. For an array exported in
the out mode, all transfers out of the array that are
required for maintaining the desired consistency must
complete before acquire returns.

e release(num_handles, set_of_handles): For an ar-
ray that has been exported in the out mode, release
indicates that a new version of the array is now in
place and will remain in place until the next acquire
on it. For an array that has been exported in the in
mode, release indicates that it is now safe to change
the data in the array.

The acquire () and release () calls must be placed such
that each of the processes in a data-parallel program sees the
same number of acquires and releases at a given logical
point in the program execution. This implies a loosely syn-
chronous SPMD execution model.

3.2 Establishing mappings between data structures

A mapping consists of two parts - the names of the arrays
(or array sections) being mapped and a specification of the
desired consistency. The general form of a mapping is:

with consistency_specification {asect; = asects}

where asect; and asect; are array sections and
consistency_specificationis a consistency specification.



Arrays are referred to by their external names and can
be multi-dimensional. External names are bound to ar-
rays using the register primitive. Array sections are spec-
ified using an HPF-like syntax (i.e., arrayinit : final :
stride]). For instance, x[1:100:2] specifies a section of the
one-dimensional array x consisting of every second point in
the range 1 to 100. There can be many active mappings
connecting different arrays in different programs.

A consistency specification mandates the frequency with
which the array sections being coupled are to be made mu-
tually consistent. The frequency is specified logically, in
terms of a version counter. Operationally, a zero-initialized
counter is associated with every exported array and is incre-
mented on every release of the array. For an array exported
in the out mode, the counter contains the number of versions
of that array that have been made available to other appli-
cations. For an array exported in the in mode, the counter
contains the current number of safe opportunities for data
to be placed into the array.

A consistency specification consists of a pair of condi-
tions, one for each array in the mapping. The mapped data
structures must be consistent whenever (and as long as) both
conditions hold. The general form of a consistency condition
is:

freq(array,init : final : stride)

The value of init can be a non-negative integer or the
special symbol current, with or without a positive integral
offset. The symbol current stands for the value of the ver-
sion counter for the given array at the time the mapping is
established. The domain of final is the set of natural num-
bers and a special symbol forever (which is denoted in this
paper by oo). If init is specified as current , final may
be specified as current plus an integer value. The value
of stride can be a natural number or the wild-card symbol
*. The wild-card symbol stands for any natural number.
The expression init:final:stride defines a (possibly infinite)
sequence of non-negative integers." A consistency condition
holds whenever (and as long as) the value of the counter
associated with array belongs to the sequence defined by
inet:final:stride.

We use the following terminology for the rest of the pa-
per. The data parallel program where a given exported array
is defined is called the owner of the array. The owners of
the exported arrays that appear in a mapping are the par-
ticipants in the mapping. The owner of the left hand side
of the assignment appearing in the mapping is called the
consumer and the owner of the right hand side of the as-
signment is called the producerfor that mapping. The array
(or array section) that appears on the right hand side of a
mapping is called the source array for the mapping and the
one that appears on the left hand side of a mapping is called
the sink array for the mapping. We refer to the processes
that constitute a data-parallel program in execution as peer
processes.

Mappings can be specified in two ways. For static cou-
plings, in which all participants start executing at the same
time and the interactions between the applications do not
change throughout the execution, the mappings can be spec-
ified in a configuration database that can be read by all ap-
plications as a part of their initialization. For dynamic cou-
plings, in which some participants may start executing after

1 We will discuss the different kinds of sequences possible and their
associated semantics in Section 3.4.

Mapping spec:
with freq(A,0:100:1) & freq(B,0:100:1) A[1:10:1]=B[10:20:1]
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Figure 1: Program text and mappings for example.

others or the interactions between the participants change
during execution, the mappings can be created or deleted
as the participants are in execution. Because of space lim-
itations, we defer the description of dynamic mapping to a
technical report [8].

3.3 A simple example

In this section, we illustrate the use of the proposed pro-
gramming model with a simple example. Consider the two
programs in Figure 1. Data parallel program pgm; registers
its distributed array A with the global name A and the
in mode. Data parallel program pgm: registers its dis-
tributed array B with the global name B and the out mode.

This mapping specified in the figure couples the section
[1:10: 1] of the one-dimensional array A to the section [10 :
20 : 1] of the one-dimensional array B with a consistency
that is explained as follows.

Consider the variable B in pgms :

o Before the first acquire (1, {6}) completes, the zeroth
version of B is transmitted to the consumer pgm;.

e For any version t of array B, such that 0 < ¢ < 100,
the transfer from B corresponding to version (¢t — 1)
must complete before acquire (1, {6}) returns.

e In between acquire (1,{b}) and the subsequent
release (1, {b}), no transfers from B can occur.

e When release (1, {b}) is executed, the version counter
corresponding to B is incremented at the producer.
Data transfer to consumers may commence at this
point. The transfer of data out of B needs to com-
plete before the next acquire (1,5) completes.

Similarly, consider the variable A in pgm; :

o Before the first acquire (1, {a}) completes, there is no
defined relationship between A and B.

e After the first acquire (1,{a}) completes, values at
locations [10:20] of version 0 of B have been copied
into locations [1:10] of version 0 of A.

e For any version ¢ of Array A. (such that 0 < ¢ < 100),
after acquire (1,{a}) completes, values at locations
[10:20] of version t of B have been copied into loca-
tions [1:10] of version t of A.



e In between acquire (1,{a}) and the subsequent
release (1, {a}) no transfers into array A may occur.

e When release (1, {a}) is executed, the version counter
for A is incremented and pending updates for A may
begin for the new version counter.

3.4 Informal semantics

There are two major classes of consistency conditions -
strided and wild-card. Strided conditions can take one of two
forms: freq (array, consty consis constg) or
freq (array, consty 1 o0 COTLStg). Strided conditions are
useful for specifying periodic interactions between coupled
programs, e.g. a pair of interacting simulations that com-
municate after a fixed number of time-steps. Wild-card con-
ditions can also take one of two forms : freq (array, const; :
consly : %) or freq (array, const; : 0o : ). Such conditions
capture the consistency requirement for loosely coupled pro-
grams - for example a coupling between a simulation and a
visualization program that displays as many frames as pos-
sible without slowing down the simulation and forcing it to
run at the same speed as the visualizer. In the rest of the
paper, we shall use the general forms of both these classes,
that is, freq(array, consty : 0o : consts) for strided requests
and freq(array, consty : oo : *) for wild-card requests.

The primary synchronization primitives in the model are
acquire and release. They are used as synchronization
points for the user-specified consistency operations. The
following consistency guarantees are provided :

1. Safe transfer guarantee: No data is transferred
from or to an array between a matching
acquire/release pair involving that array. Data can
be transferred from or to an array any time between
a register call and the first acquire or between a
release and the next acquire (or unregister).

2. Single version guarantee: all data transferred to or
from a single array in a single consistency action be-
longs to the same version. Note that this requirement
does not necessarily imply explicit barrier synchroniza-
tions at every acquire and release.

There are four classes of consistency specifications, each
corresponding to a different consistency model. They are
fully-constrained, producer-constrained, consumer-constrain-
ed and free-running. In the following discussion, k is a non-
negative integer; const; symbols denote integer constants
> 0; and all mappings are of the form A = B where pro-
gram P; exports A and program P, exports B.

Fully Constrained Coupling : the form of the consis-
tency specification is:

with freq(A, const; : 0o : consts) &
freq(B,consts : 0o : consts) A = B

In this model, every constt" version of B is copied into
A on every consti" acquire call involving A. More pre-
cisely, the data contained in B at the (consts+k x const4)th
release(B) call must be transferred to A. The data must
be transferred out of B between the start of the (const3 +kx

const;)th call to release(B) and the completion of the fol-
lowing call to acquire(B)?. This data must be transferred
into A after the (const, +(k X constz) — l)th release(A) call
has completed and before the following call to acquire(A)
completes ®. The fully-constrainedmodel is able to capture a
wide range of consistency requirements for relatively closely
coupled programs.

Producer-constrained coupling : the form of the con-
sistency specification is:

with freq(A,const; 100 : ) &
freq(B,consts : 0o : consts) A = B

In this model, every consti" version of B is copied over
to A. No data is transferred to A for the first const; calls to
acquire(A). The data must be transferred out of B between
the start of the (consts + &k x const{)th call to release(B)
and the completion of the following call to acquire(B).
This data must be transferred into A at a subsequent call
to acquire(A) after the first const; calls to release(A).
The producer-constrained model constrains only the pro-
ducer and allows the consumer to run freely. It can be used
to couple programs in which the producer runs much faster
than the consumer and periodic consistency is not needed.

Consumer-constrained coupling : the form of the con-
sistency specification is:

with freq(A, const; : 0o : constsy) &
freq(B,consts :c0: %) A = B

In this model, no data is transferred into A for the first
consty calls to acquire(A). Subsequently, data must be
transferred into A once every constsz calls to acquire(A).
There 1s no restriction on the version of B that can be copied
over at each such transfer point, as long as the sequence of
versions is monotonically increasing starting at the consti"
version. That is, every transfer gets a new version of B.
With this proviso, data can be transferred out of B be-
tween any call to release(B) after the consty® call and the
the following acquire(A). The consumer-consirained model
constrains only the consumer and allows the producer to
run freely. It can be used to couple programs in which the
consumer runs much faster than the producer and periodic
consistency is not needed.

Free-running coupling :
specification is:

the form of the consistency

with freq(A,const; 100 : %) &
freq(B,consts :c0: %) A = B

This model provides the loosest coupling. In this model,
there are four restrictions on data transfer. First, no data
transfer takes place for the first const; calls to acquire(A)
and the first consts calls to release(B). Second, at least one

21f consty = 0, the first data transfer out of B must happen be-
tween the register(B) call and the first call to acquire(B).

31t consty = 0, the first data transfer into A must happen between
the register(A) call and the first call to acquire(A4).



data transfer takes place. Third, monotonically increasing
versions of B are transferred. That is, every transfer gets a
new version of B. However, there may an arbitrary number
of acquires of A and releases of B between any data trans-
fers. Finally, if B’s version number has been changed since
the last acquire of A, a consistent new version of B will be
propagated to A. The free-runningmodel constrains neither
the producer nor the consumer. The consumer observes a
trend of the producer’s values as the producer progresses.

Since we allow a program to have multiple sources and
multiple sinks we can form general interconnections between
programs. However, this flexibility can also lead to dead-
locks and infinite buffering requirements for certain config-
urations. These are not always detectable by looking at the
mappings alone. In our implementation, we expect the pro-
grammer to be aware of these problems when building an
interconnection of applications. We address these issues in
greater detail in a technical report [8].

4 Implementation

We have implemented our system on a network of four-
processor SMP Digital Alpha Server 4/2100 workstations
running Digital Unix 3.2. The nodes are connected by an
FDDI network.

The primary goals of our implementation were language
independence and efficiency. The concern for language in-
dependence prompted the use of the Meta-Chaos library [3],
which we describe below. For efficiency, we used three tech-
niques. First, we used asynchronous, one-sided message-
passing for inter-application data transfer; the goal being to
overlap data transfer with computation. Second, we com-
puted optimized messaging schedules for data transfer for
each mapping and reused these schedules for all transfers
for the given mapping; the goal being to minimize the num-
ber of messages transmitted thereby reducing the amount
of time spent in communication. Third, we used buffering
to reduce idle time spent waiting for data. We now present
further details as well as some problems we encountered.

4.1 Implementation of Mappings

Data transfer can be initiated by either the producer or the
consumer in a mapping. A consumer-initiated transfer is
implemented by a get request to the producer, which is pro-
cessed at an appropriate time in the producer’s execution.
A producer-initiated transfer is implemented by the pro-
ducer dispatching the necessary data in a put request. The
data may be received asynchronously at the consumer and
buffered for later consumption.

The initiation scheme is specific to each mapping and
depends only on the consistency model it implements. For
mappings implementing the fully-constrained model or the
producer-constrained model, data transfer is initiated by the
producer. This eliminates the need for a consumer initi-
ated request message. Since the relative time when the
data is to be supplied is known a-priori for these models,
a consumer-initiated request is unnecessary. For mappings
implementing the consumer-constrained model or the free-
running model, the data transfer is initiated by the con-
sumer. In the first two cases, the producer initiates the
data transfer at the end of the release call that generates
the version to be transferred. In the last two cases, the
consumer initiates the data transfer at the beginning of the
appropriate acquire call.

If the transfer is producer-initiated, ensuring the single-
version guarantee (i.e., the guarantee that the consumer sees
a single consistent version of the distributed data structure)
is simple. The peer processes of the data-parallel producer
application may send their sections of the distributed array
to the consumer on a release. Since the data is buffered and
consumed in FIFO order at the consumer, and the loosely
synchronous SPMD assumption holds for the producer, the
single-version guarantee is ensured.

If the transfer is consumer-initiated, the problem is more
complicated. This complication is caused by the fact that
different peers of the data-parallel program can see the same
request at different logical points in their computation. If
the peers respond as soon as they see the gef request, the
consumer may see different portions of the distributed array
with different version numbers thereby violating the single-
version guarantee. Some coordination between the producer
peers is required to ensure that this situation does not hap-
pen. A simple distributed protocol that guarantees that the
consumer sees a consistent version of the source array has
been implemented and is described in greater detail in [8].

4.2 Data Transfer

For inter-application data transfer, our library is built on
a more basic data movement library called Meta-Chaos [3].
Meta-Chaosis able to manage data movement between data-
parallel programs written in different languages (including
HPF, C and pC—l——l—) and using different communication hi-
braries (including Multiblock PARTT and CHAOS). Meta-
Chaos operates by computing a canonical representation for
the different distributed arrays and building a schedule for
data movement between the two arrays. Depending on the
structure of the distributed data, the canonical representa-
tion can be compact (e.g. block distributed arrays), or it
could be as large as the array(eg. irregular distributions).
These canonical representations are mapped to each other,
and a plan for data movement between processors is com-
puted based on this mapping. This plan is optimized to
minimize the number of messages between processors. Once
the plan is computed, it is cached and re-used for later inter-
application data movements.

For portability, Meta-Chaos relies on only a small num-
ber of query and mapping functions that must be made avail-
able by the runtime libraries of the languages in which the
applications are written. These functions include queries on
index ownership, location and mapping between global and
local indices.

For the underlying messaging layer between applications,
we used PVM [5]. Each data parallel program is assigned a
distinct PVM group. Asynchronous data transfer is achieved
by using a dedicated thread for receiving messages. Since,
PVM currently does not handle multiple threads concur-
rently performing pvm_receive operations in the same pro-
cess correctly, we assume that intra-program communication
between the peers of the data-parallel program will be done
through some other means. This has not been an opera-
tional problem for our experiments, since the Digital HPF
compiler uses a proprietary version of the UDP protocol for
communication between the peers of an HPF program.

5 Evaluation

We examined the performance of our system using mini-
applications. These mini-applications were designed to eval-



uate our system in four ways: (1) comparison of mapping-
based coupling with hand-coded message-passing; (2) com-
parison of mapping-based coupling with a single monolithic
data-parallel program; (3) variation of producer and con-
sumer performance with variation in the consistency require-
ments; and (4) cost of additional synchronization caused by
the coupling system, in particular by the single-versionguar-
antee.

To provide a context for our results, we also measured the
communication performance on our experimental platform.
The application-to-application data transfer rate between
two C programs on the network using connection-oriented
sockets and transferring 40 KBytes of data per send aver-
aged 24.4 MBits/sec. Inter application data transfer be-
tween nodes using PVM and transferring 40 KBytes per
send, was measured at 23.5 MBits/sec on average. The rated
maximum transfer rate of the network is 100 MBits/sec.

5.1 Comparison with message-passing

We compared the performance of mapping-based coupling
and hand-coded message-passing by measuring the time re-
quired to transfer a 100x100 integer array between two data-
parallel programs. In both cases, Meta-Chaos was used for
the actual data movement. Once the schedules for data
movement have been built, the performance of Meta-Chaos
is identical to what can be achieved by direct message pass-
ing. The mapping-based coupling scheme incurs additional
overhead due to scheduling delays for the threads used for
asynchronous communication and due to lock contention
between the communication threads and the computation
thread.

In this experiment, the producer and the consumer are
run on disjoint sets of 4 nodes each. The set of processes
for both applications were distributed round-robin over all
the processors on these nodes. For the larger configurations,
multiple processes were assigned to individual nodes but all
processes assigned to the same node belonged to the same
application. This ensured that all communication was per-
formed over the network and not via shared memory. Iden-
tical process distributions were chosen for both the hand
coded send/receive and mapping-based coupling. The data
was uniformly partitioned, in a blocked fashion, between all
the peer processes in each application.

Table 1 shows the performance of both versions; the tim-
ings are averaged over 1000 iterations of both programs. The
measure used is the time for a single data transfer; time for
generating the schedule is not included. The results show
that the overhead of mapping-based coupling with respect to
message-passing is very low and is consistently within 0.1 ms
and 0.4 ms. For both versions, the time to each transfer
decreases from one processor to four. This is due to an in-
crease in the number of communicating nodes and thereby
the aggregate communication bandwidth. For larger con-
figurations (the 8- and 16-process configurations), multiple
processes are placed on individual nodes and the throughput
drops due to contention for the network adaptor.

We also measured the overhead of acquire and release
calls when no mappings were in place. We found that the
overhead was negligible.

5.2 Comparison with monolithic programs

We compared the performance of mapping-based coupling
and monolithic data-parallel programs by measuring the

Processors mess-passing | mapping-
(Send/Recv) based coupling
1 14.5 14.7
2 13.6 14.0
4 12.8 12.9
8 15.2 15.6
16 36.8 36.9

Table 1: Comparison of transfer time for mapping-based
coupling and direct message passing (ms per send averaged
over 1000 iterations).

performance of a simulation over two neighboring grids. The
simulation sweeps over a 3-dimensional grid doing local op-
erations (nearest neighbor stencil computations) at each grid
point. The loop doing the sweep is parallelized using an
HPF forall statement. Such a sweep is representative of the
computations in a large class of scientific applications, such
as computational fluid dynamics and structural mechanics.
Each of the grids contains 100x100x100 cells (one integer per
cell); the two grids are connected at their shared boundary.
We compared the performance of three versions:

e A monolithic HPF program that sweeps over a
200x100x100 grid using single forall loop. The graph
for this version in Figure 2 is labelled ” Monolithic HPF
simulation”.

e Two HPF programs, one simulating each grid. They
perform the same computation as the monolith pro-
gram; mapping-based coupling is used to exchange
data (fill ghost cells) at the boundaries where the grids
meet. Each HPF program runs on a different set of
nodes. The graph for this version in Figure 2 is la-

belled ”Coupled HPF simulations 17.

e Same as the second version except that an interpola-
tion program is added between the two HPF simula-
tion programs. This represents situations where the
grids are not exactly aligned (due to resolution differ-
ences or otherwise). In this version, the interpolation
program processes data going in both directions. The
interpolation program is co-located with one of the

simulations. The graph for this version in Figure 2 is
labelled ”Coupled HPF simulations 2”.

The graphs in Figure 2 compare the performance of the
three versions. The monolithic version and the coupled ver-
sion without interpolation perform the same computation
and communication. The primary difference is the underly-
ing messaging layer — the monolithic version uses a propri-
etary version of UDP (a part of the Digital HPF implemen-
tation) whereas the coupled version uses PVM.

The coupled version with interpolation performs extra
computation and and communication. The computation it-
self is very simple - just averaging the data values on grid;
and grids and writing the result out to grids which is then
read back by pgmi and pgm2 on each iteration. The ad-
ditional communication, too, is not expensive as the added
communication is local to the node. The interpolation does
introduce additional multi-tasking, the effect of which is dif-
ficult to quantify. But as shown by the graphs in Figure 2,
it is not large.
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Figure 2: Performance of coupled simulation vs. monolithic
coupling

Coupling Type Producer Consumer
Loop Time | wait time
fully-constrained 14.7 8.7
consumer-constrained | 1.5 190
producer-constrained | 14.0 41
free-running 1.5 A1

Table 2: Producer loop time and consumer wait time for
different consistency specifications (ms).

In all cases, there is not much improvement in the results
past 8 processors. In fact, there is a slight degradation for
32 processors when compared with 16 processors. This can
be attributed to the relatively high network latency and the
relatively small grain of the computation.

These results show that using mapping-based coupling
to compose a pair of frequently communicating programs
instead of rewriting them into a single monolithic program
does not degrade performance unacceptably. Even with an
additional interpolation program, the performance loss is
not prohibitive.

5.3 Performance impact of consistency requirements

For this experiment, the producer runs in an infinite loop
incrementing each of the elements in a 100x100 integer array
A on each iteration. The consumer adds all the elements of
integer array B on each iteration. The mapping is of the
form A = B. Both producer and consumer are sequential
applications. Each runs on a dedicated node. Table 2 shows
the variation of the average loop time for the producer and
the average wait time for the consumer for different consis-
tency requirements.

Table 2 shows the impact of changing consistency re-
quirements on the performance of the producer and the
consumer. In the fully-constrained case, a difference be-
tween the wait time and the producer loop time is seen due
to the buffering effect at the consumer. In the consumer-
constrained case several producer loop iterations are al-
lowed to run before a single consumer acquire is required
to complete (the stipulation is that a new version should be
supplied on each acquire but there is no stipulation on which

Processors | Avg Consumer | Avg Producer
wait time Loop time
1 190 16.3
2 196 8.47
4 211 4.54
8 310 2.86
16 392 2.41

Table 3: Worst-case cost of additional synchronization (ms)

version it is). In the producer-constrained case, consecutive
acquires of A could get the same version - the stipulation
here is that every version of B is seen by some loop iteration
of Pgmi. Thus in this case the producer runs approximately
at the same rate as the fully constrained case. Finally, in the
free-running case, the consistency requirement is the weak-
est and the performance is the best. The only guarantee here
is that the consumer will observe a {rend of the producers
values. For every acquire of A the consumer sees the same
or a later version of B, as compared to the previous acquire.

5.4 Worst-case cost of additional synchronization

The transfers of data required to implement the consistency
requirements can require additional synchronization. This
has the greatest impact on performance if (1) the peer pro-
cesses in the producer application do not already synchro-
nize for computational purposes and (2) the data movement
is consumer-initiated which requires consumer processes to
wait till all producer processes synchronize and generate
a consistent version. We evaluated the worst-case cost of
additional synchronization using a mini-application where
the producer processes are independent and the consistency
model was consumer-constrained.

The producer is a data-parallel simulation program and
exports an array A which contains the state of the simula-
tion; the consumer is a sequential visualization program and
exports an array B which contains the data points for visu-
alization. FEach array is a 100 x 100 integer array and the
mapping is consumer-constrained. We implemented skele-
ton HPF applications for both the producer and the con-
sumer. We ran the “visualizer” in a tight loop doing only
acquire and release and measured the average wait time for
the acquire operation. The average wait time is an in-
dication of the maximum rate at which the visualizer may
grab frames from the simulation. In this experiment, the
processors for the simulation were allocated in a ”greedy”
fashion. All processors on a given node are assigned before
another node is added. The visualizer runs on a separate
node. Table 3 shows the results. The synchronization cost
is approximately the difference between the avg consumer
wait time in column 2 and the avg producer loop time in
column 3.

As shown in Table 3, the worst-case cost of synchroniza-
tion can be substantial. But note that this is for the rela-
tively rare case of data-parallel programs with independent
processes which have been coupled in a consumer-constrained
model. The cost increases with the number of processors for
two reasons: (1) the consumer process has to communicate
with an increasing number of producer processes and (2) the
potential skew between the otherwise-independent producer
processes increases as the number of processes increases.



The sharp increase in the cost from a 4-processor config-
uration to a 8-processor configuration is due network traffic
required for the synchronization. For the four-processor con-
figuration, all communication is local to a single node. The
table also shows the producer loop time for this experiment.
We measured the loop time for the producer in the case
when the producer was not coupled and compared it with
the loop time when the producer was coupled; the difference
was not significant. This shows that even in this case, only
one of the programs, the consumer pays an significant cost.

6 Related Work

Our approach is similar in some respects to the software
bus approach used in Polylith [10]. Our approach differs
from Polylith in that it is data-stream-driven rather than
remote-procedure-call-driven. Data parallel components can
interact not only at their entry and exit points but also con-
currently when they are in execution. However, we do not
provide a means for remotely invoking procedures. Indeed,
a software bus approach could complement our work extend-
ing it to allow this facility.

Linda [9] offers a tuple-space-oriented programming model
which could be used to couple programs. A stream-oriented
model such as ours could be implemented on top of Linda.
Given that our assumption is that the source code for the
individual applications is not available at the time the appli-
cations are to be composed, the performance would probably
not be as good as our implementation.

Communication libraries like PVM and MPI [7] may be
used by the programmer to directly transfer messages from
one data parallel task to another. However, such an ap-
proach burdens the programmer with having to understand
low level details about data distributions and message pass-
ing. It is also hard wired” in that support has to be de-
veloped for each instance of communicating data parallel
programs. Once a program has been written in this fashion,
it will have to be re-implemented if the components with
which it interacts are altered or if the consistency require-
ments are altered.

7 Conclusions

We have demonstrated that it is possible to link data paral-
lel applications in a flexible and reconfigurable fashion such
that re-compilation is avoided and data movement between
applications does not have to be hand coded. The fact that
large amounts of data are being produced and consumed and
the fact that the data is distributed required us to invent a
mapping specification that indicates relative consumption
and production patterns and data structure linkages. Using
this information, we constructed a communication schedule
that optimized the flow of data between applications. We
characterized the mapping specification into four classes and
discussed how these classes might be useful for different ap-
plication interactions.

We demonstrated the utility of our method by applying
it to link HPF applications. Our method did not require
any language extensions and we were able to implement our
method using the Digital HPF compiler and intrinsics with-
out any knowledge of compiler or runtime system internals.
Our experiments indicate that coarse grained parallel tasks
may be linked in this fashion without much loss in perfor-
mance.
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