Optimizing Java

Theory and Practice

Zoran Budimlic
Ken Kennedy

Rice University Computer Science Department
6100 South Main, Houston TX 77005
zoran@ocs.rice.edu, ken@cs.rice.edu

Abstract

The enormous popularity of the Internet has made an
instant star of the Java programming language.
Java's portability, reusability, seaurity and clean
design, has made it the language of choice for Web-
based applications and a popular aternative to C++
for objed-oriented programming. Unfortunately, the
performance of the standard Java implementation,
even with just-in-time compil ation technology, is far
behind the most popular languages today. The neel
for an aggressve optimizing compiler for Java is
clear.

Buil ding on preliminary experience with the JavaSoft
byteade optimizer, this paper explores ©me the
isaues that arise in buil ding efficient implementations
of Java. A number of interesting problems are
presented by the Java language design, making
clasdcal optimizetion strategies much harder to
implement. On the other hand, Java presents the
opportunity for some new optimizations, unique for
this language.

1. Introduction

In this paper we present the results of a summer projed on

optimizing Java done at JavaSoft Divison of Sun

Microsystems, aong with preiminary results of

continuing research at Rice University. Many interesting

compilation problems emerge when trying to gotimize

Java including:

* unavail ability of the cmplete program at compil ation
time, eliminating opportunities for interprocedura
optimization

* the eception medanism, which limits code
movement optimizationgand

» thehigh abstraction level of the Java Virtual Machine
instruction codes (byteaodes), which hides many
machine dependent optimizaion opportunities from
the compiler.

In this paper, we discuss those problems, propose some
solutions andsuggest ared®sr further research.

This paper is organized into several sedions. Sedion 2
describes posgble approaches to optimizing Java. Sedion
3 presents the design of our current research compil er,
including the optimizations implemented and advantages
and limitations of the compilation model it employs.
Sedion 4 describes an approach to Java optimization that
relaxes the mmpilation model and presents some new
optimizations with preliminary results. Sedion 5 describes
an aggressve strategy for Java optimization, discussng its
potential and applicability. Sedion 6 addresses the Java
exception medianism, which presents a problem for
optimization regardlessof the strategy employed. The final
sedion draws conclusions from this preliminary work and
present somdirectiors for future research.

2. Optimization Strategies

There are three digtinct strategies for optimizing Java
compilation. each having advantages and dsadvantages
for particular appli cations and situations. In this paper, we
will describe each of them and discusstheir applicability
to different problemgor which Javamight be used

The first approach is to stay within the Java compil ation
model defined by Sun Microsystems—code is generated
for the Java Virtual Machine (VM), the compil er processes
one dassat atime, and the generated code is completely
independent of the platform on which it is exeauted. This
means that the compiler cannot make any assumptions
about the machine on which the VM code will be exeauted
and the VM cannot make any assumptions about the
compiler that is being used to generdd bytecodes.

This model is used in a projed begun at the JavaSoft that
is discused in Sedion 3 of the paper. This approach has
an obvious advantage: no changes are made to the airrent

Java exeaution environment, so the portability, seaurity,
and functionality that are the halmarks of the Java
technology are preserved. Unfortunately, that compil ation
model, along with the combination of the Java features,
leaves only limited room for performance improvement.
However, for applications where absolute portability and
seaurity are crucial, the wmpiler must stay within the
boundaries of this model. Given that requirement, it is
nevertheless worthwhile to exploit every opportunity for
performance improvement no matter how small.

An approach at the opposite end of the spedrum would be
to sacrifice the portability and seaurity of the Java Virtua
Machine, concentrating instead on the mnstruction of the
highly sophisticated optimizing native @de mpiler.
Although this would sacrifice the portability of the VM
objed code and the seaurity required for exeaution over the
Internet, the source @de would remain portable and it
could always be recompiled using the first compilation
strategy for use over the Internet. This approach is
suggested for the very high performance server
applications where Fortran and C++ are airrently being
used. Some important aspeds of this grategy are discussed
in Section 5.

A third approach would combine features of the first two,
compromising some portability and functionality for better
performance As we will show in Sedion 4, rdaxing the
constraints on the way the Java code is currently compiled
and exeauted can impact the performance significantly.
This model would till keegp al of the convenience and
power of exeaution over the Internet and the Java Virtual
Machine seaurity model would ill be enforced. The
compiler and the VM would know about each other,
weakening the absolute portability model, so that the aoss
knowledge @uld be used to achieve higher performance
Under this sheme the cmpilation process would not be
as smple as in the JavaSoft model. This model would be
suitable for applications that require exeation over the
net, with al the seaurity of the Java VM instruction set,
but which are willing to be limited to the spedfic
compilers and VMs that are supporting this model.

As dready mentioned, each of this drategies has its
advantages and d sadvantages, and the right model should

bechoserto meetthe needs of the intended application.

3. Standard M odel

In this sdion, we describe the first approach, which is
used in our current compiler. During the design and
implementation of this projed, which was done while one
author was a summer student intern at JavaSoft, a number

of interesting problems in optimizing Java surfaced,
revealing some limitations of the compilation model that
has been used date

Our research compiler builds on the distributed Sun Java
compiler by including a standalone, byteade-to-bytecode
optimizer. This gructure was chosen for the dfort for two
reasons. First, when the dfort was begun at JavaSoft, the
optimizer was easier to develop and debug because it was
independent of the arrent build of JavaSoft's javac
compiler. Semnd, the structure also makes the optimizer
independent of any compiler, so it can be used to gptimize
code produced by other Java compilers, as well as any
other language compil ed to the Java VM. Third, it can be
used as a optimizing prepass to many just-in-time (JIT)
run-time @mpilers, which are now coming into
widespread use

The ompil er itself is organized into a series of phases that

areloosely connected witbne another:

1. parsethe input class and load it into mempry

2. convert the stack machine bytecodes into traditional
expresson trees and construct the control flow graph
(CFG),

3. convert the CFG into static single assignment (SSA)
form.

4. peform some standard optimizations—dead code
elimination and constant propagatienn the SSA.

5. restore the CFG from the SSA, renaming the local
variables if necessary.

6. perform local optimizations on the CFG itself—local
common subexpresson elimination, copy
propagationand register allocation; and

7. generate the final program as Jva VM bytedes,
performing peephole optimizaions (stack al ocation,
repla@ment with the cheaper opergtatong the way

In the next several sedions we will discuss ®me of these

operations.

3.1. High Level Source Recovery

Java bytecodes are not a particularly suitable intermediate
representation for optimization. Most optimizaions in the
literature apply to expresson-like ade, with variables and
registers instead of a sack. The most common
intermediate representations are sequences of three
addressand two-addressinstructions resembling asembly
language [Aho et al. 1986].

The Java VM is a stack machine, which makes data flow
analysis complicated. The neal to track the usage of the
variables to and from the operator stack is the most
common difficulty we encountered. This motivated us to
develop a pass to trandate Java VM bytecodes into

expresson trees, a representation more suitable for
analysis.

The conversion procedure is graightforward. Basic blocks
are identified by scanning the Java VM bytecdes for .
branches, identifying branch targets in the process When
the structure of the CFG has been established in this way,
we procea with the mnversion of the bytecdes in each
basic block to the expression trees.

The mnversion to expresson trees is done by traversing

the basic block smulating the behavior of the virtua

machineusing anexpression stack. There are three cases:

« when a constructing bytecode—one that creates a
constant or pushes a local variable on the stack—is
encountered, the crresponding constant or variable is
pushed onto an expression stack;

e When an arithmetic operation is smulated, the
appropriate number of operands are popped from the
expresson stack, the resulting expresson is
constructed, and it is pushed back on the epresson
stack.

» A byteade that stores the value on top of the stack in
alocal variable will be smulated by popping the top
expresson from the expresson stack and constructing
anassignment.

Figure 1 shows an example of the bytewdes and the

resulting expression.

Bytecode Stack Code
iconst 1 1
iload 1 RL 1
i add (R1+1)
istore 1 R1=R1+1
Figure 1

After construction of the expresson trees for each basic
block, the expresson stacks have to be merged at the each
basic block entry. The expresson tree onstructor assgns
arbitrary “register” names to the local variables when
constructing expressons. If two o more blocks have non-
empty expresson stacks at their exits, and they merge at
the same point in the CFG, the expresson stacks must be
unified. This is done by unifying each of the expressons
on the stack with the appropriate expressons on other
stack(s). A complex expresson that must be unified is
converted into an assgnment to a temporary variable and
then the variable is unified with other expressons. The
code that does the unification assgnments is inserted at
the beginning of the block that succeels the merging
point. A similar merging operation is done for the splitti ng
points in the CFG, with code inserted (if necessary) at the
end of the block before the split.

3.2. SSA Construction and Usage

The fastest known algorithms for many compiler
optimizations use SSA form to represent the program
being optimized. That was the primary reason we seleded
it as an intermediate representation in our compiler. SSA
construction and reonstruction algorithms are described
in detail esewhere [Cytron et al. 199][Briggs et al.
1995].

Oneisslein SSA construction and remnstruction for Java
programs is yet to ke resolved. Our current
implementation converts only the method's local variables
into SSA names, ignoring al instance variables. This is
becuse some of the @de moving optimizaions (loop
invariant code motion, for example) require the SSA
remnstruction algorithm to rename variables when
restoring the CFG. This is, of course, unacceptable for
instance and gobal variables in Java, since that would
change the dassinterface We believe that the omisson of
instance variables from the SSA (and thus from
optimizations on it) causes a significant deaease in the
quality of code generated. We plan to use techniques
developed by Briggs, Schilli ngburg and Simpson [Briggs
et a. 1994, which employ tags for memory locations to
deal with instance variables. All of the optimizaions on
SSA would be aware of the instance variable tags and
would act acoordingly so the dassinterface would not be
changed after the reconstruction of the CFG.

3.3. Dead Code Elimination and Constant
Propagation

Dead code dimination is a important and well -understood
optimization in traditional languages [Kennedy 1981,
[Briggs et a. 1993. In applying this optimizaion to Java,
it is important to understand the impact of impact of the
Java exception mechanism. Since many Java instructions
can potentially cause an exception, a prepass of the dead
code dimination algorithm must mark all of those
instructions as critical (e.g., undeletable), thus limiting
opportunities for dead code elimination. Some approaches
to dealing with exceptions are discussd later in this
paper.

For constant propagation we use the well-known
Wegman-Zadecklgorithm WWegman Zadeck985].

3.4. Local Common Subexpression Elimination

In our implementation of local common subexpresson
elimination, we use a wel known value numbering
algorithm [Simpson 1994,[Briggs et a. 1994. Vaue
numbering provides a very natural framework for common
subexpresson dimination. All of the variables in the

program are numbered, with two variables having the
same number only if they have the same value. Two
expressons have the same value (and get the same value
number) only if they have identical structure and their
operands have the same value number. After discovering
the value numbers, it is trivial to discover the mmmon
subexpressons, store the value once mputed for the
given subexpresson and replace al the subsequent
computations with simple loads.

3.5. Register and Stack Allocation

The Java Virtual Machine is a stack machine, so it does
not have the notion of registers in the usual sense
Furthermore, it does not have a notion of memory, just a
potentially huge number of local variables to store
temporary values and a stack for operations. However,
there is a substantive difference in the speed when
accessing the stadlersusthe local variables.

Four local variables (0-3) have a spedal codes for load and
store operations assgned to them that are shorter than
normal. This results in shorter code and faster exeaution
when those variables are used. Also, the first 64 loca
variables can fit into the register cache on some Java
microprocesors currently under development. It is
reasonable to exped that most of the spedalized Java
microprocesors, as well as the run-time environments for
conventional processors will cache some of the local
variables in their registers. Although the speal dfferences
are not dramatic enough, reative to access times in
registers vs. cache vs. memory on conventional processors,
to justify the implementation of a full graph-coloring
alocation algorithm [Briggs et a. 1994, they are
significant enough to prompt us to implement a smple,
but fast and effedive heuristic to exploit the described
asymmetry. The register allocation algorithm is as follows:

e if the compiled method is large enough, the input
values (originally stored in local variables garting
from 0) are taken into account for register all ocation
and relocated, dse they are left in their origina
location

» for each basic block, make a list of available registers

» traverse ech block, asdgning the lowest available
register to the variable that has been assgned the
value, and replacing the usage of the local variables
with their assigned registers

« if the aurrent instruction uses the variable for the last
time, put the corresponding register on the free list

» after asdgning registers for each basic block, registers
are assgned to the global values. Every local variable
that is live acrossthe basic block is considered gobel
and is asdgned a unique register for the whole

method. The registers are assgned sequentialy to
those variables, starting with the maximum register
number allocated in the basic block register allocation

Although not nearly as aggressve and effedive as graph
coloring alocators, this smple strategy proved gute
effedive in practice espedally for short methods, which
are very common for object oriented programming style.

As we aready noted, the operator stack is usualy the
fastest memory in Java virtual machine. Using the stack as
much as possble for storing the intermediate values would
speed-up the code substantially. We use a very simple pass
over the mde to discover the posshiliti es for reusing the
stack:

+ if the value stored in some local variable is used
exactly once and in the very next instruction, we
eliminate the store and subsequent load, leaving the
value on the stack. This is the most common case,
becuse it results from breaking up large expressons
into subexpressions and computing them separately.

« if the value stored in the local variable is used twice
by the next two instructions, store and two later |oads
are replaced with the dugication of the value on the
stack. This caseis a common result of the unification
algorithm described in sedion 3.1. and of the
common subexpression elimination algorithm.

Again, this is a very smple method, and athough there
are more dfedive algorithms for code generation for stack
machines that use the stack optimally [Bruno Lassagne
1975], we found this one quite appropriate for our needs.

3.6. Performance

Normalized Execution Time

100 100 9% 100 100
89.6
90 1T 80.%
80 +—
0l F
60 T T
Drystonell Tomcatv Oopack
EUnoptimized H Optimized |
Figure 2.

The performance improvements under this mode are
presented on Figure 2 and Figure 3. These experiments
were performed on a Sparc 5 workstation, with 32MB of
memory usinghe SunJava interpreter.

The performance results are quite interesting because
actual exeadtion time improvement is larger than the
instruction count deaease. This is primarily a
consequence of local common subexpresson eimination,
which replaces many array accesses with register
references, and peephole optimizaions, which replace
exigting ingtructions with the ceaper ones that do the
same work.

Normalized Instruction Count

100 100 100 08.7 100 .
95 917
90 .
85 T T
Drystonell Tomcatv Oopack
| EUnoptimized B Optimized

Figure 3.

In our opinion, the total performance gain posshble under
this compiling model is modest. Some additiona
optimizations can be implemented and some
improvements can be made to the airrent ones, but unless
the ompilation model changes, we do not believe that big
improvements are posshle beyond what can be ddivered
by just-in-time cmpilers. For more significant
improvements, at least a part of the arrent Java
compilation and exeation model will need to be
sacrificed.

4. Relaxed M odel

A more dfedive approach to optimizing Java would be
posshle if we ould rdax some rules of the arrent Java
compilation model. In particular, given the standard Java
objed-oriented coding style—frequent method call s, many
short methods—interprocedural optimization techniques
such as aggressve method inlining could lead to
substantive performance gains

Unfortunately, interprocedural analysis as described in the
literature for conventional languages is not permisshble
with the isting Java compilation and exeation mode,
except with final classes and methods. The reason is that
the ompiler must assume late binding of the method call s
inside the same dassas well as to the methods from other
objeds. This is a consequence of not having the whole
program in hanét compilation time.

However, if we dange the model, some interprocedura
optimizations becme posshle, Object inlining, described
in the next sedion, lodks at al the dasses that are
avail able to the compil er and, whenever it can prove that a
method invocation must be static, inlines whole ohjeds.
Code duplication relies on the run-time medanism to
distinguish between the optimized and non-optimized
classs and to dedde which one to use for instantiation
and which one for inheritance.

4.1. Object Inlining

One of the smplest and the most effedive interprocedural
optimizationsis inlining. It has two major positive dfeds
on the mmpiled code: eimination of subroutine all
overhead and exposure of the method body to further
optimization in the mntext of the original invocation. The
potential negative dfed is explosion of code size and the
corresponding increases in compilation times.

Intuitively, inlining would be most effedive for code that
has many subroutine @lls and short subroutines. Thus,
objed oriented languages and programs written in ohed
oriented style would profit the most from this
optimization. Many of the arrent C++ compilers
implement extensive inlining and achieve significant
performance improvemeas a result

4.1.1. The Method

Java presents two major impediments to inlining, which
are illustrated by the sample code fragntagtre 4.

In this hypothetical code, there are two Java classes, each
of which dedares a private integer variable along with
methods that accessand modify that variable. The main()
method of the dassFoo contains a smple logp that does
some omputation and calls the internal method inc() of
Foo and the external method dec() of the ohjed goo, an
instance of the clagsoo.

There are two (different) reasons why those two methods
cals cannot be inlined in Java. First, we annot inline the
cal to inc() because neither the dassFoo nor the method
inc() are dedared final. Thus, someone can later produce
a class that inherits the dass Foo and overrides the
method inc(), but not the method main(), as srown on
Figure 5.

It is obvious that if the method call toinc() wasinlined in
Foo, a call to main() of an instance of FooFoo would
producean incorred result. Thus, we @nnot inline @llsto
the non-final methods that belong to the same dass $nce
someone @n inherit the cmpiled classlater and override
some of the inlined methods. Sincethe overriding methods

would not be rredly invoked from the method where
inlining took place the resulting program would be
erroneous

cl ass Foo{
private int x = 0;

public void inc(){

X++:
}

public void main(){
Goo goo = new Goo();

for(int i = 0; i<10; i++){
inc();
X--;
goo. dec();
}
}
cl ass Goo{

private int y = 0;

public void dec(){
y--
}

}
Figure 4.

The all to goo.dec() cannot be inlined for a different
reason. Unlike C++, Java compiler transforms the source
code to bytecodes for the Java Virtual Machine, which
have a very similar structure to Java source @de, with
objed instantiations, method invocations and language
rules that diredly refled the rules for Java source @de
[Lindholm Yellin 19964. In particular, bytecodes have to
resped the privacy of ohjed fieds. In our example, the
code from method main() cannot diredly access the
variable y from the dass Goo, in ether the source or in
the bytewdes. Most Java Virtua Machine
implementations would rejed the byteades that violate
the privacy rules.

cl ass FooFoo extends Foo{
public void inc(){
X--
}

}

Figure 5.

We propose two methods for handling these two problems:
code duplication, which addresss the first problem, and

object inlining, which addresss the secnd one. These
will be described in the next two subsections

4.1.2. Object Inlining

The idea of obed inlining is very smple instead of
simply inlining method call s, we will i nline whole objects,
including data and code. By making the whole objed local
to the alling procedure, we gain immediate accessto it’'s
private data and make it possble to diredly inline al the
cals to that objed’s methods. Figure 6 shows how this
would affed the method main() from our previous
example.

public void main(){

/1 inlined: Goo goo = new
Goo() ;
int gooy = 0;
for(int i = 0; i<10; i++){
inc();
X--;

/1 inlined: goo.dec();
goo_y--;

Figure 6.

There ardwo obviousproblems withthis approach:

1. it can only be applied to the obeds that are
instantiated inside the current class, and

2. theinlined objed cannot be passd to aher oheds
and methods as an argument.

Thefirst problem cannot be solved unlessthe compiler has

accessto the whole program at compil ation time, which is

not the @ase in our framework. The seand problem is less

serious, since we could wrap a container objed around our

inlined data and passit along to the alled method as a

parametertestoringthe inlined data after the call.

Let us ill ustrate this on an example: Suppose that we are
passng the ohjed goo to the System.out.printin() method
inside our main() method. Obvioudy, we @nnot apply
objed inlining as abowe, since we wouldn’'t have an ohjed
to passto the system method. What we neel is an ohed
whose data can be set to corred values and which can be
passd to the given method. Our inlined data can be
restored on return if the @lled method changes anything.
To do that, we need dred accessto aur helper objed’s
data, which can be provided by inheriting the inlined
objed and adding accessor and modifier methods to it, as
shown on Figure 7.

Of course, heuristics have to be applied at compil e time to
determine if the benefits of inlining the objed outweigh
the st of introducing a new ohjed and the wrapping and
unwrapping that must take place around method where it
is passed as an argument.

cl ass GooH ext ends Goo{
public int get_y(){
return vy;

public void set_y(int val){

y = val;
}
}
public void main(){
GooH gooH = new GooH()
int gooy = 0;
for(int i = 0; i<10; i++){
inc();
X- -,
goo_y--;

gooH. set _y(goo_y);
System out . printl n(gooH);

goo_y = gooH. get _vy();

Figure 7.

4.1.3. Arrays of Objects

Arrays of objeds can aso beinlined, with some additional
caution in implementation. Allocation of an array of
objeds will be replaced by allocation of an array of data
for each field in the given ohjed. An instantiation of an
objed in the array will be replaced by initialization of the
inlined data, as own on Figure 8. The lines that are

commented out represent the original code, as before.

public void main(){
/1 Goo goo = new CGoo[10];
int goo_y[] = new int[10];

for(int i = 0; i<10; i++){
/1 goo[i] = new Goo();
goo_y[i] = 0;

for(int j = 0; j<10; j++){

for(int k = 0; k<10; k++){
/1 goo[i].dec();
goo_y[i]--;

Figure 8.

4.1.4. Performance

On Figure 9, we present some performance results
obtained on applying objed inlining by hand on the Intel
Oopack benchmark. The actual implementation of objed
inlining is under way, and we hope to represent more
complete and more detailed benchmark results once
completed.

The graph on Figure 9 shows the exeadtion times in
semnds on an IBM 6x86 P166+ at 133VIHz, with 40MB
of memory and running under Windows 95. The first two
bars dow the exeaution times of the nonoptimized and
optimized code (only the oljed inlining optimizaion is
applied) using the original Sun bytecdes interpreter from
JOK 1.0. The third and fourth bar show the exeation
times under the Symantec Café JT compiler, again for
nonoptimized version and version optimized by objed
inlining.

The data shows a promising performance improvement
with bath interpretation and JIT compilation. The actua
speedup varies from 1.5 on Max to more than 7 on
Complex. This huge performance gain is not surprising
since Oopack is simply Linpack written in ohjed-oriented
style with many method call s and short methods—thus it
is very suitable for this kind of optimization.

80

] 72.34

70

60

] $5.5

50

| 4

33.07

40

8
28.84

30

18.

45
291
8.6
22
6.00
32
167

20 A

=3
10 - -

0 - T T _I.

Max Matrix

Complex lIterator

EUnoptimized, interpreted
B Optimized, interpreted
OUnoptimized, Cafe JIT
OOptimized, Cafe JIT

Figure 9.

4.2. Code Duplication

Code Duplication is a method for widening the spedrum
of applicable interprocedural optimizaions on the
bytecodes, with very little sacrifice in portability and
potentially big gains in the performance.

The problem we are trying to solve was described in
Sedion 4.1.1. Let'slodk at the example at Figure 4 again.
The compiler cannot inline the all to method inc() in the
main logp because there is a posshility that someone may
later inherit from the dass Foo and override the method
inc() but not main(), resulting in incorread code. If the
method inc() was dedared as final, the inlining could be
done safely (this is aready done in most Java compil ers).
The problem arises with the methods that are not dedared
asfinal, as in our example.

The solution is very simple: the compiler generates two
copies of the wmde, one under the asuumption that the
generated class will not be used for inheritance thus
permitting aggressve optimizaions, and a second with the
asaumption that derived clases will be presented later.
The ompiler will apply to the second only optimizaions
that are safe under that asumption, as described in
previous <dions. We aready showed the result of
applying objed inlining on the example on Figure 4 for
those invocations that are inheritance-safe. Figure 10
shows the result of inlining under the asaimption that the
classfoo will not be inherited from. Another optimizaion
pass such as value numbering, would diminate bath
increment and decrement:ofrom the main loop.

There is obviously a problem with compatibility when this
method is applied. The run-time ewvironment must know
that code dugi cation has been applied to the ade, and act
acoordingly. Only minor changes to the run-time
environment are required. When exeaiting the ade that is
instantiating the dass Foo, it should use the dass from
Figure 10, and when loading the dassthat is inheriting
from class Foo, it should use the inheritance-safe class
from Figure 6.

With careful naming conventions, we @n completely
eliminate the compatibility problem. It is obvious that the
run-time environment that understands the @de on which
the code duplication has been performed will have no
problems exeauting the ordinary byteade, so we are safe
from that side. Code duplication will create a subdiredory
named $ OPT_$ in the diredory where the generated
code is gored under the standard Java diredory
conventions, and pu the optimized classfiles in it. This
way, if the run-time ewironment does not understand
code duplication, it will instantiate the dass from the
usual diredory, which is gill corred, though not asfast. In
our example, if the dass Foo was a part of the package
foo, and the whole dass tree is in diredory Main, the
compiler will put the inheritance-safe version of the dass
Foo, as in Figure 6, in file Foo.class in the diredory
Main/foo/, and the optimized version from Figure 10 in

the file Foo.class in the diredory Main/foo/$ OPT $/.
Run-time environment that understands code duplication
will use Main/foo/Foo.class for inheritance and
Main/foo/$_OPT $/Foo.class for instantiation, whether
the run-time environment that does not understand code
duplication will dtill use Main/foo/Foo.class for bah
inheritance and instantiation, with lesser performance, of
course.

cl ass Foo{
private int x = 0;

public void inc(){
X++;

}

public void main(){
/1 Goo goo = new Goo();
int goo_y 0;
for(int i
/1inc();
X++;
X--
goo_y--;

0 i<10; i++){

Figure 10.

The main disadvantage this method is implied by its
name: it dugdicates the wmde. This could be a serious
problem when exeauting over the Internet, sinceit actually
doubles the downloading time. For some applications
where the downloading takes the biggest part of the
exeadtion time, this could be unacceptable, and the code
duplication should be disabled. It is our goal to automate
the dedsion on the profitability of using code duplication
in light of the increase in download time to get the highest
performance possible.

It should be noted here that run-time environments that do
not understand code duplication will not experience any
download time increase. Since they don’t know about the
optimized versions of the dass files, they will not
download them. What still remains is the increase in the
disk spacethe @mde is using on the server, which is clearly
a farsmaller problem.

The total performance increase to be epeded is
dependent on the interprocedural optimizaions
implemented. Code duplication does not increase the
spedl of the wde, it is simply ameliorating the problem of
not having the whole program available at the cmpile

time. Its real value is that it enables other optimizations,
particularly inlining of the intra-class methods, as
described on our example. It aso enables the whole
spedrum of interprocedural analysis and optimizaions on
a single dass file, which goes beyond the scope of this
paper.

5. High Performance M odel

Although Java has risen to prominence as a language for
the Internet, there are many reasons why a programmer
might find it attractive for building high-performance
codes that would run on a seaure server. In addition to its
clean objed-oriented design, type safety and automatic
memory management, Java offers a way to write
applications that can not only run on servers but which
can aso be searely downloaded to run at remote
platforms over the Internet, albeit with some performance
degradation. Furthermore, it seems likey that Java will be
increasingly used for education at bath the undergraduate
and K-12 levels becuse of its ease of use, widespread
avallability, and absolute portability. Many industry
pundits are predicting that it will supdant C++ as the
language of choice for objed-oriented commercial
development.

Given these factors, it is easy to imagine Java being used
in a high-performance eeation environment where
whole programs would be mmpiled dredly to target
machine without going through the Java VM. and its
asciated seaurity and portability constraints. Note that
usage in such an environment does prevent the program
from being downloaded over the Internet—if the program
is written in standard Java, it can till be cmpiled to the
Java VM if the user later wishes to use it in a network
environment.

In this edion we eplore some of the implications for
compilation in complete freedom from the standard Java
exeadtion environment. The only restrictions that would
remain would be those imposed by the semantics of the
language. Clearly some performance problems would
remain—the language would till need to be garbage
colleded and it would require that user-managed
exceptions be handled predsely (see the next sedion).
However, there would be no restrictions on the use of
procedure inlining and other classcal optimizations
becuse the entire program would be avail able at compile
time.

5.1 Whole Program M anagement

For a high-performance approach to be dfedive, it must
be undertaken in the mntext of a program management

system that will be comfortable for programmers to use.
For example, it would not be acceptable for the entire
program to be recompiled each time a single cange is
made to asinglefile or package. Thus, a truly usable high-
performance implementation environment will neel a
mechanism for managing whole-program optimizations
such as inlining and transformations based on
interprocedural analysis.

Our previous work on whole-program compilation for
Fortran [Cogper et al. 198§ led to the development of the
R" Environment, which supported recompilation analysis
to limit recompilation in response to a change. In other
words, part of the job d interprocedural analysis was to
determine which files neaded to be recompiled after a
source dange to a part of the program. In Java, for
example, a change to a single method in a public dass
would require recompilation of any file in which that
method had been inlined.

To address the prodem, the R" Environment introduced
the notion of a program compiler whose job was to
perform interprocedural analysis and optimizaion,
including rewmpilation analysis, prior to sdedively
invoking the source @mpiler on program files. Such a
system, which can be thought of as an intelli gent version
of the Unix utility MAKE, is a near requirement for high-
performance compilation of Java.

5.2 Uniprocessor Compilation

To compil e for a high-performance Uniprocessor, we plan
to take full advantage of the body of compilation
technology that has been developed for languages such as
Fortran and C. The Massvely Scalar Compiler Projed at
Rice [http://softlib.rice edW/M SCP/results.ps] has
developed a state-of-the-art experimental optimizing
compiler for RISC machines that uses a more traditional
quadruple-based intermediate language alled 1LOC
(intermediate language for optimizing compilers). Our
plan is to adapt the Java front-end to generate ILOC so we
can experiment diredly with a high-performance ompiler
back end. Prior to exeaution of the @mpiler, the
interprocedural optimizaion framework would perform
aggressve inlining to make the amde more amenable to
optimization.

In addition, we plan to experiment with a number of Java-
spedfic optimizaions such as amdiorating the need for
garbage wlledion through program analysis [cite Barth
and others].

Although Java presents many chall enges to the wmpiler,
we believe that there is no reason that the performance of

Java programs in an unrestricted compil ation environment
cannot come asymptotically close to equivalent Fortran
and C programs.

5.2 Compiling to Parallel Machines

Most high-performance servers that Java might run on
will be multiprocesors. In the @se of most scientific
appli cations and some business applications, the neel for
performance will make a scalable parald system a
requirement. Because they employ many processors with
complex memory hierarchies, aimost all scalable parallel
systems will put a premium on using lots of paralédism
while maintaining a high degree of locality in the
computation.

Although Java supports explicit paralel programming
through its threads mechanism, it is unlikely that most
programmers will use this extensively for high degrees of
parall dism. Furthermore, there is no facility for explicit
locality management in Java. For these reasons we will
experiment with diredive-style hints, such as those found
in High Performance Fortran (HPF [Koelbd et al. 1993
for spedfying bath parallelism and data location. As an
example onsider classinstantiation. It may be posshble to
use a diredive to establish a home procesor for each
instantiation, thus ensuring that classes that will be used
together will be allocated together. Furthermore, array
classes can be distributed in the same way as arrays in
HPF Just as in HPF, class methods would be exeauted on
the processor where the dass is instantiated, thus
implicitly introducing parall elism. Of course, the mpil er
would be free to migrate wde whenever performance
could be improved as a result.

With these and similar methods, we believe that it will be
posshle to kuild truly high performance applications in
Java and run these with high efficiency on scalable
parallel systems.

6. Handling Exceptions

The eception mechanism in Java presents an obstacle to
compiler optimization regardless of which framework is
used in the compiler implementation. In this edion we
discuss the problems that arise due to the Java exception
model, and propose some solutions.

Java has an exact exception modd [Godling et al. 1994: if
the exception ocaurs in the program, the program state at
the moment of exception must be visible to the user and no
matter how many optimizations are performed, the state at
an exception must be indistinguishable from the state that
would result if all the instructions in the original source

1C

code before the one causing the exception, and none of the
instructions after it, have been exeauted. In another words,
if the exception ocaurs in the program, user should not be
able to tell by examining the state that optimizations have
been performed

This, of course, greatly reduces the freedom of the
compiler to move de within the program. None of the
instructions that change the user-visble state of the
program can be moved acrossan instruction that can cause
an exception. In other words., those instructions that can
trigger an exception cannot be interchanged or moved
arbitrarily around the cntrol flow graph, even if al of the
data dependenciesmainsatisfied.

Because most Java instructions can cause an exception, the
naive approach—marking all of the instructions that can
cause an exception and prohibiting the optimizer from
moving instructions past a marked instruction—would
effedively eliminate al the posshiliti es for performance
enhancemertty code movement.

Fortunately, athough most Java VM ingtructions can
cause an exception, in the normal program exeadtion most
of them will not do so. By explaiting this fact, it may be
posshle to achieve most of the performance of program
written languages without exceptions (e.g., Fortran). If the
compiler can prove that an instruction will not cause an
exception in the given program context, optimizaions can
freely move the code around it.

There is ongoing research within the Rice University
programming languages research effort on type analysis
for the ohjed oriented languages [Flanagan Felleisen
1994. This work is highly applicable to the problem
described, and we exped it to be able to identify most of
the instructions that are not going to cause an exception,
thus greatly easing the mnstraints on the wde movement.
The problem with this analysisis that it is potentially slow
(O(n®) in the worst case), although it is very fast in
practice Some faster, though less powerful agorithms do
exist however [Steensgaard 1996].

There are a number of other approaches to attacking this
problem that could be used apart or in combination with
aggressve eception analysis. Many of these are little
tricks that are optimization dependent. Consider for
examplethe code fragment iRigure 11.

for(i = k; a[i] < 0;
this.x = 3*k;
sum = sum + afi];

i ++){

}

Figure 11.

Sincek isloop invariant, the first assgnment in the loop
body is loop invariant, so loop invariant code motion
would seek to move that assgnment out of loop. However,
since the loop header can cause an exception—the loop
test involves an array access (let's assuume that the
exception analysis has been able to prove that a[] is not
null, but not that the value of k at the entry to the loop is
lessthan the length of a)—the optimizer cannot move this
assgnment. If the first iteration of the logp header caused
an exception, the value of x would not have changed in
the original program, but it would be changed in the
optimized program.

In this case, we @n solve the problem by smply peding

off the first iteration of the loop, as $rown on Figure 12

Loop invariant code motion can now move the assgnment

to this.x outside the loogp, where @n be later completely

eliminated.

i = k;

if (a[i] < 0){
this.x = 3*k;
sum = sum + afi];

}
for(i = k+1; a[i] < O;
this.x = 3*k;
sum = sum + afi];

i ++){

}

Figure 12.
As aready noted, this approach is completely dependent
on the optimizations attempted. The basic idea is to insert
in front of the mde block we are trying to gptimize some
dummy instructions that would simulate the eception
behavior of the instructions in the block and leave the
program in the @rred state if an exception ocaurs. This
would eliminate the mncern about the eceptions in a
particular code block and enable free @de movement
inside it. For example, if a block of code is using a
particular array, and exception analysis is unable to prove
that the array referenceis not null, a smple dummy access
of the array before the given block of code will raise the
exception if it is going to occur anyway

Another approach that can help in addressng the problem
of exceptions is to emulate methods used to make it
posshble to debug optimized code [Hennessy 1987. These
two problems are very smilar, except for two very
important details. in debuggng optimized code, the
debugger can simply inform the user if it was unable to
recover the wrred state of the program, but our system
must return in the rred state, so the recvery code would
have to keinserted in the exeautable program itself instead
of the debugger, thus increasing the origina code size.
Theideaisasfollows: awhole method is enclosed in atry
statement, with corresponding exception handler at the

11

end. Thus, the handler would catch any exception that
ocaurs in the @de, and use the methods from [Henessy
1987 to rewmver the wrred state of the objed before
allowing the user’s exception handling medanism to
proceel. Of course, it is not always possble to recover the
corred state, so this method would have to be restricted
only to optimizations that can ledone.

An approach smilar to the one just described would
involve mde reexeadtion instead of the rewmvery of the
program state. This would require insertion of
chedkpoints, thus increasing the exeaution time. Spedal
attention would have to be given to the reexeaition of 1/0
operations. This method has the same structure as the one
just described, with the exception handler reexeauting the
non-optimized code instead of un-doing the optimizations
to achieve the wrred program state. The rollback and
reexeadtion is well researched and applied in interactive
environments [Archer et a 1981, distributed databases
[Long 1994, and other fault tolerance systems [Alewine
1995].

7. Conclusions and Future Research

Over the next severa years, the Java phenomenon should
continue unabated. Increasingly, Java will be used as a
general-purpose language rather than just a language for
the Internet. This paper addresses ©me preliminary
techniques for making Java more dficient. We believe
that, using these techniques and others that are yet to be
discovered, Java performance @n rival that of languages
like C andFortran even on scalable parallel systems.

Most of the approaches described in this paper have yet to
be implemented. The projed we have embarked upon at
Rice will explore these methods in the wntext of a
sophisticated compil ation environment, with the goal of
making Java the language of choice for high-performance
server applications as well as those that exeaute over the
Internet.

References

[Alewine 1995] Alewine, N. J.,, 1995 Compiler-assisted
multiple instruction rollback recovery using a read buffer.
NASA contractor report, NASA CR-199703.

[Archer at al. 1981] Archer, J. E. J., Conway, R. W.,
Schneider, F. B., 1981 User Recovery and Reversal in
Interactive Systems. Technical Report, Corndl University,
Computer Science Department, TR81-476.

[Ahoet al. 1986] Aho, V. A., Sethi, R., and Ullman, J. D.
1986 Compilers Principles, Techniques, and Tools.
Reading, Mass.: Addison-Wesley.

[Briggs et al. 1993] Briggs, P., Shillingsburg, R., and
Simpson, T., October 1993 Dead Code Elimination.
Technical Report, Rice University. Avalable via
anonymous ftp.

[Briggs et al. 1995] Briggs, P., Harvey, T., and Simpson,
T., July 1995 Satic Sngle Assignment Construction.
Technical Report, Rice University. Avalable via
anonymous ftp.

[Briggs et al. 1996] Briggs, P., Cooper, K. D., and
Simpson, L. T., 1996 Value Numbering. Software -
Practice and Experience.

[Bruno Lassagne 1975] Bruno, J., and Lassgne, T.,
1975 The generation of optimal code for stack machines.
Journal of ACM 23:3, 382-396.

[Cooper et al. 1986] Cooper, K., Kennedy, K., and
Torczon, L., October 1986 The impact of
interprocedural analysis and optimization in the R"
programming environment. ACM Transactions on
Programming Languages and Systems, 491-523.

[Cytron et al. 1991] Cytron, R., Ferrante, J., Rosen, B.
K., Wegman, M. N., Zadek, F. K., October 1991
Efficiently computing static single assignment form and
the control dependence graph. ACM Transactions on

Programming languages and Systems, 13(4):451-490.

[Flanagan Felleisen 1996] Flanagan, C., Felleisen, M.,
1996 Modular and Polymorphic Set-Based Analysis:
Theory and Practice. Technical Report TR96-266, Rice
University.

[Goding et al. 1996] Godling, J., Joy, B., and Stede, G.
1996 The Java™ Language Specification. Reading,
Mass.: Addison-Wesley.

[Hennessy 1982] Hennesy, J., July 1982 Symbolic
debugging of optimized code. ACM Transaction on
Programming Languages and Systems, 4:3:323-344.

[Kennedy 1981] Kennedy, K., 1981 A survey of data flow
analysis techniques. In Steven S. Muchnick and Neil D.
Jones, editors, Program Flow Anaysis. Theory and
Applications, Prentice-Hall.

12

[Koelbel et al. 1993] Koebd, C., Loveman, D.,
Schreiber, R., Stede, G., and Zosdl, M., 1993 The High
Performance Fortran Handbook. MIT Press Cambridge,
MA.

[Lindholm Yellin 1996] Lindholm, T., Ydlin, F. 1996
The Java™ Virtual Machine Specification. Reading,
Mass.: Addison-Wesley.

[Long 1994] Long, J., 1994 Checkpoint-based forward
recovery using lookahead execution and rollback
validation in parallel and distributed systems. NASA
contractor report, NASA CR-195760.

[Simpson 1996] Simpson, L. T., September 1996 Value
Numbering. Technical Report, Rice University. Available
via anonymous ftp.

[Steensgaard 1996] Steensgaad, B., January 1996
Points-to Analysis in Almost Linear Time. In Proceelings
of the Twentythird Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, St.
Petersburg Beach, Florida.

[Wegman Zadeck 1985] Wegman, M. N., Zaded, F. K.,
January 1985 Constant Propagation with Conditional
Branches. Conference Reard of the Twelfth Annual ACM
Symposium on Principles of Programming Languages:
291-299.

Acknowledgments

We gratefully acknowledge the support of JavaSoft and the
projed leaders for the dfort that started this work: Frank
Ydlin and Tim Lindholm. We also thank Tin Quan from
The University of lllinois at Urbana-Champaigne, who

was co-implementor of the bytcode-to-bytecode optimizer

