Efficient Compilation of Forall Statement
with Runtime Support

Xiaoming Li7 Yuhong Wen

Parallel Software System Group in NPAC at
Syracuse University,
111 College Place,
Syracuse, New York, 13244-4100

October 8, 1996

Abstract

This is an implementation document, intended as a definitive guidence for compiling
FORALL statements in an HPF program, the core activity in our effort of constructing
an HPF compiler on message passing platforms.

After introducing some background about the document, a model for one dimen-
sional array and one index FORALL statements is presented. The algorithm for de-
termining local DO loop bounds is introduced in section 3, followed by a section on
communication detection and generation. Section 5 is a discussion on generalization of
previous result to multi dimensional arrays and multi indices FORALL stetements. In
the appendix, a study on so-called strided-subintervals is given, which serves as theoret-
ical foundation for the techniques presented in section 4. We also provide the algorithms
(as currently implemented and used by our compiler) on communication detection and
coefficient calculation in appendix C and D.

*Visiting from Harbin Institute of Technology of China

1 Introduction

There are four primary language features in HPF that enable programmer to describe data
parallelism.

e Array (array section) assingment statement (conditional or not);
e FORALL statement (construct);
e Intrinsic functions with array as argument; and

e DO independent directive.

FORALL statement is of core importance, since
e It’s semantics is a ‘true super set’ of array assignment statement;

e The most prominent addition from Fortran 90 to Fortran 95 is the FORALL state-
ment/construct; and

e FORALL construct can be equivalently seen as a sequence of FORALL statements.

Thus, effective compilation of FORALL statements is essential for an effective HPF
compiler.

As we know, the same problem has been discussed by others, such as in [4] and [3]. But
we found that they are not general enough and can not be directly used for our current
activity, though ideas are borrowed. We need a document for directly guiding our compiler
implementation.

In general, a compiler for data parallel language has four kinds of job to do.

Data partitioning;

Computation partitioning;
e Communication detection and insertion; and

e node program generation.

If we see a source program as a system, compilation process as an optimization process.
This is indeed a highly complicated, convoluted optimization problem. HPF language tries
to free the compiler from the first item by encouraging programmer to specify data parti-
tion; if we follow owner computes rule, the second item is also essentially removed, though
sometimes it’s non trivial to determine who is the owner. Thus, our compiler has been left
with two items to work on. It’s great ! This report mainly addresses the first of the two,
while some flavor of node program generation will be observed on the way.

2 Model
We consider the following canonical form
FORALL (i=1:u:s) X(a0*i+b0) = Y(al*i+b1l)

where X and Y are distributed onto the same processor grid (assume p processors,
numbered as 0, 1, ..., p-1) by HPF directives. More specifically, we observe the following
attributes pertaining to X and Y.

dimension: X (I, : uy) Y(ly D Uy)

template: To(leg um) Ty(ley : ury)
alignment: (agy *i+by) (ay*i+by)
distribution: d, dy

This is a 22 variable system, where [, u, s, ag, bo, a1, b1, p, Lz, Ug, Ly, Uy, liz, Uiz, L1y, Uty, Gz, bg,
ay, by are integer variables and d,, d, are either BLOCK or CYCLIC.

Let t, = us — Iy + 1, the declared size of template T, and we call ¢, = [%1 - p the
effective size of it, i.e. each of the p processors actually allocates ¢, /p storage for local array
X. A similar statement goes for Tj,.

When we say “variables” in the above, we mean they can actually be variables defined
in source program so that their values may not be determined at compile time, for instance,
input when program is running, or dummies in subprograms.

For convenience of illustration, we shall use a table similar to the above table to represent
a piece of HPF program that involves one FORALL statement. For example, the following
program

REAL X(80), Y(100)

'HPF$ PROCESSORS P(4)

'HPF$ TEMPLATE TX(200), TY(300)

'HPF$ ALIGN X(i) WITH TX(2*i+5)

'HPF$ ALIGN Y(i) WITH TY(3*i-1)

'HPF$ DISTRIBUTE TX(BLOCK) ONTO P

'HPF$ DISTRIBUTE TY(CYCLIC) ONTO P
FORALL (i=-1:30:2) X(2*i+5) = Y(3#i+10)
END

will be identified as

4 1302 X(2%i+5) Y(3*i+10)
dimension: ~ X(1:80) Y (1:100)
template: Tx(1:200) Ty(1:300)
alignment: (2*i45) (3*i-1)
distribution: BLOCK CYCLIC

The task is to design a scheme that turns this FORALL statement to an SPMD node
program segment, such that a collective execution of multi copies of the node program
achieves the same semantic effect of the FORALL statement.

What we are interested is communication patterns that may present in such a FORALL

statement. For instance,

has no communication need, while

needs a shift type communication, and

8 0282 X() Y (2*1+13)
dimension: X(-5:77) Y (4:127)
template: Tx(1:1328) Ty(1:664)
alignment: (4*i+21) (i+8)
distribution: BLOCK BLOCK
8, 0:103 X() Y(it15)
dimension: X(-9:83) Y(6:91)
template: Tx(1:186) Ty(1:190)
alignment: (2*i420) (2*i4+8)
distribution: CYCLIC CYCLIC
8 62714 X(1) Y(2%2)
dimension: ~ X(0:341) Y(3:859)
template: Tx(-2:362) Ty(7:1788)
alignment: (i+7) (2*1+3)
distribution: BLOCK CYCLIC

needs some ’chaotic’ communication, which we shall refer as remap communication. The
core of this paper is a development of an algorithm that distinguish the above three types
of communication patterns. The idea behind this distinction is

- For no communication, our node program should result in no data movement in run-

time.

- For shift communication, a ghostarea support will reduce runtime data movement to

minimum.

- For remap communication, a general data movement runtime routine, remap(), is
supplied to handle this case. Optimization is achived in the design and implementation
of this runtime routine.

One possible question is: why just three 7 can we further break down the case remap ?
Our understanding is: possible, but may not be worthy the effort.

Using owner computes rule, we see the node program segment corresponding to the
FORALL statement might be reasonablly generated by the following procedure: (we assume
some runtiem support, but no ghostarea support.)

1. Insert a call to runtime function as
CALL loop_bounds(dad_x,1,1,u,s,11,1lu,ls)

where dad_x is a descriptor for distributed array X.

2. Check if communication is detectable. Communication is detectable if all the above
22 parameters are constants. If not detectable, go to 6.

3. Detect communication pattern between arrays X and Y under this FORALL state-
ment. If shift communication is detected, the shift amount is also determined.

4. If no communication, insert

CALL coef(dad_y,1,1,u,s,al,bl,0,u,v)
DO i = 11,1u,ls

X(i) = Y(u*i+v)
END DO

where dad_y is a descriptor for distributed array Y.

5. Else if shift communication, insert

tshift(dad_tmpy, dad_y, 1, amount)
CALL coef(dad_tmpy,1,1,u,s,al,bl,amount,u,v)
DO i = 11,1u,ls
X(1) = tmpy(u*i+v)
END DO

where dad_tmpy is a descriptor for some temporary storage distributed the same as

Y.

6. Else remap communication is needed, insert

remap(dad_tmpx, dad_y)
DO i = 11,1u,ls

X(1i) = tmpx(i)
END DO

where dad_tmpx is a descriptor for some temporary storage distributed the same as

X.

The above procedure has some small problem, since coefficient u and v so calculated may
not be integers, though u*i+v for effective value of i is always integer. Thus, an alternative
is the following:

1. Insert a call to runtime function as

CALL loop_upper_bound(dad_x,1,1,u,s,ub)

where dad_x is a descriptor for distributed array X.

2. Check if communication is detectable. Communication is detectable if all the above
22 parameters are constants. If not detectable, go to 6.

3. Detect communication pattern between arrays X and Y under this FORALL state-
ment. If shift communication is detected, the shift amount is also determined.

4. If no communication, insert

CALL coef(dad_x,1,1,u,s,a0,b0,0,u0,v0)
CALL coef(dad_y,1,1,u,s,al,b1,0,ul,vl)
DO i =0, ub

X(u0*i+v0) = Y(uil*i+vi)
END DO

where dad_y is a descriptor for distributed array Y.

5. Else if shift communication, insert

tshift(dad_tmpy, dad_y, 1, amount)
CALL coef(dad_x,1,1,u,s,a0,b0,0,u0,v0)
CALL coef(dad_tmpy,1,1,u,s,al,bl,amount,u,v)
DO i =0, ub
X(u0*i+v0) = tmpy(ul*i+vi)
END DO

where dad_tmpy is a descriptor for some temporary storage distributed the same as

Y.

6. Else remap communication is needed, insert

remap(dad_tmpx, dad_y)
CALL coef(dad_x,1,1,u,s,a0,b0,0,u0,v0)
DO i =0, ub
X(u0*i+v0) = tmpx(ul0*i+v0)
END DO

where dad_tmpx is a descriptor for some temporary storage distributed the same as

X.

This time, every u and v are integers. Nevertheless, one might prefer the following;:

1. Insert a call to runtime function as

CALL loop_bounds(dad_x,1,1,u,s,11,1lu,ls)

where dad_x is a descriptor for distributed array X.

2. Check if communication is detectable. Communication is detectable if all the above
22 parameters are constants. If not detectable, go to 6

3. Detect communication pattern between arrays X and Y under this FORALL state-
ment. If shift communication is detected, the shift amount is also determined.

4. If no communication, insert

CALL loop_bounds(dad_y,1,1,u,s,1lly,luy,lsy)
iy = 1ly
DO i = 11,1u,ls
X(1) = Y(iy)
iy = iy + 1lsy
END DO

where dad_y is a descriptor for distributed array Y.

5. Else if shift communication, insert

tshift(dad_tmpy, dad_y, 1, amount)
CALL loop_bounds(dad_tmpy,1,1,u,s,lltmpy,lutmpy,lstmpy)
itmpy = lltmpy
DO i = 11,1u,ls
X(i) = tmpy(itmpy)
itmpy = itmpy + lstmpy
END DO

where dad_tmpy is a descriptor for some temporary storage distributed the same as

Y.

6. Else remap communication is needed, insert

remap(dad_tmpx, dad_y)
DO i = 11,1u,ls

X(i) = tmpx(i)
END DO

where dad_tmpx is a descriptor for some temporary storage distributed the same as

X.

There are three issues here

e Determine local loop bounds 11,1u, and 1s or determine the local upper bound 1u.

e Detect communication at compiler time, and generate appropriate communication
calls in node program, if needed.

e Figure out coefficients u and v.

To facilitate communication, we have assumed the following two routines in runtime
system.

e tshift: shift the distributed array Y to some temporary TMPY by certain dis-
placement, which has the same shape and distribution as Y.

e remap: remap elements of Y that are involved in the FORALL to a temporary
TMPX, which has the same distribution as X.

As it will become clear later, the tshift function is to shift the Y array in terms
of TEMPLATE positions, instead of global array element positions as for CSHIFT or
EOSHIFT in Fortran 90.

Example. Consider the following case.
If we have the corresponding X array elements and Y array elements distributed in the
following pattern.

X: processor O processor 1
| * * * | | * * |
Y processor O processor 1
| * * | <=== | * * * |

When implementing the forall assignment in our model, we will keep the left hand side
clause unmoved. That means they will not be moved into a temporary buffer and the
operation will be directly on the local array. Apply this assumption to the above case,
we just move the global template of Y array one position from right to left, then Y array
elements will have the same shape and distribution as the corresponding X array elements.
So in this case, we only need to shift the template of Y array to complete the operation
and keep the X array unmoved. This is different from the shift communication on Y array
elements, and actually that is not able to implement this.

The remap function is to change the shape and distribution of Y array to the shape and
distribution of X array. It first forms a section of Y array elements, then redistributed these
data in the shape and distribution the same as X array to ensure that every X array element
in the forall statement will get its corresponding Y array element in the same processor.
(some careful reader may laught here: since you have such a wonderful runtime function,
why can’t you move Y directly to X, instead of moving it first to some TMPX, then TMPX
to X via a DO loop ?)

3 Determination of local loop bounds

As mentioned in previous section, a runtime function loop_bounds() is called in node pro-
gram to compute local loop bounds on each processor for corresponding global FORALL
index range, with respect to array (left hand side in the assignment statement). We discuss
algorithms used by loop_bound() in this section.

It is equivalent to ask:

Given array section X(l:uis) and DAD of X, what is the corresponding local
index-triplet (11(i),lu(i),ls(i)) for each processor i € (1 : p).

Local bounds is also a function of index base of local array declared in node program.
In what follows, we consider 0-based index for all local arrays, though global HPF arrays
may be declared arbitrarily. For ease of reference, we recall our model again.

p; lus X (aot +bo) Y(ari+by)

dimension: X (I, : uy) Y (1 : uy)
template: Tp(lig wre) Ty(ley : uey)
alignment: (ag *i+by) (ay*i+by)
distribution: d, dy

The algorithm is different for different distribution mode.

e BLOCK distribution

if s does not divede (u-1), set u=floor((u-1)/s)*s;
w = ceil(tx/p);

tl = 1_tx + (i-1)*w; tu = 1_tx + i*w - 1;
if (tu < ax*1+bx) or (ax*u+bx < tl), then

set 11 = 0; 1lu = -1; 1s = 1; // no effective element
else

find the least j in (1l:u:s)
such that ax*j+bx >= tl1;

set 11 = ax*j+bx - tl;

find the greatest j in (l:u:s)
such that ax*j+bx <= tu;

set lu = ax*j+bx - tl;

set ls = ax*s;

end if

e CYCLIC distribution

We see two arithmetic progressions here

processor i’s relative positions in template: i, i+p, i+2*p, ..., i+n*p, ...

(l:uzs) element relative positions in template: o, o4+q, 0o+2*q, ..., o+m*q, ...

where 0 = ax*l4+bx - 1.tx + 1, ¢ = ax*s. Then we would have to solve the following
Diophantine equation for each processor i:

i+nsp=o+m*gq (1)

with the boundary conditions,
n> 0,1+ nxp <ty —lip+1 (2)
0<m< ! (3)

S

We know the equation (1) has solution iff ged(q,p) divides | i — o |. And if so, we
may employ Extended Euclidean algorithm to find all pairs of (n,m) that satisfy the
equation, and then impose the boundary conditions.

Now, the algorithm outline for computing 1l and lu on processor i,

if gecd(q,p) divides |i-o| then
using Euclidean algo. to compute the solution (n,m) of eq. (1);
find the subset from the solution set that satisfy the constraints
for n and m;
if the subset is not empty, then
11 = minimum n; lu = maximum n;

else
11 = 0; 1u = -1; 1s = 1; no effective element
end if
else
11 = 0; 1lu =-1; 1s = 1; no effective element
end if

Banerjee [6] had a very practical treatment on how to solve the Diophantine equation.
We have included it in Appendix B for the sake of completeness of this document.

To figure out 1s, we need the least common multiple of ax*s and p, and denote
it by lem(ax*s,p). Here is the idea: processor i see its ‘name’ in template every p
positions, while X(l:u:s) sees its element in template every ax*s positions. Thus, if
processor i and X(l:u:s) meet at position t of the template then the next time they meet
again will be at position ¢+ lem(az x s, p). Since template is cyclically distributed (p
positions in template is equal to 1 position in local array), processor i will see the next

lcm(az*s,p) lem(az*s,p)

element of X(l:u:s) locally at position away, i.e., 1s =

independent.

, processor

10

Example. Consider the following program.

PROGRAM MAIN
DIMENSION X(1:20)
'HPF$ PROCESSORS P(4)
'HPF$ TEMPLATE T(1:60)
'HPF$ DISTRIBUTE T(CYCLIC) ONTO P
'HPF$ ALIGN X(i) WITH T(2*i+1)

FORALL (i=4:19:3) X(i) = ...
END
To compute 11 and 1u for processor i= 1,2,3,4, we see
0=2%44+1-1+1=9
q=2*3=6
0, 0+6, 0+12, 0+18, ..., o+6*m, ...
i, i4+4, i+8, i+12, ..., i+4*n, ...
The equation to be solved is

14+4n =94+ 6m (4)
i=2,4: No solution.

i=1: 1—|—4n:9—|—6m,n:2—|—%-m
constraint: 14+4n <60 —-141,n <14
0<m<(19-4)/3=5
m=20,24
n=258
That is, II(1) = 2, lu(1) = 8.

i=3: 3+4n=9+6m,n= 3"
constraint: 14+4n <60 —-141,n <14
0<m<(19-4)/3=5
m=13,5
n=3,6,9
That is, 11(3) = 3, 1u(3) = 9.
Finally, lem = lem(2*3,4) = 12. Is = lem/p = 3

In summary, global X(4:19:3) maps to local (2:8:3) for processor 1, (3:9:3) for processor
3, and processor 2 and 4 get no elements of X(4:19:3).

11

4 Communication detection and generation

We first develop a concept of shift-isomorphism beteween two array sections.

Recalling arrays X and Y are aligned with templates T, and Ty, as illustrated in previous
section, we can see a mapping from array sections to template sections, i.e., from X (I, :
Uy 1 Sz), we have Ty (ly, : up, @ s;,). And from Y (I, : u, : s,), we have Ty (I}, : ug, : st,)-

The mapping functions are

o=@z lp+byy, upp =0y up+by, S}, =az- s,
A similar situation exists for Y .
We say X (I:ug:5;) and Y (I, :u,:s,) are shift-isomorphic iff

Uy — la:

I

Uy — 1 -
s J = L ys yJ7 S:fz = S:fy7 and‘ tz = ty (5)
z Yy

for block distribution, and

Uy — lx

Uy — 1
o\l = s, mod () (©
x y

|

for cyclic distribution.

And the shift-amount from Y (I, : uy, : sy) to X (I : uy @ 85) is equal to (I, —lsy) — (I}, —liz)
(parameters from templates), (;, —l1,) is the first element position in Y array and (I}, —li.)
is the position in Tx that X will be shifted to. Here we imply that positive amount indicates
shift to the left, while negative indicates shift to the right.

The intention is clear: we want a condition for tshift being adequate.

Instantiating it with our model,

FORALL (i=l:u:s) X(a0*i+b0) = Y(al*i+b1l)

we have,

X(lp:ug:8:)=X(a0-1450:a0-u+b0:a0-s),
Y(ly:uy:sy) =Y(al-14+bl:al-u+bl:al-s)

and

liy = az - (a0 -1+ b0) + by l,’fy:ay-(al-l—}—bl)—l—by
U, = Ay - (@0 - u + 00) 4 by | up, = ay - (al-u+b1) + by,

/I !
Sig = Qg - a0 - s Sty =y -al-s

12

Thus, X (a0-1450: a0-u+50 : a0-s) is shift-isomorphic to Y (al-145b1: al-u+bl:al-s)
iff ay -al-s=ay-al-s, or simply

ay - al = ay - al (7)
and
amountspif = (@y - (al- 14 b1) + by — lty) — (ag - (@0 -1+ 60) + by — ly) (8)
for BLOCK distribution, or
s, = 5, mod p (9)

for CYCLIC distribution. Special care has to be taken to calculate shift amount for
CYCLIC distribution. We need to figure out which processors contain the first X and Y
elements in question, and their local positions, respectively.

Let p, and p, be the processors, and first,, first, be local positions. We have,

if (p_x > p_y and first_y > first_x)
amount = p_y + (p - p_x);
else

amount = p_y - p_X;

e If Tx and Ty have the same size, and are distributed same way, a shift of Y with that
amount does the job. Then the node program may look something like:

CALL loopBounds(DAD_X,1l,u,s,11l,lu,ls)
CALL tshift(Y,amount,T)
DO i = 11,1u,ls
X(i) = T(i)
END DO

Example 1: Consider the following program.

REAL X(1:20),Y(1:20),Z(1:20)
'HPF$ PROCESSORS P(4)
IHPF$ ALIGN Y(i) WITH X(i)
IHPF$ ALIGN Z(i) WITH X(i)
IHPF$ DISTRIBUTE X(block)

FORALL (i=3:18:3) X(i)

Y(i+2)

FORALL (i=3:18:5) X(i)

Z(i+2)
END

13

Here is the situition in templates for the first FORALL

Tx: -—X--X--X--X--X--X—-—
11111222223333344444
Ty: ====y=-y=-y--y--y-y
11111222223333344444

We see a shift of Y with amount +2 is necessary. For the situition of the second

FORALL,

Tx: ——X-—-—X----X-—--X--
11111222223333344444
Tz: ——-—Z-——-Z-—--Z--—-Z
11111222223333344444

A shift of Z with amount +2 will make the elements in Tx and Tz aligned, but is not
necessary.

As we may have noticed in this example, a shift may not be needed if we allow X(i) =
T(i+v) in the DO loop, under certain condition. We defer its discussion after getting
a good picture on the main stream.

If T, and T, have the same size, but they are distributed in different fashions, we
generally can not meet the communication requirement by a shift.

Example 2: Consider the same program, but Y being cyclically distributed.

Tx: -—X--X--X--X-—X--X—-—
11111222223333344444
Ty: ====y=-y=-y--y--y-y
12341234123412341234

We see it is not possible to accomplish the communication required by a shift.

If T, and T, does not have the same size, no matter if they are distributed in the same
fashion or not, we generally can not meet the communication requirement by a shift.

14

Example 3: Consider the same X, but Y with 32 elements.

Tx: ——X——X——X——X-—X~-—X—-
11111222223333344444
Ty: —=77- YTy Ty Ty Ty oy

11111111222222223333333344444444

We see it is not possible to accomplish the communication required by a shift, since a
shift can not make each processor contain the same number of x’s and y’s, respectively.

The above discussion actually motivates a generalization of the concept of shift-isomorphic
to shift-homomorphic. We first state the following useful lemma.

Lemma 1 (BLOCK distribution) Consider two intervals Iy = [1 : #1] and Iy = [1 : £3]. Assume

p (some positive integer) is a common divisor of #; and t3, and write wy = 4 and wy = L.

P P
Let s; and sy be two positive integers satisfying

S1 tl
E—— 10
s (10)
Then the mapping ® from I; to Iy: i +— [i- i—ﬂ has the following property:
For any strided subinterval of Iy,
i,i+81,i+2'81,...,i+k'81
if
(n—=1)-w;+1<4,and i1+ k-s9 <mn-wy
for some positive integer n, then
(n—1)-wy+1< @), and ®()+k-s2 < n-wy.
Proof: From (n—1)-w;+ 1<, we can have
((n—l)-'w1+t;l)-%$£2-%, .
(0= 1) +2) - 2] < Ti- 2= 800,
[0 —1) w0z + 2] < B(3)
(n=1)-ws+1< (n—1)-ws+ [2] < ()
Furthermore, from ¢ + k - sy < m - wy, we have
(i+k-s1) - B<n-w 2B
[i- @+ kesy=[(i+k-s1)] <[n-wi -]
B()+k-s2<[n-w-Bl=n-w,
O

15

Example 4: Consider
t1:60, t2:84, p:4, 81:5, 82:7
1--...16--...30--...45-—-...60

l-=--....21--—....42--—-, .. .63--——-....84

We have wy = 60/4 = 15, wy = 84/4 = 21. The subinterval of I, 18, 23, 28 is bounded
by wy + 1 and 2 - wy. The correspond subinterval in Iy, according to the lemma, is 26, 33,
40, which is bounded by wy + 1 and 2 - ws.

Let ¢ be the size of a template T. We use ¢(p) to denote p - [fg] When no ambiguity
results, we may simply use f for m Thus, t; = uty — lie + 1 and t, = ugy — Iy + 1.
We say X (I : uy : 55) and Y (I : uy @ sy) are shift-homomorphic if

Uy — g Uy — 1y
= 11
o el (1)
and
te
S:f:r = S:fy : t: (12)
y

for BLOCK-distributed X and Y, or

Sip = 8y, (mod p) (13)
for CYCLIC-distributed X and Y.

Shift-homomorphism allows us to efficiently handle some cases where X and Y have tem-
plates of different sizes. Clearly, shift-isomorphism is a special case of shift-homomorphism.
Instantiating it with our model,

FORALL (i=l:u:s) X(aO*i+b0) = Y(al*i+b1l)

we have,

X(lp:ug:8:)=X(a0-1450:a0-u+b0:a0-s),
Y(ly:uy:sy) =Y(al-14+bl:al-u+bl:al-s)
and

liy = agz - (a0 -1+ b0) 4 b, l,’fy:ay-(al-l—}—bl)—l—by
Uy, = ag - (@0 - u+00) + by | up, = ay - (al-u+0b1)+b,

o o
Sig = Qg - al - s Sy =0ay-al-s

16

Thus, X (a0-145b0 : a0-u+50 : a0-s) is shift-homomorphic to Y (al-I+b1 : al-u+bl : al-s)
if az-a0-s-t, =a,-al-s-t,, or simply

foe (14)
ay-al 1,
for BLOCK-distribution, or
ay-al-s=ay,-al-s (mod p) (15)

for CYCLIC-distribution.

Theorem 1 If X (I, : uy : s;) and Y (I, : uy @ 5,) are shift-homomorphic, then a shift of Y
suffices to make X(i) and Y(j) in the same processor for i = I : ug @ Sz, J = ly @ Uy : Sy,
correspondingly.

Proof: Let k, be the relative position of X (/) in T,,. We locate k, = [k - :=Z] in T,,. Shift
Y such that Y (I,) takes the position k, in T,. We claim the job is done, since we can easily
see an “isomorphism” between lemma one and the theorem, namely we can have a 1-1 onto
mapping between the parameters of the two systems. Thus, an “isomorphic” conclusion is

obtained.

O

Example: Consider X (I, : u, : s,) takes position 33,40,47,54,61,68 in its template. And
Y(ly: uy : sy) takes 1,6,11,16,21,26 in its template.

Tx: -———....21----. ... 42—, .. .63----....84

Ty: --...156--...30--...45--...60

ky = [33-2] = 24. That is, we move Y such that Y'(I, : u, : s,) takes the positions
24,29,34,39,44,49. It is easy to verify that each processor contains the same number of x’s
and y’s, correspondingly. That is, the shift amount for Y is 1-24 = -23.

Parameters in the node program: Once it is detected that X (I : u : s) and Y(a -1+ b :
a-u+b:a-s) are shift-homomorphic, the node program may take the form (the first of
three mentioned in model section):

shift Y to some temporary T
DO i=11,1u,ls

X(1)=T(u*i+v)
END DO

17

We want to determine u0, v0, ul, and v1. First of all, we claim u0 ans ul are processor
independent, u0 = s,, ul = s,. To compute v0, v1, we first determine the index %k, to the

global template T, of the first effective element for each processor. Then using k, = [k, - :=y]
to calculate corresponding positions in Tj,.
The algorithm is:

ky=az*x1+ bz;
if (ky > [tlb,) we get the k,;
else ky = ky + 54 % fli‘”bsi_kﬂ.

We then observe that X (II) is in fact X (k; — [_tlb, 4+ 1) for X being defined 1-based
in node program, and X (k, — [tlb;) for X 0-based. Simalarly, T'(u * Il + v) is in fact
T(ky —1tlby+ 1) for Y (or T) being defined 1-based in node program, and T'(k, — [tlb,)

for Y 0-based, respectively. Thus, we would either solve
(ky —1tlby +1)-u+v = (ky— [ty + 1) (16)
if 1-base is used as convention for array definitions in node program. Or
(ky — 12lb,) - u+v = (ky — [t1b,) (17)

if 0-base is used as convention for array definitions in node program. to get v for each

processor. For the above example, k, = 33,47, 68 and k, = 24, 34, 49 for processors 2, 3, 4,

respectively. If 1-base is taken as convention, u = %, and
v(2)=(24-16+1)-(33-2241) - u=
v(3)=(34-31+1)—(47-43+41)-u=
v(4)=(49-46+1)— (68—-64+1) -u=

The v’s happend to be the same. Then for every processor,

~J| W~ w~Ilw

shift Y to some temporary T

DO i=11,1u,ls
X(1)=T((5*i+3)/7)

END DO

where (1,lu,ls) = (12,19,7), (5,19,7), and (5,5,7) for processors 2, 3, and 4, respectively,
which have corresponding (9,14,5), (4,14,5), and (4,4,5) triples for T, respectively.

If we consider X (I, : uy : s,) takes positions 6,12,18,24, 30,36,42,48 in its template. And
Y (ly : uy @ sy) takes 1,6,11,16,21,26,31,36 in its template. Then we would have k, = 6,24, 48
and k, = 5,20, 40 for processors 1, 2, 3, respectively. u = %, and

v(l)=5-141)—-(6-1+1)-u=0
v(2)=(20—-164+1)— (24—22+1) - u=2
v(3)=(40-31+1)—(48—-434+1)-u=5

If 0-base is taken, we would end up with

18

v(l)=b5-1)—(6—-1)-u=—

1
6

v(2) = (20-16) — (24 —22) - u =
v(3) = (40 — 31) — (48 — 43) - u = 22

Improve efficiency: We also want to know the condition for no communication. Clearly,
no communication needed iff every processor has the corresponding elements from both
X(ly:uy:sy) and Y(I, : uy @ sy). That is, a shift may not be necessary, even if the two
arrays are not aligned as the mapping ® in lemma. Appendix A gives us the algorithm
for determining this situation, namely, we can effeciently determine whether each processor
contains the same number of elements from both X (I, : u, : s;) and Y (I, : uy : sy). And
appendix C gives the detail algorithm to implement the detect communication function in
forall statement.

19

5 Multi dimension cases
We could discuss the following issues.

non-coupled indices, such as that occurs in Jacobi iterations.

coupled indices, such as that occurs in FFT.
Let’s first consider the following canonical form:

FORALL (i=11:ul:s1, j=12:u2:s82)
X(a00#i+b00, a01*j+b01) = Y(alO*i+b10, allxj+bl1l)

where X and Y are two-dimensional arrays distributed onto the same processor grid by
HPF direc tives. Then the task is to determine the specific segment of an SPMD program
on each processor , such that a collective execution of multi copies of the node program
achieves the same semantic effect of the forall statement.

In our implementation, we use the following general strategies:

o all arrays are ”linearized”, namely , no array in the SPMD node program has more than
one dimension.

o temporary arrays are allocated dynamically , each node program maintains a large one
dimensional array, and temporary arrays are allocated from it.

o we will normalize the loop bounds to be

DO i = 0, i_ub
DO j = 0, j_ub

in node program. Thus, we need to calculate the index of both left side clause and
right-hand side clauses.

First, we will determine if the corresponding X array elements and Y array elements are
on the same processor (needs no communication) or we can use only shift communication to
move the Y array elements to the processor where the corresponding X array elements are
located, or we have to use remap function to move the Y array elements to the corresponding
processor according to the owner computes rule. In this case, we will use the same concept
of shift-homomorphism discussed in the previous section and then expand it to use in the
multi-dimensional cases.

The detect-communication function to determinate the shift-homomorphism will be
done in the compiler. We use the previous linear algorithm in each dimension of the multi-
dimensional array to determine if it needs no-communication, or shift-communication, or
remap on this dimension. If all the dimensions are shift-homomophism, the compiler will
just insert a multi-tshift function in the translated codes to implement multi-dimensional

20

shift communication. If any one dimension is not shift-homomophism (needs remap on this
dimension), then we say it needs remap function to implement this assignment. Because
the implementation of all arrays of forall statement in node program are ”linearized”, we
need to calculate the corresponding index in this one dimensional array . This will be done
in the runtime by calling the coef function to each dimension of X array and Y array to
calculate the value of coefficients u and v. (see appendix D the implementation algorithm
of coef function).

So after that, the codes of the node program to implement the forall statement will be
something like that: (attention: the size0 and sizel are the range of the first dimension
in global template TX and TY. This is because we will implement the two dimensional
operation in one dimension in the local processor. In FORTRAN, its storage is column
first, after placing a whole column, then the second. So size is equal to the range of the
first dimension of global template.)

o In case of no communication:

CALL coef(dad_x, 1, 11, ul, s2, a00, b00, 0, u00, v00)
CALL coef(dad_x, 2, 12, u2, s2, a01, b01, 0, u01, vO1)
CALL coef(dad_y, 1, 11, ul, s2, a00, b10, 0, ul0, vi10)
CALL coef(dad_y, 2, 12, u2, s2, all, bilil, 0, ull, vii)

DO i =0, i_ub // i_ub is the local loop bound in the first dimension
DO j = 0, j_ub // j_ub is the local loop bound in the second dimension
X((u00*i+v00) + (uO1x*j+v01)#*sizel)
= Y((u1l0*i+v10) + (ulilx*j+vil)*sizel) // in case of no-communication
END DO
END DO

o In case of multi-tshift communication:

CALL multi_tshift(dad_x, dad_y, 2, amount)
// amount is a array containing the amount of sfhit communication in every dimension

CALL coef(dad_x, 1, 11, ul, s2, a00, b00, 0, u00, v00)
CALL coef(dad_x, 2, 12, u2, s2, a01, b01, 0, u01, vO1)
CALL coef(dad_y, 1, 11, ul, s2, a00, b10, amountO, ulO, v10)
CALL coef(dad_y, 2, 12, u2, s2, all, bll, amountl, ull, viil)

DO i =0, i_ub // i_ub is the local loop bound in the first dimension
DO j = 0, j_ub // j_ub is the local loop bound in the second dimension
X((u00*i+v00) + (uO1x*j+v01)*sizel)
= tmpy ((ul0*i+v10) + (ulil*j+viil)*sizel) // multi-shift communication

21

END DO
END DO

o In case of remap:

CALL remap(dad_x, dad_y)
CALL coef(dad_x, 1, 11, ul, s2, a00, b00, 0, u00, v00)
CALL coef(dad_x, 2, 12, u2, s2, a01, b01, 0, u01, vO1)

DO i =0, i_ub // i_ub is the local loop bound in the first dimension
DO j = 0, j_ub // j_ub is the local loop bound in the second dimension
X((u00*i+v00) + (uO1lxj+v01)#*sizel)
= tmpx((u00*i+v00) + (uO1*j+v01)*size0) // remap
END DO
END DO

In the above, we have discussed the most common case of forall statement with two-
dimensional arrays. But there still exist some special cases with multi-dimensional array
forall statements. We will discuss their implementation in the following respectively.

1. FORALL (i=I1:ul:sl, j=12:u2:s2)
X (a00%i4+b00, 201*j+b01) = Y(a10*j+b10, all*i+b11)

In this case, the fist dimension index of Y array is corresponding to the second di-
mension of X array, and the second dimension is corresponding to the first dimension
of X array. The specific example of this case is the following permutation calculation.
It’s often used in the matrix computing.

FORALL (i=11:ul:sl, j=12:u2:s2) X(i,j) = Y(j,1)

When implementing this kind of permutation computing, we first use detect com-
munication to determine if X array and Y array are homo-morphism (the concept
discussed in section 4) in every dimension. From that we can get the knowledge if
the elements of two dimensional array X(i,j) and Y(j,i) are distributed in the same
processors, or it only needs a multi-tshift in the global template of Y array, or it needs
a remap to move the Y array elements to the corresponding processor. In the first
two cases, we can use the same strategy as the canonical form discussed to implement
the forall assignment.

If multi-tshift communication is not enough to move the Y array elements to the
corresponding processor, it means the X(i,j) and Y(j,i) are not homo-morphism, we
need a remap function to implement this. When using remap function, in order to
keep X(i,j) unmoved and make the temporary Y array the same shape and distribution

22

as X array, we construct a new DAD structure dad_tmp which points to the element
section of Y array and the first dimension is mapped to the second dimension of Y
array, the second dimension map to the first dimension of Y array. Then dad_tmp
has the same shape of X array. Then we use remap function to move the dad_tmp
elements to the corresponding X element position according to owner computes rule.

rng_i = pcrc_new_range_align(a00%#11+b00, aO0*ul+b00, a0O0*s1,
0, pcrc_rng(dad_x, 1))
rng_j = pcrc_new_range_align(a01#12+b01, aO1*u2+b01, all*s2,
0, pcrc_rng(dad_x, 2))

dad_tmpl = pcrc_new_array_data(tmpl, pcrc_real, pcrc_size_real, &
& 2, grp_p)

CALL pcrc_set_array_copy(dad_tmpl, 1, rng_i)

CALL pcrc_set_array_copy(dad_tmpl, 2, rng_j)

dad_ys = pcrc_new_array_section(2, dad_y)

CALL pcrc_set_array_triplet(dad_ys, 1, alO*12+b10, alO*u2+b10,
al0O*s2, dad_y, 2)

CALL pcrc_set_array_triplet(dad_ys, 2, all*12+b11, all*u2+bil,
ali*s2, dad_y, 1)

CALL pcrc_remap(dad_tmpl, dad_ys)

Thus we construct a new section of Y array and it has the same shape with the left
hand side clause. We then can use the method as the common multi-dimensional
forall statement to implement this assignment.

. FORALL (i=I1:ul:sl, j=12:u2:s2)

X (a00*i+b00, a01*j+b01) = Y(al0*i4+b10)

In this case, all the X array elements with the same first dimension index will get the
same value from a one dimension array Y. Generally, the left hand side clause has
different dimension from the right hand side clauses in the forall statement.

To deal with this assignment, we need to use a scalar function to scale the Y array
in that dimension to a temporary array T which has the same dimension as X array.
In the actuall implementation, we first use detect communication to determine if X
array in the first dimension is homo-morphism as Y array to determine if it needs no
communication or tshift communication or remap. This implementation is the same
as the one dimensional case we discussed before. After that, Y array elements have
been moved to the corresponding processor as the first dimension as X array. Then
we use a scalar function to Y array to form a two dimensional temporary array which
has the same shape and distribution as X array to complete the assignment operation.
The generated codes will be something like:

23

rng_i = pcrc_new_range_align(a00%11+b00, aO0*ul+b00, a0O0*s1,
0, pcrc_rng(dad_x, 1))
rng_j = pcrc_new_range_align(a01#12+b01, aO1%u2+b01, all*s2,
0, pcrc_rng(dad_x, 2))

dad_tmpl = pcrc_new_array_data(tmpl, pcrc_real, pcrc_size_real, &
& 2, grp_p)

CALL pcrc_set_array_copy(dad_tmpl, 1, rng_i)

CALL pcrc_set_array_copy(dad_tmpl, 2, rng_j)

dad_ys = pcrc_new_array_section(l, dad_y)

CALL pcrc_set_array_triplet(dad_ys, 1, alO*11+b10, alO*ul+bi0,
al0O*s1, dad_y, 1)

CALL pcrc_set_array_scalar(dad_ys, 2, dad_x, 2)

CALL pcrc_remap(dad_tmpl, dad_ys)

. FORALL (i=l1:ul:sl, j=12:u2:s2)
X (a00%14+b00, 201*j+b01) = Y(al0%i+b10,1)

In this forall statement, although the right hand clause has the same dimensions as
the left hand clause, its second dimension index is a constant, not changed with the
forall index. So it is actually a one dimension array assigned to a two-dimensional
array statement. When dealing with this kind of forall, we will first get a section of
Y array in the first column, then then use detect communication to determine it is
homo-mophism with X array in the first dimension. Then we use the same strategy
to scale it to a two dimension array as discussed in the previous case.

rng_i = pcrc_new_range_align(a00%11+b00, aO0*ul+b00, a00*s1,
0, pcrc_rng(dad_x, 1))
rng_j = pcrc_new_range_align(a01#12+b01, aO1*u2+b01, all*s2,
0, pcrc_rng(dad_x, 2))

dad_tmpl = pcrc_new_array_data(tmpl, pcrc_real, pcrc_size_real, &
& 2, grp_p)

CALL pcrc_set_array_copy(dad_tmpl, 1, rng_i)

CALL pcrc_set_array_copy(dad_tmpl, 2, rng_j)

dad_ys = pcrc_new_array_section(l, dad_y)

CALL pcrc_set_array_triplet(dad_ys, 1, alO*11+b10, alO*ul+bi0,
al0O*s1, dad_y, 1)

CALL pcrc_set_array_scalar(dad_ys, 2, dad_y, 2)

24

CALL pcrc_remap(dad_tmpl, dad_ys)

. FORALL (i=I1:ul:sl)
X (a00%i+b00, a01*i+b01) = Y (al0*i+b10)

In this case, although the Y array is assigned to a two dimension array, the index in
both dimen sions of X array have only one variable from the forall index. It actually
implements a one dimension array assigned to a one dimension array.

There are two ways to deal with this kind of forall statement. One is that, though
the left hand clause expresses only a linear space in the X array , we still treat it as
a two dimension clause. We will construct a whole two dimension section of X array
to include all the linear space in the left hand side. Then the problem becomes a
one dimension array assigned to a two dimension array, just as the second case we
discussed. It only differs that we should add a conditional judge in the DO loop to
implement the necessary assignment only.

In this method, we can implement the forall assignment, but we can see, that we
allocate a much larger two dimensional buffer ((ul-11) x (u2-12)) for the X array .
Actually the left hand side clause will only use a small portion of it. This is because
that the template TX which X array is aligned with is distributed in a two dimensional
mode, and the left hand side clause is only a one dimensional space. And in our DAD
structure right now, we can not describe the following one dimension array aligned
with a two dimension template.

ALIGN A(i) WITH TX(aO*i+b0, alxi+bl)

This is not a alignment in HPF | but if we implement this kind of alignment, we
can easily complete the previous forall assignment. Actually , the assignment needs
a alignment like this, and we will construct a temporary one dimension array aligned
with template TX in this mode. So, if we add a vector descriptor in the DAD structure
to describe this kind of alignment, it’s easy to implement this kind of X(i,i) = Y(i)
assignment. Meanwhile, with this vector descriptor, we also can describe the matrix
permutation directly in the DAD, to implement the assignment of X(i,j) = Y(j,i).

. Ghost area problem
FORALL (i=11:ul:s1, j=12:u2:s82) X(i, j) = Y(i+1, j)

In this case of forall statement assignment, we assume that X array and Y array have
the same distribution, then X(i,j) and Y(i,j) will be on the same processor. When
implementing X(i,j) = Y(i+1, j), we need shift Y array in the first dimension one po-
sition to the left side. Actually , there’s a large amount of applications which contains
this kind of computing, such as in Jacobi iterations. If we use shift communication to

25

deal with it, we have to shift the whole Y array for one or two or only a few positions.
But actually, we only need to move these small amount of data from one processor to
another processor. So if we add a ghost area in the DAD structure to describe this
shift area, we don’t need to shift the whole Y array.

When implementing this kind of shift communication, most of the corresponding Y
array elements are on the same processor as X array elements. So we only need to
shift the small amount of corresponding elements in Y array from one processor to
another processor in Y array’s ghost area, instead of shifting other elements in Y
array. In this way, we don’t need to allocate a new temporary array buffer to contain
Y array elements after shift communication (memory saved), and this will also save
the operation of memory copy. This can greatly improve the performance of shift
communication, especially when Y array is rather large and the shift amount is small.
For example:

If the corresponding elements in the FORALL statement above is like:
Proazor 0 Promeszor 1 Promszor 2 Proeszor 3
TX [I I | L 1
v \‘a&\@:
Then we just need to shift two elements in template Y from right side processor to

the left side processor to the ghost area of Y array, instead of shifting the whole Y
array elements. It will be like this:

Proczszar 0 Processar 1 Processar 2 Processor 3
TX| | I | [1] L 1
WEM*-M *-EM <t
In this way, we greatly reduce this memory copy operations in shift communication.

Meanwhile, because the shift elements will be stored in the ghost area of Y array, not
in a new temporary buffer, it’s easy for the compiler to locate the elements in Y array

and to generate codes to implement this assignment.

The ghost area in the DAD structure can be used to improve the efficiency of shift
communication. But there still exists a problem, how to determine the amount of
ghost area? In some cases, if the shift amount is rather small, but if their positions
are rather apart from the elements in this processor, then it’s not good to use ghost
area to implement this kind of shift communication. Otherwise, we should allocate a

26

large amount a buffer in the Y array ghost area to store a small number of elements.
Fortunately, we can detect this in the compiling time. The compiler will determine if
it is worthy to use ghost area and how large buffer to allocate for that. If the shift
amount is too large, then we will just use the standard shift communi cation function
to implement this, instead of using ghost area.

We have discussed the two dimensional forall statement in vary kinds of cases in the
above. The strategies discussed can also be expanded to deal with the multi dimensioal
case.

27

A A study of strided-subintervals in divided integral intervals

The terms:

Integral interval is a sequence of consecutive integer points on the axis, represented as
I'=1[i:e],or I(i:e), where iis the initial point (lower bound) and e end point (upper
bound). h; = e — i+ 1 is called the length of the integral interval.

When no confussion results, we use ‘interval’ for short.

Divided integral interval is an integral interval I with a positive integer p, denoted as (I, p).

We call w = f%} the block size of the divided interval (I,p), and t = p - f%} the
length of the divided integral interval. Thus, we can view an interval is divided into
p blocks.

Strided-subinterval is a sequence of equally spanned points in an interval I(i : €), denoted
as I(l : u : s), where 1 is the initial point (lower bound), u end point (upper bound),
and s stride (span).

Here [, u, s are integers. 1 <[<u<e, 1<s.

L"T_IJ + 1 is called the size of the strided-subinterval.

The maximum number of points of a strided-subinterval in a block Write w = ¢ -s+ r,
where 0 < r < s. The number of points from I(/: u : s) that a block can contain is ¢+ [Z].

The relative position ¢ of the first point from I(/ : u : s) in the block determines the
number of points from I(/ : u : s) that are contained in the block. In particular, the block
contains the maximum number of points if and only if 1 <i < rforr#0or1 <7< s for
r = 0.

The relative position of the first point from I(/ : w : s) in the next block. It is useful to
know this in order to determine how many points are contained in each block.
We start from I(/) being at position 7. Consider the ‘next’ first point. We want to find
the k, such that
i+(k-1)-s<w<i+k-s (18)

namely, k = L%J 4 1. Or the current block contains k& points from the strided-subinterval.
Thus, the relative position of the next first pointisatt+k-s—w=14+s—w+ L%J - S.
Some specially interesting cases.

e r=20,:<s.

z'—I—s—w—I—L“"’J-s:i—}—s—w—l—(%—l)-s:i

5

This is what we expect. In general, when r = 0, let j = mod(,s). If j = 0, the next
first position is s, otherwise j.

28

o r£0,i<r.
i—I—s—w—}—L“’;ﬂ-s:i—}—s—w—}—q-s:i—l—s—r

e r£0,i>r.

Write j = mod(i —r,s),or (i —r) =t-s+ 7, we will have the next first position being
s for j =0, j for j # 0. This is because

z—}—s—w—}—[“’;’J-}s
= i+s—w4 | s
= ’L—}-S—w‘|’|‘q_ﬂl'5
= its—w+t[g-t-1]-s (19)
= its—w+(g—t)-s—[L] s
= s+j—[f]"s

(note: w=g¢q-s+r,and (i—r)=t-s+7j.)

If we interpret z = mod(a, s) as the minimum non-negative solution to z = a (mod s),
thus allow a being negative, we can unify the above 3 points as: for given position i in a
block, the position of the first point in the next block

j= { mod(i —r, s), (mod i —r,s)#0 (20)

s, (mod i —r,s5) =0
(We note, (modi—r,s)=s+i—rifi—r<0and|i—r|<s.)

A useful equality. For integers a > 0, b > 0, we have

= G+ (21)

since writing @ = ¢-b+r,0 <r < b, we have [41] = [¢™H] = ¢+1, [¢|+1 = [¢+}]+1 =
g+ 1.

The number of points of a strided-subinterval in a block. Given starting position ¢ in a
block, there will be |“=| + 1 points contained in the block.

From the above, we see that we have reached an effective algorithm to determine the
number of points of I(/: u : s) in each block of (I(i: e),p).

Two strided-subintervals. We consider (I1(#1 : e1),p1),J1(l1 : w1 : s1) and (I2(72 : e2), p2),L2(l2 :
ug : s3). We are particularly interested the condition that the corresponding blocks of
(I1(i1 : €1),p1) and (Iz(ig : e3),p2) contains the same number of points of Iy (I : uq @ s1)
and I3(l3 : ug : s3), respectively.

First, some examples.

29

sy =3,wy =5,r1 =2 and sy = 12, w; = 20,r; = 8.
If 7; = 1, we have
the first positions: 1, 2, 3, 1,
the number of points: 2, 2, 1, 2,
If 79 = 4, we have
the first positions: 4, 8, 12, 4,
the number of points: 2, 2, 1, 2,
We see the two strided-subintervals are ‘isomorphically’ distributed in their underline
intervals, respectively. If i3 = 8, we have
the first positions: 8, 12, 4, 8§,
the number of points: 2, 1, 2, 2, ..
We see it is not ‘isomorphically’ distributed with respect to I, even though the two first
blocks contain the same number of points.

Shift isomorphism between two strided-subintervals. We say I1(l; : uq @ s1) and I3(l3 @ ug :
sg) are shift isomorphic if

u — Il uy — Iy

| I=1

|, t1=1t2, and s1 =52 (22)
S1 S92

Shift homomorphism between two strided-subintervals. Consider p = p; = py only. We
say I1(lh :uy :s1) and Ip(lg @ ug @ s3) are shift homomorphic if

uy — ll Uy — 12 tl t2
I =1 J, and —=— (23)
51 52 51 52
Some simple properties. Write,
th = q-s1+r, 0<rm <s (24)
ta = q@-sy+ry 0<r<s

We have,

0 = 42, andt— =—=— (25)

To see this, we divide the equations in 24 by s; and sy, respectively, and equate the
right hand sides (left hand sides are equal by definition.) — integer parts and fraction parts
must be equal, respectively.

Clearly, isomorphism defined here is a special case of homomorphism.

30

31

32

33

34

References

[1] HPFF, High Performance Fortran Language Specification (version 1.0). May 3, 1993.

[2] C. Koelbel, D. Loveman, et al., The High Performance Fortran Handbook. The MIT
Press, Cambridge, MA, 1994.

[3] Zeki Bozkus, Compiling Fortran 90D /HPF for Distributed Memory MIMD Computers.
Ph.D. Thesis, Syracuse University, August 1995.

[4] Z. Bozkus, A. Choudhary, G. Fox, et al, ?Compiling Forall statement for distribution
memory machines. SCCS report 389, NPAC, Syracuse University, December 10, 1992.

[5] J. Cowie, D. Leskiwd, X. Li, “The Distributed Array Descriptor for a PCRC HPF
Compiler,” Version 1.0, SCCS-7Txx, NPAC at Syracuse University, February 5, 1996.

[6] Utpal Banerjee, Dependence Analysis for Supercomputing. Kluwer Academic Publish-
ers, 1988, pp. 67-92.

35

