High-Performance Fortran as a Possible
Successor to Global Arrays in the NWChem
Parallel Computational Chemistry Code*

Yuhong Wen, D. Bryan Carpenter,
Erol Akarsu, Tomasz Haupt, and David E. Bernholdt!

Northeast Parallel Architectures Center

Syracuse University
111 College Place
Syracuse, NY 13422-4100

July 2, 1997

Abstract

This is the abstract

1 Introduction

When the development of the NWChem parallel computational chemistry

package began at the Pacific Northwest National Laboratory (PNNL) in

1993, the question of what parallel programming environment to use received
careful attention. It was clear that a straightforward message-passing model
would place a significant burden on the programmer. High-Performance For-
tran (HPF) provided a higher-level programming model, but suffered from

*Prepared for Battelle/Pacific Northwest National Laboratory under contract 315647-

A9E.

t Author for correspondence. E-mail address bernhold@npac.syr.edu.

several other problems. In the first place, version 1.0 of the HPF standard
addressed only data-parallel operations, while it was clear that both data-
and task-parallel capabilities would be required for the algorithms envisioned
in NWChem. Second, at that time, the standard had not yet been formally
approved, and such HPF implementations as did exist were based on drafts
of the standard, were incomplete in their implementation of the language,
and were rather immature.

As a result, the NWChem developers decided to implement their own
parallel programming model, Global Arrays, which would be modeled to a
large extent on HPF. The hope was that a future version of HPF would sup-
port the capabilities required by NWChem, and that given time, compilers
would become more complete and robust, making it possible to transition
NWChem from the global array toolkit (GA) to HPF, thereby acruing the
benefits of an accepted standard and vendor-supported compilers.

Since the HPF 1.0 standard has now been available for several years, and
since version 2.0 of the language standard (currently in a public comment
period prior to formal acceptance) includes some task parallelism and other
features required by NWChem algorithms, it is appropriate at this time to
evaluate the present state of HPF and the prospects for using it to replace
the GA toolkit in NWChem and other similar computational chemistry ap-
plications.

There are two components to this analysis. The first is an examination
of current HPF implementations, and their performance in comparison with
GAs. The second is an examination of whether or not the HPF 2.0 standard
supports the task parallel and other capabilities required by the algorithms
inplemented in NWChem.

2 Performance of HPF and GAs
3 HPF 2.0 Capabilities Analysis

Version 2.0 of the High-Performance Fortran standard is currently in a public
comment period prior to formal acceptance. This version of HPF incorpo-
rates some support for task-based parallelism as well as other features similar
to those in the GA toolkit. In order to understand the degree to which HPF
2.0 supports the GA programming model, we have looked at the require-
ments of two algorithms implemented in NWChem which are exemplars of

the kind of task parallelism used throughout the code.

We must note that since there are no HPF 2.0 compilers presently avail-
able, the proposed implementations we outline are “thought experiments”
and subject to all of the uncertainties of both interpretation of the standard
itself, and actual implementations.

3.1 HPF 2.0 vs HPF 1.0

The HPF 2.0 standard is divided into two parts: a core language definition
and a set of “approved extensions”!. The core of HPF 2.0 is a conservative ex-
tension of HPF 1.1. The only major addition is “reduction variables”, which
will be important for the discussion below. The approved extensions are
more innovative. They include new irregular data distribution formats, op-
tions for distributing data over processor subsets, explicit support for “ghost
areas”, support for a form of task parallelism, and new library and intrinsic
procedures. We will need very few of these new features.

The GAs code discussed below is task parallel rather than data parallel.
We initially hoped that the HPF 2.0 extensions for task parallelism would
be useful, but it seems that the fairly complex extensions in section 9 of the
standard are less relevant than expected. There i1s a strong emphasis there
on restricting occurrence of “one-sided communication”, whereas we find
controlled use of one-sided communication very convenient. A desirable task-
parallel feature—some mechanism for creating a load balanced task farm—
is notably absent from the standard. On the other hand we have found
that (load-balancing aside) the simple INDEPENDENT do loop, augmented with

REDUCTION clauses, is enough to express most of the task parallelism we need.
A simple example of an INDEPENDENT do, taken from the standard:

IHPF$ INDEPENDENT, NEW(j), REDUCTION(x)
DO i =1, 10
'HPF$ INDEPENDENT

DO j =1, 20

X=X+ j
END DO
END DO

The INDEPENDENT directives assert that successive iterations of the loops do
not interfere with one another, and may therefore be executed in parallel.

!There was a similar but differently-stated division of HPF 1.0 between “Subset HPF”
and “Full HPF”.

The NEW clause asserts that each instance of the i loop body can use an
unrelated copy of the variable j, never relying on a value set in a previous
iteration. The REDUCTION clause asserts that the variable x is only used in
the very special context of an accumulating assignment with a commuta-
tive associative operation, as illustrated. The standard explicitly allows the
reduction variable to be an array, so long as the subscripting pattern is iden-
tical on the right- and left-hand-side of the accumulating assignment. The
language places no special restriction on procedure calls inside the body of
an INDEPENDENT loop, so long as they respect the disjointness criterion.

We also considered the possibility of using a FORALL construct to achieve
parallelism. A limited form of task parallelism can be achieved by calling a
PURE function in the forall assignment. But the restrictions on PURE functions

are too severe for our purposes.

The GAs versions of the codes use distributed arrays with two-dimensional
block distribution format. This format is supported in the HPF approved
extensions where it is called GEN_BLOCK distribution. A simple example is

REAL b(100)
'HPF$ DYNAMIC b
INTEGER blks(4)

blks = (/50, 10, 20, 20/)
'HPF$ REDISTRIBUTE b(GEN_BLOCK(blks))

The dynamic, REDISTRIBUTE, form of distribution directive was used here
because the vector of block sizes is not a compile-time constant (this is pre-
sumably typical).

3.2 NWChem Distributed Data SCF Algorithm

As a concrete focus (following [?]) we will consider in detail computation of
the Fock matrix in a self-consistent field (SCF) method. SCF is an important
tool for electronic structure calculations, and construction of the Fock matrix
is a computationally dominant part of the method. The basic problem is
simply stated, while essential practical optimizations depend on features of
the GA toolkit (like task parallelism and irregular data distribution) that are
not well supported by HPF 1.0.

The Fock matrix describes the force field experienced by the electrons in

a molecule. It is defined as

=y 323 D (kD) - 3k)

Here 7 and j run from 1 to N, where N is the number of basis functions.
Typically a few (say, 10) basis functions are introduced for each atom in
a molecule. The choice of basis functions will vary from atom to atom (a
hydrogen atom will need fewer basis functions than a more complex atom like
oxygen). The fixed matrix h takes account of the background field produced
by the static atomic nucleii. The main work is in computing the sum over
k and [, which describes the field produced by the electron cloud itself. The
density matrix D is some estimate of the of the distribution of electrons.
Inserting this into equation 1 gives a corresponding estimate of the Fock
matrix. Diagonalizing the Fock matrix yields a new estimate of the electron
wave function, and in turn a new value for the density D. The process is
repeated until convergence (self-consistency) is achieved.

The symbols (z7]kl), (ik|jl) represent integrals accounting for Coulomb
and exchange coupling between basis states. Typically the dominant part of
the computation is evaluation of these integrals?. In the dense case where
most integrals and elements are non-zero, diagonalization is O(N?) while
computation of the matrix according to equation 1 is O(N*). In this report,
therefore, we concentrate evaluation of equation 1 itself.

The (i7]kl) symbols have various symmetries:

(k1) = (jilkl) = (igltk) = (gellk) = (Kl]ig)
= (Kl|ji) = (Ik[ig) = (Ik|j7) (2)

These symmetries can (and, for efficiency, must) be used to reduce the range
of the loops used to compute the sum above. Moreover many basis states
have very small overlap, and the corresponding integrals can be neglected
(“screening”), further reducing the number of terms in the sum. For a more
complete discussion of these issues see [?]. Here we only note that for these
reasons that bounds on nested loops are often described by non-constant ex-
pressions, and loop bodies often contain non-trivial tests to check for screen-
ing and symmetry-induced redundancy.

2These are sequential “tasks” and most of the details of their computation are irrelevant
to the discussion here.

3.3 The NWChem SCF code

For reference, figures 2 through 6 reproduce code fragments from the current
NWChem release. Obviously we have only selected the subroutines most
relevant to the discussion here, and within these procedures many lines of
code that are peripheral to the discussion are ellided.

The code given in the figures incorporates one change to the original
NWChem code, anticipating the needs of an HPF version. The proce-
dure fock 2e_cache_dens_fock is important because it controls access to
distributed arrays. Specifically, it copies values from the global arrays repre-
senting the density matrix to local temporaries. The copy operation is con-
ditional on the subscripts from the previous iteration. If the values for the
current iteration are already “in cache” (ie, in the local temporaries) the copy
is not repeated. In the original version of the code fock 2e_cache dens fock
also handled accumulation of results into the global array representing the
Fock matrix, adopting a strategy which deferred the write-back until the
new subscripts differ from the previous iteration. This saves some global
operations and is presumably a useful optimization, but we will see that
it is slightly awkward in the HPF translation, where more straightforward
patterns of access to reduction variables are preferred (to simplify the dis-
cussion, at least). The conditional update operations have been moved into
fock_2e_task. Changes to the original code are highlighted with asterisks.

Each of the subroutines displayed here raise issues for an HPF port, and
we will discuss them in turn.

3.3.1 Subroutine uhf _energy

This procedure, outlined in figure 2, is responsible for creating the distributed
arrays holding the density matrix and the Fock matrix. We see that in
practice a handful of identically shaped arrays are used to hold separate
components of each. The calls to ga_create_atom_blocked return handles
to global arrays.

The NWChem package is implemented in Fortran 77, and follows tradi-
tional Fortran practises for dealing with dynamically allocated objects and
arrays. In particular a global array is proxied by an integer handle. In transi-
tioning to HPF this will certainly change. A global array will become a first-
class Fortran array. This introduces a superficial problem in how to represent
vectors of related arrays, like d and f£. Fortran 90 provides several possible

solutions. The most obvious is to replace d and f with three-dimensional
arrays (instead of vectors of two dimensional arrays). Another solution is to
replace them with vectors of objects® containing pointers to two-dimensional
arrays. A third possibility would be to change the type of the element of
the two-dimensional array to a derived type with several components. For
simplicity, we assume here that d and f are replaced with three-dimensional
arrays.

In the function ga_create_atom blocked (figure 2) a pair of map vectors
are created and an irregularly distributed global array of double precision
variables is created. HPF 1.0 did not provide facilities for irregular distri-
bution of arrays, but the approved extensions to HPF 2.0 include a new
distribution format called GEN_BLOCK. A minor difference to Global Arrays is
that the HPF general block distribution is parametrized by a vector of block
sizes rather than the vector of starting subscripts for blocks. The compu-
tation of map vectors can easily be adapted to compute block_size vectors

instead.
Schematically, the body of uhf_energy will be replaced with:

double precision, allocatable :: d(:, :, :), £(:, :, :)
'hpf$ dynamic :: g_array

integer block_sizel(max_nproc), block_size2(max_nproc)
c Arrays for AO density, coulomb and exchange matrices

. compute ‘nbf’, ‘nblockl’, ‘block_sizel’, ‘nblock2’,
‘block_size2’ for set of atoms and basis functions ...

allocate d(nbf, nbf, 4), f£f(nbf, nbf, 4)
'hpf$ redistribute d(gen_block(block_sizel(1 : nblockl)),

$ gen_block(block_size2(1 : nblock2)), *)
'hpf$ redistribute f(gen_block(block_sizel1(1 : nblockl)),
$ gen_block(block_size2(1 : nblock2)), *)
c Make the densities and build the fock matrices
c
. initialization

3By which we mean entities of derived type: Fortran does not directly permit arrays
of pointers.

call fock_2e(geom, basis, 4, jfac, kfac, tol2e,
$ oskel, d, f)

deallocate d, f

Because the block_size vectors are not compile-time constants it is necessary
to use a REDISTRIBUTE directive after the arrays are allocated. The argument
of the GEN_BLOCK format is a vector of size equal to the corresponding extent
of the processor arrangement, the nblock values in this case.

An explicit two dimensional processor arrangement could be introduced
to help the compiler:

Ihpf$ processors p(nblockl, nblock2)
changing the REDISTRIBUTE directives to
Ihpf$ redistribute d(...) onto p

This may require that the nblock values be compile-time constants or re-
stricted expressions: some reorganization of the mapping computation may
be needed to take acount of this.

Note that d and f are usually called vg_fock and vg_dens in the rest of
this section.

3.3.2 Subroutine ao_fock 2e

After creating the arrays, uhf_energy calls fock_2e. This is a simple wrapper
for ao_fock_2e, represented in figure 3.

The main role of ao_fock_2e is to determine an appropriate task chunking
(through an array that will later be called blocks) prior to calling the routine
that dispatches the tasks, and to allocate a large number of local temporary
arrays, mostly used to cache values from the main global arrays in the course
of the computation. The allocation is done using stack management routines

provided by the MA package from Global Arrays.

In Fortran 90 it is much more natural to create such temporaries as au-
tomatic arrays. In an HPF version this will be almost mandatory. These
local arrays should really be defined in the routine that dispatches the par-
allel loops (because, we will see, they should appear in the NEW list of those
loops). So the body of ao_fock_2e may be stripped down to something like

integer, allocatable :: blocks(:)

Determine appropriate task chunking and max no. of bf in a
block of the density/fock matrix

o o0 o0 o0

allocate blocks(2 * natoms)
call fock_2e_block_atoms(basis, oskel, tol2e,
$ blocks, nblock, maxblock)

call fock_2e_a(geom, basis, nfock, ablklen,
jfac, kfac, tol2e, oskel,
vg_dens, vg_fock,
blocks, nblock)

@ H P

deallocate blocks

Allocation of the dij, £ij, etc temporaries is now left to fock 2e_a.

3.3.3 Subroutine fock 2e_a

This subroutine is represented in figure 4. It contains the main parallel loop
of the algorithm.

In the global arrays version of the program all blocks of atoms are enumer-
ated by every processor, and each block is allocated to a particular processor
using a shared task counter accessed through the function nxtask. HPF
provides no explicit mechanism for this kind of dynamic load balancing. The
best we can achieve is to turn the loops into INDEPENDENT do loops, and hope
that the resulting tasks are reasonably balanced?.

The tasks are still not disjoint because they share write-access to the Fock
array. The shared access is purely through commutative add-accumulate op-
erations, so the program is deterministic. HPF 2.0 allows this kind of access
through reduction variables. The Fock matrix must appear in a REDUCTION
clause of the INDEPENDENT directive. References to reduction variables are
very restricted in HPF 2.0. In particular reduction variables cannot be passed

to procedures®. So vg_fock must be removed from the argument list of

4Or hope that the compiler somehow balances tasks by intelligent scheduling.
5There is not an explicit statement to this effect in the language definition, but proce-

fock_2e_task, and updates of this array must appear inline in the body of
the fock_2e_a main loop.

At the start of section 3.3 we explained that the code in figures 2 through
6 is slightly modified from the original NWChem code. With a view to
simplifying access to reduction variables, all updates of vg_fock have been
collected together at the end of fock 2e_task, in six calls to fock upd_blk.
We now want to move the updates out of fock 2e_task altogether, pushing
them into the calling program. (Given that requirement, it is also natural
to move the computation of i_lo, i_hi, etc from the start of fock 2e_task
into the calling program, because these values are needed in the update.) Of
course that isn’t quite the end of the story, because we cannot pass vg fock
to fock upd blk either. The latter call has to be replaced by an inline

assignment to the reduction variable vg_fock.
Essentially the call

call fock_upd_blk(nfock, vfock, ilo, ihi, jlo, jhi, fac, buf, tmp)
is an array section assignment of the form

jlen = jhi - jlo + 1
ilen = ihi - ilo + 1
do ii=1,nfock
vfock(ilo : ihi, jlo : jhi, ii) =
vfock(ilo : ihi, jlo : jhi, ii) +
fac(ii) * buf(1 : ilen, 1 : jlen, ii)
enddo

To make this work, buf has been changed to a three dimensional array,
matching the rank of vfock.

Some corresponding changes are needed for the accesses to the density ma-
trix vg_dens. As mentioned earlier, this array is accessed in fock_2e_cache_dens_fock
which is called from fock 2e_task. The references to the density matrix
global arrays are intrinsically non-interfering, and HPF does not forbid non-
interfering accesses from within a procedure called inside an “independent”
loop. Unfortunately the technique of saving the value of the local temporaries
between iterations if the subscripts have not changed is interfering, and has
to be abandoned. The array ijk_prev will be eliminated, and the dij, etc

dures calls are clearly not “special locations in assignment statements of a special form”,
which, according to the standard, is the only place inside the loop where a reduction
variable may be referenced.

10

local temporaries will be declared NEW. The actual access to the global array
can stay inside the task procedure.

Incorporating the changes discussed above, the body of fock 2e_a is
sketched in figure 1. The local temporaries dij, dik, £1j, flk are now
declared as three-dimensional automatic arrays. They do not appear in the
argument list of fock 2e_a. They do appear in the NEW clause of the inner
parallel loop.

3.3.4 Subroutine fock 2e_task

Finally we discuss anticipated changes to fock 2e _task. The main changes
are

o Delete computation of i_lo, i_hi, etc calls to fock upd_blk, because
the updates have moved into the calling program.

e Change all local temporaries to three-dimensional arrays.

e Simplify fock 2e_cache dens fock. fock_get blk calls are replaced
with array section assignments, this time copying from the global array
to the local temporary. All these are operations are now unconditional:
there is no test on the value of ijk_prev.

The second change will carry through to the inner routine fock 2e_b.
Although these changes to the rank of the array are “trivial”, they may well
constitute the largest single set of changes to the code as a whole.

Access to the global arrays through fock 2e_cache dens fock has been
troublesome in this translation to HPF 2.0 proposed above. We were already
forced to take accesses to the Fock matrix out of this procedure and put
them in the main parallel loop. It would now probably be more natural to
handle accesses to the global density matriz array in the same way. In fact,
once all global array accesses are in the main loop we anticipate that many
of them can be pulled into the outer loops, restoring the optimizations that
were lost by deleting the ijk_prev mechanism.

3.4 NWChem MP2 Back-Transformation Algorithm

We investigated the Global Array codes of NWChem MP2 Back-Transformation
Algorithm and found that this algorithm can also be rewritten in HPF 2.0. It

11

double precision dij(maxblock, maxblock, nfock)
double precision dik(maxblock, maxblock, nfock)

... similarly declare ‘dli’, ‘djk’, ..., ‘fij’, ‘fik’, ..., ‘flk’
'hpf$ independent, new(jb, iatlo, iathi), reduction(vg_fock)
do ib = nblock, 1, -1
iatlo = blocks(1,ib)
iathi = blocks(2,ib)
'hpf$ independent, new(kb, jatlo, jathi, ...)
do jb = 1, ib
jatlo = blocks(1,jb)
jathi = blocks(2,jb)
if (... some ij pair survives screening ...) then
'hpf$ independent, new(lb, katlo, kathi, 1bhi)
do kb = ib, 1, -1
katlo = blocks(1,kb)
kathi = blocks(2,kb)
1bhi = kb
if (ib .eq. kb) 1bhi = jb
'hpf$ independent, new(latlo, lathi, otest,
thp£$$ dij, dik, d1i, djk, d1j, dik,
thpE$$ £ij, fik, fli, £jk, flj, f1k)

do 1b = 1, 1bhi
latlo = blocks(1,1b)
lathi = blocks(2,1b)
set ‘otest’ if some k1 pair survives screening and
interaction is ‘‘symmetry-unique’’
if (otest) then
compute ilo, ihi, jlo, ..., 1lo, 1lhi for block

call fock_2e_task(
geom, basis, oskel,
iatlo, jatlo, katlo, latlo,
iathi, jathi, kathi, lathi,
ilo, ihi, jlo, jhi, klo, khi, 1lo, 1hi
nfock, vg_dens,
jfac, kfac,
dij, dik, d1i, djk, d1j, dilk,
£ij, fik, fli, fjk, £1j, flk,
tmp, tol2e, dentol)

BB BB P DB BB

jlen = jhi - jlo + 1
ilen = ihi - ilo + 1

do ii=1,nfock
vg_fock(ilo : ihi, jlo : jhi, ii) =
vg_fock(ilo : ihi, jlo : jhi, ii) +
jfac(ii) x £ij(1 : ilem, 1 : jlen, ii)
vg_fock(ilo : ihi, klo : khi, ii) =
vg_fock(ilo : ihi, klo : khi, ii) +
kfac(ii) * fik(1 : ilen, 1 : klen, ii)
simililary add ‘fjk’, ‘fli’, ‘flj’, ‘flk’
enddo
end if
end do
enddo
endif
end do
end do

Figure 1: HPF version of body of fock 2e_a.

12

will be easier than the DDSCF algorithm, due to the simple calling structure
in the kernel loop. We can just use FORALL statemants and constructs to im-
plement the parallel tasks in this algorithm, instead of using the INDEPENDENT
directive.

The main things we need to focus on when rewriting the codes will again
be in the two areas of dynamic array allocation and distribution, and the
implementation of parallel tasks. First, dynamic array allcation. We need to
replace the function call to ga_create_irreg in subroutine mp2 nonsep_uhf
in file mp2 back_transform.F. We can use the same strategy used in the
DDSCEF codes to deal with this irregular distribution, and the dynamic array
allocation problem.

After setting up the parallel tasks in the mp2 backt_info function call and
the dynamic array allocation, the remaining thing is how to implement them
in parallel way in HPF. We need to rewrite the function mp2_back transform uhf
in file mp2 back transform.F in the HPF codes. The main point we need
to focus on is to rewrite the following Global Array functions as HPF codes

with FORALL statements.
e The call

call ga_fill_patch(g_buf, 1, nva, 1, nbfpair, 99.0d40)
will be changed to:
FORALL (i=1:nva, j=1:nbfpair) ga_buf(i,j) = 99.040
e The call
ga_dgemm(transa, transb, m, n, k, alpha, g_a, g_b, beta, g_c)
can be replaced by:

FORALL (i=1:k, j=1:k) d(i,]j)
FORALL (i=1:m, j=1:n) c(i,j)

alpha * OPA(1,j) * OPB(i,j)
d(i,j) + beta * C(i,j)

where OPA = A or TRANSPOSE(A), OPB = B or TRANSPOSE(B).
e The Global Array function

call ga_put(g_buf, a-nva_lo+l, a-nva_lo+1,
$ 1, nbfpair, tmp, 1)

13

to update the global result array after the computing can be replaced
with:

dimension g_buf(1l:diml,1:dim2)
dimension tmp(1:1, 1:%)

g_a(a-nva_lo+i:a-nva_lo+1l, 1l:nbfpair) = buf(i:1, 1:nbfpair)

4 Conclusions and Recommendations

Although we have by no means completed the conversion of even the SCF
kernel to HPF, our analysis suggests that expressing task parallel algorithms
like these in HPF may be less difficult than is often assumed. In addition its
strictly data parallel constructs (array syntax and FORALL) HPF 2.0 provides
a general parallel loop in the form of its INDEPENDENT do loop. Newly en-
hanced with reduction variables, this construct appears sufficiently powerful
to implement the algorithms considered here.
There are a few caveats.

e We had to make a few reorganizations to the logic of the original code to
fit it into constraints of the language. These reorganizations sometimes
involved undoing optimizations in the original code. At the present
time 1t is impossible to determine whether these changes have a signif-
icant impact on performance.

e Probably the most serious of these reorganizations was the replace-
ment of a load-balancing, task-farming loop with a deterministic par-
allel loop. We regard the lack of a simple mechanism for dynamic load
balancing as a worrying shortcoming of the language. Perhaps a com-
piler can automatically adopt a load balancing strategy for independent
loops, but the practicality of this is unclear to us.

o Besides changes to the logic, the data layout has to be modified ex-
tensively. This isn’t simply a matter of adding directives to specify
distribution format. The HPF code probably will not work well un-
less the ad hoc Fortran 77 style of memory management (relying on
sequence and storage associations) is replaced globally with consistent,
type-secure, Fortran-90-style handling of arrays.

14

o We are unaware of any existing HPF compiler that supports the HPF
2.0 extensions used here.

o New features aside, we question whether existing HPF compilers will
generate good code from INDEPENDENT loops as complexr as the ones
constdered here.

HPF compilers often concentrate on parallelizing simple loops, where com-
munication can be reduced to cooperative or collective operations. On en-
countering a complex loop where communication cannot sensibly be reduced
to such simple patterns, a compiler may well fall back on a default strategy of
sequentializing the loop. A better approach would presumably be to incorpo-
rate Global-Arrays-style one-sided-communication in the compiler run-time,
allowing relatively straightforward translation of general task-parallel loops.

15

a o oo

subroutine uhf_energy(g-vecs, eone, etwo, enrep, energy,
$ g_grad)
implicit none

integer d(4), £(4)
intager g-a_dens, g_a_coul, g_a_exch
integer g-b_dens, g_b_coul, g_b_exch

Arrays for A0 density, coulomb and exchange matrices
g-a_coul = ga_create_atom_blocked(geom, basis, ’uhf:a coul’)
g-b_coul = ga_create_atom_blocked(geom, basis, ’uhf:b coul’)
g-a_exch = ga_create_atom_blocked(geom, basis, ’uhf:a exch’)
g-b_exch = ga_create_atom_blocked(geom, basis, ’uhf:b exch’)
g-a_dens = ga_create_atom_blocked(geom, basis, ’uhf:a dens’)
g-b_dens = ga_create_atom_blocked(geom, basis, ’uhf:b dens’)

Hake the densities and build the fock matrices
initialization

d(1) = g_a_dens
d(2) = g_a_dens
d(3) = g_b_dens
d(4) = g_b_dens
£(1) = g_a_coul
£(2) = g_a_exch
£(3) = g_b_coul
£(4) = g_b_exch

call fock_29(geom, basis, 4, jfac, kfac, tol2e,

$ oskel, d, f)

if (.not. ga_destroy(g_a_dens)) call errquit(’uhf_e: destroy’,0)
if (.not. ga_destroy(g_b_dens)) call errquit(’uhf_e: destroy’,0)
if (.not. ga_destroy(g_a_exch)) call errquit(’uhf_e: destroy’,0)
if (.not. ga_destroy(g_b_exch)) call errquit(’uhf_e: destroy’,0)
if (.not. ga_destroy(g_a_coul)) call errquit(’uhf_e: destroy’,0)
if (.not. ga_destroy(g_b_coul)) call errquit(’uhf_e: destroy’,0)
end

integer function ga_create_atom_blocked(geom, basis, name)

Allocate a global array that is distributed so that atom
blocks are not spilt between processors.
integer mapil(max_nproc), map2(max_nproc)

compute ‘nbf’, ‘nblockl’, ‘mapl’, ‘nblock2’, ‘map2’ for set of
atoms and basis functions

status = ga_create_irreg(HT_DBL, nbf, nbf, name,

$ mapl, nblockl, map2, nblock2, g_a)

ga_create_atom_blocked = g_a

end

Figure 2: Procedures uhf_energy and ga_create_atom_blocked

16

subroutine ao_fock_2e(geom, basis, nfock, jfac, kfac,
$ tol2e, oskel, vg_dens, vg_fock)

c

¢ Distributed-data A0 2e-Fock construction routine

c

integer 1_dij, 1_dik, 1_dli, 1_djk, 1_d1j, 1_dlk
integer 1_fij, 1_fik, 1_fli, 1_fjk, 1_flj, 1_flk
integer k_dij, k_dik, k_dli, k_djk, k_dlj, k_dlk
integer k_fij, k_fik, k_fli, k_fjk, k_flj, k_flk

logical status

[
c allocate necessary local temporary arrays on the stack

[

c 1_d** ... *x block of density matrix

c 1_fx* ... *x block of fock matrix

[

c k_x are the offsets corrsponding to the 1_x handles

[

[

c Determine appropriate task chunking and max no. of bf in a
c block of the density/fock matrix

[

if (.not. ma_push_get (HT_INT, 2#natoms, >fock2e:block’,

$ 1_block, k_block))call errquit(’fock_2e: ma failed’,2*natoms)
call fock_2e_block_atoms(basis, oskel, tol2e,
$ int_mb(k_block), nblock, maxblock)

status = .true.

status = status .and. ma_push_gat(HT_DBL, maxd, °dij’,
$ 1.dij, k_dij)

status = status .and. ma_push_get(HT_DBL, maxd, ’dik’,
$ 1_dik, k_dik)
similarly ‘dli’, ‘djk?, ..., ‘flk?, ‘fjk’ ...

status = status .and. ma_push_gat(HT_DBL, maxd, °flj’,
$ 1_f1j, k_f1j)

status = status .and. ma_push_get(HT_DBL, maxd, ’flk?’,
$ 1_f1k, k_flk)

status = status .and. ma_push_gat(HT_DBL, ablklen, ’atmp’,
$ 1_atmp, k_atmp)

call fock_2e_al(geom, basis, nfock, ablklen,

$ jfac, kfac, tol2e, oskel,
$ dbl_mb(k_dij), dbl_mb(k_dik), dbl_mb(k_dli),
$ dbl_mb(k_djk), dbl_mb(k_dlj), dbl_mb(k_dlk),
$ dbl_mb(k_fij), dbl_mb(k_fik), dbl_mb(k_fli),
$ dbl_mb(k_fjk), dbl_mb(k_f1j), dbl_mb(k_flk),
$ dbl_mb(k_atmp), vg_dens, vg_fock,
$ int_mb(k_block), nblock)

c

status = .true.

status = status .and. ma_pop_stack(l_atmp)
status = status .and. ma_pop_stack(1_flk)
status = status .and. ma_pop_stack(1_f1j)

... similarly ‘fjk’, ‘f1i’, ..., ‘djk’, ‘dli
status = status .and. ma_pop_stack(l_dik)
status = status .and. ma_pop_stack(l_dij)
status = status .and. ma_pop_stack(l_block)

end

Figure 3: Subroutine ao_fock_2e

17

R R

BB BB BB DB B

subroutine fock_2e_al(geom, basis, nfock, ablklen,
jfac, kfac, tol2e, oskel,
dij, dik, d1i, djk, d1j, dlk,
£ij, fik, fli, f£jk, f1j, flk,
tmp, vg_dens, vg_fock,
blocks,

nblock)

double precision dij(nfock*ablklen),dik(nfock*ablklen)
double precision dli(nfock*ablklen),djk(nfock*ablklen)

... similarly ‘d1j’, ‘dlk’,

integer vg_dens(nfock)
integer vg_fock(nfock)
integer blocks(2,%)

integer ijk_prev(3,2)

set

ijkl =
next =

Loop
do ib =
iatl
iath

do j

' (i/j/k, lo/ni)

‘ijk_prev’ elements to -1

0

nxtask (nproc, 1)

nblock, 1, -1

0 =
i=

b =

jatlo
jathi

if (...

d

0

b
b

1

locks(1,ib)
locks(2,ib)
, ib

= blocks(1,
= blocks(2,

kb = ib, 1,

thru blocked atomic quartets

b
b

some ij pair survive screening

-1

katlo = blocks(1,kb)
kathi = blocks(2,kb)

1bhi = kb

if (ib .eq.

do 1b = 1,
latlo =
lathi =

kb) 1bhi = jb
1bhi
blocks(1,1b)
blocks(2,1b)

“fij’, ‘fik’, ‘fli’, ‘fjk’, ‘flj’, ‘flk’

...) then

set ‘otest’ if some k1 pair survive screening and

interaction is

3

Load balance over non-zero interactions

‘symmetry-unique’’

if (otest .and. (ijkl .eq. next)) then

fock_2e_task(
geom, basis, oskel,

iatlo, jatlo, katlo, latlo,
iathi, jathi, kathi, lathi,

ijk_prev,

nfock, vg_dens, vg_fock,

jfac, kfac,

dij, dik, dli, djk, dlj, dik,
£ij, fik, fli, fjk, f1j, flk,

tmp, tol2e, dentol)

= nxtask(nproc, 1)

if (otest) ijkl = ijkl + 1

call

next
end if

end do
enddo
endif
end do
end do

#%% Final conditional ‘fock_upd_blk’ calls removed from here **x

next =

end

nxtask(-nproc, 1)

Figure 4:

Subroutine fock 2e_a

18

a0 aoa

subroutine fock_2e_task(
geom, basis, oskel,
iatlo, jatlo, katlo, latlo,
iathi, jathi, kathi, lathi,
ijk_prev,
nfock, vg_dens, vg_fock,
jfac, kfac,
dij, dik, dli, djk, dlj, dlk,
£ij, fik, fli, f£jk, flj, flk,
tmp, tol2e, dentol)

BB BB P DB BB

Given an block of atomic quartets, fetch the necessary blocks
of the density matrices, call fock_2e_b to add in
in the fock matrix contribution and then accumulate the contributions.

integer ijk_prev(3,2)
integer vg_dens(nfock), vg_fock(nfock)

double precision dij(nfock,*), dik(nfock,*), dli(nfock,*),

$ djk(nfock,*), dlj(nfock,*), dlk(nfock,*)
double precision fij(nfock,*), fik(nfock,*), fli(nfock,*),
$ fjk(nfock,*), flj(nfock,*), flk(nfock,*)

... compute ilo, ihi, jlo, jhi, klo, khi, 1lo, 1lhi for block ...

call fock_2e_cache_dens_fock(

$ ilo, jlo, klo, 1llo, ihi, jhi, khi, 1lhi, ijk_prev,
$ nfock, vg_dens, vg_fock,
$ jfac, kfac,
$ dij, dik, dli, djk, dlj, dlk, fij, fik, fli, £jk, f1j, flk, tmp)
do iat = iatlo, iathi
... set ‘jattop?
do jat = jatlo, jattop
if (... ij pair survive screening ...) then
set ‘kattop’
do kat = katlo, kattop
set ‘lattop’
do lat = latlo,lattop
... set ‘otest’ if k1l pair survive screening and no
symmetry-equivalent interaction appeared before ...
if (otest) then
call fock_2e_b(basis, nfock, sijkl, tol2e,
$ dentol, q4, iat, jat, kat, lat,
$ ilo, jlo, klo, 1lo, ihi, jhi, khi, 1hi,
$ dij, dik, dli, djk, d1j, dik,
$ f£ij, fik, fli, fjk, f1j, f1lk)
end if
end do
end do
end if
end do
end do

Update F blocks
*xx First three ‘fock_upd_blk’ calls moved from ‘fock_2e_cache_dens_fock’ *¥x

call fock_upd_blk(nfock, vg_fock, ilo, ihi, jlo, jhi, jfac, fij, tmp)
call fock_upd_blk(nfock, vg_fock, ilo, ihi, klo, khi, kfac, fik, tmp)
call fock_upd_blk(nfock, vg_fock, jlo, jhi, klo, khi, kfac, fjk, tmp)
call fock_upd_blk(nfock, vg_fock, 1lo, 1lhi, ilo, ihi, kfac, fli, tmp)
call fock_upd_blk(nfock, vg_fock, 1lo, 1lhi, jlo, jhi, kfac, f1j, tmp)
call fock_upd_blk(nfock, vg_fock, 1lo, 1lhi, klo, khi, jfac, flk, tmp)

end

Figure 5: Subroutine fock_2e_task

19

oo ooaoaoaan

subroutine fock_2e_cache_dens_fock(
ilo, jlo, klo, 1llo,
ihi, jhi, khi, 1hi,
ijk_prev,
nfock, vg_dens, vg_fock,
jfac, kfac,
dij, dik, d1i, djk, d1j, dlk,
£ij, fik, fli, f£jk, flj, flk,
tmp)

BB BB BB BB

For the given ranges of i,j,k,1 fetch the six blocks

of the density matrices (ij,ik,il,jk,jl,kl) and accumulate
the fock matrix blocks. Scale the fock matrix blocks

by the necessary factors for Coulomb/Exchange.

Take advantage of caching by storing in ijk_prev() the
previous i,j,k ranges (1 assumed to be inner loop and

thus not to benefit from caching). If any of ij,ik,jk

have not changed then nothing need be done for those blocks.

integer ijk_prev(3,2) ! old values (i/j/k, lo/hi)
integer nfock ! No. of matrices

integer vg_dens(nfock), vg_fock(nfock) ! GA handles
double precision jfac(nfock), kfac(nfock)

double precision

$ dij(nfock,*), dik(nfock,*), dli(nfock,%),
$ djk(nfock,*), dlj(nfock,*), dlk(nfock,*)
double precision
$ fij(nfock,*), fik(nfock,*), fli(nfock,*),
$ fjk(nfock,*), flj(nfock,*), flk(nfock,*)
double precision tmp(x)
set ‘idim’, ‘jdim’, ..., to ‘ihi - ilo + 1°, etc
Blocks of D/F without 1 label ... caching is useful

*%x ‘fock_upd_blk’ and ‘dfill’ calls removed from following IF constructs **x

if (ijk_prev(i,1).ne.ilo .or. ijk_prev(2,1).ne.jlo)
$ call fock_get_blk(nfock, vg_dens,
$ ilo, ihi, jlo, jhi, dij, tmp)

if (ijk_prev(i,1).ne.ilo .or. ijk_prev(3,1).ne.klo)
$ call fock_get_blk(nfock, vg_dens,
$ ilo, ihi, klo, khi, dik, tmp)

if (ijk_prev(2,1).ne.jlo .or. ijk_prev(3,1).ne.klo)
$ call fock_get_blk(nfock, vg_dens,
$ jlo, jhi, klo, khi, djk, tmp)

Blocks with 1 label always change

call fock_get_blk(nfock, vg_dens,

$ 1lo, 1hi, klo, khi, dlk, tmp)
call fock_get_blk(nfock, vg_dens,
$ 1lo, 1hi, ilo, ihi, dli, tmp)
call fock_get_blk(nfock, vg_dens,
$ 1lo, 1hi, jlo, jhi, dlj, tmp)

#%% First three ‘dfill’ calls moved from IF constructs above **x

call dfill((idim#jdim*nfock), 0.0d0, fij, 1)
call dfill((idimxkdim*nfock), 0.0d40, fik, 1)
call dfill((jdimskdim*nfock), 0.0d0, fjk, 1)
call dfill((kdim*ldim*nfock), 0.0d40, flk, 1)
call dfill((idim*ldim*nfock), 0.0d40, fli, 1)
call dfill((jdim*#ldim*nfock), 0.0d0, f1j, 1)

ijk_prev(i,1) = ilo
ijk_prev(2,1) = jlo
similarly save current ‘klo”, ‘ihi’, ‘jhi’, ‘khi’ in ‘ijk_prev?

Figure 6: Subroutine fock_2e_cache dens fock 2e_task

20

