1 Overview

Generally speaking, the process of compiling can be devided into two parts. The first part
reduce the source program into a intermediat representation; The second part translate the
intermediat representation to machine dependent code. They are called as front-end and
back-end seperately.

The HPF front-end is a front-end which takes HPF program as input and give interme-
diate representaion of such program as output. In this paper we will introduce technical
considerations during our implementation of HPF front-end.

The project is divided into two parts,

e A parser for HPF language, which includes a full set of FORTRAN 90.

e A set of simple utility tools.

The parser is composed of a lexical analyzer, a grammar analyzer and basic functions
to establish intermediate representations of source code. The utilities includes displaying
these intermediate representations and translating them back to source program.

In the following sections, we will first introduce the background of our project, and then
address how the above two parts were implemented in our front-end. We provide interface
among deferent parts of the parser.

The intermediate representation serves as an interface between the two parts of the
front-end, it is the most important data structure used in our project. So we also give as
appendix the template used to represent statements and expressions of the source program.

2 HPF Language Parser

Before we go into details of implementing methods, let’s compare several possible ways of
constructing a parser.

2.1 The Main Implementation Techniques for Parser

To build a parser for computer language, we may use the following three methods.

We can program it totally in a certain high-level language (for example, C), which
includes lexical, syntactic analysis and intermediate representation generation. This can
improve the efficiency of code execution and the speed of compiling.

Nevertheless, given a current computer language, its syntax is so manyfolded and com-
plex that it is almost impossible to set up syntax analyzer in high-level language directly.
So no vendor adopts this way to analyze HPF syntax to our knowledge. Comparatively,
the lexical analysis is simple and easy. It is quite possible to be programmed in C language,
like it was domne in Sage++.

The second means is to make use of UNIX application programs, such as Lex (lexical
analysis program generator)[1] and Yacc (yet another compiler-compiler)[2]. After a long



time of practice by UNIX user, they are regarded as the mature and reliable compiling tools
with good performance. It is widely accepted in both academic and industrial world. For
example, the popular Perl language’s compiler is generated by Yacc.

On the other hand the program generated from Lex and Yacc may contain certain
redundant codes, which will decrease the efficiency of the program. This is the inevitable
cost caused by reducing developers’ work load.

The third methods we know is a even higher integrated compiler tool, called “Eli”,
published by the Compiler Tools Group in Colerado University in 1994[3].

Eli is a tool used in developing compiler front-end specially. It’s mechanism of imple-
mentation is similar to the above methods: once provided lexical and syntactic rules, it will
generate analyzer automatically. More over, it will allow users to provide the structure of
their intermediate representation and related definitions, then integrate them all together
as a parser in C language.

In a word, Eli packs and modularizes the procedures further, which allow programmer
concentrate on storing the information in a given program only. Compared with Lex and
Yacc, Eli makes things more convenient. Maybe it will become a widely used compiler tool
in the near future.

Comparing the above three methods, obviously the third one will greatly easy the whole
task. But considering that Eli is a new product which is still in developing, we adopt the
more mature techniques — Lex and Yacc instead of Eli.

Therefor the implementation process of our front-end parser can be divided into four
steps:

e The generation of lexical analyzing program
e The generation of syntactic analyzing program
e Constructing intermediate representation

e Sementics checking

The following subsections introduce these steps in detail.
2.2 Lexical Analysis
The lexical analysis of HPF is divided into four parts:

e Recognizing label

e Recognizing special characters
e Recognizing identifier

e Recognizing digit

They are treated separately in our front-end.



i. Label

In the lexical analyzing label is recognized in two situations: one is at the head of a line,
which is matched by the following regular expression:

[ \tIx[0-9]{1,5}[ \tl+ { ......
return(LABEL) ;
}

the other is the label located in the statement, for example,
goto 100

where the label 100 is recognized in the form of digit-string and reduced into label
according to rules in the syntax analyzing.

ii. Special characters

The special characters of HPF includes operational sign, parenthesis, separating char-
acter and various delimiter. For every special character there is a Lex rule matching it. For
example,

"y { return(RIGHTBRACKET) ;
}

ngn { return(PLUS)i
}

ili. Identifier

The character-string beginnings with alphabets composed by the alphabets, digits and
underscores is called identifier. It includes HPF keywords, internal function name and vari-
able name which are all matched by identifier, that is {NAME} in lexical analysis. The pro-
cedure keynameDeal m() distinguishes one from the other by looking up table KEY WORD_G
and FUNC_TAB G .

iv. Digit

Besides the preceding items integer constant, real constant, double precision constant
etc. are all recognized by regular expressions in Lex. For example,

{RealliteralConstant} {
yylval.charp=copys(yytext);
return(REAL_LITERAL_CONST);



{DoubleLiteralConstant} {
yylval.charp=copys(yytext);
return(DOUBLE_LITERAL_CONST) ;

}

Conflicts may occur in Lex rule-set. For example, the I in format statement of HPF
represents the input (output) format of a integer,whereas it is expected to be used as
ordinary variable in other statements, so conflict comes out. It is desirable to have several
sets of lexical rules to be applied at different time in the input. There are mainly two
methods to cope with this case:

i. Using a flag

This may be a flag explicitly tested by the programmer’s action code; such a flag is the
simplest way of dealing with the problem, since Lex is not involved at all. For example in
the common statement of Fortran 90, when common area name is omitted between the two
virgule, it forms an unnamed common area, such as:

common //m,q(3,3),//a,b ;

while symbol // also represents connecting string symbol, for example "ab"//"cd".
The rules using flag to distinct them are :

{NAME} {

case 3: common=1; /* common */
break;
( which is in function keynameDeal_m( ). )

"/ {
if (common==1) {
yyless(yyleng-1);
return(DIVIDE);
}

else
return(CONCAT) ;

ii. Using initial conditions



It is to have Lex not user remember the flags as initial conditions on the rules. Any rule
may be associated with a start condition. It is only be recognized when Lex is in that start
condition. To handle the same problem with start conditions, each start condition must be
introduced to Lex in the definitions section with a line reading

%start namel name2...

The word start may be abbreviated to s or S. The rule <namel> ezpression represents
the expression is only recognized when Lex is in the start condition namel. Executing the
action statement

BEGIN name?;

will change the start condition to name?.

BEGIN 0; will reset the Lex automation interpreter to the initial condition. A rule may
be active in several start conditions. So, <namel,name2,name3> is a legal prefix, and the
relationship among them is or. Any rule not beginning with the < > prefix operator is
always active.

Considering HPF supports free format and fixed format, our front-end actuates the pro-
cess of fixed format by command option -fixed, which is implemented in lexical analyzing.

2.3 Syntactic analysis

When using Yacc to construct syntactic analyzing program, there are two important things:
first, we should contain all the syntactic rule-set in the grammars of this language inte-
grately; second, we have to try to avoid or reduce the conflicts between rules as possible as
we can.

HPF[4] extends the data distribute and data paralleling statements on the base of For-
tran 77 and Fortran 90[5]. It’s grammar is so enormous that it is an extremely difficult
task to write the Yacc source program. In our front-end, the grammars are based on the
HPF1.0 syntactic rules published by HPPF in 1993. They are divided into five parts:

e basic frame of a program unit
e specification statements

e executable statements

e data distribute statements

e basic data type

The aim of dividing into five parts is to make the syntactic rules clear as well as make
a basement for the next step — constructing AST.

Because of the ambiguity lying between the rules, Yacc detects and reports two kinds
of conflicts: shift/reduce conflict and reduce/reduce conflict. Handling conflicts is a knotty
problem faced by the developers of generating large analyzing program with Yacc.

In general there are three basic treating methods:



i. Using precedence and associativity

Programmer may declare the precedence and associativity of operators. They are at-
tached to tokens in the declarations section. This is done by a series of lines beginning with
a yacc keyword: %left, /iright, or nonassoc, followed by a list of tokens. All of the tokens
on the same line are assumed to have the same precedence level and associativity; the lines
are listed in order of increasing precedence or binding strength. The keyword %prec can
change the precedence level associated with a particular grammar rule.

This information is sufficient to allow Yacc to resolve the parsing conflicts in accordance
with these rules and construct a parser that realizes the desired precedence and associa-
tivities. However, this method is very limited: on one hand, because the declarations,
hright, fiprec, etc., are associated with special terminal symbols usually, they are suitable
in the parsing of arithmetic expressions, while for the conflicts caused by the other rules
it is powerless; On the other hand, the conflicts resolved by precedence are not counted in
the number of shift /reduce and reduce/reduce conflicts reported by Yacc. This means that
mistakes in the specification of precedences may disguise errors in the input grammar, while
they are unknown to user. So it is a good idea to be sparing with precedences, which is the
suggestion in many Yacc manuals.

ii. Rewriting syntactic rules

This is the second method that can remove the conflicts with same input. Of course
rewriting only involves the syntactic rules causing conflicts and related. In general this
is a small part of the whole grammars. By the practice of constructing HPF s syntactic
rule-set the author regards it as the most reliable method. The rewrite syntax ensures that
the parser is actually doing what was intended. The basic foundation of rewriting is the
principle of ”look ahead one symbol” in Yacc, according to which the conflicts between
the rules are removed. Using this way the author decrease the original 6272 reduce/reduce
conflicts, 158 shift /reduce conflicts to present 25 shift /reduce conflicts and ensured that the
input set recognized by the new syntax rule-set is same with the original.

ili. Depending on default rules provided by Yacc

It is not removing conflicts by user’s intervene but approving the conflicts. Here, Yacc
invokes two disambiguating rules by default:

e In a shift/reduce conflict, the default is to do the shift;

¢ In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule( in
the input sequence).

With the two default rules whatever conflicts exist Yacc still generates an analyzing
program. However, the reduce/reduce conflicts handled by the second rule will cause serious
error in syntactic analyzing which may reduce an input sequence to an in correct syntax



rule. For this reason the second default rule is not approved by the Yacc users. While the
rule is often feasible to shift /reduce conflicts. The existence of this kind of conflict carefully
checked by user doesn’t affect the correctness of syntactic analysis. Being tested by a suite
of examples the left six shift/reduce conflicts following the first default rule don’t affect the
validity of analyzing program in our front-end.

Another extremely difficult and important area in syntactic analysis is error handing.
Yacc provides a simple, but reasonably general being able to recover the analyzing program,
feature. The token name ”error” is reserved for error handling. This name can be used in
grammar rules; in effect, it suggests places where errors are expected, and recovery might
take place. Such as

specification...
: specification cmnt
| specification... spcification cmnt
| error {

errResynch ( ) ;

}

Here, when there is an error the parser attempts to skip over the statement. At the same
time this rule will be reduced and any error handing action associated with it performed.
In general it is seldom acceptable to stop all processing when an error is found; it is more
useful to continue scanning the input to find further syntax errors. This leads to the problem
of getting the parser ”"restarted” after an error. A general class of algorithms to do this
involves discarding a number of tokens from the input string, and attempting to adjust the
parser so that input can continue.

In Function

errResynch( ) A
throw_away() ;
yyerrok;
yyclearin;

}

throw_away( ) is the basic resynchronous function in which when the error occurs all
tokens after the error and before the next carriage are discarded to input from the next
legal statement.

The function yyerrok be used to force the parser to believe that an error has been fully
recovered from and resets the parser to its normal mode.

The function yyclearin find the correct place to resume input and cleared the previous
lookahead token.

The followings error-handing program is called automatically by Yacc:



yyerror(str)
char *str;

{
globeErr_g=1;
printf("line(/d) syntax error:jd %s\n", lineNum_g,
yychar, lxyError_m(yychar) );

}

The external integer variable yychar contains the lookahead token number at the time
the error was detected; this may be of some interest in giving better diagnostics. Function
lxyError m( ) change the token number to correspondent word (the table is listed in file
err.file) and return a character-string. So yyerror reports the concrete information of
error diagnostic: line number and error attribute.

2.4 Constructing AST

The intermediate representation selected by our front-end should reflect all information in a
source program. So it is very important to define the data structure of the intermediate rep-
resentation. Here we adopted the internal definition of Sage++ and made some extensions
and modifications.

Sage++ is upgraded from Sigma in 1994. It establishes an AST after analyzing the
source program of pC++ and Fortran , then stores it into the file whose name is same as
the source file but with the extent name .dep. It also provides some auxiliary libs for the
interface to back-end.

As to the concrete defination, there are descriptions in documents HPFfe: a Front-end
for HPF and HPFfe: User’s Guide.

Here we only address how AST is built up on these data structures. The abstract syntax
tree (AST) of a HPF program is constructed by inserting functions, such as makenode(),
behind the relative rule in Yacc source file. When the source code matches certain rule,
functions behind this rule will be executed and build some nodes in the tree.So these routines
are important to construct AST. According to the classification of nodes, the routines are
divided into five groups: building statement list(BFND list); building expression list(LLND
list); building symbol table; building type list; building lable list.

The following are some basic routines in each group:

e Building statement list

PTR_BFND makeBfnd(PTR_FILE fi, int node_type)
Make a new statement node;

PTR_BFND setBfndList(PTR_BFND old_list, PTR_BFND stat)
Link together an old BIF node list with a new one;

e Building expresion list



PTR_LLND makeLlnd(PTR_FILE fi, int node_type,PTR_LLND 111,PTR_LLND 112,

PTR_SYMB symb_ptr)
Make a new expresion node;

PTR_LLND set_11_list(PTR_LLND old_list,PTR_LLND node,int 11l_type)
Attache a new node to a given old_list and make sure that the old_list
is of the same type as 1ll_type;

e Building symbol table

PTR_SYMB lookupSymb(char *string, PTR_SYMB symb)

Look up a symbol called *string from "symb" in the symbol table;
PTR_SYMB makeSymb (PTR_FILE fi,PTR_BFND scope,int node_type,char *string,
int decl)

Make a new symbol node in the symbol table if it doesn’t exist,

otherwise return the location of the node in the ST (it calls lookupSymb());

PTR_SYMB makeSymbVar (PTR_FILE fi,PTR_BFND scope,int local, char *string,
int decl)

Make a symbol node as a variable (it calls makeSymb());
PTR_SYMB set_id_list(PTR_SYMB old_list,PTR_SYMB id)

Take an old id list and run down the list attaching new id at the end;

e Building type list

PTR_TYPE make_type (PTR_FILE fi, int node_type)
Make a new type node;

e Building lable list

PTR_LABEL make_label (PTR_FILE fi,long 1)
Make a new label node for Fortran;

PTR_LLND make_llnd_label (PTR_FILE fi,int node_type,PTR_LABEL lab)
Make a new low level node for label;

The whole AST is constructed on the base of these series of routines.

2.5 Sementics Checking

Sementics checking aims at getting the comprehensive AST in sementics by appending and
fixing the information in AST and ST genetated in the syntacis analysis and check if the
HPF source program is correct in sementics. This procedure is static.

Basic concern in sementics checking is:

o Whether a symbol is refered legally according to its scope and attribute;



o Whether a variable is refered legally according to its scope, attribute and type;
o Whether a lable is refered legally according its scope.

Due to the usage of module, interface and contained subroutine in HPF there are some
knotty problems in sementics checking. For example, in the case of module, a memory unit
may be shared by several routines, at the same time USE statment allows rename of the
shared variable in the current routine and makes some limitation on shared entities in the
module. So the management of the ST is complex in this case.

In syntactic analysis we employ stack to identify the scope of a symbol. At the beginning
of a program unit, the head-statment is pushed into the stack. It will not be popped until the
end of the program unit. This statement in stack indicates the scope of current symbols.But
once module occurs, we would have to do some special operations:

e For statements as
USE module_name,0ONLY: [local_name=>]use_name,

a new symbol, whose type and attribute inherits use_name and whose name is "use_name”,
is inserted in the ST within current scope. If the use_name is renamed in USE state-
ment with local name, it will get the new name ”local name”; otherwise it will be
”use_name”.

e For statements as
USE module_name [local_name=>use_name],

we need push the head-statement of the module "module_name”. Each module would
have a use_list which indicates the modules which are used, so we trace the use list
and push all the mudules. If some variables are renamed, the new symbols need to be
added in ST as the above way. Thus, when the end statement comes, pop the stack
until the first non-module head-statement.

Sementics Checking supports all internal functions and procedures in HPF 1.0. These
routines are stored in file ”intrinsic.f” as the liberary fuctions. When certain internal funtion
is called, sementics checking finds the its interface name in file "intrinsic.f” and locate at
the original with proper number and type of arguments, at the same time the matching
between dummy arguments and actual arguments is checked.

Due to the employment of module in HPF Specification, it is important to keep the
integration of a program in the condition of not recompiling the whole program. Dependent
compiling is adopted to support the partitional compiling technique. That is, if the source
program fl uses module m, while m is defined in program f2, fl1 is dependent on f2. So
when compiler does sementic checking for program f1, it would check 2 first and address
the dependent relationship between fl1 and f2.

In a word sementic checking enforces the AST and ST and returns enough information
to the programmer to correct his program.
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3 Utility Tools

Like Sage++, we allow the generated intermediate representations to be written onto disk
file for future use. So we also provide simple utility tools for user to check the generated
intermediate representations of a source program.

There are two utilities avalible to serve this purpose. One is similar with dumpdep in
Sage++, which displays the intermediate representations in a plain text mode.The other
omne is used to unparse the intermediate code back to the source program.

3.1 Display the Intermediate Representation

To show AST to users in a readable format, we develop a tool displaying the IR— dumpdep.
Dumpdep displays the contents of the AST in the form of some two dimentional tabels,
such as statement table, expression table and so on and show the relationship among the
data in these tables. As to how to read the output of dumpdep, please refer to "HPFfe:
User’s Guide”. Here we just introduce the implementation of dumpdep briefly.

Firstly the intermediate representation is recovered to the memory from the disk file,
then some conversion is done on the AST and results are written into a new readable file.
Though there are different tables in the AST, their methods of convertion are similar. For
instance, in the case of BFND table, we access the node from the beginning along the thread
till a null node. Thus we get all BIF nodes. Then we convert the fields with different types
in each node into the readable form.

e For fields with type int and char, just show their value;

e For fields with type node pointer, if the pointer is null, convert it’s value to b e -1;
otherwise, show it’s node ID. To distinguish different node pointer, a flag is added
after the ID number. ”-B” indicates BIF (statement) node; ”-E” indicates LOW
LEVEL(expression) node; ”-S” indicates SYMBOL node; ”-T” indicates type node;
?.L” indicates LABLE node; ”-C” indicates COMMENT node. In the case of value

-1, 7= 7 is shown.

3.2 Unparse

We use table driven method, the same technique as in Sage++, to unparse the intermediate

representation. Each kind of bfnd node and llnd node is predefined as a series of commands

in a global table. An executor written in C will interpret these commands one by one.
The followings are several commands for unparsing a bfnd,

AERROR : Error ; syntax : JERROR’message’
hCMNT : the comment attached to a bif node
AWNL : NewLine

Wk : *%’ (Percent Sign)

WTAB : Tab
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4IF : If: 4IF (condition) then_bloc [4ELSE else_bloc] 4ENDIF

%ELSE : Else

%ENDIF : End of If

hSYMBID : Symbol identifier

WLL1 : Low Level Node 1

WLL2 : Low Level Node 2

WLL3 : Low Level Node 3

WL2L2 : Low Level Node 2 of Low Level Node 2
%BLOB1 : All Blob 1

%BLOB2 : A1l Blob 2

The commands series for ASSIGN statement is defined as following:
%CMNTYIF (JLABEL !'= YNULL)}LABEL}ENDIF},PUTTABYLL1 = }LL2J%NL

which means the executor will first unparse the comment node attached to the statement,
and then, if label exist, unparse the label. Finally, unparse the left hand side of the statement
and the right hand side of the statement seperately.

The definition of the command series will be corresponding to the definition of each
bfnd and llnd.

The advantage of doing so is that once the definition of the bfnd or llnd is changed, only
the command series need to be changed, with the executor program untouched.

4 Conclusion

In the implementation of our front-end we try to make it complete and stable, so that
it could serve for the further work efficiently and enduringly. At the same time, we try
to accomplish the work with minimum cost, so many features in previous systems were
inherited.

We install this suite of front end on 7 platforms successfully with various conbination of
cc, gee, lex, flex(2.5.2), yacc, bison. (The 7 platforms are descripted in HPFfe: a Front-end
for HPF”.)

A Internal Definition
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