HPF program Other language program

Language parser ‘

Intermediate Representation

Language trandlation tools

HPF compiler ‘
Fortran node program PCRC run-time library
Interface
Node machine compiler Fortran ‘
// - -~
Object code / -
T Voo=-
MPI library

Distributed memory machine

Figure 1: System overview

1 Run-time based HPF compilation

The HPF compiler is embeded in a compiler construction framework showed in the figure
system overview. Currently it has already handled different HPF language features. In the
following, we give an introduction of the compiler construction framework, then discuss the
major issues considered in the compiler implementation.

1.1 Compiler construction framework

The compiler construction framework, called frontEnd system, is an extendible software
package for constructing programming language processing tools. The system analyzes the
input source language, and converts it to a uniformed intermediate representation (IR),
which later can be manipulated by a set of functions provided in a C++ class library.

We can see the structure of the package from the following components:

e Language parsers The language parsers are used to convert program source code to
intermediate representation (IR). The IR is designed to be suitable for multipule pro-
gramming language. We already have an HPF language parser (including a semantics
checking module to check all constrains in language definition) and a Java language



parser. A C+4++ parser is being developed. So the usage of the package will certainly
beyond the HPF compiler itself as more compilation work is involved.

e Package tools These tools are used for displaying the itermediate representation.
Two of them are available now. One is to unparse the IR back to different language
source code for which the parse tree is generated. The other one is to dump IR in
plain text or HTML format for debugging purpose.

e C++ class library A C++ class library was extended from Sage++ class library.
In the library, the supported language component is mapped to different C++ class,
with corresponding member functions provided to perform standard transformation,
such as insert or delete a statement on the syntax tree.

e Testsuite An extensive testsuite is designed for different language parsers. For exam-
ple, the package include 1) a “first order” exhaustive syntax test, in which each syntax
rule are used at least once. 2) all example programs from “Migrating to Fortran 90”
and “HPF handbook”. as test program for the HPF parser.

The package has been autoconfigured and tested on different platforms, including: IBM
AIX, SUN OS/Solaris, DEC OSF, HP HP-UX, SGI IRIX and PC Linux.

1.2 Compiler implementation

The implementation of the compiler is based on our classification for the communication
pattern needed in each computation.

1.2.1 Communication detection

We use FORALL statement as example and use LHS to denote array reference in the left-
hand-side of the FORALL assignment, RHS for the right-hand-side. And we use “owner
computes” rule to partition the computation, then the communication pattern will be de-
cided by the FORALL index range, index referrence in LHS, RHS, and the data mapping
directives for the LHS, RHS.

A comprehensive detect-communication algrithom is used in our compiler, possible com-
munication patterns include:

e No communication: The corresponding LHS and RHS array elements needed to do
calculation are located on the same machine.

e Shift communication: The RHS data need to move in parallel with same distance
along one or more dimensions. The communication detection algorithom is also used
to caculate the actual shift amount.

e Remap communication: The RHS data movement is among different dimension of
the array or the distance is not equal in the same dimension.



The communication pattern will determine two importand aspects in the generated node
program: 1) memory allocation and 2) execution control for computation/communication.

1.2.2 Memory management

There are two memory allocation strategy used in our compiler: 1) dynimicaly allocate
temproray array. 2) allocate “ghost area” along the RHS array which need a small amount
of shift on the processor grid.

The first method is useful to handle remap communication. Usually, a data used in
the computation is allocated according to HPF TEMPLATE size distributed on each proces-
sor. When remap is needed, a temprary array will be allocated with the same alignment
and distribution as the LHS array. The RHS need communication will be copied to the
temporary array from its old distribution, so the compuation can be carried on.

The second method is used to efficently handle shift communication. As compiler can
detect the shift amount for each RHS array, a “ghost area” will be set along each array
need shift. Then whenever required by the computation, only “edge” elements of the array
need to be sent to the neighbor processor. This will save memory copy time compared with
the remap case.

In addition to allocation method, the memory management need to take care of two
levels of address translation: 1) The global address and local address. 2) The node program
use linearized array index to facilitate procedure call with array varibale as argument.

1.2.3 Execution control

The execution control in node program have to deal with DAD initialization, expressions
and assignment, execution control in source program, input/output and procedure call.

Given PCRC-runtime Fortran interface, DAD initialization is strightforward. The ex-
ecution control need to be remained in the node program. The rest three items can be
considered as “computation” in the source program. Different kinds of communication
may happen as we described previously. The difference among them are: in procedure call
the dummy argument will be treated as the LHS and actual argument as RHS; in I/O
statement, remap is always used to send data to or from the root processor.

Particularly, linearization of array index and the DAD handler provided in runtime
library will help to implement the transcriptive features of HPF procedure, such as INHERIT
derictive, effectively. Copy-in and copy-out in neither caller nor callee are necessary.

1.2.4 Examples

We use an example to illustrate the actual transform needed in node program. Suppose we
have the following program header:

PROGRAM MAIN
REAL X(1:205), Y(-12:161)
'HPF$ PROCESSORS P(2)



'HPF$ TEMPLATE TX(-2:205),TY(-17:190)
'HPF$ DISTRIBUTE TX(BLOCK) ONTO P
'HPF$ DISTRIBUTE TY(BLOCK) ONTO P
'HPF$ ALIGN X(i) WITH TX(1%i+0)

'HPF$ ALIGN Y(i) WITH TY(1*i-14)

The communication detection will find a FORALL statement like:
FORALL (i=8:112:1) X(i) = Y(1*i-1)

does not need communication, so the corresponding node program for the FORALL
statement will be:

pcrc_irg0 = pcrc_new_range_loop (8,112,1,1,0,pcrc_range (pcrc_dad_&
&X,1))
call pcrc_loop_bounds (pcrc_irg0,pcrc_1lil_i,pcrc_liu_i,pcrc_lis_i)
pcrc_sdd0 = pcrc_new_array_section (1,pcrc_dad_X)
call pcrc_set_array_triplet (pcrc_sdd0,1,8,112,1,pcrc_dad_X,1)
call pcrc_coef (pcrc_dad_X,1,8,112,1,1,0,0,pcrc_u00,pcrc_v00)
call pcrc_coef (pcrc_dad_Y,1,8,112,1,1,(-1),0,pcrc_ul0,pcrc_vi0)
if (pcrc_on (pcrc_group (pcrc_sdd0))) then
do 1i=0,(pcrc_liu_i-pcrc_lil_i)/pcrc_lis_i,1
pcrc_sdxl = pcrc_v10+pcrc_ulO*i
pcrc_sdx0 = pcrc_v00+pcrc_u00*i
X(pcrc_sdx0) = Y(pcrc_sdx1)
enddo
endif
call pcrc_delete_array (pcrc_sdd0)
call pcrc_delete_range (pcrc_irg0)

In the program segment, pcrc_new range_loop is used for caculating local loop bounds,
pcrc_coef for address translation. The actual compuation is guarded by an IF statement
to make sure it owns the LHS array.

If we change the alignment a little, as:

'HPF$ ALIGN Y(i) WITH TY(1*i-12)

A shift communication is needed. The node program will do the following thing more
before the computation:

pcrc_gtl_Y(1) = 0
pcrc_gtu_Y(1) = 2
call pcrc_write_halo (pcrc_dad_Y,pcrc_gtl Y,pcrc_gtu_Y)

and caculate the address for the RHS array Y with:

call pcrc_coef (pcrc_dad_Y,1,8,112,1,1,(-1),2,pcrc_ul0,pcrc_vi0)



The Y should be 2 emlement larger than the one in the previous case. The pcrc_write halo
will send the edge data to the accurate position in the next processor.
If we further change the distribution of the array,

'HPF$ DISTRIBUTE TY(CYCLIC) ONTO P

a remap is needed. The node program will be:

pcrc_irg0 = pcrc_new_range_loop (8,112,1,1,0,pcrc_range (pcrc_dad_&
£X,1))

call pcrc_loop_bounds (pcrc_irg0,pcrc_1lil_i,pcrc_liu_i,pcrc_lis_i)
pcrc_sdd0 = pcrc_new_array_section (1,pcrc_dad_X)

call pcrc_set_array_triplet (pcrc_sdd0,1,8,112,1,pcrc_dad_X,1)
call pcrc_coef (pcrc_dad_X,1,8,112,1,1,0,0,pcrc_u00,pcrc_v00)
pcrc_sddl = pcrc_new_array_section (1,pcrc_dad_Y)

call pcrc_set_array_triplet (pcrc_sddi,1,7,111,1,pcrc_dad_Y,1)
pcrc_tddl = pcrc_new_array_section (1,pcrc_dad_X)

call pcrc_set_array_triplet (pcrc_tdd1,1,8,112,1,pcrc_dad_X,1)
pcrc_tbsl = pcrc_real_alloc (pcrc_size (pcrc_tddi))

call pcrc_reset_array_base (pcrc_tddl,pcrc_real_stack(pcrc_tbsi))
call pcrc_remap (pcrc_tddl,pcrc_sddi)

if (pcrc_on (pcrc_group (pcrc_sdd0))) then

do 1i=0,(pcrc_liu_i-pcrc_lil_i)/pcrc_lis_i,1
pcrc_sdx0 = pcrc_v00+pcrc_u00*i
X(pcrc_sdx0) = pcrc_real_stack(pcrc_tbsil+pcrc_sdx0)
enddo

endif

call pcrc_real_free (pcrc_tbsi)

call pcrc_delete_array (pcrc_tddil)

call pcrc_delete_array (pcrc_sddil)

call pcrc_delete_array (pcrc_sdd0)

call pcrc_delete_range (pcrc_irg0)

This time, a temporary array is allocated from pcrc_stack, starting from pcrc_tbsi.
pcrc_remap is used to copy original Y to the new position, so the computation can be carried
on.



