Published in Fortran Journal, pp. 2-6, March/April 1996.

shpf: a Subset High Performance Fortran compilation
system

John Merlin, Bryan Carpenter*and Tony Hey'
Department of Electronics and Computer Science,
University of Southampton,

Southampton, SO17 1BJ, UK.

email: jhm@ecs.soton.ac.uk

February 1, 1996

Abstract

shpf is a public domain Subset High Performance Fortran compilation system.
This paper gives a brief overview of its structure, the language it supports, and the
optimisations that are currently implemented and planned. It also contains details
of how to obtain shpf and a related tool, ida, which is an inter-procedural analyser
that can help users convert existing programs into efficient HPF programs.

1 Introduction

‘shpf’ is a public domain Subset High Performance Fortran (HPF) compilation system.
It must be used in conjunction with a Standard Message-passing Interface (MPI, [1])
implementation and a Fortran 90 compiler, and is portable to any computer or computer
network that has these. It has been developed at Southampton University by enhancing
the earlier ADAPT system [2, 3], which originally accepted Fortran 90 supplemented by
ad hoc data distribution extensions, to HPF.

shpf was released to a number of test sites in June 1995 and is now publically available
by anonymous ftp. Now that the initial version of the system is finished, we intend to
use it as a testbed for the research and development of advanced optimisations for HPF
and for the implementation of new language features.

This paper gives a brief overview of shpf, the language it supports, and the optim-
isations that are currently implemented and planned. It also contains details of how to
obtain shpf and a related tool, ida, which is an inter-procedural analyser for Fortran
programs that can help users convert existing programs into efficient HPF programs.

*Present address: NPAC, Syracuse University, 111 College Place, Syracuse, New York 13244-4100,
USA. Email: dbc@npac.syr.edu.

tWe gratefully acknowledge support from the Engineering and Physical Sciences Research Council
under grant number GR/J89507, from the JISC New Technology Initiative, and from NAG Ltd.



2 Overview of shpf

Figure 1 shows the structure of shpf. The shpf release package contains two main
components: a translator, ‘ADAPT’, and a runtime library, ‘ADLIB’. The translator
transforms a Subset HPF program into an SPMD (Single Program Multiple Data) pro-
gram that runs on each node or process of the target computer. The latter program is in
standard Fortran 90 and can be compiled by a normal Fortran 90 compiler for the tar-
get machine. In it, declarations for distributed arrays are transformed into declarations
for just the locally-stored segments of the arrays, and operations and assignments are
restricted to locally stored data. Accesses to non-local data are achieved by calls to com-
munications routines in the ADLIB runtime library. These routines perform high-level,
array-based collective communications rather than low-level point-to-point communic-
ations. Further details of ADLIB are given in Section 5, and [3] gives details of the
translation performed by ADAPT.

Subset HPF
program

ADAPT
translator

|

|

|

o

: Fortran 90

| node program
|

|

|

|

ADLIB
| untime library,
shpf l /
Fortran 90
compiler, linker

executable
output

Figure 1: The shpf compilation system

The shpf release package provides the source code for ADAPT and ADLIB. ADAPT
is written in C, and ADLIB in C4++ with communications implemented in the standard
message-passing interface, MPI [1]. Therefore shpf can be used on any platform that has
a C++ compiler and an MPI installation—to compile and run ADLIB—and a Fortran 90
compiler to compile the output of the translator. Public domain implementations of C++
and MPI are available, as detailed in the installation notes.

The system is used via two Unix scripts, shpf and hpfrun, which provide commands
for respectively compiling and linking, and running, HPF programs. The shpf command
has been designed to be similar to commands for standard Unix compilers. For example:

shpf -o md md.hpf timer.hpf

compiles and links the HPF program contained in source files md.hpf and timer.hpf,
and writes the executable output to file md.



hpfrun 4 md

runs it on 4 processors. A Unix ‘manual page’ is provided for the shpf command.

3 Language supported by shpf

shpf accepts the official ‘Subset HPF’ language, as defined in Section 8 of [4], with a few
restrictions that are listed in the release notes [5]. It recognises full HPF, including full
Fortran 90, and gives error messages upon encountering unsupported features.

From the outset, a primary objective was to implement Subset HPF’s data mapping
features (i.e. alignment and distribution) in their full generality, and this has been fairly
well achieved. For example, there are no restrictions on the number of levels or the
complexity of alignments; all distribution formats are supported, in any number of data
and processor array dimensions (up to the Fortran limit of 7); distributed data can be used
in any context in executable statements, including subscript expressions; any number of
levels of indirect addressing, or equivalently vector subscripting, are allowed; regular
and irregular sections of arrays can be passed as arguments to procedures; and dummy
arguments can have a different distribution from the corresponding actual arguments.

Parallel execution is obtained from the use of Fortran 90 array syntax, that is, array
expressions and assignments, array external and intrinsic functions, and the WHERE state-
ment and construct. Shortly we will also implement user-defined ELEMENTAL procedures,
allowing functional as well as data parallelism—see Section 9. DO-loops are not parallel-
ised. Some speedup may be observed for DO-loops enclosing assignments to distributed
array elements, but this is ‘incidental’ parallelism, due to the fact that iterations do not
perform any assignment on processors that do not store the element(s) being assigned.
The HPF FORALL statement is supported but is sequentialised in the current version.

Foremost among the language features not supported are sequence and storage asso-
ciations, namely the EQUIVALENCE statement, partitioning a common block differently in
different program units, reshaping or resizing arrays across procedure boundaries, and
associating an array element actual argument with a dummy array. We have neglected
these features because we do not believe that they can be efficiently supported, in general,
for distributed data in HPF.

4 Converting ‘dusty deck’ Fortran programs for shpf

As we have indicated, an HPF program that is to be compiled by shpf should use array
syntax as much as possible in order to maximise its exploitation of data parallelism, and
furthermore it must not contain any sequence or storage associations. It is evident that
to convert a ‘dusty-deck’ Fortran program into efficient HPF will often require some extra
rewriting beyond the mere addition of HPF data mapping directives. Fortunately the
required modifications are ‘clean’, in that they should make the code clearer and perhaps
also more concise, as well as improving its performance.

However, the conversion task is considerably complicated by the need to analyse the
program globally (i.e. across procedure boundaries) for such purposes as finding and
removing sequence and storage associations, determining efficient data mappings, etc.

As a by-product of developing shpf we have also developed a tool, ida, which can
greatly assist this task. It is an inter-procedural analyser for Fortran programs which
provides information such as call graphs, traces of variables, common block partitioning
and usage, and procedure references and argument associations. It accepts the same



input language as shpf. It is described in [6], which also gives a case study of its use in
converting a 1600 line Fortran 77 conjugate gradient solver to HPF.
Like shpf, ida is available in the public domain, as described in Section 7.

5 ADLIB

The runtime library, ADLIB, provides high-level, array-based collective communications.
It is a C++ class library with communications implemented in the standard message-
passing interface, MPI [1]. As well as providing HPF runtime support, it can also be
used directly for distributed data parallel programming in C++. [7] describes its class
structure and functions. Here we shall briefly describe its Fortran 90 interface, via which
it is invoked by the output programs generated by ADAPT.

All data communications, except for those implicit in array intrinsic functions, are
implemented by one of 3 subroutines: AD_REMAP, AD_GATHER and AD_SCATTER.!.

AD_REMAP copies a regular section of an array to a regular section of another array,
where the input and output arrays may have any HPF mapping (i.e. alignment and dis-
tribution). For example, if the following array assignment requires data communications:

A (L1:U1:S1, 10, L2:U2) = B (:, L3:U3)
then it is translated to this ADLIB call in the output program:
CALL AD_REMAP (A, A_MAPVEC, B, B_MAPVEC)

A_MAPVEC and B_MAPVEC are ‘mapping vectors’, which completely describe the HPF map-
ping of a whole array or a regular section. AD_REMAP also handles broadcasts and com-
munications of scalar values, including array elements, which are special cases.

AD_GATHER and AD_SCATTER copy an irregular section of an array (that is, an array
reference with vector subscript(s)) to a regular section, or vice versa, where the input
and output arrays may again have any HPF mapping. For example, if VEC1 and VEC2
are vectors, then:

A (L1:U1:s2, :) = B (VEC1, VEC2)
1s translated to:

CALL AD_GATHER (A, A_MAPVEC, B, B_MAPVEC, &
VEC1, VEC1_MAPVEC, VEC2, VEC2_MAPVEC)

Incidentally, these routines require that the mapping of each vector subscript argument
matches that of the array dimension it subscripts, which the translator arranges by
remapping if necessary.

ADLIB also provides distributed versions of the Fortran 90 array intrinsic functions,
for example MATMUL, DOT _PRODUCT, SUM, ALL, MAXVAL SHIFT, SPREAD, etc, which in general
accept arguments that are regular sections of arrays with any HPF mapping. Finally,
ADLIB also contains routines for initialisation and cleanup, etc.

Currently there are no special routines for I/O, so all of the data in an I/O statement
are buffered on the processor performing the I/O. This is expensive in memory usage,
and we hope to improve upon it in a later version.

1In fact there is a separate entry point to each of these routines for every possible argument datatype,
which is required to satisfy strict Fortran 90 argument type checking.



6 Current optimisations in shpf

In developing the initial version of shpf we have concentrated mainly on functional-
ity rather than optimisation. However, we have already implemented some basic but
important optimisations.

Foremost among these is that the translator always generates in-line expressions,
rather than external runtime library calls, for locality tests and for converting subscripts
to local subscripts with respect to the locally-stored array segment. Furthermore, the
translator performs extensive expression simplification in these contexts in order to make
these expressions as simple as possible. Tests show that this is a very important optim-
isation. For example, for a particular test program in which the timed region only makes
local accesses to distributed arrays (that is, it involves no communications), shpf gener-
ates code that is between 12 and 130 times faster than that of two other HPF systems
with which it was compared [8]. Both of the other systems use external library calls for
subscript conversion and locality tests, and the observed performance difference is wholly
attributable to this factor.

Other ‘basic’ optimisations that have been implemented recently include better de-
pendence testing to avoid the introduction of unnecessary intermediate temporaries in
assignments, and the elimination of duplicate ‘mapping vectors’. [8] gives some evaluation
results obtained prior to implementing the last 2 optimisations.

7 Availability of shpf and ida

shpf can be obtained by anonymous ftp from:
ftp.ccg.ecs.soton.ac.uk, in directory /pub/packages/shpf

or via the World Wide Web from:
http://www.ccg.ecs.soton.ac.uk/shpf/shpf.html

or by email from jhm@ecs.soton.ac.uk. The release package contains the source code
for ADAPT and ADLIB, Unix scripts shpf and hpfrun, a Unix ‘manual page’ for shpf,
installation and release notes, and a large set of HPF example and test programs.

ida can be obtained from the same ftp site, in directory /pub/packages/ida, where
the tool, a user guide and example programs are located. It can also be obtained from

the above World Wide Web and email addresses.

8 Related work

Much work has been done in the area of developing and compiling HPF-like languages
for parallel computers, and there is insufficient space here to give a comprehensive survey
of it. [9] surveys some of the important projects in this area.

The research systems most closely related to shpf, in that they have concentrated on
exploiting Fortran 90 features such as array syntax, are ADAPTOR, from GMD [10] and
the Fortran 90D/HPF system from Syracuse University [11]. These and other projects
have contributed important ideas and inspiration to this work.



9 Conclusions and future work

The shpf system that we have described here provides fairly full coverage of the Sub-
set HPF language, and in particular supports completely general HPF alignments and
distributions. Preliminary evaluations suggest that it generally delivers comparable per-
formance to other systems with which it has been compared, and in some respects it
is relatively highly optimised [8]. It is quick and easy to use, and gives good error and
warning messages.

shpf has been extensively tested. Furthermore, ADAPT’s front end and much of its
analysis code are also incorporated in ida, which has been extensively evaluated and
has been used successfully on a Fortran 77 program containing hundreds of thousands of
lines of source code spread over hundreds of files [6]. For these reasons we believe that
shpf is robust and reliable.

In the near future we will extend shpf’s functionality to support user-defined ELEMENTAL
procedures, which will be introduced in the next revision of Fortran, expected in 1996.
These provide a way to express functional parallelism within array expressions, and will
allow more efficient implementations of some applications, for example md1 in the shpf
release package.

Future research will focus on the development of ‘advanced’ optimisations for HPF, in
particular the implementation of general (i.e. non-rectangular) FORALLs in parallel, and
the development of better heuristics than the ‘owner computes’ rule for the placement
of expression evaluation.

Acknowledgements

We would like to thank Yew Bie Cheng for assisting with the testing of shpf, and
everybody who has used it, in particular Adam Marshall of Liverpool University who
has given us valuable and encouraging feedback.

References

[1] Message Passing Interface Forum. Document for a standard message-passing inter-
face, version 1.0. University of Tennessee, Knoxville, February 1994.

[2] J.H. Merlin. ADAPTing Fortran 90 array programs for distributed memory archi-
tectures. In Hans P. Zima, editor, Parallel Computation: Proc. of 1st Int’l Conf. of
the Austrian Centre for Parallel Computation, pp. 184-200, Salzburg, Austria, Sept
30-Oct 2 1991. Springer-Verlag. Lecture Notes in Computer Science, 591.

[3] J.H. Merlin. Techniques for the automatic parallelisation of ‘Distributed Fortran 90°.
Technical report SNARC 92-02, Dept. of Electronics and Computer Science, Uni-
versity of Southampton, Southampton, SO17 1BJ, U.K., November 1991.

[4] High Performance Fortran Forum. High Performance Fortran Language Specifica-
tion. Scientific Programming, 2(1):1-170, 1993.

[5] D.B. Carpenter and J.H. Merlin. shpf version 0.9: Release Notes. Dept. of Electron-
ics and Computer Science, University of Southampton, November 1995. Available
on the World Wide Web at
http://wuw.ccg.ecs.soton.ac.uk/shpf/docs/release.ps.



[6]

[7]

[10]

[11]

J.H. Merlin and J.S. Reeve. IDA—an aid to the parallelisation of Fortran codes.
Submitted to Parallel Computing, 1995.

D.B. Carpenter. Adlib: A distributed array library to support HPF translation.
Presented at the 5th Int’l Workshop on Compilers for Parallel Computers, University
of Malaga, Malaga, Spain, June 28-30 1995. Available on the World Wide Web at
http://wuw.ccg.ecs.soton.ac.uk/shpf/hpf-workshop/adlib.ps.

A.C. Marshall. HPF activities at Liverpool University. Talk presented at the HPF
workshop, Southampton, October 1995. Available on the World Wide Web at
http://wuw.ccg.ecs.soton.ac.uk/shpf/hpf-workshop/adamm.ps.

P. Crooks and R.H. Perrott. Language constructs for data partitioning and distri-
bution. Scientific Programming, 4:59-85, 1995.

T. Brandes and F. Zimmermann. ADAPTOR—a transformation tool for HPF pro-
grams. In K. M. Decker and R. M. Rehmann, editors, Programming Environments
for Massively Parallel Distributed Systems, pp. 91-96. Birkhauser Verlag, April 1994.

M.-Y. Wu and G. Fox. Fortran 90D compiler for distributed memory MIMD parallel
computers. Tech. report SCCS-88b, Syracuse Center for Computational Science,
Syracuse University, 111 College Place, Syracuse, NY 13244-4100, July 1991.



