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Abstract. This paper describes the first results from research! on the
compilation of constraint systems into task level parallel programs in a
procedural language. This is the only research, of which we are aware,
which attempts to generate efficient parallel programs for numerical
computations from constraint systems. Computations are expressed as
constraint systems. A dependence graph is derived from the constraint
system and a set of input variables. The dependence graph, which ex-
ploits the parallelism in the constraints, is mapped to the target lan-
guage CODE, which represents parallel computation structures as gen-
eralized dependence graphs. Finally, parallel C programs are generated.
The granularity of the derived dependence graphs depends upon the
complexity of the operations represented in the type system of the con-
straint specification language. To extract parallel programs of appropri-
ate granularity, the following features have been included: (i) modular-
ity, (ii) operations over structured types as primitives, (iii) definition
of sequential C functions. A prototype of the compiler has been imple-
mented. The execution environment or software architecture is specified
separately from the constraint system. The domain of matrix compu-
tations has been targeted for applications. Some examples have been
programmed. Initial results are very encouraging.

1 Introduction

Representing a computation as a set of constraints upon the state variables
defining the solution and choosing an appropriate subset of the state variables
as the input set is an attractive approach to specification of programs, but
there has been little success previously in attaining efficient execution of parallel
programs derived from constraint representations [1]. There are however, both
motivations for continuing research in this direction and reasons for optimism
concerning success. Constraint systems have attractive properties for compila-
tion to parallel computation structures. A constraint system gives the minimum
specification (See [2] for the benefits from postponing imposition of program
structure) for a computation, thereby offering the compiler freedom of choice
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for derivation of control structure. Constraint systems offer some unique advan-
tages as a representation from which parallel programs are to be derived[11].
Both “OR” and “AND” parallelism can be derived. Either effective or complete
programs can be derived from constraint systems on demand. Programs for dif-
ferent computations can be derived from the same constraint specification by
different choices of the input set of variables.

The focus of this research is to derive from constraint representations, paral-
lel programs of execution efficiency competitive with procedural languages. This
paper reports early results from this approach. The next two sections outline
our approach and related work, respectively. Subsequent sections describe the
constraint specification language and the compilation algorithm. We conclude
the paper with performance results for some example programs and directions
for future work.

2 Approach

A program is expressed as a set of constraints between the program variables
and an input set consisting of a subset of the program variables. A dependence
graph is derived from the program and mapped to the target language CODE
[14], which expresses parallel structure over sequential units of computation
declaratively as a generalized dependence graph. The software architecture or
execution environment to which CODE is to compile is separately specified
(SMP, DSM, NOW, etc). Finally, sequential and parallel C programs for shared
memory machines like the CRAY J90, SPARCcenter 2000, and Sequent and the
distributed memory PVM [10] system can be generated. An MPI [7] backend
for CODE is also available.

The granularity of the derived dependence graphs depends upon the types
directly represented as primitives in the constraint representation. The intro-
duction of structured types and operations on structured types as primitives in
the constraint representation give natural units of computation at a granularity
appropriate for task level parallelism and avoids the problem of name ambiguity
in the derivation of dependence graphs from loops over scalar representation of
arrays. It also supports implementation of data parallelism, if desired[11]. The
general requirements for a constraint representation which can be compiled to
execute efficiently, include: (i) modularity for reusable modules, (ii) definition of
sequential functions, and (iii) a rich type set. The main features of our approach
are detailed in the rest of the section.

2.1 Constraint Representation

A constraint is a relationship between a set of variables. Eg. A+ B==Cisa
constraint expressing equality between C' and the sum of A and B. A constraint
system enumerates the relationships between the variables of the computation.



2.2 Constraint Modules

Modularity is provided by constraint modules, which are encapsulations of re-
lationships between parameters and can be invoked as a constraint. Figure 1
shows a constraint specification (excluding declarations) for the non-complex
roots of a quadratic equation, az? 4+ bx + ¢ == 0. The specification uses a
module, DefinedRoots. "U" denotes an undefined value. sqr, sqrt, and abs are
library functions. A program specification also identifies the set of inputs. In
the example, it could be {a,b,c}, or {a,b,r1}, or {a,b,r2}.

/* Constraint module */
DefinedRoots(a, b, ¢, r1, r2)
t===sqr(b) —4*xa*xc ANDt>=0 AND

2% a*rl == (—b+ sqrt(abs(t))) AND 2 *a*r2 == —(b+ sqrt(abs(t)))
/* Main */

a==0 AND r1 == “U" AND r2 == “U"

OR

a! =0 AND DefinedRoots(a, b, ¢, r1, r2)

Fig. 1. Quadratic Equation Solver

2.3 Translation to a Compilable Language

Encapsulated within the constraint A + B == C are three assignments: A =
C—-—B, B=C—-A, and C = A 4+ B; and a conditional, A + B == C. One
of the three assignments can be extracted depending on which two of the three
variables { A, B,C' } are inputs. If all three variables are inputs, the constraint
can be classified as a conditional to be checked for satisfaction. If fewer than
two variables are inputs, the constraint is unresolved and no resulting program
can be extracted.

A dependence graph can be derived from a set of constraints and an input set
of variables. This graph ensures satisfaction of the constraints by computing val-
ues for some or all of the non-input (output) variables. In addition, parallelism
in the computations is exploited. The compiler generates single-assignment vari-
ables and can extract multiple solutions on alternate paths of the dependence
graph. The derivation of dependence graphs is explained in detail in Section 5.

A constraint specification represents a family of dependence graphs. Genera-
tion of all possible dependence graphs can result in combinatorial explosion. We
construct only the dependence graph for a specified input set. The constraint
specification can be reused for generating dependence graphs for different sets
of inputs.

The dependence graph for the quadratic equation solver with the input set
{a,b,c} is shown in Figure 2. If the conditionals on an arc are satisfied, the



t=sgr(b)-4*a*c
t>=0

r1=(-b+sart(abs(t)))/(2* r2=-(b+sart(abs(t)))/(2* a)

r1="u" DefinedRoots(a,b,c,r1,r2)
r2="u"

MAIN DefinedRoots

Fig. 2. Dataflow Graphs for Quadratic Equation Solver Example

corresponding destination node is executed. If a node is executed, the com-
putations (assignments) at that node are performed. The node annotated by
DefinedRoots in MAIN invokes the dependence graph corresponding to the
module DefinedRoots. The assignments r1 = (—b + sqrt(abs(t)))/(2 * a) and
r2 = —(b + sqrt(abs(t)))/(2 * a) are performed in parallel and the results are
collected by a node.

2.4 Domain Specification: The Hierarchical Type System

The semantic domain chosen for our application programs is matrix computa-
tion. We have a built-in matrix type with its associated operations of addition,
subtraction, multiplication and inverse. The matrix subtypes currently imple-
mented in our system are lower and upper triangular and dense matrices. We
plan to extend the type system to a richer class of matrices including hierar-
chical matrices [4]. Specialized algorithms based on the structure of the matrix
can be invoked for the matrix subtypes. Other structured types such as lists,
queues, trees etc. along with their associated operations could be included to
broaden the class of programs which can be compactly represented.

2.5 Separate Specification of Compilation Options and the
Execution Environment (Software Architecture)

To obtain architecturally optimized programs, we plan to incorporate features
such as the following as part of an execution environment specification separate
from the constraint specification.

(a) Specification of architecture-specific mechanisms (E.g. shared variables or
messages for communication, etc).

(b) Selection of the level of granularity for operations.

(c) Option of not parallelizing a particular module.

(d) Option of selecting certain operations for executing in parallel.

(e) Choices among parallel algorithms to execute some of the operations.



3 Related work

We shall briefly sketch related pieces of work in this section.

Consul[1] is a parallel constraint language that uses an interpretive tech-
nique (local propagation) to find satisfying values for the system of constraints.
This system offers performance only in the range of logic languages. Declar-
ative extensions have been added as part of High-Performance Fortran(HPF)
[15], a portable data-parallel language with some optimization directives. HPF
does not support task parallelism. Also, existing control flow in its procedural
programming style makes analysis for parallelism difficult. Thinglab [9] trans-
forms constraints to a compilable language rather than to an interpretive exe-
cution environment as in many constraint systems. Kaleidoscope[8] integrates
constraints with an object-oriented language and uses partial compilation for
the constraints. Neither Thinglab nor Kaleidoscope is concerned with extraction
of parallel structures. Vijay Saraswat described a family of concurrent constraint
logic programming languages, the cc languages [16]. The logic and constraint
portions are explicitly separated with the constraint part acting as an active
data store for the logic portion of the program. Oz is a concurrent programming
language based on an extension of the basic concurrent constraint model pro-
vided in [16]. The performance reported for the system is only comparable with
commercial Prolog and Lisp systems [13]. Parallel logic programming [3, 6] is
another area of related work. PCN [3] and Strand [6] are two parallel program-
ming representations with a strong component of logic specification. However,
both require the programmer to provide explicit operators for specification of
parallelism and the dependence graph structures which could be generated were
restricted to trees. Equational specifications of computations is a restriction of
constraint specifications. Unity [2] is the equational programming representation
around which Chandy and Misra have built a powerful paradigm for the design
of parallel programs. Again, Unity requires addition of explicit specifications for
parallelism.

4 Language Description

This section describes the different components of the programming system.
It includes the types and their associated operations, the rules for construct-
ing constraints, and the structure of a complete program in the system. The
notations used are similar to those in the C programming language.

4.1 Types

The lowest level of the type system consists of integers, reals, characters, and
arrays with the operators of addition, subtraction, multiplication, division on
integers and reals. At the next level of the type hierarchy are matrices with
their associated operations of addition, subtraction, multiplication and inverse.
As mentioned in Section 2, the system currently supports specialized matrix



types like lower and upper triangular. At the highest level of the type system
are hierarchical matrices, whose individual elements are matrices.

4.2 Constraints

In our system, arithmetic expressions can be formed by using arithmetic opera-
tors and calls to library and user-defined functions (functions must have defined
inverses, otherwise only a limited form of compilation can be done). In addition,
expressions of the following form, using indexed operators, are allowed.

<op> FOR (< index > < bl > <b2>) X

An indexed operator applies a binary op € {4+, -, *, /} over an arithmetic
expression, X, through a range of values, b1 ... b2, for an integer variable,
index. E.g. + FOR (i 1 5) A[i] specifies the sum of the elements in array A
between positions 1-5. b7 and b2 have to be statically bound.

Constraints can be constructed by application of the following rules.

Rule 1: (i) X; R X5, is a constraint,

where R € { <, <=, >, >=, == , I = }, X1, X, are arithmetic expressions.
(i1) My, == M3 is a constraint,

where M7, My are expressions involving matrices and the matrix operators +,

-, * and Inverse.

Rule 2: (i) A AND/OR B (ii) NOT A are constraints,

where A and B are constraints.

Rule 3: Calls to user-defined constraint modules are constraints. In Figure 1,
the call DefinedRoots(a,b,c,r1,r2) in Main is an application of this rule.

Rule 4: Constraints over indexed sets have the form:
AND/OR FOR (<index> <bl> <b2>) { A1, As,..., An }

The above construct groups a set of constraints, Ay, Ay, ..., A,, to be connected
by an AND/OR connective through a range of values, b1 ... b2, for an integer
variable, indez. b1 and b2 have to be statically bound. This condition will be
relaxed in later versions of the compiler.

An instance of Rule 4 is AND FOR (i 1 2) { A[i] == A[i-1], B[i+1] == A[i] }.
This example succinctly represents the constraints
A[l] == A[0] AND A[2] == A[1] AND B[2] == A[l] AND BJ[3] == A[2].

Constraints constructed from applications of Rule 1 are referred to as simple
constraints, which form the building blocks for constraints constructed from
applications of Rules 2-4.

4.3 Programs

A program in our system consists of the following constituents.
(i) Program name, global variable declarations, global input variables.



(i1) User-defined function signatures: signatures of C functions (linked during
execution), which may be invoked in an arithmetic expression.

(iii) Constraint Module definitions: module name, formal parameters and
their types, local variable declarations, and a body constructed from applications
of Rules 1-4 in Section 4.2.

(iv) Main body of the program: constraints formed from applications of Rules
1-4 in Section 4.2.

5 Compilation

The compilation algorithm consists of the following phases.
Phase 1. The textually expressed constraint system is transformed to an undi-
rected graph representation.
Phase 2. A depth-first search algorithm transforms the undirected graph to a
directed graph.
Phase 3. With a set of input variables, the directed graph is traversed by a
depth-first search to map the constraints to conditionals and computations for
nodes of a generalized dependence graph.
Phase 4. Specifications of the execution environment are used to optimally
select the communication and synchronization mechanisms to be used by CODE
[14]. This phase is yet to be completely defined.
Phase 5. The dependence graph is mapped to the CODE parallel programming
environment to produce sequential and parallel programs in C as executable for
different parallel architectures.

Phases 1-5 are described in detail in Sections 5.1-5.5.

5.1 Phase 1

The textual source program is transformed to a source graph for the compiler.
Starting from an empty graph, for each application of Rules 1-4 in Section 4.2, an
undirected constraint graph can be constructed by adding appropriate nodes and
edges to the existing graph. For each instance of a simple constraint (Rule 1), a
node is created with the constraint attached to it. For each application of Rule 2,
the graph is expanded as shown in Figures 3(a)-(b). For each application of Rule
3, a node is created with the constraint module call and the actual parameters
attached to it. For each application of Rule 4, the graph is expanded as shown
in Figure 3(c).

The different kinds of nodes in the constraint graph are (i) simple constraint
nodes, (ii) operator nodes corresponding to AND/OR/NOT connectives, (iii)
call nodes corresponding to Constraint Module Calls, and (iv) for nodes corre-
sponding to indexed sets.

A set of constraint graphs is constructed from the main body and the con-
straint module bodies. Each graph is constructed in a hierarchical fashion. Sim-
ple constraint nodes and call nodes occur at lower levels. At higher levels, oper-
ator and for nodes connect one or more subgraphs. There will be a unique node
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at the highest level. The constraint graph obtained for a particular constraint

specification is unique. The constraint graphs for the quadratic equation solver
are shown in Figure 4.

: e

ND AND O AND
t==b*b-4*a*c
ND ND
a==0 al=0 DefinedRoots t>=0
(ab,c,r1,r2)
ri=="u" r2=="U" 2¥arrl==-b+sgrt(abs(t)) 2*a*r2==-(b+sqrt(abs(t)))
MAIN DefinedRoots(a,b,c,r1,r2)

Fig. 4. Constraint Graphs for Quadratic Equation Solver

5.2 Phase 2

A depth-first traversal of each constraint graph constructs a set of directed
graphs (trees). The traversal assigns constraints connected by AND operators
in a constraint graph to the same node in the corresponding tree and constraints
connected by OR operators in a constraint graph to nodes on diverging paths
in the corresponding tree. The satisfaction of all the constraints along a path
from the root to aleaf in a tree represents a satisfaction of the constraint system
represented by the tree.

Figure 5 illustrates phase 2 for four base cases, where a, b, ¢, and d are
simple constraints. The algorithm dfs is a generalization of Figure 5. Let v; be
the unique node at the highest level of the input constraint graph, G. Each
output tree, G*, is initialized to a root, v7. Each node in G* can hold a list of
constraints. An indexed set of constraints within a node in G* has an associated
tree obtained from the depth-first traversal of the constraint graph correspond-
ing to constraints in the indexed set. v, and v} are the nodes currently being



visited in G and G*, respectively. dfs is invoked with the call dfs( vy, v7 ). The
tree obtained for the quadratic equation solver is shown in Figure 6.

The case of operator node, NOT, has been omitted from the description of
dfs. However, it 1s implemented in the system as follows. A NOT operator node
operates on a single (constraint) subgraph. If the subgraph is a simple constraint,
the NOT node is removed by negating the simple constraint. Otherwise, a NOT
node is moved down all the levels of the subgraph by changing nodes (AND to
OR and OR to AND) traversed in its path until it reaches a simple constraint,
which is negated.

OR OR AND AND

OR OR AND AND AND AND OR OR
1
1
1

%: a b c d a b c d a b c d a b c d
T
1

* {ab,c,d}
{a¢ {0} {c¢ {dt {ab} {c.d} ac} {bc} {ad} {bd}

Fig.5. Phase 2

ALGORITHM dfs ( ve, v¥)
begin
visited[v:] = true;
Case type(v:) of
OR : for each unvisited neighbor, u, of v. do
if type(u) == OR dfs( u, v} )
else create node v* in G* as child of v};

dfs( u, u* );

AND : if there is an unvisited OR neighbor, u1, of v,
let us be the other neighbor of wv.;
let w11 and w12 be the two unvisited neighbors of ug;
/* transform (u11 OR w12) AND us to (uz AND wui1) OR (ug AND wuig) */
visited[v.] = false;
change type of v, to OR, remove uj, uz as neighbors of v.;
create two unvisited AND neighbors, and;, ands, for ve;
make us and wj; the neighbors of and;;
make us and ujs the neighbors of ands;
dfs(ve, v});

else for each unvisited neighbor, u, of v, do dfs( u, v} );
Simple_constraint : attach constraint to v};
Call Node : attach constraint module call to v};

For Node : attach indexed set with index and bounds to v.*
create new root v;* for tree corresponding to indexed set;
let v; be the node at highest level of constraint graph for indexed set;
dfs(vs, vi*);

end;



t==b*b-4*a*c

t>=0
2*a*r1==(-b+sgrt(abs(t)))
2*a*r2==-(b+sgrt(abs(t)))

a==0 a=0
r1=="u" DefinedRoots(a,b,c,r1,r2)
r2=="uy"
MAIN DefinedRoots(a,b,c,r1,r2)

Fig. 6. Trees from Phase 2 for Quadratic Equation Solver

5.3 Phase 3

Using the input set specification, a depth-first traversal of the tree from phase 2
attempts to generate a dependence graph. The generated dependence graph is
a directed graph, in which nodes are computational elements and arcs between
nodes express data dependency. It has a unique start node. A path from the
start node in the graph is a computation path. A node in the dependence graph
has the form: firing rule, computation, routing rule (see Figure 7(a)). A firing
rule is a condition that must hold before the node can be enabled for execution.
The computation at a node is performed when the node is executed. A routing
rule is a condition that must hold for the node to send data on its outgoing
paths. The nodes and arcs in the tree from phase 2 correspond to the nodes and
arcs, respectively, in the dependence graph.

A known set is associated with each node in the dependence graph. The
variables in the known set at a node are knowns at that node. The values of
these variables are known at runtime at that node. All variables not in the
known set at a node are unknowns at that node. The input set is cast as the
known set for the start node.

The depth-first traversal tries to generate a dependence graph with nodes
that contain computations for the unknowns. Each node, v, in the tree from
phase 2 has a set of simple constraints attached to it. When v is visited, each
constraint can be resolved as one of the following for the corresponding node,
v*, in the dependence graph.

(i) Firing Rule: To be so classified, a constraint must have no unknowns when
v is visited.

(i1) Computation: To fall into this category, a constraint must involve an equality
and have a single unknown. The unknown is added to the known set for v*.
(iii) Routing Rule: To be a routing rule, all unknown variables in the constraint
must become knowns through computations at v*.

An indexed set, AND/OR FOR (<index> <bl> <b2>) {A1, Az, ..., An},
is resolved if every constraint A; resolved for all values of index in bl ...b2.
Resolved indexed sets are compiled to loops which iterate over values of indezx in
b1 ...b2 The restrictions on the indexed set structure to be compiled successfully
in our system are as follows. For all values of indezin b1 ...52 (a) a constraint has



to have the same classification, (b) if a constraint is classified as computation,
a single unique term in the constraint has to be the unknown.

Constraints involving inequalities must be resolved as firing/routing rules.
Any constraint which cannot be resolved is retained in an unresolved set of
constraints which is propagated down the tree. A node in the dependence graph
receives the known set of its parent as its known set. Examination of each
constraint at a node and in the unresolved set of constraints continues until no
new variables are added to the known set. Any path in the tree that results
in a leaf with unresolved constraints is abandoned. If all paths in the tree are
abandoned, the user is informed of the restrictiveness of the initial input set.

When a constraint is classified as computation, it is mapped to an equation.
All terms involving the single unknown in the computation are moved to the
left-hand side of the equation. Currently, our system solves equations in linear
unknown terms. In the future we plan to incorporate solvers for scalar types that
will solve for higher powers of the unknown. If the variables in the computation
are matrices, the computation is replaced by calls to specialized matrix routines
in C. For example, the statement A x x + b1 == b2 with x as the unknown 1s
first transformed into A * x == b2 — b1 and then a routine is invoked to solve
for z. If A is lower (upper) triangular, then forward (backward) substitution is
used to solve for z. Otherwise z is solved through an LU decomposition of A.

The dependence graphs for the quadratic equation solver with the input set
{ a,b,c } is shown in Figure 7(b).

INPUTS

t=sgr(b)-4*a*c

=0
Computation
ri="U"  DefinedRoots(a,b,c,r1,r2) rl=(-b+sqrt(abs(t)))/(2* a)
rz="u r2=-(b+sqrt(abs(t)))/(2* a)
OUTPUTS MAIN DefinedRoots(a,b,c,r1,r2)

(a) (b)

Fig.7. (a) Dependence Graph Node (b) Dependence Graphs for Quadratic Equation
Solver

5.3.1 Phase 3 for Constraint Module Calls

A constraint module call has the form Module Name(e1,es,...,e,) where ¢;,
1 < i < n, 1s an arithmetic expression and an actual parameter. Let the for-
mal parameters corresponding to €1, es, ..., e, be f1, fa,. .., fn, respectively. Let
K be the known set at the node where the constraint module is invoked. An
attempt is made to generate a dependence graph from the constraint module
definition. The tree from phase 2 for the constraint module is traversed with a
new known set, Kpoduie = { fi | {all variablesin ¢;} C K }. The unknowns are
considered to be all formal parameters not in K,,,4uie and the local variables



in the constraint module. The depth-first traversal of the tree corresponding to
the constraint module returns “True” if all the constraints in the module are
resolved and every unknown parameter is computed at the end of at least one
path in the resulting dependence graph (All paths not satisfying this condition
are discarded). This condition is different in the dependence graph generation
of the main module where all unknown variables need not be computed. The
reason for imposing this condition is that the actual parameters are bound to
the formal parameters at the point of call. If different sets of variables are com-
puted in different paths of the dependence graph (as in the constraint a == ¢
OR b == ¢ with ¢ known) it is not possible to determine statically the set of
actual parameters computed in the constraint module call.

If the dependence graph generation is successful, a new set of constraints
corresponding to each computed parameter is generated as follows:
ex1 == Z1, €g2 == Za, ..., egp == Zp, where Z;, 1 < ¢ < p, are new variables
generated by the compiler and ey .. .ex, are the actual computed parameters.
An attempt is made to resolve this set of constraints with 7, ... Z, in the known
set. The set of constraints will have to be resolved as computation for all the
unknowns in eg1 . . . exp. If this is done, a call node (which invokes the dependence
graph for the constraint module call) is generated. A child node of the call node
receives values computed by the call node and binds them to 7;...7, and
performs the computation generated from the new set of constraints.

If the traversal returns “False” (a dependence graph is not generated) then
the current search path is discarded. Each constraint module invocation is trans-
lated as a separate program module. It might seem that many redundant trans-
lations would be performed. But a table can be maintained for each module
which contains entries showing the dependence graphs generated for combina-
tions of parameter inputs. Redundant translations can be eliminated this way.

5.3.2 Extraction of OR parallelism

Multiple paths in the dependence graph have the potential to be executed in
parallel. These paths have resulted from the extraction of computation from
constraints connected by OR operators.

5.3.3 Extraction of AND parallelism

The computational statements that are assigned to a node have the potential
for parallel execution. Parallelism is exploited by keeping in mind that the com-
piler generates a single-assignment system and the lone write to a variable will
appear before any reads to it. The granularity of such a scheme depends on
the complexity of the functions invoked in the statements and the complexity of
the operators. We have further exploited the complexity of matrix operations by
splitting up the specifications, performing computations in parallel and compos-
ing them. For example, if # = m*y+mx* 2z, where z, m, y, z, and b are matrices,
m *y and m % z can be done in parallel. This leads to significant speedup since
multiplication of matrices is an O(N3) operation (m,y, z being order N x N).



Since m * y is a primitive operation, a procedure which implements a parallel
algorithm for m * y can be invoked. In a later version of the compiler, provision
will be made for user specification of parallelism for operations over structures.
For a detailed description of the types of parallelism extracted see [11].

Parallelism in AND indexed sets: To extract parallelism, the computations
within the compiled loop structures corresponding to AND indexed sets are
examined. We discuss the case of loops with a single computation. The discussion
can be generalized to the case of loops with multiple computations. Throughout
this discussion, the case of array accesses will be detailed. The case of scalar
accesses in loops will follow trivially since they do not involve indexed terms.

(1) If the array corresponding to the computed term is not accessed anywhere
in the computation, all iterations of the loop can be executed in parallel.

(i1) If the array corresponding to the computed term is accessed in the com-
putation and the set of accessed indices of the array are disjoint from the set
of computed indices of the array, all iterations of the loop can be executed in
parallel.

(iii) If cases (i) and (ii) do not hold, the loop iterations are inter-dependent
and are executed sequentially.

5.4 Phase 4

We have yet to completely define Phase 4. As of now, there are provisions in
the system to select certain program variables as shared variables in a shared
memory environment. Also, some operations (e.g. matrix multiplication) can be
chosen for parallel execution.

5.5 Phase 5

Our target for executable for constraint programs is the CODE [14] parallel
programming environment. CODE takes a dependence graph as its input. The
form of a node in a CODE dependence graph is given in Figure 7(a). It is
seen that there is a natural match between the nodes of the dependence graph
developed by the constraint compilation algorithm and the nodes in the CODE
graph. The arcs in the dependence graph in CODE are used to bind names from
one node to another. This is exactly the role played by arcs in the dependence
graph generated by our translation algorithm. CODE produces sequential and
parallel C programs for a variety of architectures.

6 Programming Examples and Results

A prototype of the compiler has been implemented in C++. A small number of
examples have also been programmed and executed on the Cray J90, SPARC-
center 2000, Sequent Symmetry machine and the PVM system. The next two
subsections describe two examples programmed in our system.



6.1 Block Triangular Solver(BTS)

The example chosen is the solution of the AX = B linear algebra problem for
a known lower triangular matrix A and vector B. The parallel algorithm [5]
involves dividing the matrix into blocks and a constraint program (excluding
declarations) for a problem instance split into 4 blocks is shown in Figure 8.
So ... Sy represent lower triangular sub-matrices along the diagonal of A that are
solved sequentially, and Miq, Mag, ... M3y represent dense sub-matrices within
A that must be multiplied by the X sub-vector from above and the result
subtracted from the X sub-vector from the left. The vector multiplications for
all M's within a column may be done in parallel. This parallelism yields an ideal
asymptotic speedup of P?/(3P — 2), where P is the number of processors. Ideal
speedup assumes zero communication and synchronization times.

(So *Xo == Bo AND

Allo *Xo —|—Sl *Xl == B1 AND

AIQO * Xo -+ 11‘421 * X1 + 52 * X2 == B2 AND

11\430 * Xo -+ 11\431 * X1 + IM32 * X2 + 53 * X3 == B3 )

Fig. 8. Specification of the BTS Algorithm as a Constraint System

The input set can be chosen as { Sg,...,S3, Mig, Mag, ..., M3y }. The output
set will be detected as {Xg, X1, X2, X3}. Using an indexed set of constraints
and an indexed operator, an alternate compact program is

AND FOR (10 3) { + FOR (j 01) { A[{][J] * X[4] } == BIi] }

where the subscripts for A, X, and B define partitions on the matrices.

Figure 9(a) gives the speedups for a 1200 x 1200 matrix on a shared memory
Sequent machine. It is seen that the performance of the constraint generated
code 1s comparable to the hand-coded program’s performance. The difference in
speedups is mainly due to the fact that the hand-coded program is optimized for
a shared memory execution environment. (These results were obtained with an
earlier version of the constraint compiler before any provision for specification
of execution environments were implemented and the Sequent computer system
is no longer available, now that the optimizing compiler is available.) Figure
9(b) gives the speedups for a 8800 x 8800 matrix (number of blocks=11, block
size=800) on an 8-processor SPARCcenter2000. This program has been opti-
mized for shared variables. It is to be noted that the constraint generated code
performs quite well for the small number of processors available. The speedups
are slightly higher than the ideal (the ideal is asymptotic) until about 7 proces-
sors, after which it drops.
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Fig. 9. Performance Results for BTS on (a) Sequent (b) SPARCcenter 2000

6.2 The Block Odd-Even Reduction Algorithm(BOER)

Consider a linear tridiagonal system Az = d where

BC00...000
CBCO0O...000
0oCBC...000
A= |
0000...CBC
0000...0CB

is a block tridiagonal matrix and B and C' are square matrices of order n > 2.
It is assumed that there are M such blocks along the principal diagonal of A, and
M = 251, for some k > 2. Thus, N = Mn denotes the order of A. It is assumed
that the vectors z and d are likewise partitioned, that is, z = (21,22, ..., zum)",
d = (dl, dz, ey d]u)t7 r; = (I‘il,éL‘iz, - .,I‘m)t, and dl = (d“, dig, ey dm)t, for
1 =1,2,..., M. It is further assumed that the blocks B and C are symmetric
and commute.

A version of the parallel algorithm (taken from [12]) has a reduction phase
in which the system is split into two subsystems: one for odd-indexed (reduced
system) and another for even-indexed (eliminated system) terms. The reduction
process is repeatedly applied to the reduced system. After k& — 1 iterations the
reduced system contains the solution for a single term. The rest of the terms can
be obtained by back-substitution. The constraint specification for the problem is
shown in Figure 10. The variable names, BP, CP, dP correspond to the indexed
terms B,C,d in [12] and are examples of the hierarchical data type in our system
(elements of BP, CP and dP are matrices). The inputs to the system are BP[0],
CP[0] and dP[i][0]. pow is a C function implementing the arithmetic power



function. The terms in bold in Figure 10 are detected by the compiler in phase
3 as the terms to be computed.

BP[k-1] * x[pow (2,k-1)] == dP[pow(2,k-1)]f-1] AND

AND FOR (; 1 k-1) {
2 * CP[j-1] * CP[j-1] == BP[j] + BP[j-1] * BP[j-1]
CP[j] - CP[j-1] ¥ CP[j-1] == 0 ,
AND FOR (i 0 pow(2,k-j)-2) {
CP[j-1] * ( dP[i*pow(2,j) + pow(2.-1)][j-1] + dP[i*pow(2.j) - pow(2,j-1)][i-1] ) ==
dP[i*pow(2.)][j] + BP[j-1] * dP[i*pow(2,j)][j-1] }} AND

AND FOR (i k-1 1) {
AND FOR (i 0 pow(2,k-j)-1) {
OP[j-1] * ( af(i+1)*pow(2,5)] + fi*pow(2,4)] ) ==
dP[(i+1)*pow(2,5)-pow(24-1)]fi-1] - BE[j-1] * x[(i41)*pow(2.j)-pow(24-1)] }}

Fig. 10. Specification of the BOER Algorithm as a Constraint System

The resulting dataflow graph is shown in Figure 11(a) and corresponds to
the dataflow in the algorithm in [12]. The START and STOP nodes initiate
and terminate the program, respectively. A FOR node initiates the different
iterations of a loop. The two such nodes in the figure correspond to the two
outer indexed sets for index j in the constraint specification. The annotation
“Replicated” on the arcs specify that the annotated arc and the destination node
(shaded in Figure 11(a)) are dynamically replicated for parallel execution. The
two such annotated arcs correspond to the two nested indexed sets (for index
i) in the constraint specification. The nodes annotated by BP, CP, dP, and z
compute values for parts of the corresponding variable. The nodes annotated
by “Merge” collect computed results from parallel executions. It is to be noted
that our compiler automatically detects the parallelism in the for loops in the
reduction and back-substitution phases. Furthermore, it is capable of detecting
the parallelism within the expression 2 x CP[j — 1] x CP[j — 1] — BP[j — 1] *
BP[j — 1] in the computation for BP[j]. The authors in [12] have mentioned
that the single-solution step is the major bottleneck in the algorithm. But, in
our experiments we found the reduction phase resistant to scalability. This 1s
due to the fact that the computation for BP[j] and C P[j] involve matrix-matrix
multiplication: an O(n?) operation. This dominates the scalable part of the loop:
the computation of d P, which is O(n?). In later versions of the compiler, we plan
to incorporate parallel algorithms for matrix-matrix multiplication, which will
overcome this bottleneck. Figure 11(b) presents the speedups over a sequential
implementation of the algorithm on an 8-processor SPARCcenter 2000 for n=200
and k = 7(M = 127) and k = 8(M = 255) for the back-substitution phase of
the algorithm. Note the attainment of near-linear speedup for this (relatively
small) number of processors.
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7 Summary

Constraint programs offer a rich, relatively untapped representation of compu-
tation, from which parallelism can be readily extracted. Constraint systems with
appropriate sets of input variables can be mapped to generalized dependence
graphs. Coarse-grain parallelism can be extracted through modularity, oper-
ations over structured types, and specification of arithmetic functions. Data
parallelism is introduced through the parallel execution of iterations of loops
over computations on different partitions of matrices. By giving the program-
mer control over compilation choices for the execution environment, we assist
in generation of architecturally optimized parallel programs. The first stage of
research has established that constraint systems can be compiled to efficient
coarse grained parallel programs for some plausible examples.

8 Future Research

It is clearly necessary to be able to express constraints on partitions of matrices
if large scale parallelism is to be derived from constraint systems without use of
the cumbersome techniques derived for array dependence analysis of scalar loop
codes over arrays. There are several promising approaches: object-oriented for-
mulations of data structures are one possibility. A simpler and more algorithmic
basis for definition of constraints over partitions of matrices is to utilize a simple
version of the hierarchical type theory for matrices of Collins and Browne [4].
The next steps in addition to inclusion of the hierarchical matrix type are
as follows. a) Enhance the compiler with the capability of converting single-
assignment variables to “destructive-update” variables so that excessive memory
usage can be avoided in iterative numerical algorithms. b) Extend the AND



indexed set construct to handle more general forms of constraints. ¢) Define
and implement completely the execution environment specification.
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