Extraction of Parallelism from Constraint
Specifications !

Ajita John J. C. Browne
Department of Computer Sciences Department of Computer Sciences
University of Texas at Austin University of Texas at Austin

Austin, TX 78712, U.S.A. Austin, TX 78712, U.S.A.

Abstract

This paper describes the extraction of parallel procedural programs from
specifications of computations as constraint systems and an initial set
of input variables. It is shown that all types of parallelism - AND-OR,
task and data - can be extracted from constraint representations. Both
computation and logic can be spanned in a single representation. Ad-
ditionally, constraint programs can be compiled to parallel executables
to run on a variety of architectures and the specification of execution
environment directives assists in the generation of architecturally opti-
mized code. A prototype compiler has been developed. Results for some
examples are presented.

Keywords: Parallel, Constraint, Language

1 Overview

Automatic parallelization of a problem-oriented specification of a computation is an attractive
goal for application developers who wish to take advantage of parallel execution environments
but do not wish to learn the intricacies of parallel programming. Unfortunately, despite sub-
stantial investments in compiler technology, it has not proved possible to implement fully
satisfactory automatic parallelization of conventional sequential procedural programming lan-
guages. The choice of representation for specification of programs has often strongly effected
the type and amount of parallelism which can be extracted from a sequential program. We ar-
gue that early specification of procedurality is a major inhibitor to automatic parallelization.
Constraint systems with an input set are a representation of computations which contain no
explicit control flow. In this paper we show that specification of a computation as a constraint
system and the choice of some subset of variables as inputs is a representation from which
parallelism of all forms is readily extracted. We then demonstrate that, in at least some cases
and perhaps surprisingly, parallel programs which are realized by compilation of constraint
systems to procedural programs execute with efficiency competitive with programs in which
the parallel structure has been hand-coded.

Examples are given illustrating extraction of AND-OR parallelism and task and data par-
allelism. The examples also show how the granularity of parallelism can be controlled through
the use of extended types in the representation basis for the constraint systems. In addition

'This work was supported in part through a grant from the Advanced Research Projects Office/CSTO,
subcontract to Syracuse University #3531427

to the extraction of parallel structuring, constraint systems allow derivation of multiple par-
allel programs from a single constraint specification by selecting different sets of variables as
inputs. We also note that the compilation process can be directed to produce either: (i) a
program which is ”effective”, that is, produces exactly one assignment of values to variables
which satisfies the constraint system or (ii) to produce a program which is ”complete”, that is,
a program which generates all assignments of values to variables which satisfy the constraint
system.

The compilation algorithm has been described elsewhere [12] and will not be repeated
here. However, certain compilation problems such as avoiding excessive use of memory are
discussed later. Also, it is noted that the compiler can be given a separate specification of
the execution environment which it can use to optimize the implementation of the parallel
structure which is derived.

Some of the examples have been compiled and executed and the results of the comparison of
execution behavior to hand-coded programs are given. The programs compiled from constraint
systems are surprisingly efficient for the few relatively simple examples attempted thus far.

2 Related work

We shall briefly sketch related pieces of work in this section.

Consul[1] is a parallel constraint language that uses an interpretive technique (local propa-
gation) to find satisfying values for the system of constraints. This system offers performance
only in the range of logic languages. Declarative extensions have been added as part of High-
Performance Fortran(HPF) [17], a portable data-parallel language with some optimization
directives. HPF does not support task parallelism. Also, existing control flow in its pro-
cedural programming style makes analysis for parallelism difficult. Thinglab [3] transforms
constraints to a compilable language rather than to an interpretive execution environment as
in many constraint systems, but is not concerned with extraction of parallel structures. Vijay
Saraswat described a family of concurrent constraint logic programming languages, the cc
languages [18]. The logic and constraint portions are explicitly separated with the constraint
part acting as an active data store for the logic portion of the program. Oz is a concurrent
programming language based on an extension of the basic concurrent constraint model pro-
vided in [18]. The performance reported for the system is only comparable with commercial
Prolog and Lisp systems [15]. Parallel logic programming [5, 9, 13] is another area of related
work. PCN [5] and Strand [9] are two parallel programming representations with a strong
component of logic specification. However, both require the programmer to provide explicit
operators for specification of parallelism and the dependence graph structures which could be
generated were restricted to trees. Equational specifications of computations is a restriction
of constraint specifications. Unity [6] is the equational programming representation around
which Chandy and Misra have built a powerful paradigm for the design of parallel programs.
Again, Unity requires addition of explicit specifications for parallelism.

Some reasons why our approach has greater potential for obtaining efficient parallel pro-
grams than parallel logic languages, compilation of functional languages to parallel execution
and/or concurrent constraint logic programming languages include: (i) A constraint specifi-
cation system can provide a richer set of primitives than is given in current logic languages.
(ii) Functional languages restrict dataflow to be unidirectional whereas constraint systems im-
pose no constraints on dataflow. (iii) Data parallelism is more readily expressed in constraint
specifications than in pure functional languages. (iv) Concurrent constraint satisfaction sys-
tems currently rely on interpretive methods for evaluation of constraint satisfaction whereas
we compile to direct procedural code. (v) Narrowing the target domain and direct use of
semantic domain knowledge enable the compiler to choose efficient algorithms for the derived
computations.

3 Approach

This section outlines our approach to specifying programs using constraints and gives a flavor
of the compilation algorithm. For more detail about the compilation algorithm, refer to [12].

A program in our system is expressed as a set of constraints between the program vari-
ables and an input set consisting of a subset of the program variables. A dependence graph
is derived from the constraint specification and the input set of variables. The dependence
graph is mapped to the target language, CODE [16], which expresses parallel structure over
sequential units of computation declaratively as a generalized dependence graph. The software
architecture or execution environment to which CODE is to compile is separately specified
(SMP, DSM, NOW, etc). Finally, sequential and parallel C programs for shared memory ma-
chines such as the CRAY J90, SPARCcenter 2000, and Sequent and the distributed memory
PVM [11] system are generated by CODE. An MPI [10] backend for CODE is under devel-
opment. The next two subsections describe the hierarchical type system and the constraint
representation, respectively.

3.1 Domain Specification: The Hierarchical Type System:

The lowest level of the type system consists of integers, reals, and characters with the usual
arithmetic operators on integers and reals. The next level of the type hierarchy contains
arrays. The semantic domain for most of our application programs is matrix computation.
Therefore, we add semantic specifications to arrays to construct matrix types with their as-
sociated operations of addition, subtraction, multiplication and inverse. The matrix subtypes
currently implemented in our system are lower and upper triangular and dense matrices. We
plan to extend the type system to a richer class of matrices including hierarchical matrices
[7]. Specialized algorithms based on the structure of the matrix can be invoked for the matrix
subtypes. Other structured types such as lists, queues, trees etc. with their associated opera-
tions could be included to broaden the class of programs which can be compactly represented.
Note that inclusion of structured types in constraint systems leads directly to component
reuse since the constraint translation is at the level of operations of the structured types.

3.2 Constraint Representation:

A constraint is a relationship between a set of variables. E.g. A4+ B == (' is a constraint
expressing equality between C and the sum of A and B. A constraint program enumerates
the different relationships that must be established or maintained by the executing code. Our
system handles linear arithmetic constraints and linear (and with some restrictions, stated in
[12], non-linear) constraints on matrices. The usual arithmetic expressions and calls to library
and user-defined C functions (defined externally and linked during execution) are allowed in
a constraint. In addition, indexed operators of the following form are allowed:
< op > FOR (< index > < low > < high >) X
where op € {+, -, *, /}, index is an integer variable, low and high are range bounds for indez,
and X is an arithmetic expression. low and high must be statically bound.

The constraints can be constructed by application of the following rules.
Rule 1: (i) X; R X,, is a constraint,
where R € { <, <, >, >, ==, # }, X1, Xy are arithmetic expressions.

(ii) My == Mj is a constraint,
where My, M; are expressions involving matrices and the matrix operators +, -, *, and Inverse.
Rule 2: (i) NOT A (ii) A AND/OR B are constraints, where A and B are constraints.
Rule 3: Modularity is provided by constraint modules, which are encapsulations of rela-
tionships between parameters and can be invoked within a constraint. Calls to user-defined
constraint modules are constraints.
Rule 4: Constraints over indexed sets have the form:

OR/AND FOR (<index> <low> <high>) { 41, As,..., A, }

where 1ndex is an integer variable , [ow and high are range bounds for index, and Ay, Ay, ..., A,
are constraints. low and high must be statically bound. This condition will be relaxed in later
versions of the compiler.

E.g. for Rule 4: AND FOR (i 12) { A[i] == A[i-

B[i+1] == A[i] } captures the constraints
A[1] == A[0] AND A[2] == A[1] AND B[2] = 1]

1],
A[1] AND BJ[3] == A[2]
3.3 Translation to a Compilable Language:

Encapsulated within A + B == (' are three computations: A = C — B, B = (' — A,
C = A+ B; and a conditional, A + B == (. One of the three computations can be
extracted depending on which two of the three variables are inputs or known variables. If
all three are inputs, the constraint can be transformed into a conditional to be checked for
satisfiability. If fewer than two variables are inputs, the constraint is unresolved and no
resulting program can be extracted. Computations are associated with nodes and conditionals
with arcs in the dependence graph. A derived dependence graph can establish the constraints
by computing values for some or all of the non-input or output variables. Constraints over
indexed sets are compiled to loops. The derivation of dependence graphs is explained in detail
n [12]. Our translation exploits the different types of parallelism implicit in the constraints.
The compiler generates single-assignment variables. A constraint specification represents a
family of dependence graphs. Generation of all possible dependence graphs can result in
combinatorial explosion. We construct the dependence graph only for a specified input set.

4 Advantages of using Constraint Specifications

4.1 Fase of Use

The main appeal of constraint programming is the significant reduction of the gap between
the informal description of the problem and its computer specification. The emphasis is on
the description of the problem than on how it will be solved. The programmer is given a
representation for reasoning in high level specifications and does not have to deal with issues
of control flow or synchronization. Programming is still required and is critical, but it takes
place at a higher level.

4.2 Generation of either Effective or Complete Programs

The presence of the "or” operator in a constraint system results in the possibility that there
exists more than one assignment of values to the variables which will result in satisfaction of
the constraint system. (A given input set for a program with an ”or” operator may or may not
allow multiple assignments which satisfy the constraint system.) A program which is effective
generates exactly one set of assignments of values to variables which satisfies the constraint
system. A program which is complete generates all of the sets of assignments of values to
variables which will satisfy the constraint system. The compilation process can be told to
generate the executable either for exactly one "or branch” of the dependence graph or to
generate the executable for all paths which lead to valid assignments. Thus, the compilation
process can produce programs which are either effective or complete. A program which is
complete realizes ”or” parallelism, as will be further discussed in Section 5.1.

4.3 FEzxtraction of Alternative Programs from Different Initial Conditions

Part of the appeal of a constraint programming language is its multi-directional nature - the
facility to extract values for different sets of variables depending on the composition of the
input set. While this is a secondary aspect for parallel programming concerns as compared

to the ease of use aspect, this is still important in many application domains. We illustrate
the extraction of two programs from a single constraint specification in the next subsection.

4.3.1 Quadratic Equation Solver

Consider a formulation for the real roots of a quadratic equation, az? 4 bz 4+ ¢ == 0, in Figure
1. The Main program variables are { a,b,c,r1,r2 }. The constraint module DefinedRoots
has the parameters { a,b,c,r1,72 }. ¢ is a local variable in DefinedRoots. sqr, sqrt, and abs
are library functions corresponding to the arithmetic functions of square, square root and
absolute. The inverses to these functions are defined. ”U" denotes an undefined value.

/* Constraint module */
DefinedRoots(a, b, ¢, r1, r2)
t==sqr(b) —4*a+xc ANDt>=0

AND 2+axrl == —b+ sqrt(abs(t)) AND 2 xaxr2 == —(b+ sqrt(abs((t))))
/* Main */

a==0AND r1 == “U" AND r2 == “U"

OR

a # 0 AND DefinedRoots(a, b, ¢, r1, r2)

Figure 1: Constraint Specification for Quadratic Equation Solver

The input set to the program could be chosen as { a,b,c }. The extracted dependence
graphs for Main and the constraint module De finedRoots for this input set are shown in
Figure 2. The conditionals on the arcs have to be satisfied for destination nodes to execute.
The node, DefinedRoots, invokes the corresponding dependence graph. Assignments at a node
are computations associated with the node.

Inputs: {a,b, ¢}, Outputs: {rl,r2}

t=sgr(b)-4*a*c

t>=0
ri="u" DefinedRoots(a,b,c,r1,r2) r1=(-b+sgrt(abs(t)))/(2*
=l e ibent e
MAIN DefinedRoots(a,b,c,r1,r2)

Figure 2: Dependence Graphs for Quadratic Equation Solver Example with inputs a,b,c

Alternatively, the input set to the program could be chosen as {a, b, r1 }. The extracted
dependence graphs for Main and the constraint module DefinedRoots for this input set
are shown in Figure 3. The dependence graphs compute values for variables ¢ and r2. The
inverses of the functions sqrt and abs have been applied to derive the computations for ¢.
The compiler can be optimized to detect that the path starting from the node computing
t = —sqr(2«a*rl1+4b) can never be traversed to completion. Also, the constraint specification
in Figure 1 can be enhanced to specify relationships containing the components of imaginary
roots (¢ < 0). The granularity is too fine-grained in this example, which has been chosen just
for illustrative purposes.

Figures 2 and 3 show that the same constraint program specification can be reused to
derive the dependence graphs for different input sets. However, not all input sets can lead to

dataflow graphs. For example, no dependence graph can be generated with the input set {
a,rl }.

Inputs: {a, b, r1}, Outputs: {r2, c}

t=sqr(2*a*ri+ =-sgr(2*a*rl+b)
t>= >=0

r2="u" DefinedRoots(a,b,c,r1,r2)
r2:(—b—sqrt(abg;)/(2* a) rZqurt(abs(t)))/(Z* a)
c=(sar(b)-t)/4*a c=(sar(b)-t)/4*a
MAIN DefinedRoots(a,b,c,r1,r2)

Figure 3: Dependence Graphs for Quadratic Equation Solver Example with inputs a,b,rl

5 Extraction of Parallelism

This section details the different issues in the extraction of parallelism from constraint specifi-
cations. This includes the exploitation of AND-OR parallelism in the specification, extraction
of control and data parallelism, and the factors governing granularity of operations.

5.1 AND-OR Parallelism

Our translation process collects constraints connected by AND operators at the same node
in the dependence graph [12]. Some of these constraints may be classified as computations
depending on the input set. These computations have the potential for parallelism. Since the
compiler generates a single-assignment system, the lone write to a variable occurs before any
reads to it. This helps in determining data dependence and independent computations can be
assigned to several nodes for parallel execution. The parallelism extracted from these compu-
tations will be referred to as AND-parallelism. In the dependence graph for DefinedRoots in
Figure 2 the computations for 1 and r2 can be done in parallel. Similarly the computations
for 72 and ¢ in the dependence graph for DefinedRoots in Figure 2 can be done in parallel.
Both of these are instances of AND-parallelism.

Constraints connected by OR operators are collected on diverging pathsin the dependence
graph [12]. Some of these constraints get classified as computations and some as conditionals
depending on the input set. The divergent computational paths that arise as a result of
constraints connected by OR operators have the potential to be executed in parallel and give
rise to OR-parallelism.

We illustrate AND-OR parallelism through a simple example. Consider the constraint
specification in Figure 4 for a program involving variables { a,b,c,x,y }. The dependence
graph for the input set { a,b,c } and output set { x,y } is shown in Figure 5. Since a, b, ¢ are
inputs, ¢ < b and @ < c are classified as conditionals. The constraints involving equalities (
b==2z,y==rc¢,z == c,and b == y) are classified as computations for the single unknown in
them. OR parallelism comes into play in the parallel execution of the two paths branching out
from the start node in the event that ¢ < b and @ < ¢. This also implies that this program can
be compiled to be either complete or effective, as discussed in Section 4.2. AND parallelism
is extracted from the computations for z and .

a<b AND b==z AND y==c¢
OR
a<c AND z==c AND b==y

Figure 4: Constraint Specification for a Simple Example

Figure 5: Dataflow Graph showing AND-OR Parallelism

5.2 Control and Data Parallelism

Both control and data parallelism are extracted by our translation process. Control paral-
lelism arises from nodes being assigned computations derived from the translation process.
Data parallelism arises from the hierarchical representation of our type system. For example,
matrices can be represented as blocks of sub-matrices and constraints over sub-matrices are
translated to data-parallel conditionals/computations. We illustrate the extraction of control
and data parallelism through an example in the next subsection.

5.2.1 The Block Odd-Even Reduction Algorithm(BOER)

Consider a linear tridiagonal system Az = d where

B C 0 0 0 0 0
C B C 0 0 0 0
0 C B c 0 0 0
A= . . .
0 0 0 0 C B C
0 0 0 0 0 C B

is a block tridiagonal matrix and B and C are square matrices of order n > 2. It is assumed
that there are M such blocks along the principal diagonal of A, and M = 2% — 1, for some
k > 2. 1t is assumed that the vectors = and d are likewise partitioned. It is further assumed
that the blocks B and C are symmetric and commute. A version of the parallel algorithm
(taken from [14]) programmed in our system is shown in Figure 6. It is not necessary to
understand all the details in the algorithm to follow the translation to a dependence graph.
There are three phases in the system: (i) Reduction, which involves an AND FOR over three
constraints, the last of which is another AND FOR, (ii) Single-Solution, which involves the
solution of an Az = b type equation, (iii) Back-Substitution, which has two nested AND
FORs.

The resulting dataflow graph is shown in Figure 7. The nodes annotated by BP, CP, dP,
and z compute the value of the corresponding variable. A FOR node initiates the different
iterations of a loop. The two such nodes in the figure correspond to the two outer AND
FORs for index j in the program. The annotation “Replicated” on the arcs specify that
the annotated arc and the destination node (shaded) are dynamically replicated for parallel
execution. The two such annotated arcs correspond to the two nested AND FORs (for index i)
in the program. The form of parallelism extracted here is data. Different parts of the matrices,
dP and z are computed in parallel in the two replications, respectively. Control parallelism
occurs in the parallel execution of the nodes computing BP, C'P, and dP, respectively. The
nodes annotated by “Merge” collect computed results from parallel executions. Note that
our compiler automatically detects the parallelism in the for loops in the reduction and back-
substitution phases. Furthermore, it is capable of detecting the control parallelism within the
expression 2« C'P[j — 1]« CP[j — 1] — BP[j — 1] * BP[j — 1] in the computation for BP[j].

/* REDUCTION PHASE */
AND FOR (j 1 k-1) {
BP[j] == 2 * CP[j-1] * CP[j-1] - BP[j-1] * BP[j-1]
CP[j] == CP[j-1] * CP[j-1]
AND FOR (i 0 pow(2,k-j)-2){
dP[i*pow(2,j)][j] == CP[j-1] * (dP[i*pow(2,j) + pow(2,j-1)][}-1] +
APfi*pow(2,5) - pow(2,-1)][j-1]) - BP(j-1] * dP[i*pow(23)][-1] }} AND

/* SINGLE-SOLUTION STEP */
BP[k-1] * z[pow(2,k-1)] == dP[pow(2,(k-1))][k-1] AND

/* BACK-SUBSTITUTION PHASE */
AND FOR (j k-1 1) {
AND FOR (i 0 pow(2,k-j)-1){
BP[j-1] * zf(i+1)*pow(2,j)-pow(2,5-1)] ==
dP[(i+1)*pow(2,j)-pow(2,j-1)][j-1] - CP[j-1] * (z[(i+1)*pow(2,j)] + z[i*pow(2,5)]) }}

Figure 6: Specification of the BOER Algorithm as a Constraint System

START C;D
Sngle-Solution X[*

K

%//%‘ FOR
%’ - .

Reduction dP*][j] Replicated
Back-
Sjbsat(i:tution x[*]
MERGE
STOP

Figure 7: Dataflow Graph for BOER Program

5.3 Control over Granularity

The granularity of the derived dependence graphs depends upon the types represented as
primitives in the constraint representation. The introduction of structured types and opera-
tions on structured types as primitives in the constraint representation gives natural units of
computation at a granularity appropriate for task level parallelism Granularity is further con-
trolled by the following features in our system: (i) modularity for reusable modules, and (ii)
definition of sequential functions. We illustrate control over granularity through structured
types by means of an example in the next subsection.

5.3.1 Block Triangular Solver(BTS)

The example chosen is the solution of the AX = B linear algebra problem for a known lower
triangular matrix A and vector B. The parallel algorithm [8] involves dividing the matrix
into blocks. A constraint program for a problem instance split into 4 blocks is shown in
Figure 8. Sp...S3 represent lower triangular sub-matrices that are solved sequentially, and
Mg, My, ... Msy represent sub-matrices that must be multiplied by the vector from above
and the result subtracted from the vector from the left. The vector multiplications for all
Ms within a column may be done in parallel. This parallelism yields an asymptotic ideal
speedup of P?/(3P — 2), where P is the number of processors. The input set can be chosen
as So, ..., 53, Mg, Mo, ..., M3z. The output set will be detected as {Xo, X1, X3, X3}. Using

an indexed operator and an indexed set of constraints, an alternate compact program is
AND FOR (i 03) { + FOR (j 01) { A[7][j]* X[j] } == B[] }

where the subscripts for A, X, and B define partitions on the matrices. If the specification is
given in terms of indexed sets of constraints over sub-blocks of the matrix, then the granularity
of the computation can be controlled by specification of the size of the sub-blocks.

{So *Xo == Bo AND

Mio * Xo + S1 % Xy == B1 AND

IMQO * Xo + [\421 * X1 =+ 52 * X2 == B2 AND

lwg)o * Xo =+ [\431 * X1 + 1‘432 * X2 + 53 * X3 == Bg)

Figure 8: Specification of the BTS Algorithm as a Constraint System

6 Execution Environment Specification

So far we have demonstrated that constraint programs can be compiled to parallel programs
of appropriate granularity. However, to achieve high performance it is vital to make use of
architecture-specific mechanisms when generating executables for different architectures. We
plan to do this through a specification, separate from the constraint specification, for execution
environment directives. In this specification, features for the following will be included:

(i) The Architecture Model: For a shared memory system there can be dramatic improve-
ment in performance if certain variables are declared as shared. This avoids copying of large
data arrays. The compiler automatically implements synchronization and locking mechanisms
for consistency of data. However, data should not be shared across computational paths aris-
ing from OR connectives as this could lead to incorrect results and would not deliver multiple
solutions, if any. Data could be shared across AND computations.

For distributed memory and distributed shared memory, compiler directives could be given
to preserve data locality in computation.

(ii) Communication Properties: The programmer could give specifications for latency or
bandwith.

(ili) Granularity Specification: The programmer could specify estimates of the amount of
computational work associated with each unit of computation and each unit of communication,
which (s)he thinks will yield effective computation. This can be used by the compiler to
determine appropriate granularity for the execution of computations.

7 Performance Results

In this section we present the performance results for some of the examples introduced earlier
in the paper. These results present initial evidence that constraint specifications can be
compiled to competitively efficient executables.

7.1 Block Odd-Fven Reduction Algorithm

The authors in [14] have mentioned that the single-solution step is the major bottleneck in
the algorithm. But, in our experiments we found the reduction phase resistant to scalability
because the computation for BP[j] and C P[5] involves matrix-matrix multiplication: an O(n?)
operation. This dominates the scalable part of the loop: the computation of dP, which is
O(n?). In later versions of the compiler, we plan to incorporate parallel algorithms for matrix-
matrix multiplication, which will overcome this bottleneck. Figure 9 presents the speedups
over a sequential implementation of the algorithm on an 8-processor SPARCcenter 2000 for

n=200 and £ = 7(M = 127) and k = 8(M = 255) for the back-substitution phase of the
algorithm. Note the attainment of near-linear speedup for this (relatively small) number of
processors.

BOER Performance on SPARCcenter 2000

=7,n=200 4;7/
=8,n=200 ol

55

o

5

45

4

35

Speedups

3

25

2

15

1

1 2 3 4 5 6 7 8
Number of Processors

Figure 9: Performance Results for BOER Program

7.2 Block Triangular Solver

Figure 10(a) gives the speedups for a 1200 x 1200 matrix on a shared memory Sequent
machine. It is seen that the performance of the code generated from the constraint system is
comparable to the hand-coded program’s performance. The difference in speedup is mainly
due to the fact that the hand coded program is optimized for a shared memory execution
environment. (These results were obtained with an earlier version of the constraint compiler
before any provision for specification of execution environments were implemented and the
Sequent computer system is no longer available, now that the optimizing compiler is available.)
Figure 10(b) gives the speedups for a 8800 x 8800 matrix (number of blocks=11, block
size=800) on an 8-processor SPARCcenter 2000. This program has been optimized for shared
variables. It is to be noted that the constraint generated code performs quite well for the small
number of processors available. The speedups are slightly higher than the asymptotic ideal,
until about 7 processors, after which it drops below the asymptotic ideal. The hand-coded
parallel program for the Sparc is under development.

(a) BTS Performance on Sequent (b) BTS Performance on SPARCcenter 2000
45 T T T T 4 T T T T
i ; | Constraint ©— i i i i iConsttaint —
A e g] 35 |

B

Speedups
N
T

4 6 8 10 0 1 2 3 4 5 6 7 8
Number of Processors Number of Processors

Figure 10: Performance Results for BTS on: (a) Sequent (b) SPARCcenter 2000

8 “NEW?” Construct for Iterative Solutions

The programs compiled from constraint systems may pose a heavy memory requirement for
iterative programs, which occur frequently in parallel numerical algorithms. Direct compila-
tion uses a new memory location for every iterative update to a single-assignment variable. To
overcome this problem we propose a construct called new, very similar to the corresponding
complementary construct old in the functional language Sisal [4]. new <variable> denotes a
new instantiation of the variable and thus simulates a destructive update. We plan to en-
hance the compiler with the capability of detecting instances which require the use of new.
We foresee this occurring frequently in indexed sets of constraints with an index that does
not occur in the body. For example, consider the constraint specification in Figure 11 for the
Laplace Equation for an N x N board using a 4-point stencil.

AND FOR (t 1 100) {
AND FOR (i 2 N-1) {
AND FOR (j 2 N-1) {

- 4%o[ijfi] == xfi-1][] + afi+1][j] + «[i][j-1] + x[i][j+1]

Figure 11: Constraint Specification for the Laplace Equation

The variable ¢ does not occur in the body. This is interpreted by the compiler as an
indication of an iterative solution. If the input to the problem are the boundary values, the
compiler determines that the first term, namely z[i][], is the only term which remains as
unknown over all iterations. Consequently, it chooses this term as the candidate for new. It
also recognizes that initial values need to be chosen for all points excluding boundary points.
By default, these are chosen to be 0. The programmer is then presented with an enhanced
version of the code shown in Figure 12, where an INIT construct for initializing the required
section of the array has been introduced and the term z[¢][j] has been enhanced to new z[i][5].
The programmer is allowed to change any of this. Finally, the term enhanced with new is
chosen to be the computed term in all iterations of the loop. Each iteration overwrites the
current value of z[i][].

INIT {for (i 2 N-1){ for j 2 N-1){ 2fi[j] = 0} } }
AND FOR (t 1 100) {
AND FOR (i 2 N-1) {
AND FOR (j 2 N-1) {

- 4 * (new afif[j]) == afi-1][s] + a[i+1][i] + x[i][j-1] + =[tj[j+1]

Figure 12: Compiler-enhanced version of the Laplace Equation

If no unique term is unknown in all iterations of a loop, any arbitrary term is chosen as
the candidate for new. By making the compiler interactive we hope to overcome most of the
problems that may in encountered in the implementation of indexed sets of constraints as
loops.

9 Summary and Future Research

In conclusion, we claim that constraint systems offer a representation of computations, from
which all types of parallelism can be readily extracted. Constraint systems with appropriate
initialization specifications can be mapped to a generalized dependence graph. Coarse-grain

parallelism can be extracted through modularity, operations over structured types, and speci-
fication of arithmetic functions. Constraint systems offer other advantages such as extraction
of multiple programs from a single representation and the generation of either complete or
effective programs. By giving the programmer control over compilation choices for the ex-
ecution environment, we assist in generation of architecturally optimized parallel programs.
The first stage of research has established that constraint systems can be compiled to efficient
coarse grained parallel programs for some plausible examples. In fact, we have been quite
surprised at the ease of attaining these results from such a radical representation.

This paper reports on the progress to date in automatic extraction of parallelism from
computations expressed as constraint systems. We plan to continue the work with a focus on
matrix computations. It is clearly necessary to be able to express constraints on partitions of
matrices if large scale parallelism is to be derived from constraint systems without use of the
cumbersome techniques derived for array dependence analysis of scalar loop codes over arrays
[2]. There are several promising approaches: object-oriented formulations of data structures
are one possibility. A simpler and more algorithmic basis for definition of constraints over
partitions of matrices is to utilize a simple version of the hierarchical type theory for matrices
by Collins and Browne [7]. The hierarchical type model for matrices establishes a compilable
semantics for computations over hierarchical matrices. Additionally, further steps in this
research are to implement completely the execution environment specification, to define the
semantics of recursion in constraint module calls, and to relax the requirement that all of the
bounds in indexed sets of constraints be statically found.

References

[1] D. Baldwin. Consul: A Parallel Constraint Language. IEEFE Software 1989.

[2] Utpal Banerjee. Loop Parallelization, A Book Series on Loop Transformations for Restruc-
turing Compilers, Kluwer, 1994.

[3] B. N. Freeman-Benson. A Module Compiler for Thinglab II. Proc. 1989 ACM Conf.
on Object-Oriented Programming Systems, Languages, and Applications, New Orleans,

October 1989. ACM.

[4] D.C. Cann. The optimizing Sisal Compiler: Version 12.0. Technical Report UCRL-MA-
110080, Lawrence Livermore National Laboratory, April 1992.

[5] K.M. Chandy, S. Taylor. An Introduction to Parallel Programming, Jones and Bartlett,
1992.

[6] K.M. Chandy, J. Misra. Parallel Program Design : A Foundation, Addison-Wesley, 1989.

[7] T.S. Collins, J.C. Browne. MaTrix++; An Object-Oriented Environment for Parallel
High-Performance Matrix Computations. Proc. of the 1995 Hawaii Intl. Conf. on Systems
and Software.

[8] J.J. Dongarra, D.C. Sorenson. SCHEDULE: Tools for Developing and Analyzing Parallel
Fortran Programs. Argonne National Laboratory, MCSD Technical Memorandum No. 86,
Nov. 1986.

[9] 1. Foster, S. Taylor. Strand: New Concepts in Parallel Programming Prentice Hall, 1990.
[10] I. Foster. Designing and Building Parallel Programs. Addison-Wesley, 1995.

[11] Al Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam. PVM: Parallel
Virtual Machine:A Users” Guide and Tutorial for Networked Parallel Computing. MIT
Press, 1994.

[12] Ajita John, J. C. Browne. Compilation of Constraint Systems to Procedural Parallel Pro-
grams. Ninth Workshop on Languages and Compilers for Parallel Computers, California,
August, 1996.

[13] M. V. Hermenegildo. An abstract machine based execution model for computer archi-
tecture design and efficient implementation of logic programs in parallel. PhD thesis,
University of Texas at Austin, 1986.

[14] S. Lakshmivarahan, S. K. Dhall. Analysis and Design of Parallel Algorithms: Arithmetic
and Matrix Problems. McGraw-Hill Series in SPP, 1990.

[15] M. Mehl, R. Scheidhauer, C. Schulte. An Abstract Machine for Oz. Programming
Languages, Implementations, Logics and Programs, Seventh Intl. Symp., Springer-Verlag,
LNCS 982, The Netherlands, September 1995.

[16] P. Newton, J. C. Browne. The Code 2.0 Graphical Parallel Programming Environment.
Proc. of the 1992 Intl. Conf. on Supercomputing. Washington, DC, July 1992.

[17] H. Richardson. HPF: History, Overview and Current developments. Thinking Machines
Corporation, TMC 261, URL: http://www.crpc.rice.edu/HPFF /publications.html

[18] Vijay A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis, Carnegie
Mellon, Pittsburgh, 1989. School of Computer Science.

