Compilation to Parallel Programs from Constraints

Ajita John, J.C. Browne
Dept. of Computer Sciences
University of Texas at Austin

Austin, TX 78712

E-mail: {ajohn,browne}@cs.utexas.edu

Abstract

This paper describes the first results from research
on the compilation of constraint systems into task level
parallel programs in a procedural language. This is the
only research of which we are aware which attempts to
generate efficient parallel programs for numerical com-
putation from constraint systems. Computations are
expressed as constraint systems. A dependence graph
1s derwed from the constraint system and a set of in-
put variables. The dependence graph, which exploits
the parallelism in the constraints, 1s mapped to the
language CODE, which represents parallel computation
structures as generalized dependence graphs. Finally,
parallel C' programs are generated. To extract paral-
lel programs of appropriate granularity, the following
features are included: (i) modularity, (ii) operations
over structured types as primitives, (iii) sequential C
functions. A prototype of the compiler has been imple-
mented. The domain of matriz computations is tar-
geted for applications. Initial results are very encour-

aging.

1. Introduction

Representing a computation as a set of constraints
upon the state variables defining the solution is an
attractive approach to specification of programs, but
there has been little success previously in attaining ef-
ficient execution of parallel programs derived from con-
straint representations [1]. There are however, both
motivations for continuing research in this direction
and reasons for optimism concerning success. Con-
straint systems have attractive properties for compi-

I This work was supported in part through a grant from the
Advanced Research Projects Office/CSTO, subcontract to Syra-
cuse University #3531427

lation to parallel computation structures. A constraint
system gives the minimum specification (See [2] for the
benefits from postponing imposition of program struc-
ture) for a computation, thereby offering the compiler
freedom of choice for derivation of control structure.
Constraint systems offer some unique advantages as a
representation from which parallel programs are to be
extracted. All types of parallelism (AND, OR, task,
data) can be derived [11]. Either effective or complete
programs can be derived from constraint systems on
demand [11].

The focus of this research is to derive from con-
straint representations, parallel programs of execution
efficiency competitive with procedural languages. The
next two sections outline our approach and related
work. This is followed by a description of the pro-
gramming system and the compilation algorithm. We
conclude the paper with performance results for one ex-
ample program (and pointers to other examples) and
directions for future work.

2. Approach

A constraint program is expressed as a set of con-
straints between the program variables and an input
set consisting of a subset of the program variables. A
dependence graph is derived from the constraint pro-
gram. The dependence graph is mapped to the target
language CODE [14], which expresses parallel structure
over sequential units of computation declaratively as a
generalized dependence graph. Finally, sequential and
parallel C programs for shared memory machines like
the CRAY J90, SparcCenter 2000, and Sequent and
the distributed memory PVM [8] system can be gener-
ated. An MPT [5] backend is under development. The
granularity of the derived dependence graphs depends
upon the types directly represented as primitives in the
constraint representation. Introduction of types and

operations as primitives in the constraint representa-
tion gives natural units of computation at granularity
appropriate for task level parallelism and avoids the
problem of name ambiguity in the derivation of depen-
dence graphs from loops over scalar representation of
arrays. It also supports implementation of data par-
allelism, if desired [11]. The general requirements for
a constraint representation which can be compiled to
execute efficiently, include: (i) modularity for reusable
modules, (ii) narrowing of the semantic domain (iii)
definition of sequential functions, and (iv) a rich type
set. The main features of our approach are detailed in
the rest of the section.

(i) Constraint representation: A constraint is a
relationship between a set of variables. E.g. A+ B ==
C'1s a constraint expressing equality between C and the
sum of A and B. A constraint specification enumerates
the different relationships that must be established or
maintained by the executing code.

(i1) Constraint modules: Modularity is provided
by constraint modules, which are encapsulations of re-
lationships between parameters and can be invoked as
a constraint. Figure 1 shows a constraint specifica-
tion for finding the real roots of a quadratic equation,
az? + bx 4+ ¢ == 0, which uses a module. "U" denotes
an undefined value. sqr, sqrt, and abs are library func-
tions. A program specification also identifies the set of
inputs. In the example it could be {a,b,c} or {a,b,r1}
or {a,b, r2}.

/* Constraint module */
DefinedRoots(a, b, ¢, r1, r2)
t==sqr(b)—4*xaxc ANDt>=0 AND
2xaxrl == (—b+ sqrt(abs(t))) AND

2xa*x 72 == —(b+ sqrt(abs(t)))

/* Main */

a==0 AND rl == “U" AND r2 == “/"
OR

a! =0 AND DefinedRoots(a, b, ¢, r1, r2)

Figure 1. Real roots of a quadratic equation

(iii) Compilation to a procedural language:

Encapsulated within A + B == (' are three assign-
ments: A = C—-—B, B=C—-A, C = A+ B and
a conditional: A + B == (. One of the three as-

signments can be extracted depending on which two of
the three variables are inputs or known variables. If
all three are inputs, the constraint can be transformed
into a conditional to be checked for satisfaction. If less
than two variables are inputs, the constraint is unre-

solved and no resulting program can be extracted. A
derived dependence graph can establish the constraints
by extracting computations to resolve some or all of
the non-input (output) variables (see Section 5). Our
translation exploits the parallelism in the constraints.
The resulting program has single-assignment variables
and can generate multiple solutions on alternate paths
of the dependence graph.

(iv) Domain specification: The hierarchical
type system: The semantic domain chosen for our
application programs is matrix computation. We have
a built-in matrix type with its associated operations.
The matrix subtypes currently implemented are lower
and upper triangular and dense matrices. We plan to
extend to more specialized matrices including hierar-
chical matrices [4]. Specialized algorithms based on the
structure of the matrix can be invoked for the matrix
subtypes. Other structured types such as lists, queues,
trees etc. along with their associated operations could
be included to broaden the class of programs which can
be compactly represented.

(v) Separate specification of compilation op-
tions and the execution environment: To obtain
architecturally optimized programs we plan to incor-
porate features such as the following as part of an
execution environment specification separate from the
constraint specification: (a) Selection of the level of
granularity. (b) Option of not parallelizing a particu-
lar module. (c) Option of selecting certain operations
for executing in parallel. (d) Choices among paral-
lel algorithms to execute some of the operations. (e)
Specification of architecture-specific mechanisms (E.g.
shared variables).

3 Related work

We shall briefly sketch related pieces of work in this
section.

Consul[1] is a parallel constraint language that uses
an interpretive technique (local propagation) to find
satisfying values for the system of constraints. This
system offers performance only in the range of logic lan-
guages. Declarative extensions have been added as part
of High-Performance Fortran(HPF) [15], a portable
data-parallel language with some optimization direc-
tives. HPF does not support task parallelism. Also, ex-
isting control flow in its procedural programming style
makes analysis for parallelism difficult. Thinglab [7]
transforms constraints to a compilable language rather
than to an interpretive execution environment as in
many constraint systems, but is not concerned with
extraction of parallel structures. Vijay Saraswat de-
scribed a family of concurrent constraint logic program-

ming languages, the cc languages [16]. The logic and
constraint portions are explicitly separated with the
constraint part acting as an active data store for the
logic portion of the program. Oz is a concurrent pro-
gramming language based on an extension of the basic
concurrent constraint model provided in [16]. The per-
formance reported for the system is only comparable
with commercial Prolog and Lisp systems [13]. Paral-
lel logic programming [3, 6, 9] is another area of related
work. PCN [3] and Strand [6] are two parallel program-
ming representations with a strong component of logic
specification. However, both require the programmer
to provide explicit operators for specification of par-
allelism and the dependence graph structures which
could be generated were restricted to trees. Equational
specifications of computations is a restriction of con-
straint specifications. Unity [2] is the equational pro-
gramming representation around which Chandy and
Misra have built a powerful paradigm for the design
of parallel programs. Again, Unity requires addition of
explicit specifications for parallelism.

Some reasons why our approach has greater poten-
tial for obtaining efficient parallel programs than paral-
lel logic languages, compilation of functional languages
to parallel execution and/or concurrent constraint logic
programming languages include: (i) A constraint spec-
ification system can provide a richer set of primitives
than is given in current logic languages. (ii) Func-
tional languages restrict dataflow to be unidirectional
whereas constraint systems impose no constraints on
dataflow. (iii) Data parallelism is more readily ex-
pressed in constraint specifications than in pure func-
tional languages. (iv) Concurrent constraint satisfac-
tion systems currently rely on interpretive methods for
evaluation of constraint satisfaction whereas we com-
pile to direct procedural code. (v) Narrowing the target
domain and direct use of semantic domain knowledge
enable the compiler to choose efficient algorithms for
the derived computations.

4. Language description
4.1. Types

The lowest level of the type system consists of inte-
gers, reals, characters, and arrays with the operators of
addition, subtraction, multiplication, and division on
integers and reals. At the next level of the type hierar-
chy are matrices with their associated operations of ad-
dition, subtraction, multiplication and inverse. Other
than dense matrices the system supports specialized
matrix types like lower and upper triangular. At the

highest level of the type system are hierarchical matri-
ces, whose individual elements are matrices.

4.2. Constraints

Linear arithmetic expressions (including function
calls) are allowed in a constraint. Only a re-
stricted form of compilation (see Section 5.3) is
done with non-linear expressions and functions whose
inverses are not defined. This will be relaxed
as we target more applications. Indexed opera-
tors of the following form are valid expressions:
| <op> FOR (<index > <bl><02>) X | op €
{+, -, *, /}, index is an integer variable, b1 and b2
are range bounds for index, and X is an arithmetic
expression. E.g. + FOR (i 1 5) A[é] specifies the sum
of the elements in array A from positions 1-5. b1 and
b2 have to be statically bound.

The following (underlined) constructs are con-
straints:

Rule 1: (i) X; R X3, where Re { <, <, >, >, ==,
+ }, X1, X, are arithmetic expressions

(i1) My == M,, where My, My are expressions in-
volving matrices and matrix operators
Rule 2: (i) NOT A (ii) A AND/OR B, where A and
B are constraints
Rule 3: Calls to user-defined constraint modules
Rule 4: Constraints over indexed sets:

AND/OR FOR (<index> <bl> <b2>)

{ A1, As, .. A}

where indez is an integer variable | b1 and b2 are range
bounds for indez, and { A1, As,..., Ay }is a set (un-
ordered) of constraints. b7 and b2 have to be statically
bound. This will be relaxed in later versions of the
compiler. E.g. AND FOR (i 1 2) { A[{] == A[i-1],
B[i+1] == AJi] } captures the constraints
A[l] == A[0] AND A[2] == A[1] AND BJ[2] == A[l]
AND BJ[3] == A[2]

Constraints constructed from applications of Rule 1
are referred to as simple constraints, which form the
building blocks for non-simple constraints, constructed
from applications of Rules 2-4.

4.3. Programs

A program consists of: (i) Global variable declara-
tions, Global Input variables. (ii) User-defined function
signatures: signatures of C functions (linked during ex-
ecution) (iii) Constraint Module definitions: module
name, formal parameters and their types, local vari-
able declarations, and a body, which is similar in syn-
tax to the main body. (iv) Main body of the program:
constraints constructed from Rules 1-4.

5. Compilation

The four phases of the compilation algorithm are
described in this section. See [10] for more detail.

5.1. Phase 1

The textual source program is transformed into a
source graph. Starting from an empty graph, for
each application of Rules 1-4, an undirected constraint
graph can be constructed by adding appropriate nodes
and edges to the existing graph. For each instance of
a simple constraint, a node is created with the con-
straint attached to it. For each application of Rule
2, the graph is expanded as in Figures 2(a),(b). For
each application of Rule 3, a node is created with the
constraint module call and the actual parameters at-
tached to it. For each application of Rule 4, the graph
is expanded as shown in Figure 2(c

FORIndex,bounds

AND/

AND/
AND/

Grapl Grapl
for A for B for A
Grapl
for A1
Grap Graph
for Ap. for An

Figure 2. (a),(b): Rule 2 (c): Rule 4

5.2. Phase 2

A depth-first traversal of the graph, obtained from
phase 1, constructs a tree. This construction simplifies
the constraint specification as illustrated in Figure 3,
where a, b, ¢, and d are simple constraints. Nodes are
collapsed such that constraints connected by AND op-
erators are collected at the same node and constraints
connected by OR operators are collected at nodes on
diverging paths. The satisfaction of all the constraints
(implicitly connected by AND operators) along a path
from the root to a leaf in the resulting tree represents
a satisfaction of the constraint system. Different paths
(arising from OR operators) in the tree represent al-
ternate ways of satisfying the constraint system giving
rise to the possibility of multiple solutions. The de-
tailed algorithm can be found in [10].

5.3. Phase 3

A dependence graph generation for the constraint
and input set specification is attempted in this phase.

OR OR AND AND
OR OR AND AND| AND AND| OR OR
a b c d a b c d a b c d a b c d
{abcd}
{8 (B {d {d fab} {cd} ac {bc} {ad} {bd}

Figure 3. Phase 2

In the generated dependence graph, nodes are compu-
tational elements and arcs between nodes express data
dependency. A node has the form: firing rules, compu-
tation, routing rules (see Figure 4). A path from the
root of the graph to a leaf is a possible computation
path. To generate a dependence graph, a depth-first
traversal of the tree from phase 2 is done. The traver-
sal starts with the information that variables in the
input set (known set) are known and tries to generate
paths that contain computations for variables in the
output set. Each node in the tree has an attached set
of simple constraints. When a node is visited, each
constraint is examined for classification as one of the
following:

(i) Firing Rule: a condition that must hold before the
current node can execute. To be so classified, a con-
straint must have no unknowns (determined from the
composition of the known set) when the node is vis-
ited.

(i1) Computation: To fall into this category, a con-
straint must involve an equality and have a single un-
known, which is added to the known set and retained
in 1t for the subtree rooted at the current node. Thus,
the compiler generates single-assignment variables.
(iii) Routing Rule: a condition that must hold for this
node to send out data on its outgoing paths. To be
a routing rule, all unknown variables in the constraint
must have been resolved by the computations at this
node.

When a constraint 1s classified as a computation, it
is mapped to an equation. Depending on the types of
the variables, specialized routines are invoked to solve
for the unknown. Any constraint not falling into one
of the categories (i)-(iii) is retained in an unresolved
set of constraints which is propagated down the tree.
Examination of each constraint at a node and in the un-
resolved set of constraints continues till a stable state
is reached. Any path that results in a leaf with un-
resolved constraints is abandoned. If all paths in the

INPUTS

Firing Rules

Computation

Routing Rules

OUTPUTS

Figure 4. Dependence graph node

tree are abandoned the user is informed of the restric-
tiveness of the initial input set. Constraints involving
inequalities must be resolved as firing/routing rules.
Non-linear constraints must have the non-linear terms
involving only known variables. This will be relaxed
later. Details of phase 3 for constraint module calls
can be found in [10].

5.3.1. Extraction of AND parallelism: The com-
putational statements that are assigned to a node have
the potential for parallel execution. For instance, the
assignments @ = b+ ¢ and z = b 4+ 2 can be done in
parallel. Hence, parallelism is exploited by keeping in
mind that the compiler generates a single-assignment
system and the lone write to a variable will appear be-
fore any reads to it. Evidently, the granularity of such
a scheme depends on the complexity of the functions
invoked within the statements and the complexity of
the operators. We have further exploited the complex-
ity of matrix operations by splitting up the specifica-
tions, performing computations in parallel and com-
posing them. For example, if £ = m % y + m * z and
x, m, y, z, and b are matrices, m * y and m x z can
be done in parallel. This leads to significant speedup
since multiplication of matrices is an O(N?3) operation.
Since m %y is a primitive operation, a procedure which
implements a parallel algorithm for m % y can be in-
voked. In a later version of the compiler provision will
be made for user specification of parallelism for opera-
tions over structures.

Parallelism in AND indexed sets: Our system
design handles indexed sets with specified patterns of
access. To classify a constraint in an indexed set as a
conditional or computation, it is evaluated for all index
values. The restrictions on the indexed set structure to
be compiled successfully in our system are: For all val-
ues of the index (i) a constraint has to have the same
classification. (ii) if a constraint is classified as compu-
tation, the same unique general term in the constraint
has to be the unknown.

Indexed sets are compiled to loops. To extract par-
allelism, the computations within the compiled loop

structure are studied. We discuss the case of loops with
a single computation. The discussion can be general-
ized to the case of loops with multiple computations.
Throughout this discussion, the case of array accesses
will be detailed. The case of scalar accesses in loops
will follow trivially.

(1) If the array corresponding to the computed term
is not accessed anywhere in the computation, all itera-
tions of the loop can be run in parallel.

(i1) If the array corresponding to the computed term
1s accessed in the computation and the set of accessed
indices of the array is disjoint from the set of computed
indices of the array, all iterations of the loop can be run
in parallel.

(iii) Tf cases (i) and (ii) do not hold, the loop itera-
tions are inter-dependent and are run sequentially.

5.4. Phase 4

The CODE [14] programming interface is drawing
and annotating of a directed (dependence) graph on
a workstation. This annotated directed graph is con-
verted to a graph-format file, which is then passed
through several translations to obtain an executable.
The graph-format file stores an abstract syntax tree
(AST) which represents in a hierarchical form the
CODE program that is to be translated. The output of
the translator for the constraint systems is this AST,
which is processed in the CODE system. The final out-
put is an executable in the form of a sequential /parallel
C program.

6. Programming examples and results

A prototype of the compiler has been implemented
in C++. A small number of examples have also been
programmed and executed on the Cray J90, SparcCen-
ter 2000, Sequent Symmetry machine and the PVM
system. Due to space limitations, we have chosen to
include one representative example in this paper. This
1s described in the next subsection. For other examples
including the Block Triangular Solver, please see [10].

6.1. The block odd-even reduction algo-
rithm (BOER)

Consider a linear tridiagonal system Az = d where

B C 0 0 ... 0 0 O

¢ B C 0 ... 0 0 O

o ¢ B C ... 0 0 O
A= . .

0 0 0 0 C B C

0 0 0 O 0 C B

is a block tridiagonal matrix and B and C are square
matrices of order n > 2. It is assumed that there are
M such blocks along the principal diagonal of A, and
M = 2F — 1, for some k > 2. Thus, N = Mn denotes
the order of A. It is assumed that the vectors z and d

are likewise partitioned, that is, z = (z1,z2,..., z)",
d = (d11d21"'7dM)t1 Ty = (xi17$i21"'7min)t1 a‘nd
di = (di1, dia, ..., din)t, for i = 1,2,..., M. Tt is fur-

ther assumed that the blocks B and C' are symmetric
and commute.

A version of the parallel algorithm (from [12]) has a
reduction phase in which the system is split into two
subsystems - one for odd-indexed (reduced system) and
another for even-indexed (eliminated system) terms.
The reduction process is repeatedly applied to the re-
duced system. After k—1 iterations the reduced system
contains the solution for a single term. The rest of the
terms can be obtained by back-substitution. The con-
straint specification for the problem is shown in Figure
5. The variable names, BP, CP, dP correspond to the
indexed terms B,C,d in [12] and are examples of the
hierarchical data type in our system (elements of BP,
CP and dP are matrices). The inputs to the system are
BP[0], CP[0] and dP[i][0]. pow is a C function imple-
menting the arithmetic power function. The terms in
bold in Figure 5 are the terms detected by the compiler
in phase 3 as the terms to be computed.

BP[k-1] * x[pow (2,k-1)] == dP[pow(2,k-1)][k-1]
AND
AND FOR (j 1 k-1) {
2 * CP[j-1] * CP[j-1] == BP[j] + BP[j-1] * BP[j-1] ,
CP[j] - CP[j-1] * CP[j-1] == 0,
AND FOR (i 0 pow(2,k-j)-2) {
OPfj-1] * (dPfi*pow(2,5) + pow(2,5-1)]fi-1]
+ dP[i*pow(2,j) - pow(2,j-1)][j-1]) ==
oy SPEEPOW@IL + BR-1] * aP[rou(2 i)l

AND FOR (i k-1 1) {
AND FOR (i 0 pow(2,k-j)-1) {
CP[j-1] * (z[(i+1) *pow(2,5)] + z[i*pow(2,5)]) ==
dP[(i+1)*pow(2,j)-pow(2,j-1)][j-1] - BP[j-1] *
x[(i4+1)*pow(2,j)-pow(2,j-1)] }}

Figure 5. Constraint specification for BOER

The resulting dataflow graph is shown in Figure 6
and corresponds to the dataflow in the algorithm in
[12]. The START and STOP nodes initiate and termi-
nate the program, respectively. A FOR node initiates
the different iterations of a loop. The two such nodes
in the figure correspond to the two outer indexed sets
for index j in the program. The annotation “Repli-

cated” on the arcs specify that the annotated arc and
the destination node (shaded in Figure 6) are dynam-
ically replicated for parallel execution. The two such
annotated arcs correspond to the two nested indexed
sets (for index) in the program. The nodes anno-
tated by BP, CP, dP, and z compute values for parts
of the corresponding variable. The nodes annotated by
“Merge” collect computed results from parallel execu-
tions. It is to be noted that our compiler automatically
detects the parallelism in the for loops in the reduction
and back-substitution phases. Furthermore, it is capa-
ble of detecting the parallelism within the expression
2xCP[j—1]*CP[j—1]— BP[j — 1]« BP[j — 1] in
the computation for BP[j]. The authors in [12] have
mentioned that the single-solution step is the major
bottleneck in the algorithm. But, in our experiments
we found the reduction phase resistant to scalability.
This is due to the fact that the computations for BPj]
and CP[j] involve matrix-matrix multiplication: an
O(n®) operation. This dominates the scalable part
of the loop: the computation of dP, which is O(n?).
In later versions of the compiler, we plan to incorpo-
rate parallel algorithms for matrix-matrix multiplica-
tion, which will overcome this bottleneck. Figure 7
presents the speedups over a sequential implementation
of the algorithm on an 8-processor SPARCcenter 2000
for n=200 and k£ = 7(M = 127) and k = 8(M = 255)
for the back-substitution phase of the algorithm. The
sequential version for k=7 and k=8 took 50.1 seconds
and 91.9 seconds, respectively. Note the attainment of
near-linear speedup for this (relatively small) number
of processors.

START @
Sngle-Solution x[*

O
%/’Q% FOR
%’ " .
Reduction dP[*][j] Replicated
Back-
S.Jbsat?tution X1

MERGE

STOP

Figure 6. Dataflow graph for BOER

7. Summary and future research

In conclusion, we claim that constraint programs of-
fer a rich, relatively untapped representation of compu-
tation from which parallelism can be readily extracted.

BOER Performance on SPARCcenter 2000

55
k=7;n=200 §7/
5 k=8,n=200 4~
45
4
a 35
g
& 3
25
2
15
Y

1 2 3 4 5 6 7 8
Number of Processors

Figure 7. Performance results for BOER

Constraint systems with appropriate input sets can be
mapped to a generalized dependence graph. Coarse-
grain parallelism can be extracted through modularity,
operations over structured types, and specification of
arithmetic functions. By giving the programmer con-
trol over compilation choices for the execution environ-
ment, we can assist in generation of architecturally op-
timized parallel programs. The first stage of research
has established that constraint systems can be com-
piled to efficient coarse grained parallel programs for
some plausible examples. In fact, we have been quite
surprised at the ease of attaining these results from
such a radical representation.

This paper reports on the first step in the quest for
a practical compiler for constraint systems to paral-
lel programs. It is clearly necessary to be able to ex-
press constraints on partitions of matrices if large scale
parallelism i1s to be derived from constraint systems
without use of the cumbersome techniques derived for
array dependence analysis of scalar loop codes over ar-
rays. There are several promising approaches: object-
oriented formulations of data structures are one possi-
bility. A simpler and more algorithmic basis for def-
inition of constraints over partitions of matrices is to
utilize a simple version of the hierarchical type theory
for matrices by Collins and Browne [4]. The hierar-
chical type model for matrices establishes a compilable
semantics for computations over hierarchical matrices.

Additionally, the next steps in this research are:
a) Enhance the compiler with the capability of con-
verting single-assignment variables to “destructive-
update” variables so that excessive memory usage can
be avoided in iterative numerical algorithms. b) Relax
the restrictions on the AND indexed set construct. c)
Implement completely the execution environment spec-

ification.

References

[1] D. Baldwin. Consul: A parallel constraint language.
IFEFE Software, 1989.

[2] K. Chandy and J. Misra. Parallel Program Design :
A Foundation. Addison-Wesley, 1989.

[3] K. Chandy and S. Taylor. An Introduction to Parallel
Programming. Jones and Bartlett, 1992.

[4] T. Collins and J. Browne. Matrix++: An object-
oriented environment for parallel high-perfomance ma-
trix computations. In Proc. of the Hawaii Intl. Conf.
on Systems and Software, 1995.

[5] I. Foster. Designing and Building Parallel Programs.
Addison-Wesley, 1995.

[6] I. Foster and S. Taylor. Strand: New Concepts in Par-
allel Programming. Prentice Hall, 1990.

[7] B. N. Freeman-Benson. A module compiler for
Thinglab I1. In Proc. 1989 ACM Conf. on Object-
Oriented Programming Systems, Languages, and Ap-
plications, October 1989.

[8] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, and V. Sunderam. PVM: Parallel Virtual
Machine:A Users’ Guide and Tutorial for Networked
Parallel Computing. MIT Press, 1994.

[9] M. V. Hermenegildo. An abstract machine based exe-
cution model for computer architecture design and ef-
ficient implementation of logic programs in parallel.
PhD thesis, University of Texas at Austin, 1986.

[10] A. John and J. Browne. Compilation of constraint
systems to procedural parallel programs. In Workshop
on Languages and Compilers for Parallel Computers,
LNCS. Springer-Verlag, 1996, To Appear.

[11] A. John and J. Browne. Extraction of parallelism from
constraint specifications. In Proceedings of the Inter-
national Conference on Parallel and Distributed Pro-
cessing Techniques and Applications, pages 1501-1512,
August 1996.

[12] S. Lakshmivarahan and S. K. Dhall. Analysis and De-
stgn of Parallel Algorithms: Arithmetic and Matriz
Problems. Supercomputing and Parallel Processing.
McGraw-Hill, 1990.

[13] M. Mehl, R. Scheidhauer, and C. Schulte. An abstract
machine for Oz. In Programming Languages, Imple-
mentations, Logics and Programs, Seventh Intl. Sym-
posium, LNCS, number 982. Springer-Verlag, Septem-
ber 1995.

[14] P. Newton and J. C. Browne. The CODE 2.0 graphical
parallel programming environment. In Proc. of the
Intl. Conf. on Supercomputing, pages 167-177, July
1992.

[15] H. Richardson. High Performance Fortran: History,
overview and current developments. Technical Report
TMC 261, Thinking Machines Corporation.

[16] V. A. Saraswat. Concurrent Constraint Programming
Languages. PhD thesis, Carnegie Mellon, School of
Computer Science, Pittsburgh, 1989.

