On Partitioning Dynamic Adaptive Grid Hierarchies

*

Manish Parashar and James C. Browne
Department of Computer Sciences
University of Texas at Austin
{parashar, browne}@cs.utexas.edu

(To be presented at HICSS-29, January, 1996)

Abstract

This paper presents a computationally efficient run-
time partitioning and load-balancing scheme for the
Distributed Adaptive Grid Hierarchies that underlie
adaptive mesh-refinement methods. The partitioning
scheme yields an efficient parallel computational struc-
ture that maintains locality to reduce communications.
Further, it enables dynamic re-partitioning and load-
balancing of the adaptive grid hierarchy to be per-
formed cost-effectively. The run-time partitioning sup-
port presented has been tmplemented within the frame-
work of a data-management infrastructure supporting
dynamic distributed data-structures for parallel adap-
twe numerical techniques. This infrastructure is the
foundational layer of a computational toolkit for the
Binary Black-Hole NSF Grand Challenge project.

1 Introduction

Dynamically adaptive methods for the solution of
partial differential equations that employ locally op-
timal approximations can yield highly advantageous
ratios for cost/accuracy when compared to methods
based upon static uniform approximations. Parallel
versions of these methods offer the potential for ac-
curate solution of physically realistic models of im-
portant physical systems. The fundamental data-
structure underlying dynamically adaptive methods
based on hierarchical adaptive-mesh refinements is
a dynamic hierarchy of successively and selectively
refined grids, or, in the case of a parallel imple-
mentation, a Distributed Adaptive Grid Hierarchy
(DAGH). The efficiency of parallel/distributed imple-
mentations of these methods is limited by the abil-

*This research has been jointly sponsored by the Binary
Black-Hole NSF Grand Challenge (NSF ACS/PHY 9318152)
and by ARPA under contract DABT 63-92-C-0042.

ity to partition the DAGH at run-time so as to ex-
pose all inherent parallelism, minimize communica-
tion/synchronization overheads, and balance load. A
critical requirement while partitioning DAGHs is the
maintenance of logical locality, both across different
levels of the hierarchy under expansion and contrac-
tion of the adaptive grid structure, and within parti-
tions of grids at all levels when they are decomposed
and mapped across processors. The former enables ef-
ficient computational access to the grids while the lat-
ter minimizes the total communication and synchro-
nization overheads. Furthermore, the dynamic nature
of the adaptive grid hierarchy makes it is necessary to
re-partition the hierarchy on-the-fly so that it contin-
ues to meet these goals.

The partitioning scheme presented in this paper is
based on a recursive linear representation of a multi-
dimensional grid hierarchy that can be efficiently gen-
erated and maintained. This representation is used
to design distributed data-structures to support par-
allel adaptive methods, which are then dynamically
partitioned and re-partitioned. The problem of par-
titioning and dynamically re-partitioning the multi-
dimensional grid hierarchy is thus reduced to appropri-
ately decomposing its one-dimensional representation.
The partitioning scheme first defines an extendable,
ordered index space using extendible hashing tech-
niques [1]. Space-filling curves [2, 3] are then used
to define a mapping from the multi-dimensional grid
hierarchy to the linear index-space. The self-similar
nature of these mappings is exploited to maintain lo-
cality across levels of the grid hierarchy while their
locality preserving characteristics guarantees locality
within partitions of individual grids in the hierarchy.
The ordering of the one-dimensional DAGH represen-
tation is maintained under expansion and contraction
of the grid hierarchy so that re-distribution can be
performed with reduced (typically nearest-neighbor)
communication.

The rest of this paper is organized as follows: Sec-
tion 2 describes the adaptive grid structure defined by
hierarchical adaptive mesh-refinement techniques, and
outlines the operations performed on this hierarchy.
Section 3 discusses the parallelization of these adap-
tive techniques and the decomposition of the adap-
tive grid hierarchy. Section 4 describes the design
of the distributed dynamic data-structures that are
used to implement the adaptive grid hierarchy, and
presents a run-time partitioning scheme for these data-
structures. Section 5 presents experimental results to
evaluate the effectiveness of the run-time partition-
ing support and the associated overheads. Section 6
presents some concluding remarks.

2 Problem Description

Figure 1: Adaptive Grid Hierarchy - 2D (Berger-
Oliger AMR Scheme)

Dynamically adaptive numerical techniques for
solving differential equations provide a means for con-
centrating computational effort to appropriate regions
in the computational domain. In the case of hierar-
chical adaptive mesh refinement (AMR) methods, this
is achieved by tracking regions in the domain that re-
quire additional resolution and dynamically overlay-
ing finer grids over these regions. AMR-based tech-
niques start with a base coarse grid with minimum
acceptable resolution that covers the entire computa-
tional domain. As the solution progresses, regions in
the domain requiring additional resolution are tagged
and finer grids are overlayed on the tagged regions of
the coarse grid. Refinement proceeds recursively so
that regions on the finer grid requiring more resolu-
tion are similarly tagged and even finer grids are over-
layed on these regions. The resulting grid structure is
a dynamic adaptive grid hierarchy. The adaptive grid

hierarchy corresponding to the AMR, formulation by
Berger & Oliger [4] is shown in Figure 1. Operation
on the hierarchy defined by this algorithm are outlined
below:

Time Integration: Time integration is the update
operation performed on each grid at each level of the
adaptive grid hierarchy. Integration uses an applica-
tion specific difference operator.

Inter-Grid Operations: Inter-grid operations are
used to communicate solutions values along the adap-
tive grid hierarchy. Two primary inter-grid operations
are Prolongations operations defined from a coarser
grid to a finer grid and Restriction operations defined
from a finer grid to a coarser grid.

Regriding: The regriding operation consists of
three steps: (1) flagging regions needing refinement
based on an application specific error criterion, (2)
clustering flagged points, and (3) generating the re-
fined grid(s). The regriding operation can result in
the creation of a new level of refinement or additional
grids at existing levels, and/or the deletion of existing
grids.

3 Parallelization of Adaptive Tech-
niques

Parallelization of adaptive methods based on hier-
archical AMR, consists of appropriately partitioning
the adaptive grid hierarchy across available comput-
ing nodes, and concurrently operating on the local
portions of this domain. Parallel AMR applications
require two primary types of communications:

Inter-grid Communications: Inter-grid commu-
nications are defined between component grids at dif-
ferent levels of the grid hierarchy and consist of prolon-
gations (coarse to fine transfers) and restrictions (fine
to coarse transfers). These communications typically
require a gather/scatter type operations based on an
interpolation or averaging stencil. Inter-grid commu-
nications can lead to serialization bottlenecks for naive
decompositions of the grid hierarchy.

Intra-grid Communication: Intra-grid communi-
cations are required to update the grid-elements along
the boundaries of local portions of a distributed grid.
These communications consist of near-neighbor ex-
changes based on the stencil defined by the difference

operator. Intra-grid communications are regular and
can be scheduled so as to be overlapped with compu-
tations on the interior region of the local portions of
a distributed grid.

3.1 Decomposing the Adaptive Grid Hi-
erarchy

Key requirements of a decomposition scheme used
to partition the adaptive grid hierarchy across pro-
cessors are: (1) expose available data-parallelism; (2)
minimize communication overheads by maintaining
inter-level and intra-level locality; (3) balance over-
all load distribution; and (4) enable dynamic load re-
distribution with minimum overheads. A balanced
load distribution and efficient re-distribution is par-
ticularly critical for parallel AMR-based applications
as different levels of the grid hierarchy have differ-
ent computational loads. In case of the Berger-
Oliger AMR scheme for time-dependent applications,
space-time refinement result in refined grids which not
only have a larger number of grid elements but are
also updated more frequently (i.e. take smaller time
steps). The coarser grid are generally more extensive
and hence its computational load cannot be ignored.
The AMR grid hierarchy is a dynamic structure and
changes as the solution progresses, thereby making ef-
ficient dynamic re-distribution critical.

G’ I [N
1 2 3
—_——— ————
1 1 1
gt G, G:
GU
1
——~ro P1 P

Figure 2: Composite distribution of the grid hierarchy

The composite decomposition of the adaptive grid
hierarchy shown in Figure 2 addresses the issues out-
lined above. The primary aim of this decomposition
is to alleviate the cost of potentially expensive inter-
grid communications. This is achieved by decom-
posing the hierarchy is such a way that these com-
munications become local to each processors. Paral-
lelism across component grids at each level is fully ex-
ploited in this scheme. The composite decomposition
scheme requires re-distribution when component grids
are created or destroyed during regriding. This re-
distribution can be performed incrementally and the
data-movement is usually limited to neighboring pro-
cessors. Alternate decompositions of the adaptive grid

hierarchy are discussed in Appendix A.

Although the composite decomposition can ef-
ficiently support parallel AMR methods, generat-
ing and maintaining this distribution using conven-
tional data-structure representations can result in
large amounts of communications and data movement
which in turn can offset its advantages. The following
section presents a representation of the adaptive grid
hierarchy, and distributed dynamic data-structures
based on this representation, that enable a composite
decomposition to be efficiently generated and main-
tained.

4 Run-Time Partitioning of Dynamic
Adaptive Grid Hierarchies

Run-time partitioning support for decomposing dy-
namic adaptive grid hierarchies is based on a linear
representation of the grid hierarchy and has been in-
corporated into the design of two distributed data-
structures supporting dynamically adaptive numerical
techniques:

e A Scalable Distributed Dynamic Grid (SDDG)
which is a distributed and dynamic array, and is
used to implement each grid in the adaptive grid
hierarchy.

o A Distributed Adaptive Grid Hierarchy (DAGH)
which is a dynamic collection of SDDGs and im-
plements the entire adaptive grid hierarchy.

The SDDG/DAGH linear representation is generated
using space-filling curves introduced below. A detailed
discussion of the design of these data-structures is pre-
sented in [5].

4.1 Space-Filling Curves

Morton Order Peano-Hilbert Order

Figure 3: Space-Filling Curves - Examples
Space-filling curves [2, 3, 6] are a class of locality

preserving mappings from d-dimensional space to 1-
dimensional space, i.e. N? — N' such that each

point in N? is mapped to a unique point or index in
N'. Two such mappings, the Morton order and the
Peano-Hilbert order, are shown in Figure 3. Space-
filling mapping functions are computationally inex-
pensive and consist of bit level interleaving opera-
tions and logical manipulations of the coordinates of
a point in multi-dimensional space. Furthermore, the
self-similar or recursive nature of these mappings can
be exploited to represent a hierarchical structure and
to maintain locality across different levels of the hi-
erarchy. Finally, space-filling mappings allow infor-
mation about the original multi-dimensional space to
be encoded into each space-filling index. Given an
index, it 1s possible to obtain its position in the orig-
inal multi-dimensional space, the shape of the region
in the multi-dimensional space associated with the in-
dex, and the space-filling indices that are adjacent to
it.

4.1.1 SDDG Representation:

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

{0145236789121310 11 14 15} (Morton)
{01548121391014 15117 6 2 3} (Peano-Hilbert)

Figure 4: SDDG Representation

A multi-dimensional SDDG 1is represented as a one
dimensional ordered list of SDDG blocks. The list
is obtained by first blocking the SDDG to achieve
the required granularity, and then ordering the SDDG
blocks based on the selected space-filling curve. The
granularity of SDDG blocks is system dependent and
attempts to balance the computation-communication
ratio for each block. Each block in the list is assigned a
cost corresponding to its computational load. In case
of an AMR scheme, computational load is determined
by the number of grid elements contained in the block
and the level of the block in the AMR grid hierarchy.
The former defines the cost of an update operation
on the block while the latter defines the frequency of
updates relative to the base grid of the hierarchy. Fig-
ure 4 illustrates this representation for a 2-dimensional
SDDG using 2 different space-filling curves (Morton &
Peano-Hilbert).

4.1.2 DAGH Representation:

0 1 2 3
0 1 2 3

4 7
4 5 6 7
8 9 10| 11

8 11
12| 13| 14| 15

12 13 14 15

{014{0145}23{2367}78{891213}1213 {10 11 14 15} 11 14 15} (Morton)
{01{0154}481213{81213 910 14 11 15} 14 15 11 7 {7 6 2 3} 2 3} (Peano-Hilbert)

Figure 5: Composite representation

The DAGH representation starts with a simple SDDG
list corresponding to the base grid of the grid hier-
archy, and appropriately incorporates newly created
SDDGs within this list as the base grid gets refined.
The resulting structure is a composite list of the en-
tire adaptive grid hierarchy. Incorporation of refined
component grids into the base SDDG list is achieved
by exploiting the recursive nature of space-filling map-
pings: For each refined region, the SDDG sub-list cor-
responding to the refined region is replaced by the
child grid’s SDDG list. The costs associated with
blocks of the new list are updated to reflect combined
computational loads of the parent and child. The
DAGH representation therefore is a composite ordered
list of DAGH blocks where each DAGH block repre-
sents a block of the entire grid hierarchy and may con-
tain more than one grid level; i.e. inter-level locality
is maintained within each DAGH block. Each DAGH
block in this representation is fully described by the
combination of the space-filling index corresponding to
the coarsest level it contains, a refinement factor, and
the number of levels contained. Figure 5 illustrates
the composite representation for a two dimensional
grid hierarchy.

4.2 SDDG/DAGH Associated Storage

SDDG/DAGH storage consists of two components;
(1) storage of the SDDG/DAGH representation and
(2) storage of the associated data. The overall stor-
age scheme is shown in Figure 6. The SDDG/DAGH
representation (which represents the structure of the
adaptive grid hierarchy) is stored as an ordered list of
SDDG or DAGH blocks. Appropriate interfaces en-
able the DAGH list to viewed as a single composite
list or as a set of SDDG lists. The former enables
a composite decomposition of the grid hierarchy to
be generated, while the latter enables each level of

Jr

Adaptive Grid Structure

Lists DAGH_BIks per level

Figure 6: SDDG/DAGH Storage Scheme

the hierarchy to be addressed and operated on indi-
vidually. Storage associated with each block consists
of a space-filling index that identifies its location in
the entire grid structure, an extent defining its gran-
ularity, the number of refinement levels contained (in
case of DAGHs), and a cost measure corresponding
to its computational load. Storage requirements for
the SDDG/DAGH representation is therefore linearly
proportional to the number of DAGH/SDDG blocks.
This overhead is small compared to the storage re-
quired for the grid data itself.

Data associated with the SDDG/DAGH data-
structures is stored within a “Scalable Distributed Dy-
namic Array” (SDDA) which uses extendable hash-
ing techniques [1] to provide a dynamically extend-
able, globally indexed storage. The SDDA is a hier-
archical structure and is capable dynamically expand-
ing and contracting. Entries into the SDDA corre-
spond to SDDG/DAGH blocks and the array is in-
dexed using associated keys. The SDDA data storage
provides a means for efficient communication between

SDDG/DAGH blocks.

4.3 Partitioning SDDGs/DAGHs

Partitioning a SDDG across processing elements us-
ing the one-dimensional representation consists of ap-
propriately partitioning the SDDG block list so as to
balance the total cost at each processor. Since space-
filling curve mappings preserve spatial locality, the re-
sulting distribution is comparable to traditional block
distributions in terms of communication overheads.

In case of DAGHs, different decompositions can
be obtained by partitioning the one-dimensional lists
assoclated with either representation based on their
assigned costs. In particular the desired composite
decomposition can be easily generated by partition-
ing the composite DAGH representation to balance
the total cost assigned to each processor. This de-
composition using Morton and Peano-Hilbert space-
filling ordering is shown in Figure 7. The resulting

decomposition for a more complex DAGH is shown
in Figures 8. Note that each numbered unit in this
figure is a composite block of sufficient granularity.
As inter-level locality is inherently maintained by the
composite representation, the decomposition gener-
ated by partitioning this representation eliminates ex-
pensive gather/scatter communication and allows pro-
longation and restriction operations to be performed
locally at each processor. Further, as the SDDG and
DAGH one-dimensional representations consist of or-
dered grid blocks, the granularity of these blocks can
be used to reduce communications.

A regriding operation using the defined DAGH rep-
resentation is performed in four steps.

1. Each processor locally refines its portion of the
composite list of DAGH blocks.

2. A global concatenate operation is performed pro-
viding each processor with the complete new com-
posite DAGH list.

3. Each processor partitions composite DAGH list
and determines the portion of the DAGH assigned
to all processors.

4. Processor perform required data-movement to
update the new hierarchy.

Data-movement in the final step is performed us-
ing non-blocking communications since each processor
has a global view of the hierarchy (entire composite
list). Each processor first posts receives for all incom-
ing data and then dispatches outgoing data. In order
to allow refinements to accurately track solution fea-
tures, AMR integration algorithms require regriding
to be performed at regular intervals. As a result, there
are small changes between the old and new grid hier-
archies and data-movement typically consist of small
amounts of near-neighbor exchanges.

Other distributions of the grid hierarchy (presented
in Appendix A) can also be generated using the above
representation. For example, a distribution that de-
composes each grid separately (Independent Grid Dis-
tribution) is generated by viewing the DAGH list as a
set of SDDG lists.

5 Experimental Evaluations

The run-time partitioning support described in this
paper has been incorporated into a data-management
infrastructure for distributed hierarchical AMR [7].
The infrastructure is implemented as a C++ class li-
brary on top of the MPI [8] communication system,

(014{0145)23{2367) 7\ 8{891213} 12 13‘{10 1114 15} 11 14 15# (Morton)
PO P1 T P T P3 1

{01{0154}4/81213{812139/10 14 11 15} 14 15 11| 7 {7 6 2 3} 2 3}| (Peano-Hilbert)
PO P1 T P2 T P3]

Figure 7: Composite partitioning of a 2-D DAGH

0 1
1 2 3
2 3
0 1 2 3
4 7
i B B E
AE B
8 | 8]%0(1) 49
8 1213) 14| 15 11
12 | 13| 14| 15
12 13 14 15

Figure 8: DAGH Composite distribution

and provides high-level programming abstraction for
expressing AMR computations. These abstraction
manage the dynamics of the AMR grid structure and
provide a fortran-like interface to the developer. This
enables all computations on grid-data to be performed
by Fortran subroutines. The system currently runs on
the IBM SP2, Cray T3D, clusters of networked work-
stations (SUN, RS6000, SGI). Results from an initial
experimental evaluation of the infrastructure and the
run-time partitioning scheme on the IBM SP2 are pre-
sented in this section. The objectives of the evaluation
are as follows:

1. To evaluate the overheads of the presented data-
structure representation and storage scheme over
conventional static (Fortran) array-based struc-
tures and regular block partitioning for unigrid
applications.

2. To evaluate the effectiveness of the partitioning
scheme in terms of its ability to meet require-
ments outlined in Section 3; i.e. balance load,
maintain locality and reduce communication re-
quirements.

3. To evaluate the overheads of partitioning and dy-
namically re-partitioning the grid hierarchy using
the scheme outlined.

5.1 Application Description

An adaptation of the HS3ezpresso 3-D numerical
relativity code developed at the National Center for
Supercomputing Applications (NCSA), University of
Illinois at Urbana, is used to evaluate the data-
management infrastructure. H3ezpresso is a “concen-
trated” version of the full H version 3.3 code that
solves the general relativistic Einstein’s Equations
in a variety of physical scenarios [9]. The original
H3ezpresso code 1s non-adaptive and is implemented
in Fortran 90. A distributed and adaptive version
of H3expresso has been implemented on top of the
data-management infrastructure by substituting the
original Fortran 90 arrays by DAGHs provided by the
C++ class library, and by adding a Berger-Oliger AMR
driver. The new version retains the original Fortran
90 kernels that operate on grids at each level.

5.2 Representation Overheads

Performance overheads due the DAGH/SDDG rep-
resentations are evaluated by comparing the perfor-
mance of a hand-coded, unigrid, Fortran 904+MPI im-

H3espresso (32x32x32) - SP2

2000 T T T T T T T T

B DAGH o
_ \ FO0+MPl —+--
2 1500 | i
°
£
l_
= 1000 i
S
g
X500 | .

0

3 4 5 6 7 8
Processor

Figure 9: DAGH Overhead Evaluation

plementation of the HS3expresso application with a
version built using the data-management infrastruc-
ture. The hand-coded implementation was optimized
to overlap the computations in the interior of each grid
partition with the communications on its boundary
by storing the boundary in separate arrays. Figure 9
plots the execution time for the two codes.

of

5.3 Effectiveness the

Scheme

Partitioning

Effectiveness of the partitioning scheme is evalu-
ated by 1its ability to balance the computational load
of the dynamic grid hierarchy across available process-
ing elements while maintaining locality so as to reduce
communications requirements. The results presented
below were obtained for a 3-D base grid of dimension
8 x 8 x 8 and 6 levels of refinement with a refinement
factor of 2.

5.3.1 Load Balance

To evaluate the load distribution generated by the
partitioning scheme we consider snap-shots of the dis-
tributed grid hierarchy at arbitrary times during inte-
gration. The structures of the DAGH in 5 such snap-
shots are listed in Table 1. Efficiency at a grid level
refers to the efficiency of regriding and is computed as
one minus the fraction of the base-grid that is refined.
Normalized computational load at each processor for
the different snap-shots are plotted in Figures 10-14.
Normalization is performed by dividing the compu-
tational load actually assigned to a processor by the
computational load that would have been assigned to
the processor to achieve a perfect load-balance. The

[[Num [[Procs || DAGH Structure
1 [l |[Level [Efficiency | Load Metric
1 8 0 0.0 6268
1 0.870095 13294
2 0.969519 49908
3 0.994657 139968
11 8 0 0.0 6396
1 0.870095 13294
2 0.969519 49908
111 4 Q 0.0 6268
1 0.874661 12570
2 0.984111 25496
3 0.994835 132616
4 0.998852 471648
v 4 Q 0.0 6268
1 0.874661 12570
2 0.984111 25496
3 0.994835 132616
4 0.999617 157216
\% 4 Q 0.0 6396
1 0.870095 13294
2 0.969519 49908
3 0.994657 139968
4 0.999437 235824

Table 1: DAGH Snap-shots

latter value is computed as the total computational
load of the entire DAGH divided by the number of
processors.

Procs=8; Levels=4
3 I I I I I I I I

Achieved Load Balance <—
Ideal Load Balance —+--

N
[S]
T

N
T

Normalized Load Metric
G
T T

05 |
0 | | | | | | | |
1 2 3 4 5 6 7 8
Processor

Figure 10: DAGH Distribution: Snap-shot 1

The residual load imbalance in the partitions gen-
erated can be tuned by varying the granularity of the
SDDG/DAGH blocks. Smaller blocks can increase the
regriding time but will result in smaller load imbal-
ance. Since AMR methods require re-distribution at
regular intervals, it is usually more critical to be able
to perform the re-distribution quickly than to optimize
a distribution.

Procs=8; Levels=3
I I I I I I I

Achieved Load Balance <—
Ideal Load Balance —+--

w

N
(2]
T

N
T
1

[N
T

Normalized Load Metric
o
T
1

o
ol
T
1

Figure 11: DAGH Distribution: Snap-shot II

Procs=4; Levels=5
3 I I I I

Achieved Load Balance <—
Ideal Load Balance —+--

N
(2]
T

N
T
1

[N
T

Normalized Load Metric
o
T
1

o
ol
T
1

Processor

Figure 12: DAGH Distribution: Snap-shot II1

5.3.2 Inter-Grid Communications Require-
ments

Both prolongation and restriction inter-grid opera-
tions are performed locally on each processor without
any communication or synchronization.

5.4 Partitioning Overheads

Partitioning is performed initially on the base grid,
and on the entire grid hierarchy after every regrid op-
eration. Regriding any level [comprises of refining at
level [and all level finer than [; generating and dis-
tributing the new grid hierarchy; and performing data
transfers required to initialize the new hierarchy. Ta-
ble 2 compares total time required for regriding, i.e.
for refinement, dynamic re-partitioning and load bal-

Procs=4; Levels=5
I I I

Achieved Load Balance <—
Ideal Load Balance —+--

w

N
[S]
T

N
T
1

[N
T

Normalized Load Metric
o
T
1

o
ol
T
1

Processor

Figure 13: DAGH Distribution: Snap-shot IV
Procs=4; Levels=5
3 T T T T

Achieved Load Balance <—
Ideal Load Balance —+--

N
[S]
T

N
T
1

[N
T

Normalized Load Metric
o
T
1

o
ol
T
1

Processor

Figure 14: DAGH Distribution: Snap-shot V

ancing, and data-movement, to the time required for
grid updates. The values listed are cumulative times
for 8 base grid time-steps with 7 regrid operations.

6 Conclusions

This paper presented a run-time partitioning
scheme for the Distributed Adaptive Grid Hierarchies
that underlie adaptive multigrid techniques based on
adaptive-mesh refinements. The partitioning scheme
is based on a recursive one-dimensional representa-
tion of the adaptive grid structure generated using
a hierarchical, extendable index-space. Extendible
hashing techniques are used to define the extend-
able index-space; while space-filling curves are used
to map a n-dimensional grid hierarchy to the index-
space. This representation is used to design dis-

[[Procs | Update Time | Regriding Time J]
I 4] 28.5 sec [1.84 sec I
I 8 19.2 sec | 1.58 sec [l

Table 2: Dynamic Partitioning Overhead

tributed data-structures to support parallel adaptive
methods, which are then dynamically partitioned and
re-partitioned. Partitions generated using this repre-
sentations are shown to maintain logical locality, both
across different levels of the hierarchy under expan-
sion and contraction of the adaptive grid structure,
and within partitions of grids at all levels when they
are partitioned and mapped across processors. This
reduces the amount of communications required. Fur-
ther, re-distribution of the grid hierarchy required dur-
ing regriding can be performed cost-effectively. A rep-
resentative application from numerical general relativ-
ity is used to experimentally evaluate the partitioning
scheme. Initial evaluation shows that the presented
data-structure representation has no significant over-
heads. Further, the evaluation shows that the scheme
generated an imbalance of at most 25% with less than
10% of the total application integration time being
spent on partitioning and load-balancing. The result-
ing partitions of the adaptive grid hierarchy require
no communications during inter-grid operations.

References

[1] R. Fagin, “Extendible Hashing - A Fast Access Mech-
anism for Dynamic Files”, ACM TODS, 4:315-344,
1979.

[2] Giuseppe Peano, “Sur une courbe, qui remplit toute
une aire plane”, Mathematische Annalen, 36:157-160,
1890.

[3] Hanan Samet, The Design and Analysis of Spatial
Data Structures, Addison - Wesley Publishing Com-
pany, 1989.

[4] Marsha J. Berger and Joseph Oliger, “Adaptive Mesh
Refinement for Hyperbolic Partial Differential Equa-
tions”, Jounal of Computational Physics, pp. 484-512,
1984.

[5] Manish Parashar and James C. Browne, “Distributed
Dynamic Data-Structures for Parallel Adaptive Mesh-
Refinement”, Proceedings of the International Confer-
ence for High Performance Computing, Dec. 1995.

[6] Hans Sagan, Space-Filling Curves, Springer-Verlag,
1994.

[7] Manish Parashar and James C. Browne, “An Infras-
tructure for Parallel Adaptive Mesh-Refinement Tech-
niques”, Technical report, Department of Computer

Sciences, University of Texas at Austin, 2.400 Taylor
Hall, Austin, TX 78712, 1995, Available via WWW at

http://godel.ph.utexas.edu/Members/parashar/toolkit.html.

[8] Message Passing Interface Forum, “MPI: A Message-
Passing Interface Standard”, Technical Report CS-94-
230, Computer Science Department, University of Ten-
nessee, Knoxville, TN, Mar. 1994.

[9] J. Massé and C. Bona, “Hyperbolic System for Nu-
merical Relativity”, Physics Review Letters, 68(1097),
1992.

A Decompositions of the Dynamic

Adaptive Grid Hierarchy

A.1 Independent Grid Distribution

2 2 2

G G G

1 2 3
e e BN R
PO P1P2P3 (R

POP1P2P3

Gl —t—+—+— G, —+—+—+— Gl

[
PO P1 p2P3

b= PO=t= P1== P2=}= p3=| {= PO=t= P1=}= P2=t< p3= {< PO== P1== P2=t= p3=

= PO = P1 + P2 + P3

Figure 15: Independent grid distribution of the grid
hierarchy

The independent grid distribution scheme shown
in Figure 15 distributes the grids at different levels in-
dependently across the processors. This distribution
leads to balanced loads and no re-distribution is re-
quired when grids are created or deleted. However,
the decomposition scheme can be very inefficient with
regard to inter-grid communication. In the adaptive
grid hierarchy, a fine grid typically corresponds to a
small region of the underlying coarse grid. If both,
the fine and coarse grid are distributed over the en-
tire set of processors, all the processors (corresponding
to a fine grid distribution) will communicate with the
small set of processors corresponding to the associated
coarse grid region, thereby causing a serialization bot-
tleneck. For example, in Figure 15, a restriction from
grid G2 to grid G1 requires all the processors to com-
municate with processor P3

Another problem with this distribution is that par-
allelism across multiple grids at a level is not exploited.
For example, in Figure 15, grids G1, G} & G} are dis-
tributed across the same set of processors and have to
integrated sequentially.

A.2 Combined Grid Distribution

G1 GZ G3
———— ———
P2~ P3| = pP3= l=—p3—=1

1
Gi ' G, G, |
fe—————P1— ——P1———=f=p2+ e———P2——
GO
1
PO f= p1=f

—— o —+ ¢ —— gy —— o)~ el kgl

t P t P

PO T P1

Figure 16: Combined grid distribution of the grid hi-
erarchy

The combined grid distribution, shown in Fig-
ure 16, distributes the total work load in the grid hi-
erarchy by first forming a simple linear structure by
abutting grids at a level and then decomposing this
structure into partitions of equal load. The combined
decomposition scheme also suffer from the serialization
bottleneck described above but to a lesser extent. For
example, in Figure 16, G and G2 update G} requiring
P2 and P3 to communicate with P1 for every restric-
tion. Regriding operations involving the creation or
deletion of a grid are extremely expensive in this case
as they requires an almost complete re-distribution of
the grid hierarchy.

The combined grid decomposition does not exploit
the parallelism available within a level of the hierarchy.
For example, when GY is being updated, processors P2
and P3 are idle and P1 has only a small amount of
work. Similarly when updating grids at level 1 (G1,
G4 and G1) processors P0 and P3 are idle, and when
updating grids at level 2 (G%, G2 and G3) processors
PO and P1 are idle.

A.3 Independent Level Distribution

2 2 2

Gl GQ G3
e R e
F—=pPo—~{ P1| IP1lp2l | P2 f==P3—~

Gl —+—+—%+—— G, —+—+—+— Gt ‘
k—p1—=—pP2—= l=pP2=f=——p3—=

= PO =} P1 } P2 } P3

Figure 17: Independent level distribution of the grid
hierarchy

In the independent level distribution scheme (see
Figure 17), each level of the adaptive grid hierarchy is
individually distributed by partitioning the combined
load of all component grids at the level is distributed

among the processors. This scheme overcomes some
of the drawbacks of the independent grid distribution.
Parallelism within a level of the hierarchy is exploited.
Although the inter-grid communication bottleneck is
reduced in this case, the required gather/scatter com-
munications can be expensive. Creation or deletion of
component grids at any level requires a re-distribution
of the entire level.

