Distributed Dynamic Data-Structures for Parallel Adaptive
Mesh-Refinement*

Manish Parashar and James C. Browne
Department of Computer Sciences
University of Texas at Austin
{parashar, browne}@cs.utexas.edu

(To be presented at HiPC, December, 1995)

Abstract

This paper presents the design and tmplementa-
tion of dynamic distributed data-structures to sup-
port parallel adaptive (multigrid) finite difference
codes based on hierarchical adaptive mesh-refinement
(AMR) techniques for the solution of partial differen-
tial equations. The abstraction provided by the data-
structures i1s a dynamic hierarchical grid where oper-
ations on the grid are independent of its distribution
across processors in a parallel execution environment,
and of the number of levels in the grid hierarchy. The
distributed dynamic data-structures have been imple-
mented as part of a computational toolkit for the Bi-
nary Black-Hole NSF Grand Challenge project.

1 Introduction

Dynamically adaptive methods for the solution of
partial differential equations that employ locally op-
timal approximations can yield highly advantageous
ratios for cost/accuracy when compared to methods
based upon static uniform approximations. Parallel
versions of these methods offer the potential for accu-
rate solution of physically realistic models of impor-
tant physical systems. Sequential implementations
of adaptive algorithms in conventional programming
system abstractions have proven to be both complex
and difficult to validate. Parallel implementations are
then an order of magnitude more complex. Clearly
there is an advantage in providing an infrastructure
of appropriate dynamic data-structures and associ-
ated programming abstractions upon which parallel
adaptive methods can be directly implemented.

*This research has been jointly sponsored by the Binary
Black-Hole NSF Grand Challenge (NSF ACS/PHY 9318152)
and by ARPA under contract DABT 63-92-C-0042.

The fundamental data-structure underlying dy-
namically adaptive methods based on hierarchical
adaptive-mesh refinements is a dynamic hierarchy of
successively and selectively refined grids, or, in the
case of a parallel implementation, a Distributed Adap-
tive Grid Hierarchy (DAGH). The efficiency of paral-
lel/distributed implementations of these methods is
limited by the ability to partition the DAGH at run-
time so as to expose all inherent parallelism, minimize
communication/synchronization overheads, and bal-
ance load. A critical requirement while partitioning
DAGHSs is the maintenance of logical locality, both
across different levels of the hierarchy under expan-
sion and contraction of the adaptive grid structure,
and within partitions of grids at all levels when they
are partitioned and mapped across processors. The
former enables efficient computational access to the
grids while the latter minimizes the total communica-
tion and synchronization overheads.

The design and implementation of two basic data-
structures are presented in this paper: (1) A Scalable
Distributed Dynamic Grid (SDDG) which is a single
grid in an adaptive grid hierarchy, and (2) A Dis-
tributed Adaptive Grid Hierarchy (DAGH) which is
a dynamic collection of SDDGs and implements an
entire adaptive grid hierarchy. The design of these
data-structures uses a linear representation of the hi-
erarchical, multi-dimensional grid structure which is
generated using space-filling mappings [1, 2]. Opera-
tions on the grid hierarchy such as grid creation, grid
refinement or coarsening, grid partitioning and dy-
namic re-partitioning, are efficiently defined on this
one-dimensional representation. The self-similar na-
ture of space-filling curves is exploited to maintain
locality across levels of the grid hierarchy. Computa-
tional data associated with the grids in the hierarchy
is maintained as a scalable distributed dynamic ar-

ray (SDDA) that is based on extendible hashing [3]



and guarantees preservation of locality under expan-
sion and contraction. Space-filling indices used in the
DAGH/SDDG representation serve as keys for index-
ing into the SDDA. The data-structures have been im-
plemented as a C++ class library on top of the MPI ![4]
communication system. Architectures currently sup-
ported include the IBM SP2, Cray T3D, and clusters
of networked workstations (IBM RS6000, SGI, SUN).

The rest of this paper is organized as follows: Sec-
tion 2 describes the grid structure defined by hier-
archical adaptive mesh-refinement techniques. Sec-
tion 3 presents the design and implementation of
SDDG/DAGH data-structures. Section 4 presents an
experimental evaluation of these data-structures. Sec-
tion 5 presents some concluding remarks.

2 Problem Description

Dynamically adaptive numerical techniques for
solving differential equations provide a means for con-
centrating computational effort to appropriate regions
in the computational domain. In the case of hierarchi-
cal adaptive mesh refinement (AMR) methods, this is
achieved by tracking regions in the domain that re-
quire additional resolution and dynamically overlay-
ing finer grids over these regions. AMR-based tech-
niques start with a base coarse grid with minimum
acceptable resolution that covers the entire computa-
tional domain. As the solution progresses, regions in
the domain requiring additional resolution are tagged
and finer grids are overlayed on the tagged regions
of the coarse grid. Refinement proceeds recursively
so that regions on the finer grid requiring more res-
olution are similarly tagged and even finer grids are
overlayed on these regions. The resulting grid struc-
ture is a dynamic adaptive grid hierarchy.

3 Distributed Data-Structures for Hi-
erarchical AMR

3.1 Data-structure Representation

The SDDG/DAGH data-structure design is based
on a linear representation of the hierarchical, multi-
dimensional grid structure. This representation is
generated using space-filling curves [1, 2, 5] which
are a class of locality preserving mappings from d-
dimensional space to 1-dimensional space, i.e. N¢ —
N', such that each point in N? is mapped to a

1 Message Passing Interface

unique point or index in N!. Space-filling mapping
functions are computationally inexpensive and con-
sist of bit level interleaving operations and logical
manipulations of the coordinates of a point in multi-
dimensional space. Furthermore, the self-similar or
recursive nature of these mappings can be exploited to
represent a hierarchical structure and to maintain lo-
cality across different levels of the hierarchy. Finally,
space-filling mappings allow information about the
original multi-dimensional space to be encoded into
each space-filling index. Given an index, it is possible
to obtain its position in the original multi-dimensional
space, the shape of the region in the multi-dimensional
space associated with the index, and the space-filling
indices that are adjacent to it.

3.1.1 SDDG Representation:

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

{0145236789121310 11 14 15} (Morton)
{01548121391014 15117 6 2 3} (Peano-Hilbert)

Figure 1: SDDG Representation

A multi-dimensional SDDG is represented as a one
dimensional ordered list of SDDG blocks. The list
is obtained by first blocking the SDDG to achieve
the required granularity, and then ordering the SDDG
blocks based on the selected space-filling curve. The
granularity of SDDG blocks is system dependent and
attempts to balance the computation-communication
ratio for each block. Each block in the list is assigned
a cost corresponding to its computational load. In
case of an AMR scheme, computational load is deter-
mined by the number of grid elements contained in
the block and the level of the block in the AMR grid
hierarchy. The former defines the cost of an update
operation on the block while the latter defines the
frequency of updates relative to the base grid of the
hierarchy. Figure 1 illustrates this representation for
a 2-dimensional SDDG using 2 different space-filling
curves (Morton & Peano-Hilbert).

Partitioning a SDDG across processing elements
using this representation consists of appropriately
partitioning the SDDG block list so as to balance the



total cost at each processor. Since space-filling curve
mappings preserve spatial locality, the resulting dis-
tribution is comparable to traditional block distribu-
tions in terms of communication overheads.

3.1.2 DAGH Representation:

0 1 2 3
0 1 2 3

4 L1 1 1 7
45| 6|7
8| 9|10 11

8 11
12| 13| 14| 15

12 13 14 15

{014{0145}23{2367}78{891213}1213 {10 11 14 15} 11 14 15} (Morton)
{01{0154}481213{81213 910 14 11 15} 14 15 11 7 {7 6 2 3} 2 3} (Peano-Hilbert)

Figure 2: Composite representation

The DAGH representation starts with a simple SDDG
list corresponding to the base grid of the grid hier-
archy, and appropriately incorporates newly created
SDDGs within this list as the base grid gets refined.
The resulting structure is a composite list of the en-
tire adaptive grid hierarchy. Incorporation of refined
component grids into the base SDDG list is achieved
by exploiting the recursive nature of space-filling map-
pings: For each refined region, the SDDG sub-list cor-
responding to the refined region is replaced by the
child grid’s SDDG list. The costs associated with
blocks of the new list are updated to reflect com-
bined computational loads of the parent and child.
The DAGH representation therefore is a composite
ordered list of DAGH blocks where each DAGH block
represents a block of the entire grid hierarchy and
may contain more than one grid level; i.e. inter-level
locality 1s maintained within each DAGH block. Each
DAGH block in this representation is fully described
by the combination of the space-filling index corre-
sponding to the coarsest level it contains, a refinement
factor, and the number of levels contained. Figure 2
illustrates the composite representation for a two di-
mensional grid hierarchy.

The AMR grid hierarchy can be partitioned across
processors by appropriately partitioning the linear
DAGH representation. In particular, partitioning the
composite list to balance the cost associated to each
processor results in a composite decomposition of the
hierarchy. The key feature of this decomposition
is that it minimizes potentially expensive inter-grid
communications by maintaining inter-level locality in
each partition. A composite decomposition of a 2-

0 1
1 2 3
2 3
0 1 2 3
4 7
4 |olaf2l3) <
AE B
8 | 8|8 0(1n) 49
) 1213) 14| 15 11
12 | 13| 14| 15
12 13 14 15

Figure 3: DAGH Composite distribution

dimensional DAGH is shown in Figure 3. Note that
each numbered unit in this figure is a composite block
of sufficient granularity. Other distributions of the
grid hierarchy can also be generated using the above
representation. For example, a distribution that de-
composes each grid separately is generated by viewing

the DAGH list as a set of SDDG lists.

3.2 Data-Structure Storage

Data-structure storage can be divided into two
components; (1) storage of the adaptive grid struc-
ture, and (2) storage of the associated data. The
overall storage scheme is shown in Figure 4. The two
components are described below:

3.2.1 Adaptive Grid Structure Storage

The structure of the adaptive grid hierarchy is stored
as an ordered list using the representation presented
above. Appropriate interfaces enable the DAGH list
to viewed as a single composite list or as a set of
SDDG lists. The former enables a composite decom-
position of the grid hierarchy to be generated, while
the latter enables each level of the hierarchy to be ad-
dressed and operated on individually. Storage associ-
ated with each block consists of a space-filling index
that identifies its location in the entire grid structure,
an extent defining its granularity, the number of re-
finement levels contained (in case of DAGHSs), and a
cost measure corresponding to its computational load.
Storage requirements for the SDDG/DAGH represen-
tation is therefore linearly proportional to the number
of DAGH/SDDG blocks. This overhead is small com-
pared to the storage required for the grid data itself.



+

Adaptive Grid Structure

Lists DAGH_BIks per level

Figure 4: Storage Scheme

3.2.2 Data Storage

The data storage component of the storage scheme
is implemented as a “Scalable Distributed Dynamic
Array” (SDDA) and uses extendable hashing tech-
niques [3] to provide a dynamically extendable, glob-
ally indexed storage. The SDDA is a hierarchical
structure and is capable dynamically expanding and
contracting. Entries into the SDDA correspond to
DAGH blocks and the array is indexed using DAGH
block keys. The SDDA data storage provides a means
for efficient communication between DAGH blocks.
To communicate data to another DAGH blocks, the
data is copied to appropriate locations in the SDDA.
This information is then asynchronously shipped to
the appropriate processor. Similarly, data needed
from remote DAGH blocks is received on-the-fly and
inserted into the appropriate location in the SDDA.
Storage associated with the SDDA is maintained in
ready-to-ship buckets. This alleviates overheads as-
sociated with packing and unpacking. An incom-
ing bucket is directly inserted into its location in the
SDDA. Similarly, when data associated with a DAGH
block entry is ready to ship, the associated bucket is
shipped as 1s.

4 Experimental Evaluation of

DAGH/SDDG

A data-management infrastructure for distributed
hierarchical AMR, has been developed based on the
data-structures described in this paper. The infras-
tructure is implemented as a C++ class library and pro-
vides high-level programming abstraction for express-
ing AMR computations. These abstraction manage
the dynamics of the AMR grid structure and provide

a fortran-like interface to the developer. This enables
all computations on grid-data to be performed by For-
tran subroutines. Results from an initial experimen-
tal evaluation of the infrastructure on the IBM SP2
are presented in this section. The objectives of the
evaluation are as follows:

1. To evaluate the overheads of the presented data-
structure representation and storage scheme over
conventional static (Fortran) array-based struc-
tures for unigrid applications.

2. To evaluate the effectiveness of the composite
partitioning of the AMR grid hierarchy in terms
of its ability to balance load and maintain local-

ity.

3. To evaluate the relative costs of partitioning and
dynamically re-partitioning the grid hierarchy us-
ing the presented data-structure representation.

4.1 Application Description

An adaptation of the H3ezpresso 3-D numerical
relativity code developed at the National Center for
Supercomputing Applications (NCSA), University of
Illinois at Urbana, is used to evaluate the data-
management infrastructure. H3exzpresso is a “concen-
trated” version of the full H version 3.3 code that
solves the general relativistic Einstein’s Equations
in a variety of physical scenarios [6]. The original
H3ezpresso code is non-adaptive and is implemented
in Fortran 90. A distributed and adaptive version
of H3expresso has been implemented on top of the
data-management infrastructure by substituting the
original Fortran 90 arrays by DAGHs provided by the
C++ class library, and by adding a Berger-Oliger AMR
driver. The new version retains the original Fortran
90 kernels that operate on grids at each level.



4.2 Representation Overheads

H3espresso (32x32x32) - SP2
2000 I I I I I I I I
i DAGH ——
\ FO0 +MPl ~+—-

1500

Execution Time (sec)
=
S
o
T

Figure 5: DAGH Overhead Evaluation

The overheads of the proposed DAGH/SDDG rep-
resentation are evaluated by comparing the perfor-
mance of a hand-coded, unigrid, Fortran 90+MPI
implementation of the H3ezpresso application with a
version built using the data-management infrastruc-
ture. The hand-coded implementation was optimized
to overlap the computations in the interior of each grid
partition with the communications on its boundary
by storing the boundary in separate arrays. Figure 5
plots the execution time for the two codes.

4.3 Composite Partitioning Evaluation

The results presented below were obtained for a 3-
D base grid of dimension 8 x 8 x 8 and 6 levels of
refinement with a refinement factor of 2.

4.3.1 Load Balance

To evaluate the load distribution generated by the
composite partitioning scheme we consider snap-shots
of the distributed grid hierarchy at arbitrary times
during integration. Normalized computational load
at each processor for the different snap-shots are plot-
ted in Figures 6-9. Normalization is performed by di-
viding the computational load actually assigned to a
processor by the computational load that would have
been assigned to the processor to achieve a perfect
load-balance. The latter value is computed as the to-
tal computational load of the entire DAGH divided
by the number of processors.

Any residual load imbalance in the partitions gen-
erated can be tuned by varying the granularity of the

Procs=8; Levels=4
I I I I I I I I

Achieved Load Balance <—
Ideal Load Balance —+--

w

N
[S]
T

N
T
1

[N
T

Normalized Load Metric
o
T
1

o
ol
T
1

Figure 6: DAGH Distribution: Snap-shot I

Procs=8; Levels=3
3 I I I I I I I I

Achieved Load Balance <—
Ideal Load Balance —+--

N
[S]
T

N
T
1

[N
T

Normalized Load Metric
o
T
1

o
ol
T
1

Figure 7: DAGH Distribution: Snap-shot 11

SDDG/DAGH blocks. Smaller blocks can increase
the regriding time but will result in smaller load im-
balance. Since AMR methods require re-distribution
at regular intervals, it is usually more critical to be
able to perform the re-distribution quickly than to
optimize each distribution.

4.3.2 Inter-Grid Communications

Both prolongation and restriction inter-grid opera-
tions were performed locally on each processor with-
out any communication or synchronization.

4.4 Partitioning Overheads

Partitioning is performed initially on the base grid,
and on the entire grid hierarchy after every regrid.



Procs=4; Levels=5

Achieved Load Balance <—

|| Procs | Update Time | Regriding Time ||

4

28.5 sec

1.84 sec

8

19.2 sec

1.58 sec

N
(2]
T

Ideal Load Balance —+--

N
T
1

[N
T

Normalized Load Metric
o
T
1

o
ol
T
1

Processor

Figure 8: DAGH Distribution: Snap-shot III

Procs=4; Levels=5
3 I I I I

Achieved Load Balance <—
Ideal Load Balance —+--

N
(2]
T

N
T
1

[N
T

Normalized Load Metric
o
T
1

o
ol
T
1

1 2 3 4
Processor

Figure 9: DAGH Distribution: Snap-shot IV

Regriding any level [ comprises of refining at level {
and all level finer than /; generating and distributing
the new grid hierarchy; and performing data trans-
fers required to initialize the new hierarchy. Table 1
compares the total time required for regriding, i.e. for
refinement, dynamic re-partitioning and load balanc-
ing, and data-movement, to the time required for grid
updates. The values listed are cumulative times for 8
base grid time-steps with 7 regrid operations.

5 Conclusions

This paper presented the design and implemen-
tation of dynamic distributed data-structures to
support parallel adaptive finite difference applica-
tions based on hierarchical adaptive mesh-refinement

Table 1: Dynamic Partitioning Overhead

(AMR) techniques for the solution of partial differ-
ential equations. The design of the data-structures
uses a linear representation of the hierarchical, multi-
dimensional grid structure, which is generated using
a space-filling mapping. Computational data associ-
ated with the grids in the hierarchy is maintained as
an scalable distributed dynamic array (SDDA) that
is based on extendible hashing and guarantees preser-
vation of locality under expansion and contraction. A
data-management infrastructure for distributed hier-
archical AMR has been developed based on the data-
structures described in this paper. A representative
application from numerical relativity is used to exper-
imentally evaluate the infrastructure. Initial evalua-
tion shows that the presented data-structure repre-
sentation has no significant overheads. The compos-
ite distribution generated by partitioning the DAGH
representation produces an load imbalance of at most
25%, and requires less than 10% of the actual com-
putation time for partitioning and dynamic load-
balancing. The resulting partitions maintain locality
and require no communications during inter-grid op-
erations.

References

[1] Giuseppe Peano, “Sur une courbe, qui remplit toute
une aire plane”, Mathematische Annalen, 36:157-160,
1890.

[2] Hanan Samet, The Design and Analysis of Spatial
Data Structures, Addison - Wesley Publishing Com-
pany, 1989.

[3] R. Fagin, “Extendible Hashing - A Fast Access Mech-
anism for Dynamic Files”, ACM TODS, 4:315-344,
1979.

[4] Message Passing Interface Forum, “MPI: A Message-
Passing Interface Standard”, Technical Report CS-
94-230, Computer Science Department, University of
Tennessee, Knoxville, TN, Mar. 1994.

[5] Hans Sagan, Space-Filling Curves, Springer-Verlag,
1994.
[6] J. Massé and C. Bona, “Hyperbolic System for Nu-

merical Relativity”, Physics Review Letters, 68(1097),
1992.



