Object Oriented Programming Abstractions for Parallel Adaptive Mesh-Refinement
Extended Abstract submission to POOMA ‘96

Object Oriented Programming Abstractions for Parallel Adaptive
Mesh-Refinement

Manish Parashar and James C. Browne
Department of Computer Sciences
University of Texas at Austin
{parashar, browne}@cs.utexas.edu

Extented Abstract

Contents
1 Introduction
2 Problem Description

3 Object Oriented Programming Abstractions for Parallel Adaptive Mesh-Refinement
3.1 Grid Geometry Abstractions L e e e e e
3.2 Grnid Hierarchy Abstraction e e e
3.3 Gnd Function Abstraction oL Lo e e

4 OQutline of the Paper

= W w N

Department of Computer Sciences & Center for Relativity e University of Texas at Austin
4.200 Taylor Hall, Austin, TX 78712-1081
Tel: (512) 471-5513; Fax: (512) 471-8694; parashar@cs.utexas.edu

Object Oriented Programming Abstractions for Parallel Adaptive Mesh-Refinement
Extended Abstract submission to POOMA ‘96 1

1 Introduction

This paper describes high-level object oriented programming abstractions that can be used to directly
implement parallel adaptive computations on dynamic hierarchical grid structures and demonstrates their
application. Dynamically adaptive methods for solution of differential equations which employ locally
optimal approximations have been shown to yield highly advantageous ratios for cost/accuracy when com-
pared to methods based upon static uniform approximations. Parallel versions of these methods offer
potential for accurate solution of physically realistic models of important physical systems. Sequential
implementations of adaptive algorithms using conventional programming abstractions have proven to be
both complex and difficult to validate. Parallel implementations are then an order of magnitude more
complex, and introduce additional concerns such as partitioning, dynamic re-partitioning, load-balancing,
and communication scheduling. It is commonly the case that over 75% of the code volume of a parallel
adaptive code written in conventional programming systems is concerned with procedurally realizing dy-
namic distributed data structures on top of static data structures such as Fortran arrays. Furthermore this
data-management code has little connection with the physics or engineering being solved. Clearly there is
a need for high-level programming abstractions upon which parallel adaptive applications can be directly
and simply developed.

In this paper we identify three fundamental object classes (or abstractions) that can be used to express
parallel adaptive computations based on adaptive mesh refinement (AMR) and multigrid techniques (see
Figure 1). The Grid Geometry abstractions represent regions in the computational domain and provide

an intuitive means for addressing the regions and directing computations. A Grid Hierarchy abstraction

APPLICATION DOMAIN
' V

v v

Grid Geometry Grid Hierarchy
Identify region(s) in the domain Template for the Distributed
(Coords, BBox, BBoxList) Adaptive Grid Hierarchy overlayed

on the domain

Grid Functions
Application variables defined
on the Adaptive Grid Hierarchy

Figure 1: Programming Abstraction for Parallel Adaptive Mesh-Refinement

Department of Computer Sciences & Center for Relativity e University of Texas at Austin
4.200 Taylor Hall, Austin, TX 78712-1081
Tel: (512) 471-5513; Fax: (512) 471-8694; parashar@cs.utexas.edu

Object Oriented Programming Abstractions for Parallel Adaptive Mesh-Refinement
Extended Abstract submission to POOMA ‘96 2

abstracts the distributed adaptive grid hierarchy (a directed acyclic graph (DAG) comprising of a dynamic
number of levels of grid resolution, and a dynamic number of component grids at each level of resolution).
Applications can directly index, operate on, and refine component grids within the hierarchy independent
of its current structure and distribution. Parallelization issues such as partitioning and dynamic load
balancing are encapsulated within Grid Hierarchy objects. The final abstraction is the Grid Function
which represents an application variable defined on the distributed, hierarchical computational domain. A
Grid Function object allocates distributed storage for the variable it represents according to the structure
of the dynamic grid hierarchy, and enables the variable to be locally manipulated as simple Fortran 77/90
arrays. All user-level operations defined on these abstractions are independent of the structure of the
dynamic grid or its distribution. Data-partitioning, load-balancing, communications and synchronization
operations are transparent to the end user.

The programming abstractions have been implemented within DAGH ![1], a data-management infras-
tructure to support parallel adaptive applications. The infrastructure incorporates distributed dynamic
data-structures [2] that can efficiently support adaptive grid hierarchies. DAGH forms the foundational
layer of a computational toolkit for the Binary Black-Hole NSF Grand Challenge project and is currently
operational on the IBM SP2, Cray T3D and networked workstations (RS6000, Sun, SGI).

2 Problem Description

Dynamically adaptive numerical techniques for solving differential equations provide a means for concen-
trating computational effort to appropriate regions in the computational domain. In the case of hierarchical
AMR methods, this is achieved by tracking regions in the domain that require additional resolution and
dynamically overlaying finer grids over these regions. AMR-based techniques start with a base coarse
grid with minimum acceptable resolution that covers the entire computational domain. As the solution
progresses, regions in the domain requiring additional resolution are tagged and finer grids are overlayed
on the tagged regions of the coarse grid. Refinement proceeds recursively so that regions on the finer grid
requiring more resolution are similarly tagged and even finer grids are overlayed on these regions. The

resulting grid structure is a dynamic adaptive grid hierarchy.

3 Object Oriented Programming Abstractions for Parallel Adaptive
Mesh-Refinement

We have two key objectives in developing the high-level abstractions described in this section: Qur first
objective is to provide application developers with a set of primitives that intuitively complement the

problem, i.e. application objects = abstract datatypes. The second objective is a separation of data-

!For information about DAGH see http://godel.ph.utexas.edu/Members/parashar/DAGH/dagh.html

Department of Computer Sciences & Center for Relativity e University of Texas at Austin
4.200 Taylor Hall, Austin, TX 78712-1081
Tel: (512) 471-5513; Fax: (512) 471-8694; parashar@cs.utexas.edu

Object Oriented Programming Abstractions for Parallel Adaptive Mesh-Refinement
Extended Abstract submission to POOMA ‘96 3

management issues and implementations from application specific computations.

3.1 Grid Geometry Abstractions

The purpose of the grid geometry abstractions is to provide an intuitive means for identifying and addressing
regions in the computational domain. These abstractions can be used to direct computations to a particular
region in the domain, to mask regions that should not be included in a given operation, or to specify region
that need more resolution or refinement. The grid geometry abstractions represent coordinates, bounding

boxes and doubly linked lists of bounding boxes.

Coordinates: The coordinate abstraction (implemented as C++ class Coords) represents a point in the
computational domain. Operations defined on this class include indexing and arithmetic/logical manipu-

lations. These operations are independent of the dimensionality of the domain.

Bounding Boxes: Bounding boxes (implemented as C++ class BBoz) represents regions in the compu-
tation domain and is comprised of a triplet: a pair of Coords defining the lower and upper bounds of the
box and a step array that defines the granularity of the discretization in each dimension. In addition to
regular indexing and arithmetic operations, scaling, translations, unions and intersections are also defined
on bounding boxes. Bounding boxes are the primary means for specification of operations and storage of

internal information (such as dependency and communication information) within DAGH.

Bounding Boxes Lists: The BBozlist C++ class implements a doubly linked list of bounding boxes
and represents a collection of regions in the computational domain. Such a list is typically used to specify
regions that need refinement during the regriding phase of an adaptive application. In addition to linked-
list addition, deletion and stepping operation, reduction operations such as intersection and union are also

defined on a BBoxList.

3.2 Grid Hierarchy Abstraction

The grid hierarchy abstraction represents the distributed dynamic adaptive grid hierarchy that underlie
parallel adaptive applications based on adaptive mesh-refinement. This abstraction enables a user to
define, maintain and operate a grid hierarchy as a first-class object. Grid hierarchy attributes include
the geometry specifications of the domain such as the structure of the base grid, its extents, boundary
information, coordinate information, and refinement information such as information about the nature of
refinement and the refinement factor to be used. When used in a parallel/distributed environment, the grid
hierarchy is partitioned and distributed across the processors and serves as a template for all application
variables or grid functions. The locality preserving composite distribution [3] based on recursive Space-
filling Curves [4] is used to partition the dynamic grid hierarchy. Operations defined on the grid hierarchy

include indexing of individual component grid in the hierarchy, refinement, coarsening, recomposition of the

Department of Computer Sciences & Center for Relativity e University of Texas at Austin
4.200 Taylor Hall, Austin, TX 78712-1081
Tel: (512) 471-5513; Fax: (512) 471-8694; parashar@cs.utexas.edu

Object Oriented Programming Abstractions for Parallel Adaptive Mesh-Refinement
Extended Abstract submission to POOMA ‘96 4

hierarchy after regriding, and querying of the structure of the hierarchy at any instant. During regriding,
the re-partitioning of the new grid structure, dynamic load-balancing, and the required data-movement to

initialize newly created grids, are performed automatically and transparently.

3.3 Grid Function Abstraction

Grid Functions represent application variables defined on the grid hierarchy. Each grid function is asso-
ciated with a grid hierarchy and uses the hierarchy as a template to define its structure and distribution.
Attributes of a grid function include type information, and dependency information in terms of space and
time stencil radii. In addition the user can assign special (Fortran) routines to a grid function to handle
operations such as inter-grid transfers (prolongation and restriction), initialization, boundary updates, and
input/output. These function are then called internally when operating on the distributed grid function.
In addition to standard arithmetic and logical manipulations, a number of reduction operations such as
Min/Maz, Sum/Product, and Norms are also defined on grid functions. GridFunction objects can be locally

operated on as regular Fortran 90/77 arrays.

4 Outline of the Paper

The rest of the paper will be comprised of 3 additional sections: The first will present the design and
implementation of the object-oriented abstractions described above, as C++ classes within the DAGH
infrastructure. The next section will illustrate the use of the abstractions and the programming interface
provided by the infrastructure. The abstractions will be used to construct components of a Berger-Oliger
AMR driver. The final section will present an experimental evaluation of the programming abstractions

and the DAGH data-management infrastructure.

References

[1] Manish Parashar and James C. Browne, “An Infrastructure for Parallel Adaptive Mesh-Refinement Techniques”,
Technical report, Department of Computer Sciences, University of Texas at Austin, TICAM, 2.400 Taylor Hall,
Austin, TX 78712, 1995, Available via WWW at http://godel.ph.utexas.edu/Members/parashar/toolkit.html.

[2] Manish Parashar and James C. Browne, “Distributed Dynamic Data-Structures for Parallel Adaptive Mesh-
Refinement”, Proceedings of the International Conference for High Performance Computing, Dec. 1995.

[3] Manish Parashar and James C. Browne, “On Partitioning Dynamic Adaptive Grid Hierarchies”, Proceedings of

the 29" Annual Hawaii International Conference on System Sciences, Jan. 1996.

[4] Hanan Samet, The Design and Analysis of Spatial Data Structures, Addison - Wesley Publishing Company, 1989.

Department of Computer Sciences & Center for Relativity e University of Texas at Austin
4.200 Taylor Hall, Austin, TX 78712-1081
Tel: (512) 471-5513; Fax: (512) 471-8694; parashar@cs.utexas.edu

