SYSTEMS ENGINEERING FOR HIGH PERFORMANCE
COMPUTING SOFTWARE: THE HDDA /DAGH
INFRASTRUCTURE FOR IMPLEMENTATION OF
PARALLEL STRUCTURED ADAPTIVE MESH
REFINEMENT

MANISH PARASHAR AND JAMES C. BROWNE*

Abstract. This paper defines, describes and illustrates a systems engineering pro-
cess for development of software systems implementing high performance computing
applications. The example which drives the creation of this process is development of a
flexible and extendible program development infrastructure for parallel structured adap-
tive meshes, the HDDA/DAGH package. The fundamental systems engineering prin-
ciples used (hierarchical abstractions based on separation of concerns) are well-known
but are not commonly applied in the context of high performance computing software.
Application of these principles will be seen to enable implementation of an infrastructure
which combines breadth of applicability and portability with high performance.

Key words. Software systems engineering, Structured adaptive mesh-refinement,
High performance software development, Distributed dynamic data-structures.

1. Overview. This paper describes the systems engineering process
which was followed in the development of the Hierarchical Dynamic Dis-
tributed Array/Distributed Adaptive Grid Hierarchy (HDDA/DAGH) pro-
gram development infrastructure (PDI) for implementation of solutions of
partial differential equations using adaptive mesh refinement algorithms.
The term “systems engineering” was carefully chosen to distinguish the
development process we propose as appropriate for development of high
performance computing software from the conventional “software engineer-
ing” development process. The term “systems engineering” is not widely
used in the vernacular of high performance computing. Indeed, formal
structured development processes are not commonly used in development
of high performance computing (HPC) software. This may be because
conventional software engineering processes do not address many of the
issues important for HPC software systems. This paper uses development
of the HDDA/DAGH PDI as a case study to present a structured devel-
opment process which addresses the issues encountered in development of
high performance computing software systems. While HDDA/DAGH is a
PDI for applications rather than an application, the issues addressed by
the systems engineering process we describe are common to all types of
high performance computing software systems. We propose this systems
engineering process as one which is generally appropriate for high per-
formance computing applications. Conventional software engineering [1,2]
focuses on the management aspects of the development process for very

* Department of Computer Science & TICAM, University of Texas at Austin, Austin,
Texas 78712 {browne,parashar}@cs.utexas.edu

1

2 MANISH PARASHAR AND JAMES C. BROWNE

large systems which have many components, multiple developers involved
in system development, and structures and processes which enable effective
management of the development process. These large systems are often fo-
cused on information management for commercial or defense applications.
(Large embedded controllers for medical instruments, power systems, etc.
are also targets for a somewhat different family of software engineering
methods.) The usual requirements for these information management sys-
tems include: high availability, good response for interactive transactions
and maintainability over long lifetimes. To achieve these goals over very
large systems the work of many developers must be coordinated to yield
a coherent system structure. These systems are typically implemented for
commodity hardware based execution environments using commodity soft-
ware systems as the implementation infrastructure. There is a substantial
body of “conventional wisdom” concerning how to realize efficient instan-
tiations of these systems. (Although the rise of distributed or client/server
implementations has introduced a new set of performance concerns.) The
primary source of complexity is primarily sheer system size. Conventional
software engineering methods and processes are structured by this set of
requirements and issues.

High performance systems are typically quite different from these in-
formation management systems. They are often of modest size by com-
mercial standards but typically have a high degree of internal complexity.
HPC applications are usually developed by small teams or even individ-
uals. There is no commodity implementation infrastructure to be used.
The execution environments are state-of-the-art, rapidly changing, and
frequently parallel computer systems. The underlying hardware is a of-
ten novel architecture for which there is little “conventional wisdom” con-
cerning development of efficient programs. These execution environments
change much more rapidly than is the case for large commercially-oriented
systems. The end-user requirements for HPC software systems typically
evolve even more rapidly because they are used in research environments
rather than in production environments. Time for end-to-end execution
(absolute performance) is usually the most critical property with adapt-
ability to a multiplicity of applications and portability across the rapidly
evolving platforms being other important issues. Reuse of previously writ-
ten code is also often desired. The complexity of HPC systems primarily
arises from the data management requirements of the applications. We
conclude that traditional methods of software engineering are not appro-
priate for development of high performance computing software. However,
high performance computing software development can benefit from the
application of a well-structured development process.

The systems engineering process we propose targets issues and require-
ments underlying the development of high performance computing soft-
ware systems. In what follows we describe the systems engineering process
which we followed in the development of the HDDA/DAGH system and

SYSTEMS ENGINEERING FOR HPC SOFTWARE 3

demonstrate that the result is a system which is performant, adaptable
and portable. Application of well-structured development processes to high
performance computing software will be beneficial to the field in general. If
HPC is to become an effective discipline we must document good practice
so that best practice can be identified. This is particularly true for devel-
opers of infrastructure systems which are intended to be used by a broad
community of users. This paper uses the development of HDDA/DAGH
as a vehicle to put forward what we think is one example of good de-
sign /development process for HPC software systems.

2. Systems Engineering of High Performance Software Sys-
tems. The systems engineering process for high performance computing
software development described here has four elements:

1. A process for the translation of application requirements into sys-
tem design requirements. This step is often complex, iterative and
is actually never finished since the applications requirements for
research-oriented systems typically evolve rapidly and continually.

2. A design model founded on the principles of hierarchical abstrac-
tion and separation of concerns. Use of hierarchical abstractions
in software system development was formalized by Dijkstra in
1968 [3]. But development of effective abstraction hierarchies is
not simple. We propose that definition and realization of effective
abstraction hierarchies should be based on the principle of sep-
aration of concerns [4,5]. Construction of abstraction hierarchies
based on separation of concerns is discussed in detail in Section 2.2.
Satisfaction of the requirements for absolute performance, adapt-
ability and portability are grounded in the structure of the design
model, and in defining abstractions which enable selection of effi-
cient algorithms.

3. Selection of implementation algorithms which meet the goals of
system performance in the context of the design model.

4. An implementation model which preserves the structure and prop-
erties of the design model in the implementation.

Each of these steps will be described in more detail below and illus-
trated application to the development of HDDA/DAGH in Section 3.

2.1. Translation of Application Requirements to System De-
sign Requirements. This is an iterative process which is rendered more
complex by the cultural, vocabulary and experiential differences between
computational scientists/computer scientists who are the typical system
developers, and physicists and engineers who are the typical application de-
velopers for HPC software systems. It is often the case that the application-
level developers have not done (and indeed cannot do) a systematic a priori
analysis of requirements. The applications which are being supported often
involve new problems for which solution methods are not known, and new
algorithms which are being used by application scientists for the first time.

4 MANISH PARASHAR AND JAMES C. BROWNE

It 1s therefore impossible for them to define the requirements precisely,
and unreasonable for the computational or computer scientist to expect a
static and complete requirements specification before beginning develop-
ment. Consequently the requirements specification for an HPC software
system 1s an evolving document. What must be agreed upon is the pro-
cess by which the end-users and the software system developers actively
collaborate. Usually an initial requirements statement is negotiated and
an initial design and implementation of the PDI is created. Application
developers then try this initial implementation and come back with an ad-
ditional set of requirements based on their experience using the software
system to attempt problem solution (and to experiment with new ideas
recently discovered).

There are, however, some generic requirements for the implementation
of infrastructures such as the HDDA/DAGH PDI. The application pro-
gramming interface of the PDI should be as close as possible to the direct
representation of operations in the algorithms of the solution method. The
desired application programming interface usually includes the ability to
reuse existing Fortran or C modules, to make both dynamic data struc-
turing and distribution of data across multiple address spaces transparent
and, at the same time, to lose nothing in the way of efficiency compared
to a low-level, detailed application-specific implementation. Secondary re-
quirements include portability of the resulting system across a wide variety
of experimental platforms and scalability from small problems to very large
problems.

2.2. The Design Model. The design model which we have adopted
is the usual one of deriving requirements from the top down but designing
the system from the bottom up as a set of hierarchically structured layers
of abstractions. Critical factors underlying the development of effective
hierarchical abstractions are:

1. Separation of Concerns - Create a clean separation of semantic
content between levels.

2. Keep the semantic distance between levels as small as is consistent
with not introducing too much overhead.

3. Direct Mapping - Define layers which implement the requirements
of the higher levels as directly as is consistent with efficiency. Avoid
complex protocols across levels.

Figure 2.1 is a schematic of the design model for the HDDA/DAGH
PDI. Each layer can be thought of as a set of abstract data types which
implements operations against instances of the structures they define.

The lowest level of the abstraction hierarchy of the HDDA/DAGH
PDI defines a hierarchical dynamic distributed array or HDDA which is a
generalization of the familiar static array of programming languages. The
HDDA is purely an array data type and only has the operations of cre-
ation, deletion, array expansion and contraction, and array element access

SYSTEMS ENGINEERING FOR HPC SOFTWARE 5

[Adaptive Mesh Refinement Application]

[Multigrid] [Error Estimation] [Clustering] [Interpolation]

[Shadow Hierarchy] [Checkpoint/Restart] [I/O] [InteractiveViz]

High-level Programming Abstractions
->Grid Function Abstraction (Distributed application fields)
-> Grid Hierarchy Abstraction (DAGH structure specification)
-> Grid Geometry Abstraction (Coord, BBox, BBoxList, ...)

Distributed Dynamic Data-Structures
->Dynamic Data-Objects (Adaptive grids, trees, meshes, ...)
-> Hierarchical Distributed Dynamic Array (Extendible hashing)
-> Hierarchical Index Space (Space-filling curves)

FiG. 2.1. Design model for the HDDA/DAGH Program Development Infrastructure

and storage defined on it. Further, since the use of computational kernels
written in C and Fortran is a requirement, partitioning, communication,
expansion and contraction must be made transparent to these computa-
tional kernels. Separation of concerns is illustrated by the fact that we
define a separate level in the hierarchy (above the HDDA) hierarchy to
implement grids and/or meshes. We shall see that defining the HDDA as
a separate abstraction layer gives material benefit by making definition of
multiple types of grids and meshes simple and straightforward.

The next abstraction level implements grids by instantiating arrays as
a component of a larger semantic concept, that of a grid. A grid adds
definition of a coordinate system and computational operators defined in
that coordinate system. The definition of a grid includes the operations of
creation, deletion, expansion and contraction which are directly translated
to operations on instances of the HDDA, and also defines computational
(stencil) operators, partitioning operators, geometric region operators, re-
finement and coarsening operators, etc. Creation of a hierarchical grid is
directly mapped to creation of a set of arrays. Since arrays are implemented
separately from grids, it is straightforward to separately implement many
different variants of grids using the same array abstractions which are pro-
vided. Thus separation of concerns spreads vertically across higher levels
of the abstraction hierarchy leading to simpler, faster and more efficient
implementations.

6 MANISH PARASHAR AND JAMES C. BROWNE

If the HDDA maintains locality and minimizes overheads then the
DAGH level can be focused on implementing a wide span of grid variants.
Since each grid variant can be defined independently of the other grid types
without redundancy, and must implement only the computational opera-
tions unique to its specific grid type, each grid variant can have a simple
and efficient implementation.

Hierarchical abstractions are a recursive concept. The HDDA is itself
a hierarchy of levels of abstractions.

2.3. Algorithms for Implementation of the Design Model. Each
level of the design model will be implemented as a set of abstract data types.
Therefore algorithms for implementing the operations of each abstract type
on its instances must be selected. Separation of concerns enables selection
and/or definition of the simplest algorithms which can accomplish a given
requirement. Separation of concerns in the design model thus leads to
performant, scalable, adaptable and portable code.

The critical requirement for the HDDA/DAGH package is to maxi-
mize performance at the application level. Performance at the application
level requires locality of data at the data management level. Locality not
only minimizes communication cost on parallel systems but also maximizes
cache performance within processors. Since the application levels operators
(operations on the grids) are defined in an n-dimensional application space,
it is critical that the locality of the data in the one-dimensional distributed
physical storage space maintains the locality defined by the geometry of the
problem in the n-dimensional coordinate space in which the solution is de-
fined. Therefore we must choose or define storage management algorithms
which lead to preservation of the multi-dimensional geometric locality of
the solution in the physical layout of data in storage. A second factor in
obtaining high performance is minimization of overhead such copying of
data, communication, etc. Therefore our algorithm choices for the HDDA
must focus on minimizing these overheads.

2.4. Structure for the Implementation Model. The implementa-
tion model must preserve the structure and properties of the design model
clearly in the implementation. The implementation model which we chose
is a C4++ class hierarchy where a judicious integration of composition and
inheritance is used to lead to a structure which captures and accurately
reflects the hierarchical abstractions in the design model. This structure
will be seen in the next section to closely follow the design model.

3. Case Study - Design and Implementation of the HDDA /DAGH
Infrastructure. The foundations for HDDA /DAGH originated in the de-
velopment of a similar infrastructure for support of hp-adaptive finite ele-
ment computational methods which was begun in 1991 [6]. Thus develop-
ment of application requirements extends over some seven years. The map-
ping to design requirements also owes intellectual debts to other projects

SYSTEMS ENGINEERING FOR HPC SOFTWARE 7
and contributors as noted in the acknowledgments.

3.1. Translation of Application Requirements to System De-
sign Requirements. The HDDA/DAGH infrastructure was initially de-
veloped to support the computational requirements of the Binary Black
Hole (BBH) NSF Grand Challenge project beginning in 1993. The BBH
project had already settled on using the Berger-Oliger AMR, algorithm [7]
as its means of coping with the rapid changes in the solution of Einstein’s
equations in the vicinity of a black hole. Support for several variants of
multigrid solution methods was also a requirement. HDDA/DAGH has
later been adapted and extended to support several other applications. A
summary of these extensions and adaptations will be given in Section 4.
The breadth of these extensions and the ease with which they were made
i1s a vindication of the time and care spent in the conceptualization and
early design phases of development of the HDDA/DAGH package. The
initial requirements were developed by a sequence of meetings between the
physicists at the University of Texas at Austin formulating the solution of
Einstein’s equations for the evolution of a BBH and the authors of this
paper. These meetings were held more or less regularly for about a year,
and were later expanded to include representatives of the other research
groups in the BBH consortium. The requirements specification process ac-
tually took place over a period of about three years and spanned several
releases of the software. A number of major new requirements developed
as the user community worked with the software. For example the need
for shadow hierarchies to enable error analysis was not discovered until the
physicists began coding with the early version of HDDA/DAGH. In fact, it
was not until about February, 1997 that definition of the core capabilities
of HDDA/DAGH was truly finalized. (And we are sure that this definition
will not be valid for any extended period of time.) Translation of sup-
port for Berger-Oliger AMR and multigrid into definition of hierarchical
layers of abstract data types with highly efficient execution and conve-
nience features such as built-in visualization and checkpointing and restart
define the highest level of application requirements. The specific applica-
tion requirements for a parallel implementation of Berger-Oliger adaptive
mesh refinement based solutions of partial differential equations is support
for dynamic hierarchical grids and in particular dynamic hierarchical grids
which may be distributed across multiple address spaces. The grid must
be adapted based on the estimated error in the solution. Both coarsening
and refinement is required. The implementation of dynamic data manage-
ment must be sufficiently efficient so that the benefits of adaptivity are
not out-weighted by the overheads of dynamic storage management. Effi-
cient implementation of dynamic and distributed data management implies
that the locality properties of the application geometry be preserved in the
storage layout across distributed and expansion and contraction. Many dif-
ferent grid types and computational operators must be supported. Reuse

8 MANISH PARASHAR AND JAMES C. BROWNE

of existing Fortran and C coded computational routines was desired.

3.2. Instantiation of the Design Model for HDDA/DAGH.
Figure 3.1 is a schematic of the layers of the HDDA/DAGH abstraction
hierarchy in the context of an application. The hierarchy descends from
left to right (compare with Figure 2.1) and thus the functionality becomes
more generic from left to right. Each level of the hierarchy is given in more
detail from top to bottom. An application consists of application spe-
cific components (stencil operators, solvers, interpolation operators, etc.).
These application specific components are mapped to operations on an
appropriate subtype on its right in the programming abstractions layer.
The grid subtypes are mapped to the types implemented by the dynamic
data management layers to their right. Definitions both across and within
layers have been strongly influenced by the principle of separation of con-
cerns.The ovals with lighter shading are specific instances of the higher level
with darker shading. The Grid Structure abstractions defines hierarchical
grid and implement standard operations on these grids. These abstrac-
tions represent the structure geometry of the computational domain and
add grid semantics to the instances of the HDDA in which the computa-
tional data is stored. It is straightforward to define multiple types and
instances of Grid Hierarchies such as a SAMR hierarchy or a multigrid hi-
erarchy. The Grid Function abstractions define applications fields on the
Grid Structure. These abstraction define the data storage associated with
a grid structure and can be defined on the cells, vertices or faces of each
grid in the hierarchy. This separation of Grid Function from Grid Hierar-
chy enables the structure of the computational domain to be defined and
manipulated independent of the computational data. This makes it simple
for users to employ computational operators for a wide spectrum of com-
putational methods. The Grid Geometry abstractions represent regions
in grid space are independent of grid type. These abstractions provide
a uniforms means for interacting with grids and addressing and directing
computations to regions on grid. Separation of geometric specifications
from computational operations allows a single implementation of geometry
operators to be applied to all grids.

The requirements for the HDDA are derived from the requirements for
the dynamic hierarchical grids:

1. There must be a connected hierarchy of arrays to represent a grid
hierarchy.
2. The hierarchy of arrays must be dynamic.
. The arrays must be partitioned across separate address spaces.
4. The partitioning must result in a balanced computational load
aCross processors.
5. Pure static single address space array semantics must be main-
tained on a local basis since Fortran and C coded computational
routines must continue to execute correctly. Consequently access

w

SYSTEMS ENGINEERING FOR HPC SOFTWARE 9

to array element values must be transparent to their distribution
across address spaces and their dynamics.

6. Computational operations must be efficient even when the grid is
dynamic and partitioned across many processors.

Separation of concerns applies vertically within the definition of the
HDDA 3.2. The first three requirements suggest separation of logical struc-
ture from physical structure. Partitioning, expansion and contraction and
access are defined on the logical structure of the HDDA (the index space)
and mapped to the physical structure implementing storage. The HDDA
is therefore composed of three abstractions: index spaces, storage and ac-
cess. Index spaces define the logical structure of the hierarchical array
while storage defines the layout in physical memory. Access virtualizes the
concept of accessing the value stored at a given index space location across
hierarchy and partitioning.

Definitions:.

Index Space An index space is a lattice of points in an n-dimensional
discrete space. We need a recursively defined hierarchical index
space where each position in an index space may be an index space.

Storage A mapping from the n-dimensional index space to a one dimen-
sional physical storage.

Access A set of operations for returning the values associated with posi-
tions in the index space from the associated storage.

The connection between the application and the array is defined by

a mapping from points in the n-dimensional continuous physical coordi-
nate space in which the solution is defined, to points in the n-dimensional
discrete index space. Expansion, contraction and partitioning are imple-
mented as operations on the index space. Storage maps the index space
to storage space. Note that separation of the index space from storage al-
lows for multiple mappings from index space to physical space where each
mapping defines a different semantics for the same data. For example, ap-
plication of the computational operators is defined by one mapping while
the data which must be communicated among partitions is defined by an-
other mapping. The objects of visualization are defined by yet a third
mapping. This instance of separation of concerns has enabled visualization
to be driven by the same data as is used for the computation. Access,
the third abstraction, implements the operations required for transparency
of access across physically distributed address spaces. It must be disjoint
from storage and index spaces because the implementation must vary with
execution environment. This 1s the second application of separation of
concerns in the design of the HDDA.

3.3. Algorithms for the Abstractions of the Design Model.
The requirement at this point is to identify algorithms:

1. for mapping the n-dimensional continuous space of the solution

to an n-dimensional hierarchical index space with preservation of

10 MANISH PARASHAR AND JAMES C. BROWNE

application locality,

2. for mapping the hierarchical n-dimensional index space to a one-
dimensional physical storage space with preservation of the locality
in the index space to locality in the storage space,

3. for segmenting the storage space into efficiently manageable blocks
which can be accessed, expanded and contracted efficiently with
preservation of locality,

4. for partitioning of the grid hierarchy among processors and com-
munication of the overlapping regions of the grid among processors,
and

5. for refinement and coarsening of the grid.

3.3.1. Hierarchical, Extendible Index Space. The hierarchical,
extendible index space component of the HDDA 1s derived directly from
the application domain using space-filling mappings [8] which are com-
putationally efficient, recursive mappings from N-dimensional space to 1-
dimensional space. Figure 3.3 illustrates a 2-dimensional Peano-Hilbert
curve. The solution space is first partitioned into segments. The space fill-
ing curve then passes through the midpoints of these segments. Space fill-
ing mapping encode application domain locality and maintain this locality
though expansion and contraction. The self-similar or recursive nature of
these mappings can be exploited to represent a hierarchical structure and
to maintain locality across different levels of the hierarchy. Space-filling
mappings allow information about the original multi-dimensional space to
be encoded into each space-filling index. Given an index, it is possible to
obtain its position in the original multi-dimensional space, the shape of the
region in the multi-dimensional space associated with the index, and the
space-filling indices that are adjacent to it. The index-space is used as the
basis for application domain partitioning, as a global name-space for name
resolution, and for communication scheduling.

3.3.2. Mapping to Address Space. The mapping from the multi-
dimensional index space to the one-dimensional physical address space is
accomplished by mapping the positions in the index space to the order in
which they occur in a traversal of the space filling curve. This mapping
can be accomplished with simple bit-interleaving operations to construct a
unique ordered key. This mapping produces a unique key set which defines
a global address space. Coalescing segments of the linear key space into a
single key, blocks of arbitrary granularity can be created.

3.3.3. Storage and Access. Data storage 1s implemented using ex-
tendible hashing techniques [9] to provide a dynamically extendible, glob-
ally indexed storage (see Figure 3.4). The keys for the Extendible Hash
Table are contractions of the unique keys defined as described preceding.
Entries into the HDDA correspond to DAGH blocks. Expansion and con-
traction are local operations involving at most two buckets. Locality of data

SYSTEMS ENGINEERING FOR HPC SOFTWARE 11

is preserved without copying. The HDDA data storage provides a means
for efficient communication between DAGH blocks. To communicate data
to another DAGH blocks, the data is copied to appropriate locations in the
HDDA. This information is then asynchronously shipped to the appropri-
ate processor. Similarly, data needed from remote DAGH blocks is received
on-the-fly and inserted into the appropriate location in the HDDA. Storage
associated with the HDDA is maintained in ready-to-ship buckets. This
alleviates overheads associated with packing and unpacking. An incoming
bucket is directly inserted into its location in the HDDA. Similarly, when
data associated with a DAGH block entry is ready to ship, the associated
bucket is shipped as is. The overall HDDA/DAGH distributed dynamic
storage scheme is shown in Figure 3.5.

3.3.4. Partitioning and Communication. An instance of a DAGH
is mapped to an instance of the HDDA. The granularity of the storage
blocks is system dependent and attempts to balance the computation-
communication ratio for each block. Each block in the list is assigned a cost
corresponding to its computational load. In case of an AMR, scheme, com-
putational load is determined by the number of grid elements contained in
the block and the level of the block in the AMR grid hierarchy. The former
defines the cost of an update operation on the block while the latter defines
the frequency of updates relative to the base grid of the hierarchy. Note
that in the representation described above, space-filling mappings are ap-
plied to grid blocks instead of individual grid elements. The shape of a grid
block and its location within the original grid is uniquely encoded into its
space-filling index, thereby allowing the block to be completely described
by a single index.

Partitioning a DAGH across processing elements using this represen-
tation consists of appropriately partitioning the DAGH key list so as to
balance the total cost at each processor. Since space-filling curve map-
pings preserve spatial locality, the resulting distribution is comparable to
traditional block distributions in terms of communication overheads.

3.3.5. Refinement and Coarsening of the Grid. The DAGH rep-
resentation starts with a single HDDA corresponding to the base grid of the
grid hierarchy, and appropriately incorporates newly created grids within
this list as the base grid gets refined. The resulting structure is a compos-
ite key space of the entire adaptive grid hierarchy. Incorporation of refined
component grids into the base grid key space is achieved by exploiting the
recursive nature of space-filling mappings. For each refined region, the key
list corresponding to the refined region is replaced by the child grid’s key
list. The costs associated with blocks of the new list are updated to reflect
combined computational loads of the parent and child. The DAGH repre-
sentation therefore is a composite ordered list of DAGH blocks where each
DAGH block represents a block of the entire grid hierarchy and may contain
more than one grid level; i.e. inter-level locality is maintained within each

12 MANISH PARASHAR AND JAMES C. BROWNE

DAGH block. Each DAGH block in this representation is fully described
by the combination of the space-filling index corresponding to the coarsest
level it contains, a refinement factor, and the number of levels contained

3.4. Implementation Model for HDDA /DAGH. The success of
a system design model is ultimately determined by the ability to preserve
this design through implementation. Quite often, important design fea-
tures like modularity and extensibility are lost in naive monolithic imple-
mentations. The design approach based on the principles of separation
of concerns and hierarchical abstractions enables a direct coupling of the
design with object-oriented software development technology to preserve
all features of the design in the implementation. Hierarchical abstraction
defines the structure of the object-oriented class hierarchy, while the sep-
aration of concerns across the abstractions leads to clean interfaces in the
class structure. The actual implementation uses C++ and builds the class
hierarchy from bottom up using inheritance and composition to specialize
more general base classes.

A subset of the HDDA/DAGH abstraction shown in Figure 3.6 is used
to illustrate the preservation of design through implementation. This figure
shows the portion of the hierarchy that designs a Grid Function which is
an application field such as pressure or temperature defined on the compu-
tational Grid Hierarchy. The first application of the principle of separation
of concerns separates the structure of the grid hierarchy from the storage
associated with the field. The structure of the grid hierarchy is then de-
fined as the combination of the hierarchy index space (which is derived
from the application domain using space-filling mappings) and the Grid
Geometry operators such as regions (bounding boxes) and points (coordi-
nates). The storage is implemented as an HDDA which is separated into
the hierarchical index space and extendible hashing bucket storage.

The actual C++ class hierarchy corresponding to this abstraction hi-
erarchy is shown in Figure 3.7. The classes that make up the base of the
hierarchy include:

e A Buckets class structure that implements generic data buckets
and bucket iterators. Buckets are specialized into single (or stand
alone) buckets and packed buckets which combine multiple single
buckets.

e An Indez-Space class structure which implements the hierarchical
extendible, index space based on space-filling mappings. The class
structure starts with a simple bit vector of arbitrary length (class
BitVec) and specializes this class into a space-filling index (class
sfcIndex) by applying bit interleaving to it. Classes PeanoHilbert
and Morton apply bit transformation defined by the Peano-Hilbert
and Morton space-filling mapping algorithms respectively to the
sfcIndex to generate the appropriate index-space.

e A Grid Geometry class structure which implements points and re-

SYSTEMS ENGINEERING FOR HPC SOFTWARE 13

gions in the computational domain. Class Coords implements an
arbitrary point in the domain while class BBox implements a re-
gion as a combination of a lower bound Coords and an upper bound
Coords.

Storage for the Grid Function is built on the HDDA structure which
is implemented as a composition of the index-space and bucket class struc-
tures. HDDA objects are then specialized via inheritance to implement
GridData objects by adding grid access semantics. The Grid Structure is
implemented as the GridHierarchy class which specializes individual Grid-
Components. The GridComponent class implements a single component
grid in the grid hierarchy as a span(s) of the index-space which geometry
operators defined on it. GridHierarchy combines multiple component grids
into the hierarchical SAMR grid structure and defines operators on this
structure. Finally, storage (GridData) and structure (GridHierarchy) are
combined by the GridFunction class to implement application grid func-
tions. It can be seen from Figures 3.6 and 3.7 that design structure derived
using our design model based on separation of concerns and hierarchical ab-
stractions directly complements its implementation class hierarchy, thereby
preserving all the attributes of the design in the implementation.

4. Applications of HDDA /DAGH. Figure 4.1 illustrates the spec-
trum of application codes and infrastructures enabled by HDDA/DAGH.
Three different infrastructures targeting computational grand challenges
use HDDA/DAGH as their foundation: (1) a computational infrastructure
for the binary black-hole grand challenge, (2) a computational infrastruc-
ture for the neutron star grand challenge and (3) TPARS: a problem solv-
ing environment for parallel oil reservoir simulation. Applications codes
developed using the HDDA/DAGH data-structures and programming ab-
stractions includes general relativity codes for black-hole, boson star and
neutron star interactions, coupled hydrodynamics and general-relativity
codes, laser plasma codes, and geophysics codes for adaptive modeling of
the whole earth. HDDA/DAGH is also used to design a multi-resolution
data-base for storing, accessing and operating on satellite information at
different levels of detail. Finally, base HDDA objects have been extended
with visualization, analysis and interaction capabilities. The capabilities
are then inherited by application objects derived from HDDA objects and
provide support for a framework for interactive visualization and compu-
tational steering where visualization, analysis and interaction is directly
driven from the actual computational objects.

5. Related Work. The authors are not aware of any closely related
work. There are hundreds if not thousands of substantial and effective
programs which successfully implement “high performance computations”.
But there are relatively few infrastructures for support of implementation
of high performance parallel computations. Of course, the designers and
developers of other packages [10,11,12] for support of implementation of

14 MANISH PARASHAR AND JAMES C. BROWNE

adaptive mesh refinement methods have all had to face and overcome the
issues and concerns of designing to performance and designing for exten-
sibility. But for the most part the process of design for these systems has
largely gone unrecorded. If HPC is to be an effective discipline we must
document good practice so that best practice can be identified. The most
closely related body of research is that of “Software Architectures” [13].
Our design models are closely related to software architectures. But little
attention has been paid to “software architectures” for high performance
computing. Smith and Browne [14] and Smith [15] have defined a discipline
of performance engineering for information management software systems.
There are thousands of books and papers on conventional software engi-
neering. Fundamental concepts such as hierarchical structuring and orderly
process are well covered in the standard books ([1,2] among others). But
the particular concerns of HPC software systems are not covered.

6. Conclusions. It has been shown that at least for the HDDA/DAGH
PDI that following a development model and process which targets the is-
sues important for software systems for high performance software systems
contributed to attainment of a system which has been demonstrated to
meet its requirements and to have desirable properties with respect to ex-
tensibility and portability. We suggest that formulation and application
of appropriate development models and reporting on the results of use of
good development models will benefit the community concerned with de-
velopment of high performance software systems.

7. Acknowledgments. There are many contributors to the develop-
ment of HDDA/DAGH. Carter Edwards was an major contributor to the
concepts of the HDDA. The authors are grateful the community of users
who endured the painful process of developing the requirements and us-
ing early versions of admittedly incomplete versions of HDDA/DAGH. In
particular we are grateful to Richard Matzner, Matt Choptuik, Ed Sei-
del, Paul Walker, Joan Masso, Greg Cook, Tom Haupt, and Geoffrey Fox.
Financial support has come from NSF ACS/PHY grant 9318152 (ARPA
supplemented) and from DARPA/CSTO contract 3531427 through a sub-
contract from Syracuse University and from Argonne National Laboratory
through the Enrico Fermi Fellowship to Manish Parashar.

REFERENCES

[1] TAN SOMMERVILLE, Software Engineering, Addison Wesley, 1996.

[2] RoGER PREsSMAN, Software Engineering: A Practitioner,s Approach, MacGraw-
Hill, NY, NY, 1987.

[3] E. W. DuksTRA, “The Structure of the THE Operating System”, CACM, pp.
341-346, Nov. 1968.

[4] JamEs C. BROWNE, “A Language for Specification and Programming of Recon-
figurable Parallel Computation Structures”, Proceedings of the Internation
Conference on Parallel Processing, Bellaire, MI, Aug. 1982.

(11]

(12]

(13]
(14]

(18]

SYSTEMS ENGINEERING FOR HPC SOFTWARE 15

Raju PANDE AND JaMES C. BROWNE, “A Compositional Approach to Concurrent
Object-Oriented Programming”, Proceedings of the Internation Conference on
Compilers and Languages, Paris, France, May 1994.

CARTER EDWARDS AND JAMEs C. BROWNE, “Scalable Distributed Dynamic Array
and its Application to a Parallel hp-Adaptive Finite Element Code”, Presen-
tation at Parallel Objec-Oriented Methods and Applications Workshop, Santa
Fe, NM, Feb. 1996.

MARsHA J. BERGER AND JOSEPH OLIGER, “Adaptive Mesh Refinement for Hyper-
bolic Partial Differential Equations”, Jounal of Computational Physics, pp.
484-512, 1984.

HaNs SAGAN, Space-Filling Curves, Springer-Verlag, 1994.

R. FaciN, “Extendible Hashing - A Fast Access Mechanism for Dynamic Files”,
ACM TODS, 4:315-344, 1979.

ScoTT B. BADEN, ScoTT R. KoHN, SiLvia M. FIGUERIA, AND STEPHEN J. FINK,
“The LPARX User’s Guide v1.0”, Technical report, Department of Computer
Science and Engineering, University of California, San Diego, La Jolla, CA
92093-0114 USA, Apr. 1994.

S. J. Fink, S. R. KonN, anND S. B. BaDEN, “Flexible Communication Mecha-
nisms for Dynamic Structured Applications”, Proceedings of IRREGULAR
96, Santa Barbara, CA, Aug. 1996.

REBECCA PARsoNs, “A++/P++4 Array Classes for Architecture Independent Fi-
nite Difference Computations”, OON-SKI’94 - The Object-Oriented Numerics
Conference, Sunriver, Oregon, pp. 408—418, Apr. 1994.

MARY SHAW AND DAvVID GARLAN, Software Architecture: Perspectives on an
FEmerging Discipline, Prentice-Hall, Englewood Cliffs, NJ, 1996.

C. SMITH AND JAMES C. BROWNE, “The Structure of the THE Operating System”,
Proceedings of NCC’82, AFIPS Press, NY, NY, pp. 217-224, 1982.

C.U. SMITH, Performance Engineering of Software Systems, Addison Wesley, 1990.

16 MANISH PARASHAR AND JAMES C. BROWNE

Application

Application Dynamic Data-
Components Management
C Modules)C Kernels) I @rid Slruclur9 @rid Geomet@ I Gpp. Objects)(HDDA)
NN
Solver I @ell Centere@ @ain Hierarc@ C Region) I (Grid) (Index Space)

| I B
Interpolator Qertex Centere@ (Shadow HierarchD (Point) (Mesh) C Storage)
1 I Y
I Gace Centerea @ultigrid Hierarc@ I C Tree) C Access)

Clusterer I I

Grid Function

Application Specific Method Specific I Adaptive Data-Mgmt

Fic. 3.1. HDDA/DAGH Abstraction Hierarchy

Index Space

Partitioning

A\

Name
Resolution
Display
Objects

SYSTEMS ENGINEERING FOR HPC SOFTWARE

HDDA

Storage /
Consistency
Contraction ()
. Interaction
Data Objects
) C Objects >

Fi1Gc. 3.2. Hierarchical Abstractions of the HDDA

Y

Communication

./

MANISH PARASHAR AND JAMES C. BROWNE

18

Fi1G. 3.3. Hierarchical Space-Filling Mappings

Hash Prefix

0]

00

01

1"

SYSTEMS ENGINEERING FOR HPC SOFTWARE 19

—_|

Hash Key:

Hash Prefix

()
000
001
010
011
100
101
110

111

Hash Key

Hash Prefix Own —»

)
000
001
010
011
100
101
110

111

Cache —>»

L

Hash Key:\Al:|

Fi1Gc. 3.4. Extendible hashing for distributed dynamic storage and access

20

MANISH PARASHAR AND JAMES C. BROWNE

Lir 1 ~1Lll
=iy =8 . .
R th Application Locality
l\ == Index Locality
== Storage Locality

Fic. 3.5. HDDA/DAGH distributed dynamic storage

SYSTEMS ENGINEERING FOR HPC SOFTWARE 21

Grid Function

Grid Structure

Index-Space Grid Geometry

Fi1G. 3.6. Preserving Design in Implementation: Hierarchical Abstraction

22 MANISH PARASHAR AND JAMES C. BROWNE

— —» Composition .)
—> Inheritance Grid Functions
- ~

- ~

Grid Hierarchy

-
-

~ o

-~

Buckets

Index-Space

Geometry

F1G. 3.7. Preserving Design in Implementation: Object Oriented Implementation Hier-
archy

NCSA, UluC
CR, UT Austin
Cornell University

Black-Hole Evolution

Neutron Star Coalescence
MCS, ANL

NCSA, UluC

Washington University
Max Planck Institute

Composite Materials
Analysis
TICAM, UT Austin

SYSTEMS ENGINEERING FOR HPC SOFTWARE

GR + Hydrodynamics

Max Planck Institute & Experimentation

Interactive Visualization

/7

/S

CS, UT Austin
NCSA, uluC Max Planck Institute
Data-Management Infrastructure
- 1. Distributed Dynamic Data-Strucutres
Il. High-Level Programming Abstractions

N

Boson Star Evolution Resevoir Simulation

CR, UT Austin CSM/PE, UT Austin

Fic. 4.1. HDDA/Applications

Multiresolution Database
EOS Project
CS, CSR, UT Austin

Geophysical Modeling
IG. UT, Austin

Laser-Plasma Interaction
Physics, UT Austin

