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Abstract:
This paper presents the design, development and application of a computatic
infrastructure to support the implementation of parallel adaptive algorithms fo
solution of sets of partial differential equations. The infrastructure is separates
multiple layers of abstraction. This paper is primarily concerned with the two |
layersof this infrastructure: a layer which defines and implements dynamic
distributed arrays (DDA), and a layer in which several dynamic data and
programming abstractions are implemented in terms of the DDAs. The currer
iImplemented abstractions are those needed for formulation of hierarchical ad
finite difference methods, hp-adaptive finite element methods, and fast multip
method for solution of linear systems. Implementation of sample applications
on each of these methods are described and implementation issues and perf
measurements are presented.

Keywords:
Problem Solving Environment, Parallel Adaptive Algorithm, Distributed Dynar
Data Structures, Adaptive Mesh-Refinement, hp-Adaptive Finite Elements, F:
Multipole Methods.

1 Introduction

This paper describes the design and implementation of a common computational
infrastructure to support parallel adaptive solutions of partial differential equations
motivations for this research are:

1. Adaptive methods will be utilized for the solution of almost all very large-scale
scientific and engineering models. These adaptive methods will be executed
large-scale heterogeneous parallel execution environments.

2. Effective application of these complex methods on scalable parallel architectt
will be possible only through the use of programming abstractions which lowe
complexity of application structures to a tractable level.

3. A common infrastructure for this family of algorithms will result in both, enorm
savings in coding effort and a more effective infrastructure due to pooling anc



focusing of effort.

The goal for this research is to reduce the intrinsic complexity of coding parallel ac
algorithms by providing an appropriate set of data structures and programming
abstractions. This infrastructure has been developed as a result of collaborative re
among computer scientists, computational scientists and application domain spec
working on three different projects: An DARPA project for hp-adaptive computatio
fluid dynamics and two NSF sponsored Grand Challenge projects, one on numeri
relativity and the other on composite materials.

1.1 Conceptual Framework

Applications
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Figure 1.1: Hierarchical Problem Solving Environment
for Parallel Adaptive Algorithmsfor the Solution of PDES

Figure lis a schematic of our perception of the structure of a problem solving

environment (PSE) for parallel adaptive techniques for the solution of partial differ
equations. This paper is primarily concerned with the lowest two layers of this hiet
and how these layers can support implementation of higher levels of abstraction.
bottom layer of the hierarchical PSE is a data-management layer. The layer imple
Distributed Dynamic Array (DDA) which provides array access semantics to distrit
and dynamic data. The next layer is a programming abstractions layer which adds
application semantics to DDA objects. This layer implements data abstractions su



grids, meshes and trees which underlie different solution methods. The design of
Is based on a separation of concerns and the definition of hierarchical abstraction:
on the separation. Such a clean separation of condgnsscritical to the success of ar
infrastructure that can provide a foundation for several different solution methods.
particular the PSE presented in this paper supports finite difference methods base
adaptive mesh refinement, hp-adaptive finite element methods, and adaptive fast
multipole methods.

1.2 Overview

This paper defines the common requirements of parallel adaptive finite difference
finite element methods for solution of PDEs and fast multipole solution of linear sy
and demonstrates that one data management system based on Distributed Dynar
Arrays (DDA) can efficiently meet these common requirements. The paper then d
the design concepts underlying DDAs and sketches implementations of parallel a
finite difference, finite element, multipole solutions using DDAs based on a commq
conceptual basis as the common data management system. Performance evaluai
each method are also presented.

The primary distinctions between the DDA-based data management infrastructure
other packages supporting adaptive methods are (1) the separation of data mana
and solution method semantics and (2) the separation of addressing and storage
in the DDA design. This separation of concerns enables the preservation of applic
locality in multi-dimensional space when it is mapped to the distributed one-dimen
space of the computer memory and the efficient implementation of dynamic behay

The data structure which has traditionally been used for implementation of these
problems has been the multi-dimensional array. Informally an array consists of: (1
index set (a lattice of points in an n-dimensional discrete space), (2) a mapping frc
n-dimensional index set to one dimensional storage, and (3) a mechanism for acc
storage associated with indices.

A DDA is a generalization of the traditional array which targets the requirements c
adaptive algorithms. In contrast to regular arrays, the DDA utilizes a recursively dt
hierarchical index space where each index in the index space may be an index s
storage scheme then associates contiguous storage with spans of this index spac
relationship between the application and the array is defined by deriving the index
directly from the n-dimensional physical domain of the application.

2 Problem Description



Adaptive algorithms require definition of operators on complex dynamic data struc
Two problems arise: (1) the volume and complexity of the bookkeeping code requ
construct and maintain these data structures overwhelms the actual computations
maintaining access locality under dynamic expansion and contraction of the data |
complex copying operations if standard storage layouts are used. Implementation
parallel and distributed execution environments adds the additional complexities ¢
partitioning, distribution and communication. Application domain scientists and

engineers are forced to create complex data management capabilities which are f
removed from the application domain. Further, standard parallel programming lan
do not provide explicit support for dynamic distributed data structures. Data mana
requirements for the three different adaptive algorithms for PDEs are described be

2.1 Adaptive Finite Difference Data M anagement Requirements

Finite difference methods approximate the solution of the PDE on a discretized gr
overlaid on the n-dimensional physical application domain. Adaptation increases t
resolution of the discretization in required regions by refining segments of the grid
finer grids. The computational operations on the grid may include local stencil bas
operations at all levels of resolution, transfer operations between levels of resoluti
global linear solves. Thus the requirement for the data-management system for ac
finite difference methods is seamless support of these operations across distributi
refining and coarsening of the grid. Storage of the dynamic grid as an array where
point of the grid is mapped to a point in a hierarchical index space is natural. Ther
refinements and coarsening of the grid become traversal of the hierarchy of the
hierarchical index space.

2.2 Adaptive Finite Element Data M anagement Requirement

The finite element method requires storage of the geometric information defining t
mesh of elements which spans the application domain. Elements of the linear sys
arising from finite element solutions are generally compatethe flyso that they need
not be stored. HP-adaptive finite element methods adapt by partitioning elements
smaller elements (h refinement) or by increasing the order of the polynomial
approximating the solution on the element (p refinement). Partitioning adds new e
and changes relationships among elements. Changing the approximation function
enlarges the descriptions of the elements. The data-management requirements fc
hp-adaptive finite elements thus include storage of dynamic numbers of elements
dynamic sizes. These requirements can be met by mapping each element of the r
position in a hierarchical index space which is associated with a dynamic span of
one-dimensional storage space. Partitioning an element replaces a position in the
space by a local index space representing the expanded mesh.



2.3 Adaptive Fast Multipole Data Management Requirements

Fast multipole methods partition physical space into subdomains. The stored
representation of the subdomain includetarge configuratiorof the subdomain and
various other descriptive data. Adaptation consists of selectively partitioning subd
The elements are often generabadhe flyso that storage of the values of the forces
potential need not be stored. The requirement for data management capability is t
similar to that of adaptive finite element methods. A natural mapping is to associai
subdomain with a point in a hierarchical index space.

2.4 Requirements Summary

It should be clear that an extended definition of an array where each element can
an array and where the entity associated with each index position of the array can
object of arbitrary and variable size provides one natural representation of the dat
management requirements for all of adaptive finite element, adaptive finite differel
adaptive fast multipole solvers. The challenge is now to demonstrate an efficient
implementation of such an array and to define implementations of each method in
of this storage abstraction. The further and more difficult challenge is an efficient
parallel/distributed implementation of such an array.

3 Distributed Dynamic Data-M anagement

The distributed dynamic data-management layer of the PSE implements Distribut
Dynamic Arrays (DDAS). This layer provides pure array access semantics to dyna
structured and physically distributed data. DDA objects encapsulate distribution, o
load-balancing, communications, and consistency management, and have been €
with visualization and analysis capabilities.

There are currently two different implementations of the data management layer, |
built on the same DDA conceptual framework: (1) the Hierarchical Dynamic Distril
Array (HDDA) and (2) the Scalable Dynamic Distributed Array (SDDA). The HDD/
a hierarchical array in that each element of the array can recursively be an array;
dynamic array in that each array (at each level of the hierarchy) can expand and ¢
at run-time. Instead of hierarchical arrays the SDDA implements a distributed dyn:
array of objects of arbitrary and heterogeneous types. This differentiation results f
differences in data management requirements between structured and unstructur:
meshes. For unstructured meshes it is more convenient to incorporate hierarchy
information into the programming abstraction layer which implements the unstruct
mesh. These two implementations derived from a common base implementation ¢
and will be re-integrated into a single implementation in the near future.



The arrays of objects defined in the lowest layer are specialized by the higher laye
the PSE to implement application objects such as grids, meshes, and tree. A key"
of a DDA based on the conceptual framework described following is its ability to e
out the data locality requirements from the application domain and maintain this Ic
despite its distribution and dynamic structure. This is achieved through the applice
the principle of separation of concefti$ to the DDA design. An overview of this des
Is shown inFigure 3.1 Distributed dynamic arrays are defined in the following
subsection.
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Figure 3.1: DDA Design - Separation of Concerns-> Hierarchical Abstractions

3.1 Distributed Dynamic Array Abstraction

The SDDA and HDDA are implementations adiatributed dynamic array. The
distributed dynamic array abstraction, presented in detg] jms summarized as
follows.

e In general, array is defined by a@ata set D, anindex spacel, and an injective
functionF : D -> |

e An array isdynamic if elements may be dynamically inserted into or removed f
its data sebD.

e An array isdistributed if the elements of its data detare distributed.

A data seD is simply a finite set of data objects. An index spaisea countable set of
indices with a well-defined linear ordering relation, for example the set of natural
numbers. Two critical points of this array abstraction are (1) that the cardinality of
data seD is necessarily equal to or less than the cardinality of the index lspade

(2) that each element of the data set uniquely maps to an element of the index sp:



3.2 Hierarchical Index Space and Space-Filling Curves

An application partitions itsl-dimensional problem domain into a finite number of
points and/or regions. Each region can be associated with a unique coordinate in
problem domain. Thus the "natural" indexing scheme for such an application is a
discretization of these coordinates. Such an index space can defihpd gs:--xI,

where each J- corresponds to the discretization of a coordinate axis.

An index space may be hierarchical if the level of discretization is allowed to vary,
perhaps in correspondence with a hierarchical partitioning of the problem domaler

components of hierarchical index space could be defingdi@sis.....iy)), whered is the
depth of the index.

Recall that an index space requires a well-defined linear ordering relation. Thus tF
"natural”N dimensional hierarchical index space must effectively be mapped to a |
or one-dimensional, index space. An efficient family of such maps are defined by
space-filling curves (SF(GJ].

One such mapping is defined by the Hilbert space-filling curve, illustratéigume 3.2
In this mapping a bounded domain is hierarchically partitioned into regions where
regions are given a particular ordering. In theory the partitioning "depth" may be ir
and so any finite set of points in the domain may be fully ordered. Thus an SFC m
defines a hierarchical index space, of theoretically infinite depth, for any applicatic
domain which can be mapped into the SFC "bounding box".

=il
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Figure 3.2: Hilbert Space-Filling Curve

The "natural” index space of the SFC map efficiently defines a linear ordering for :
points and/or subregions of the application’s problem domain. Given such a linear
ordering the these subregions can be distributed among processors by simply par
the index space. This partitioning is easily and efficiently obtained from a partition
linearly ordered index space such that the computational load of each partition is |
equal.Figure 3.3 Space-Filling Curve Patrtitioning, illustrates this process for an
irregularly partitioned two dimensional problem domain. Notéigure 3.3that the
locality preserving property of the Hilbert SFC map generates "well-connected"
subdomains.

Figure 3.3: Space-Filling Curve Partitioning
3.3 DDA Implementation

An array implementation provides storage for objects of the datalsand access to

these objects through a converse funcEoh: F(D) -> D. The quality and efficiency o
an array implementation are determined by the correlation between storage locali

index locality and by the expense of the converse funétibnFor example a
conventional one-dimensional FORTRAN array has both maximal quality and effic

A DDA implements distributed dynamic arrays where storage for objects in the da

D is distributed and dynamic, and the converse funcEtl‘érprovides global access to
these objects. A DDA'’s storage structure and converse function consists of two
components: (1) local object storage and access and (2) object distribution. The F
and SDDA implementations of a DDA use extendible hasldih& [5] and red-black
balanced binary treg6] respectively for local object storage and access.

An application instructs the DDA as to how to distribute data by defining a partitiot
of index spacé among processors. Each index in the index space is uniquely assig
a particular processor> P. The storage location of a particular data object is now



determined by its associated indkx> i -> P. Thus the storage location of any
dynamically created data object is well-defined.

Each DDA provides global access to distributed objects by transparently caching
between processors. For example, when an application applies a DDA’s converse

function (i) -> d) if the data objeat is not present on the local processor the dat
object is transparently copied from its owning processor into a cache on the local
processor.

3.4 Locality, Locality, Locality!

A DDA'’s object distribution preserves locality between object storage and the obje
global indices. Given the "natural” index space of the space-filling curve map and
corresponding domain partitioning, a DDA’s storage locality is well-correlated with
geometric locality, as illustrated Kigure 3.4

SFC Partitioning

== (Global index space partitioning

== Object storage distribution

|

\—‘ﬂr

Storage Locality <= Index Locality == Geometric Locality

Figure 3.4: Locality, Locality, L ocality!

In Figure 3.4an application assigns SFC indices to the data objects associated wit
subregion of the domain. A DDA stores objects within a span of indices in the loce
memory of a specified processor. Thus geometrically local subregions have their
associated data objects stored on the same processor.

3.5 Application Programming I nterface (API)



The DDA application programming interface consists a small set of simple methoc
which hide the complexity of the storage structure and make transparent any requ
interprocessor communication. These methods include:

GET d <- F ()

INSERT D<-D+dey

REMOVE D<-D-dq4

ITERATE {d:i<=F(d)<=j}
REPARTITION Forcing a redistribution of objedgts
PUT/LOCK/UNLOCK |Cache coherency controls

Implementation of these methods varies between the SDDA and HDDA; however
abstractions for these methods are common to both versions of the DDA.

3.6 DDA Performance

The DDA provides object management services for an application’s distributed dy
data structures. This functionality introduces an additional overhead cost when ac
local objects. For example, local object access could be accomplished directly via
pointers instead of DDA indices; however, note that the pointer to a data object m
invalidated under data object redistribution.

This overhead cost is measured for the SDDA version of the DDA, which uses a

red-black balanced binary tree algorithm for local object management. The overhe
of the local get, local insert, and local remove method is measured on an IBM RS
The local get method retrieves a local data object associated with an input index \
l.e. the converse function. The local insert method inserts a new data object asso«
with its specified indexd, ,,F(d,e,) Into the local storage structure. The local rem«

method removes a given data object from the local storage structure. The comput
time of each method is measured given the size of the existing data structure, as |
in Figure 3.5 SDDA Overhead for Local Methods.
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Figure 3.5: SDDA Overhead for Local Methods

The overhead cost of local get method, as denoted by the middle Figgire 3.5
increases logarithmically from 2 microseconds for an empty SDDA to 8 microsecc
an SDDA containing one million local data objects. This slow logarithmic growth is
expected for a search into the SDDA'’s balanced binary tree. The local insert meth
performs two operations: (1) search for the proper point in the data structure to in¢
object and (2) modification of the data structure for the new object. The cost of the
method is a uniform "delta" cost over the get operation. Thus the overhead cost o
modifying the data structure for the new data object independent of the size of the
Note that the overhead cost of the local remove method, as denéigdna 3.5by the
lowest line, is also independent of the size of the SDDA.

4 M ethod Specific Data & Programming Abstractions

The next level of the PSE specializes DDA objects with method specific semantic:
create high-level programming abstractions which can be directly used to impleme
parallel adaptive algorithms. The design of such abstractions for three different cle



adaptive solution techniques for PDEs, hierarchical, dynamically adaptive grids,
hp-adaptive finite elements and dynamic tree (dynamic trees are the data abstrac
upon which the fast multipole methods are implemented) are descried below.

4.1 Hierarchical Adaptive M esh-Refinement

Problem Description

Figure4.1: Adaptive Grid Hierarchy - 2D (Berger-Oliger AMR Scheme)

Dynamically adaptive numerical techniques for solving differential equations provi
means for concentrating computational effort to appropriate regions in the comput
domain. In the case of hierarchical adaptive mesh refinement (AMR) methods, thi:
achieved by tracking regions in the domain that require additional resolution and
dynamically overlaying finer grids over these regions. AMR-based techniques stat
base coarse grid with minimum acceptable resolution that covers the entire compi
domain. As the solution progresses, regions in the domain requiring additional res
are tagged and finer grids are overlayed on the tagged regions of the coarse grid.
Refinement proceeds recursively so that regions on the finer grid requiring more
resolution are similarly tagged and even finer grids are overlayed on these region:
resulting grid structure is a dynamic adaptive grid hierarchy. The adaptive grid hie
corresponding to the AMR formulation by Berger & Olij#ris shown in Figurd.l
Distributed Data-Structuresfor Hierarchical AMR Two basic distributed
data-structures have been developed, using the fundamental abstractions provide
HDDA, to support adaptive finite-difference techniques based on hierarchical AMF
A Scalable Distributed Dynamic Grid (SDDG) which is a distributed and dynamic ¢



and is used to implement a single component grid in the adaptive grid hierarchy; ¢
A Distributed Adaptive Grid Hierarchy (DAGH) which is defined as a dynamic
collection of SDDGs and implements the entire adaptive grid hierarchy. The
SDDG/DAGH data-structure design is based on a linear representation of the
hierarchical, multi-dimensional grid structure. This representation is generated usi
space-filling curves described $ection 3and exploits the self-similar or recursive
nature of these mappings to represent a hierarchical DAGH structure and to main
locality across different levels of the hierarchy. Space-filling mapping functions are
used to encode information about the original multi-dimensional space into each
space-filling index. Given an index, it is possible to obtain its position in the origine
multi-dimensional space, the shape of the region in the multi-dimensional space
associated with the index, and the space-filling indices that are adjacent to it. A de
description of the design of these data-structures can be fo{8id in
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Figure 4.2: SDDG Representation - Figure 4.3: DAGH Composite Representation
SDDG Representation:

A multi-dimensional SDDG is represented as a one dimensional ordered list of SC
blocks. The list is obtained by first blocking the SDDG to achieve the required

granularity, and then ordering the SDDG blocks based on the selected space-fillin
The granularity of SDDG blocks is system dependent and attempts to balance the
computation-communication ratio for each block. Each block in the list is assignec



corresponding to its computational load. Figdu2illustrates this representation for a
2-dimensional SDDG.

Partitioning a SDDG across processing elements using this representation consis
appropriately partitioning the SDDG block list so as to balance the total cost at ea
processor. Since space-filling curve mappings preserve spatial locality, the resulti
distribution is comparable to traditional block distributions in terms of communicati
overheads.

DAGH Representation:

The DAGH representation starts with a simple SDDG list corresponding to the bas
of the grid hierarchy, and appropriately incorporates newly created SDDGs within
list as the base grid gets refined. The resulting structure is a composite list of the «
adaptive grid hierarchy. Incorporation of refined component grids into the base SC
list is achieved by exploiting the recursive nature of space-filling mappings: For ec
refined region, the SDDG sub-list corresponding to the refined region is replaced |
child grid’s SDDG list. The costs associated with blocks of the new list are update
reflect combined computational loads of the parent and child. The DAGH represet
therefore is a composite ordered list of DAGH blocks where each DAGH block
represents a block of the entire grid hierarchy and may contain more than one gric
l.e. inter-level locality is maintained within each DAGH bloElgure 4.3illustrates the
composite representation for a two dimensional grid hierarchy.

The AMR grid hierarchy can be partitioned across processors by appropriately

partitioning the linear DAGH representation. In particular, partitioning the composi
to balance the cost associated to each processor results in a composite decompo
the hierarchy. The key feature of this decomposition is that it minimizes potentially
expensive inter-grid communications by maintaining inter-level locality in each pat

Data-Structure Storage:
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Figure 4.4: SDDG/DAGH Storage

Data-structure storage is maintained by the HDDA describ&dction 3 The overall
storage scheme is shown in Figdré.

Programming Abstractionsfor Hierarchical AMR
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Figure 4.5: Programming Abstraction for Parallel Adaptive M esh-Refinement

We have developed three fundamental programming abstractions using the
data-structures described above that can be used to express parallel adaptive
computations based on adaptive mesh refinement (AMR) and multigrid technique:
Figure4.5). Our objectives are twofold: first, to provide application developers with
of primitives that are intuitive for expressing the application, and second, to sepatr:
data-management issues and implementations from application specific operation



Grid Geometry Abstractions:

The purpose of the grid geometry abstractions is to provide an intuitive means for
identifying and addressing regions in the computational domain. These abstractiol
be used to direct computations to a particular region in the domain, to mask regiol
should not be included in a given operation, or to specify region that need more
resolution or refinement. The grid geometry abstractions represent coordinates, b
boxes and doubly linked lists of bounding boxes.

Coordinates:The coordinate abstraction represents a point in the computational dc
Operations defined on this class include indexing and arithmetic/logical manipulat
These operations are independent of the dimensionality of the domain.

Bounding BoxesBounding boxes represent regions in the computation domain anc
comprised of a triplet: a pair @foordsdefining the lower and upper bounds of the bc
and astep arraythat defines the granularity of the discretization in each dimension.
addition to regular indexing and arithmetic operations, scaling, translations, union:
intersections are also defined on bounding boxes. Bounding boxes are the primar
for specification of operations and storage of internal information (such as depend
and communication information) within DAGH.

Bounding Boxes Listd:ists of bounding boxes represent a collection of regions in tl
computational domain. Such a list is typically used to specify regions that need
refinement during the regriding phase of an adaptive application. In addition to linl
addition, deletion and stepping operation, reduction operations such as intersectic
union are also defined on a BBoxLIist.

Grid Hierarchy Abstraction:

The grid hierarchy abstraction represents the distributed dynamic adaptive grid hit
that underlie parallel adaptive applications based on adaptive mesh-refinement. T
abstraction enables a user to define, maintain and operate a grid hierarchy as a fii
object. Grid hierarchy attributes include the geometry specifications of the domain
as the structure of the base grid, its extents, boundary information, coordinate
information, and refinement information such as information about the nature of
refinement and the refinement factor to be used. When used in a parallel/distribut
environment, the grid hierarchy is partitioned and distributed across the processot
serves as a template for all application variables or grid functions. The locality pre
composite distributiof®] based on recursiv@pace-filling Curve§3] is used to partitior
the dynamic grid hierarchy. Operations defined on the grid hierarchy include inde)
individual component grid in the hierarchy, refinement, coarsening, recompaosition



hierarchy after regriding, and querying of the structure of the hierarchy at any inst:
During regriding, the re-partitioning of the new grid structure, dynamic load-balanc
and the required data-movement to initialize newly created grids, are performed
automatically and transparently.

Grid Function Abstraction:

Grid Functions represent application variables defined on the grid hierarchy. Each
function is associated with a grid hierarchy and uses the hierarchy as a template t
its structure and distribution. Attributes of a grid function include type information,

dependency information in terms of space and time stencil radii. In addition the us
assign special (FORTRAN) routines to a grid function to handle operations such &
inter-grid transfers (prolongation and restriction), initialization, boundary updates,

input/output. These function are then called internally when operating on the distri
grid function. In addition to standard arithmetic and logical manipulations, a numb:
reduction operations such Esn/Max, Sum/ProdugtandNormsare also defined on gri
functions. GridFunction objects can be locally operated on as regular FORTRAN ¢
arrays.

4.2 Definition of hp-Adaptive Finite Element Mesh

The hp-adaptive finite element mesh data structure consists of two layers of abstr
as illustrated irFigure 4.6 The first layer consists of thi#gomainandNodeabstractions.
The second layer consists of mesh specific abstractions sifentag Edge and
Surface which are specializations of tiNeodeabstraction.

Vertex | Edge | Surface

Node / Domain

Figure4.6: Layering of Mesh Abstraction

A meshDomainis the finite element application’s specialization of the SDDA. The
Domainuses the SDDA to store and distribute a dynamic set of Medésamong
processors. ThBomainprovides the mapping from the N-dimensional finite elemer
domain to the one-dimensional index space required by a DDA.

A finite element meshlodeassociates a set of finite element basis functions with a
particular location in the problem domaiModesalso support inteNoderelationships,



which typically capture properties of intBiedelocality.

Specializations of the finite element mésébdefor a two-dimensional problem are
summarized in the following table and illustratédure 4.7

Mesh Object|Reference Locatio}hReIationships
Vertex vertex point

Vertex endpoints

Edge midside point Element "owners"

Irregular edge constraints

_ i Edge boundaries
Element centroid point

Element refinement heirarchy

o o
% . IORRCRNG NG
b W]
i 1o ISR
Vioriox éedge D é ) é &)

Figure 4.7: Mesh Object Relationships

Extended relationships between mékidesare obtained through the minimul set of
relationships given above. For example:

Extended RelationshiuRelationship "Path"
Element ->Vertex Element <-> Edge -> Vertex

Element <-> Element|Element <-> Edge <-> Element (normal)

Element <-> Element|Element <-> Edge <-> Edge <-> Elemeg(dtonstrained




Finite element h-adaptation consists of splitting elements into smaller elements, o
merging previously split elements into a single larger elements. Finite element
p-adaptation involves increasing or decreasing the number of basis functions asst
with the elements. An application performs these hp-adaptations dynamically in re
to an error analysis of a finite element solution.

HP-adaptation results in the creation of new niéstdesand specification of new
inter-Noderelationships. Following an hp-adaptation the mesh partitioning may lea
load imbalance, as such the application may repartition the problem. A DDA signif
simplifies such dynamic data structure update and repartitioning operations while
insuring data structure consistency throughout these operations.

4.3 Adaptive Trees

An adaptive distributed tree requires two main pieces of information. First it needs
data structure with methods for gets, puts, and pruning nodes of the tree. This
infrastructure requires pointers between nodes. Second an adaptive tree needs al
estimation of the cost associated with each node of the tree in order to determine
refinement will take place at that node. With these two abstractions, an algorithm «
utilize an adaptive tree in a computation. At this point, we are developing a distribi
fast multipole method based on balanced trees, with the goal of creating a mildly ¢
tree in the near future.

Adaptive trees could be defined in either of the DDAs. The implementation descril
here is done using the SDDA. All references in the tree are made through a genet
of the pointer concept. These pointers are implemented as indices into the SDDA,
access is controlled by accessing the SDDA data object with the appropriate actic
index. This control provides a uniform interface into a distributed data structure fol
processor. Thus, distributed adaptive trees are supported on the SDDA.

The actual contents of a node includes a list of items.

1. An index of each node derived from the geometric location of the node.
2. Pointers to a parent and to children nodes.

3. An array of coefficients used by the computation.

4. A list of pointers to other nodes with which the given node interacts.

All of this information is stored in a node, called a subdomain. The expected work
each subdomain is derived from the amount of computation to be performed as sy
by the data. Adaptivity can be determined on the basis of the expected work of a ¢
node, relative to some threshold. In addition, since each node is registered in the



we can also compute the total expected work per processor. By collecting the tota
expected work per processor with the expected work per subdomain, a simple loa
balance can be implemented by repartitioning the index space.

5 Application Codes

There follow sketches of applications expressed in terms of each of the parallel ac
mesh refinement method, the parallel hp-adaptive method and the parallel many-I
problem each built on programming abstractions built upon a DDA.

5.1 Numerical Relativity using Hierarchical AMR

A distributed and adaptive versiontdBexpress@-D numerical relativity application
has been implemented using the the data-management infrastructure presented il
paper. ThéH3express@-D numerical relativity application is developed at the Natio
Center for Supercomputing Applications (NCSA), University of lllinois at Urbana, |
H3expressddeveloped at National Center for Supercomputing Applications (NCS/
University of lllinois at Urbana) is a “concentrated” version of the Hiversion 3.3
code that solves the general relativistic Einstein’s Equations in a variety of physic:
scenario$10]. The originaH3expressa@ode is non-adaptive and is implemented in
FORTRAN 90.
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Figure5.1: DAGH Overhead Evaluation

The overheads of the proposed DAGH/SDDG representation are evaluated by col



the performance of a hand-coded, unigrid, Fortran 90+MPI implementation of the
H3expressapplication with a version built using the data-management infrastructt
The hand-coded implementation was optimized to overlap the computations in the
interior of each grid partition with the communications on its boundary by storing t|
boundary in separate arrays. Figréplots the execution time for the two codes. Th
DAGH implementation is faster for all number of processors.

Composite Partitioning Evaluation

The results presented below were obtained for a 3-D base grid of dimension 8 X ¢
and 6 levels of refinement with a refinement factor of 2.
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Figure5.4: DAGH Distribution: Snap-shot |11 - Figure 5.5: DAGH Distribution:
Snap-shot |V

L oad Balance:

To evaluate the load distribution generated by the composite partitioning scheme
consider snap-shots of the distributed grid hierarchy at arbitrary times during intec
Normalized computational load at each processor for the different snap-shots are
in Figures5.2-15.5 Normalization is performed by dividing the computational load

actually assigned to a processor by the computational load that would have been
to the processor to achieve a perfect load-balance. The latter value is computed &
total computational load of the entire DAGH divided by the number of processors.

Any residual load imbalance in the partitions generated can be tuned by varying t
granularity of the SDDG/DAGH blocks. Smaller blocks can increase the regriding
but will result in smaller load imbalance. Since AMR methods require re-distributic
regular intervals, it is usually more critical to be able to perform the re-distribution
quickly than to optimize each distribution.

Inter-Grid Communications;

Both prolongation and restriction inter-grid operations were performed locally on €
processor without any communication or synchronization.

Partitioning Over heads

Procs | Update Time | Regriding Time

4 2B.5 sec 1.B4 s5ecC
8 18.2 s5eC 1.58 s5ecC

Table 5.1: Dynamic Partitioning Over head

Partitioning is performed initially on the base grid, and on the entire grid hierarchy
every regrid. Regriding any levietomprises of refining at leveland all level finer thar
I; generating and distributing the new grid hierarchy; and performing data transfer:
required to initialize the new hierarchy. Tabl& compares the total time required for
regriding, i.e. for refinement, dynamic re-partitioning and load balancing, and
data-movement, to the time required for grid updates. The values listed are cumul
times for 8 base grid time-steps with 7 regrid operations.



5.2 HP-Adaptive Finite Element Code

An parallel hp-adaptive finite element code for computational fluid dynamics is in
development. This hp-adaptive finite element computational fluid dynamics applic:
has two existing implementations: (1) a sequential FORTRAN code and (2) a pare
FORTRAN code with fully a duplicated data structure. The hp-adaptive finite elem
data structure has a complexity so great that is was not tractable to distribute the
FORTRAN data structure. As such the parallel FORTRAN implementation is not
scalable due to the memory consumed on each processor by duplicating the data
structure.

To make tractable the development of a fully distributed hp-adaptive finite elemen
structure is was necessary to achieve a separation of concerns between the comy
of the hp-adaptive finite element data structure and complexities of distributed dyr
data structures in general. This separation of concerns in the development of a ful
distributed hp-adaptive finite element data structure provided the initial motivation
developing the SDDA.

The organization of the new finite element application is illustrat&igure 5.6 At the
core of the application architecture is the index space. The index space provides ¢
compact and succinct specification of how to partition the application’s problem ar
processors. This same specification is used to both distribute the mesh structure t
the SDDA and to define a compatible distribution for the vectors and matrices forr
the finite element method.

Adaptive hp Finite Element Method
Application Adaptive Errar Basic
Model Strategy | | Estimator | | Method
Mesh Data Index Space Parallel
Structure P Solver
Scalable Distributed | | Distributed Vectors
Dynamic Array and Matrices




Figure 5.6: Finite Element Application Architecture

The finite element application uses a second parallel infrastructure which supports
distributed vectors and matrices, as denoted in the lower right corfguoé 5.6 The
current release of this infrastructure is documentg¢tllih Both DDA and linear algebr
infrastructures are based upon the common abstractionimexspaceThis
commonality provides the finite element application with uniform abstraction for
specifying data distribution.

5.3 N-Body Problems

General Description
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Figure5.7: Data flow in the fast multipole algorithm

The N-body particle problems arising in various scientific disciplines appear to reg

O(Nz) computational method. However, once a threshold in the number of particle
surpassed, approximating the interaction of particles with interactions between
sufficiently separated particle clusters allows the computational effort to be substa
reduced. The best known of these fast summation approaches is the fast multipol
[12], which, under certain assumptions, gives a meth@i )

The fast multipole method is a typical divide and conquer algorithm. A cubic

computational domain is recursively subdivided into octants. At the finest level, th
influence of the particles within a cell onto sufficiently separated cells is subsumec
multipole series expansion. These multipole expansions are combined in the uppe
until the root of the oct-tree contains a multipole expansion. Then local series exp:
of the influence of sufficiently separated multipole expansions on cells are formed



Finally, in a reverse traversal of the oct-tree the contributions of cells are distribute
their children (cfFigure 5.7. The algorithm relies on a scaling property, which allow
cells on the scale of children to be sufficiently separated when they were too close
scale of the current parents. At the finest level the influence of these sufficiently
separated cells is taken into account together with the interaction of the particles i
remaining closeby cells. For a more mathematically oriented description of the sh:
memory implementation with or without periodic boundary conditions we refer to
[13][14] and the references therein.

Figure 5.7shows that the fast multipole algorithm is readily decomposed into three
principal stages:

1. populating the tree bottom-up with multipole expansions
2. converting the multipole expansions to local expansions
3. distribute local expansions top-down

These three stages have to be performed in sequential order, but it is easily possi
parallelize each of the stages individually. For the second stage the interaction se
cell is defined as the set of cells which are sufficiently separated from the cell, but
parents are not sufficiently separated from the cells parent cell. The local expansi
the center of a cell is found by adding up all the influences from the cells of the
interaction set. For each cell these operations are found to be completely indepen
each other. But notice that the majority of communication requirements between ¢
processors is incurred during this stage. Hence, an optimization of the communicz
patterns during the second stage can account for large performance gains.

A more detailed analysis of the (non-adaptive) algorithm reveals that optimal
performance should be attained when each leaf-cell contains an optimal number ¢
particles, thereby balancing the work between the direct calculations and the cony
of the multipole expansions to the local expansions in the secondBisigdouted Fast
Multipole Results
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Approximation

Next we describe preliminary performance results for the distributed fast multipole
method implemented on the HDDA. We verified the fast multipole method by com
an exact answer for a fixed resolution of the computational domain. Test problem:
constructed by storing one to a few particles chosen randomly per leaf cell. This
comparison was repeated for several small problems until we were certain that th
algorithm behaved as expected. Performance measurements were taken from a 1
IBM SP2 parallel computer running AlIX Version 4.1.

The total run times using 3, 4, and 5 levels of approximation on a variety of proble
sizes for 1, 2, 4, and 8 processors are presentéadune 5.8 We also plot the expectec
O(N) run time aligned with the 8 processor results. Each curve represents the tota
execution time for a fixed level of spatial resolution while increasing the number o
particles in the computation. Two major components of each run time are an

approximation time and a direct calculation for local particles. The approximation 1
a function of the number of levels of resolution and is fixed for each curve. The dir

calculation time grows a@(NZ) within a given curve. The problem size for which the
two times are equal represents the optimal number of particles stored per subdon
This optimal problem size appears as a knee in the total execution time curves.

The curves for 8 processors align relatively well with@gsl) run time for all problem

sizes. Thus, the algorithm appears scalable for the problems considered. Furtherr
these results show that 1 processor has the longest time and 8 processors have t|
time, which indicates that some speedup is being attained. Ideally, one would exp



8 processors achieve a speedup of 8.

We have presented results for a fast multipole method which demonstraf&sljhe
computational complexity. These results exhibit both scalability and speedup for a
number of processors. Our preliminary results focused on validity and accuracy. T
step is to performance tune the algorithm.

6 Conclusion and Future Work
The significant conclusions demonstrated herein are:

1. That there is a common underlying computational infrastructure for a wide far
parallel adaptive computation algorithms.

2. That a substantial decrease in effort in implementation for these important
algorithms can be attained without sacrifice of performance through use of thi
computational infrastructure.

There is much further research needed to complete development of a robust and
supportable computational infrastructure for adaptive algorithms. The existing ver:
of DDA require extension and engineering. The programming abstractions for eac
solution method require enriching. It is hoped to extend the programming abstract
layer to support other adaptive methods such as wavelet methods. There is a nee
many more applications to define the requirements for the programming abstractic
interfaces.
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