

A Common Data Management Infrastructure
for Adaptive Algorithms for PDE Solutions

Manish Parashar
Department of Computer Sciences and
Texas Institute for Computational and Applied Mathematics
University of Texas at Austin
2.400 Taylor Hall
Austin, TX 78712
Tel: (512) 471-3312; Fax: (512) 471-8694
parashar@cs.utexas.edu
http://www.ticam.utexas.edu/~parashar/public_html/

James C. Browne
Department of Computer Sciences and
Texas Institute for Computational and Applied Mathematics
University of Texas at Austin
2.400 Taylor Hall
Austin, TX 78712
Tel: (512) 471-9579; Fax: (512) 471-8885
browne@cs.utexas.edu
http://www.cs.utexas.edu/users/browne/

Carter Edwards
Texas Institute for Computational and Applied Mathematics
University of Texas at Austin
2.400 Taylor Hall
Austin, TX 78712
Tel: (512) 471-3312; Fax: (512) 471-8694
carter@ticam.utexas.edu
http://www.ticam.utexas.edu/~carter/

Kenneth Klimkowski
Texas Institute for Computational and Applied Mathematics
University of Texas at Austin

2.400 Taylor Hall
Austin, TX 78712
Tel: (512) 471-3312; Fax: (512) 471-8694
ken@ticam.utexas.edu
http://www.ticam.utexas.edu/~ken/

Abstract:
This paper presents the design, development and application of a computational
infrastructure to support the implementation of parallel adaptive algorithms for the
solution of sets of partial differential equations. The infrastructure is separated into
multiple layers of abstraction. This paper is primarily concerned with the two lowest
layersof this infrastructure: a layer which defines and implements dynamic
distributed arrays (DDA), and a layer in which several dynamic data and
programming abstractions are implemented in terms of the DDAs. The currently
implemented abstractions are those needed for formulation of hierarchical adaptive
finite difference methods, hp-adaptive finite element methods, and fast multipole
method for solution of linear systems. Implementation of sample applications based
on each of these methods are described and implementation issues and performance
measurements are presented.

Keywords:
Problem Solving Environment, Parallel Adaptive Algorithm, Distributed Dynamic
Data Structures, Adaptive Mesh-Refinement, hp-Adaptive Finite Elements, Fast
Multipole Methods.

1 Introduction

This paper describes the design and implementation of a common computational
infrastructure to support parallel adaptive solutions of partial differential equations. The
motivations for this research are:

1. Adaptive methods will be utilized for the solution of almost all very large-scale
scientific and engineering models. These adaptive methods will be executed on
large-scale heterogeneous parallel execution environments.

2. Effective application of these complex methods on scalable parallel architectures
will be possible only through the use of programming abstractions which lower the
complexity of application structures to a tractable level.

3. A common infrastructure for this family of algorithms will result in both, enormous
savings in coding effort and a more effective infrastructure due to pooling and

focusing of effort.

The goal for this research is to reduce the intrinsic complexity of coding parallel adaptive
algorithms by providing an appropriate set of data structures and programming
abstractions. This infrastructure has been developed as a result of collaborative research
among computer scientists, computational scientists and application domain specialists
working on three different projects: An DARPA project for hp-adaptive computational
fluid dynamics and two NSF sponsored Grand Challenge projects, one on numerical
relativity and the other on composite materials.

1.1 Conceptual Framework

Figure 1.1: Hierarchical Problem Solving Environment
for Parallel Adaptive Algorithms for the Solution of PDEs

Figure 1 is a schematic of our perception of the structure of a problem solving
environment (PSE) for parallel adaptive techniques for the solution of partial differential
equations. This paper is primarily concerned with the lowest two layers of this hierarchy
and how these layers can support implementation of higher levels of abstraction. The
bottom layer of the hierarchical PSE is a data-management layer. The layer implements a
Distributed Dynamic Array (DDA) which provides array access semantics to distributed
and dynamic data. The next layer is a programming abstractions layer which adds
application semantics to DDA objects. This layer implements data abstractions such as

grids, meshes and trees which underlie different solution methods. The design of the PSE
is based on a separation of concerns and the definition of hierarchical abstractions based
on the separation. Such a clean separation of concerns [1] is critical to the success of an
infrastructure that can provide a foundation for several different solution methods. In
particular the PSE presented in this paper supports finite difference methods based on
adaptive mesh refinement, hp-adaptive finite element methods, and adaptive fast
multipole methods.

1.2 Overview

This paper defines the common requirements of parallel adaptive finite difference and
finite element methods for solution of PDEs and fast multipole solution of linear systems,
and demonstrates that one data management system based on Distributed Dynamic
Arrays (DDA) can efficiently meet these common requirements. The paper then describes
the design concepts underlying DDAs and sketches implementations of parallel adaptive
finite difference, finite element, multipole solutions using DDAs based on a common
conceptual basis as the common data management system. Performance evaluations for
each method are also presented.

The primary distinctions between the DDA-based data management infrastructures and
other packages supporting adaptive methods are (1) the separation of data management
and solution method semantics and (2) the separation of addressing and storage semantics
in the DDA design. This separation of concerns enables the preservation of application
locality in multi-dimensional space when it is mapped to the distributed one-dimensional
space of the computer memory and the efficient implementation of dynamic behavior.

The data structure which has traditionally been used for implementation of these
problems has been the multi-dimensional array. Informally an array consists of: (1) an
index set (a lattice of points in an n-dimensional discrete space), (2) a mapping from the
n-dimensional index set to one dimensional storage, and (3) a mechanism for accessing
storage associated with indices.

A DDA is a generalization of the traditional array which targets the requirements of
adaptive algorithms. In contrast to regular arrays, the DDA utilizes a recursively defined
hierarchical index space where each index in the index space may be an index space. The
storage scheme then associates contiguous storage with spans of this index space. The
relationship between the application and the array is defined by deriving the index space
directly from the n-dimensional physical domain of the application.

2 Problem Description

Adaptive algorithms require definition of operators on complex dynamic data structures.
Two problems arise: (1) the volume and complexity of the bookkeeping code required to
construct and maintain these data structures overwhelms the actual computations and (2)
maintaining access locality under dynamic expansion and contraction of the data requires
complex copying operations if standard storage layouts are used. Implementation on
parallel and distributed execution environments adds the additional complexities of
partitioning, distribution and communication. Application domain scientists and
engineers are forced to create complex data management capabilities which are far
removed from the application domain. Further, standard parallel programming languages
do not provide explicit support for dynamic distributed data structures. Data management
requirements for the three different adaptive algorithms for PDEs are described below.

2.1 Adaptive Finite Difference Data Management Requirements

Finite difference methods approximate the solution of the PDE on a discretized grid
overlaid on the n-dimensional physical application domain. Adaptation increases the
resolution of the discretization in required regions by refining segments of the grid into
finer grids. The computational operations on the grid may include local stencil based
operations at all levels of resolution, transfer operations between levels of resolution and
global linear solves. Thus the requirement for the data-management system for adaptive
finite difference methods is seamless support of these operations across distribution and
refining and coarsening of the grid. Storage of the dynamic grid as an array where each
point of the grid is mapped to a point in a hierarchical index space is natural. Then the
refinements and coarsening of the grid become traversal of the hierarchy of the
hierarchical index space.

2.2 Adaptive Finite Element Data Management Requirement

The finite element method requires storage of the geometric information defining the
mesh of elements which spans the application domain. Elements of the linear system
arising from finite element solutions are generally computed on the fly so that they need
not be stored. HP-adaptive finite element methods adapt by partitioning elements into
smaller elements (h refinement) or by increasing the order of the polynomial
approximating the solution on the element (p refinement). Partitioning adds new elements
and changes relationships among elements. Changing the approximation function
enlarges the descriptions of the elements. The data-management requirements for
hp-adaptive finite elements thus include storage of dynamic numbers of elements of
dynamic sizes. These requirements can be met by mapping each element of the mesh to a
position in a hierarchical index space which is associated with a dynamic span of the
one-dimensional storage space. Partitioning an element replaces a position in the index
space by a local index space representing the expanded mesh.

2.3 Adaptive Fast Multipole Data Management Requirements

Fast multipole methods partition physical space into subdomains. The stored
representation of the subdomain includes a charge configuration of the subdomain and
various other descriptive data. Adaptation consists of selectively partitioning subdomains.
The elements are often generated on the fly so that storage of the values of the forces and
potential need not be stored. The requirement for data management capability is therefore
similar to that of adaptive finite element methods. A natural mapping is to associate each
subdomain with a point in a hierarchical index space.

2.4 Requirements Summary

It should be clear that an extended definition of an array where each element can itself be
an array and where the entity associated with each index position of the array can be an
object of arbitrary and variable size provides one natural representation of the data
management requirements for all of adaptive finite element, adaptive finite difference and
adaptive fast multipole solvers. The challenge is now to demonstrate an efficient
implementation of such an array and to define implementations of each method in terms
of this storage abstraction. The further and more difficult challenge is an efficient
parallel/distributed implementation of such an array.

3 Distributed Dynamic Data-Management

The distributed dynamic data-management layer of the PSE implements Distributed
Dynamic Arrays (DDAs). This layer provides pure array access semantics to dynamically
structured and physically distributed data. DDA objects encapsulate distribution, dynamic
load-balancing, communications, and consistency management, and have been extended
with visualization and analysis capabilities.

There are currently two different implementations of the data management layer, both
built on the same DDA conceptual framework: (1) the Hierarchical Dynamic Distributed
Array (HDDA) and (2) the Scalable Dynamic Distributed Array (SDDA). The HDDA is
a hierarchical array in that each element of the array can recursively be an array; it is a
dynamic array in that each array (at each level of the hierarchy) can expand and contract
at run-time. Instead of hierarchical arrays the SDDA implements a distributed dynamic
array of objects of arbitrary and heterogeneous types. This differentiation results from the
differences in data management requirements between structured and unstructured
meshes. For unstructured meshes it is more convenient to incorporate hierarchy
information into the programming abstraction layer which implements the unstructured
mesh. These two implementations derived from a common base implementation and can
and will be re-integrated into a single implementation in the near future.

The arrays of objects defined in the lowest layer are specialized by the higher layers of
the PSE to implement application objects such as grids, meshes, and tree. A key feature
of a DDA based on the conceptual framework described following is its ability to extract
out the data locality requirements from the application domain and maintain this locality
despite its distribution and dynamic structure. This is achieved through the application of
the principle of separation of concerns [1] to the DDA design. An overview of this design
is shown in Figure 3.1. Distributed dynamic arrays are defined in the following
subsection.

Figure 3.1: DDA Design - Separation of Concerns -> Hierarchical Abstractions

3.1 Distributed Dynamic Array Abstraction

The SDDA and HDDA are implementations of a distributed dynamic array. The
distributed dynamic array abstraction, presented in detail in [2], is summarized as
follows.

In general, an array is defined by a data set D, an index space I , and an injective
function F : D -> I
An array is dynamic if elements may be dynamically inserted into or removed from
its data set D.
An array is distributed if the elements of its data set D are distributed.

A data set D is simply a finite set of data objects. An index space I is a countable set of
indices with a well-defined linear ordering relation, for example the set of natural
numbers. Two critical points of this array abstraction are (1) that the cardinality of the
data set D is necessarily equal to or less than the cardinality of the index space I and
(2) that each element of the data set uniquely maps to an element of the index space.

3.2 Hierarchical Index Space and Space-Filling Curves

An application partitions its N-dimensional problem domain into a finite number of
points and/or regions. Each region can be associated with a unique coordinate in the
problem domain. Thus the "natural" indexing scheme for such an application is a
discretization of these coordinates. Such an index space can defined as: I1×I 2×···×IN
where each I j corresponds to the discretization of a coordinate axis.

An index space may be hierarchical if the level of discretization is allowed to vary,
perhaps in correspondence with a hierarchical partitioning of the problem domain. The I j
components of hierarchical index space could be defined as (d,(i1,i2,...,id)), where d is the

depth of the index.

Recall that an index space requires a well-defined linear ordering relation. Thus the
"natural" N dimensional hierarchical index space must effectively be mapped to a linear,
or one-dimensional, index space. An efficient family of such maps are defined by
space-filling curves (SFC) [3].

One such mapping is defined by the Hilbert space-filling curve, illustrated in Figure 3.2.
In this mapping a bounded domain is hierarchically partitioned into regions where the
regions are given a particular ordering. In theory the partitioning "depth" may be infinite
and so any finite set of points in the domain may be fully ordered. Thus an SFC mapping
defines a hierarchical index space, of theoretically infinite depth, for any application
domain which can be mapped into the SFC "bounding box".

Figure 3.2: Hilbert Space-Filling Curve

The "natural" index space of the SFC map efficiently defines a linear ordering for all
points and/or subregions of the application’s problem domain. Given such a linear
ordering the these subregions can be distributed among processors by simply partitioning
the index space. This partitioning is easily and efficiently obtained from a partitioning the
linearly ordered index space such that the computational load of each partition is roughly
equal. Figure 3.3, Space-Filling Curve Partitioning, illustrates this process for an
irregularly partitioned two dimensional problem domain. Note in Figure 3.3 that the
locality preserving property of the Hilbert SFC map generates "well-connected"
subdomains.

Figure 3.3: Space-Filling Curve Partitioning

3.3 DDA Implementation

An array implementation provides storage for objects of the data set D and access to
these objects through a converse function F-1 : F(D) -> D. The quality and efficiency of
an array implementation are determined by the correlation between storage locality and
index locality and by the expense of the converse function F-1. For example a
conventional one-dimensional FORTRAN array has both maximal quality and efficiency.

A DDA implements distributed dynamic arrays where storage for objects in the data set
D is distributed and dynamic, and the converse function F-1 provides global access to
these objects. A DDA’s storage structure and converse function consists of two
components: (1) local object storage and access and (2) object distribution. The HDDA
and SDDA implementations of a DDA use extendible hashing [4] & [5] and red-black
balanced binary trees [6] respectively for local object storage and access.

An application instructs the DDA as to how to distribute data by defining a partitioning
of index space I among processors. Each index in the index space is uniquely assigned to
a particular processor i -> P. The storage location of a particular data object is now

determined by its associated index d -> i -> P. Thus the storage location of any
dynamically created data object is well-defined.

Each DDA provides global access to distributed objects by transparently caching objects
between processors. For example, when an application applies a DDA’s converse
function (F-1(i) -> d) if the data object d is not present on the local processor the data
object is transparently copied from its owning processor into a cache on the local
processor.

3.4 Locality, Locality, Locality!

A DDA’s object distribution preserves locality between object storage and the object’s
global indices. Given the "natural" index space of the space-filling curve map and the
corresponding domain partitioning, a DDA’s storage locality is well-correlated with
geometric locality, as illustrated in Figure 3.4.

Figure 3.4: Locality, Locality, Locality!

In Figure 3.4 an application assigns SFC indices to the data objects associated with each
subregion of the domain. A DDA stores objects within a span of indices in the local
memory of a specified processor. Thus geometrically local subregions have their
associated data objects stored on the same processor.

3.5 Application Programming Interface (API)

The DDA application programming interface consists a small set of simple methods
which hide the complexity of the storage structure and make transparent any required
interprocessor communication. These methods include:

GET d <- F-1(i)

INSERT D <- D + dnew

REMOVE D <- D - dold

ITERATE { d : i <= F(d) <= j }

REPARTITION Forcing a redistribution of objects

PUT/LOCK/UNLOCK Cache coherency controls

Implementation of these methods varies between the SDDA and HDDA; however, the
abstractions for these methods are common to both versions of the DDA.

3.6 DDA Performance

The DDA provides object management services for an application’s distributed dynamic
data structures. This functionality introduces an additional overhead cost when accessing
local objects. For example, local object access could be accomplished directly via ’C’
pointers instead of DDA indices; however, note that the pointer to a data object may be
invalidated under data object redistribution.

This overhead cost is measured for the SDDA version of the DDA, which uses a
red-black balanced binary tree algorithm for local object management. The overhead cost
of the local get, local insert, and local remove method is measured on an IBM RS6000.
The local get method retrieves a local data object associated with an input index value,
i.e. the converse function. The local insert method inserts a new data object associated
with its specified index (dnew,F(dnew)) into the local storage structure. The local remove

method removes a given data object from the local storage structure. The computational
time of each method is measured given the size of the existing data structure, as presented
in Figure 3.5, SDDA Overhead for Local Methods.

Figure 3.5: SDDA Overhead for Local Methods

The overhead cost of local get method, as denoted by the middle line in Figure 3.5,
increases logarithmically from 2 microseconds for an empty SDDA to 8 microseconds for
an SDDA containing one million local data objects. This slow logarithmic growth is as
expected for a search into the SDDA’s balanced binary tree. The local insert method
performs two operations: (1) search for the proper point in the data structure to insert the
object and (2) modification of the data structure for the new object. The cost of the insert
method is a uniform "delta" cost over the get operation. Thus the overhead cost of
modifying the data structure for the new data object independent of the size of the SDDA.
Note that the overhead cost of the local remove method, as denoted in Figure 3.5 by the
lowest line, is also independent of the size of the SDDA.

4 Method Specific Data & Programming Abstractions

The next level of the PSE specializes DDA objects with method specific semantics to
create high-level programming abstractions which can be directly used to implement
parallel adaptive algorithms. The design of such abstractions for three different classes of

adaptive solution techniques for PDEs, hierarchical, dynamically adaptive grids,
hp-adaptive finite elements and dynamic tree (dynamic trees are the data abstractions
upon which the fast multipole methods are implemented) are descried below.

4.1 Hierarchical Adaptive Mesh-Refinement

Problem Description

Figure 4.1: Adaptive Grid Hierarchy - 2D (Berger-Oliger AMR Scheme)

Dynamically adaptive numerical techniques for solving differential equations provide a
means for concentrating computational effort to appropriate regions in the computational
domain. In the case of hierarchical adaptive mesh refinement (AMR) methods, this is
achieved by tracking regions in the domain that require additional resolution and
dynamically overlaying finer grids over these regions. AMR-based techniques start with a
base coarse grid with minimum acceptable resolution that covers the entire computational
domain. As the solution progresses, regions in the domain requiring additional resolution
are tagged and finer grids are overlayed on the tagged regions of the coarse grid.
Refinement proceeds recursively so that regions on the finer grid requiring more
resolution are similarly tagged and even finer grids are overlayed on these regions. The
resulting grid structure is a dynamic adaptive grid hierarchy. The adaptive grid hierarchy
corresponding to the AMR formulation by Berger & Oliger [7] is shown in Figure 4.1.
Distributed Data-Structures for Hierarchical AMR Two basic distributed
data-structures have been developed, using the fundamental abstractions provided by the
HDDA, to support adaptive finite-difference techniques based on hierarchical AMR: (1)
A Scalable Distributed Dynamic Grid (SDDG) which is a distributed and dynamic array,

and is used to implement a single component grid in the adaptive grid hierarchy; and (2)
A Distributed Adaptive Grid Hierarchy (DAGH) which is defined as a dynamic
collection of SDDGs and implements the entire adaptive grid hierarchy. The
SDDG/DAGH data-structure design is based on a linear representation of the
hierarchical, multi-dimensional grid structure. This representation is generated using
space-filling curves described in Section 3 and exploits the self-similar or recursive
nature of these mappings to represent a hierarchical DAGH structure and to maintain
locality across different levels of the hierarchy. Space-filling mapping functions are also
used to encode information about the original multi-dimensional space into each
space-filling index. Given an index, it is possible to obtain its position in the original
multi-dimensional space, the shape of the region in the multi-dimensional space
associated with the index, and the space-filling indices that are adjacent to it. A detailed
description of the design of these data-structures can be found in [8].

Figure 4.2: SDDG Representation - Figure 4.3: DAGH Composite Representation

SDDG Representation:

A multi-dimensional SDDG is represented as a one dimensional ordered list of SDDG
blocks. The list is obtained by first blocking the SDDG to achieve the required
granularity, and then ordering the SDDG blocks based on the selected space-filling curve.
The granularity of SDDG blocks is system dependent and attempts to balance the
computation-communication ratio for each block. Each block in the list is assigned a cost

corresponding to its computational load. Figure 4.2 illustrates this representation for a
2-dimensional SDDG.

Partitioning a SDDG across processing elements using this representation consists of
appropriately partitioning the SDDG block list so as to balance the total cost at each
processor. Since space-filling curve mappings preserve spatial locality, the resulting
distribution is comparable to traditional block distributions in terms of communication
overheads.

DAGH Representation:

The DAGH representation starts with a simple SDDG list corresponding to the base grid
of the grid hierarchy, and appropriately incorporates newly created SDDGs within this
list as the base grid gets refined. The resulting structure is a composite list of the entire
adaptive grid hierarchy. Incorporation of refined component grids into the base SDDG
list is achieved by exploiting the recursive nature of space-filling mappings: For each
refined region, the SDDG sub-list corresponding to the refined region is replaced by the
child grid’s SDDG list. The costs associated with blocks of the new list are updated to
reflect combined computational loads of the parent and child. The DAGH representation
therefore is a composite ordered list of DAGH blocks where each DAGH block
represents a block of the entire grid hierarchy and may contain more than one grid level;
i.e. inter-level locality is maintained within each DAGH block. Figure 4.3 illustrates the
composite representation for a two dimensional grid hierarchy.

The AMR grid hierarchy can be partitioned across processors by appropriately
partitioning the linear DAGH representation. In particular, partitioning the composite list
to balance the cost associated to each processor results in a composite decomposition of
the hierarchy. The key feature of this decomposition is that it minimizes potentially
expensive inter-grid communications by maintaining inter-level locality in each partition.

Data-Structure Storage:

Figure 4.4: SDDG/DAGH Storage

Data-structure storage is maintained by the HDDA described in Section 3. The overall
storage scheme is shown in Figure 4.4.

Programming Abstractions for Hierarchical AMR

Figure 4.5: Programming Abstraction for Parallel Adaptive Mesh-Refinement

We have developed three fundamental programming abstractions using the
data-structures described above that can be used to express parallel adaptive
computations based on adaptive mesh refinement (AMR) and multigrid techniques (see
Figure 4.5). Our objectives are twofold: first, to provide application developers with a set
of primitives that are intuitive for expressing the application, and second, to separate
data-management issues and implementations from application specific operations.

Grid Geometry Abstractions:

The purpose of the grid geometry abstractions is to provide an intuitive means for
identifying and addressing regions in the computational domain. These abstractions can
be used to direct computations to a particular region in the domain, to mask regions that
should not be included in a given operation, or to specify region that need more
resolution or refinement. The grid geometry abstractions represent coordinates, bounding
boxes and doubly linked lists of bounding boxes.

Coordinates: The coordinate abstraction represents a point in the computational domain.
Operations defined on this class include indexing and arithmetic/logical manipulations.
These operations are independent of the dimensionality of the domain.

Bounding Boxes: Bounding boxes represent regions in the computation domain and is
comprised of a triplet: a pair of Coords defining the lower and upper bounds of the box
and a step array that defines the granularity of the discretization in each dimension. In
addition to regular indexing and arithmetic operations, scaling, translations, unions and
intersections are also defined on bounding boxes. Bounding boxes are the primary means
for specification of operations and storage of internal information (such as dependency
and communication information) within DAGH.

Bounding Boxes Lists: Lists of bounding boxes represent a collection of regions in the
computational domain. Such a list is typically used to specify regions that need
refinement during the regriding phase of an adaptive application. In addition to linked-list
addition, deletion and stepping operation, reduction operations such as intersection and
union are also defined on a BBoxList.

Grid Hierarchy Abstraction:

The grid hierarchy abstraction represents the distributed dynamic adaptive grid hierarchy
that underlie parallel adaptive applications based on adaptive mesh-refinement. This
abstraction enables a user to define, maintain and operate a grid hierarchy as a first-class
object. Grid hierarchy attributes include the geometry specifications of the domain such
as the structure of the base grid, its extents, boundary information, coordinate
information, and refinement information such as information about the nature of
refinement and the refinement factor to be used. When used in a parallel/distributed
environment, the grid hierarchy is partitioned and distributed across the processors and
serves as a template for all application variables or grid functions. The locality preserving
composite distribution [9] based on recursive Space-filling Curves [3] is used to partition
the dynamic grid hierarchy. Operations defined on the grid hierarchy include indexing of
individual component grid in the hierarchy, refinement, coarsening, recomposition of the

hierarchy after regriding, and querying of the structure of the hierarchy at any instant.
During regriding, the re-partitioning of the new grid structure, dynamic load-balancing,
and the required data-movement to initialize newly created grids, are performed
automatically and transparently.

Grid Function Abstraction:

Grid Functions represent application variables defined on the grid hierarchy. Each grid
function is associated with a grid hierarchy and uses the hierarchy as a template to define
its structure and distribution. Attributes of a grid function include type information, and
dependency information in terms of space and time stencil radii. In addition the user can
assign special (FORTRAN) routines to a grid function to handle operations such as
inter-grid transfers (prolongation and restriction), initialization, boundary updates, and
input/output. These function are then called internally when operating on the distributed
grid function. In addition to standard arithmetic and logical manipulations, a number of
reduction operations such as Min/Max, Sum/Product, and Norms are also defined on grid
functions. GridFunction objects can be locally operated on as regular FORTRAN 90/77
arrays.

4.2 Definition of hp-Adaptive Finite Element Mesh

The hp-adaptive finite element mesh data structure consists of two layers of abstractions,
as illustrated in Figure 4.6. The first layer consists of the Domain and Node abstractions.
The second layer consists of mesh specific abstractions such as Vertex, Edge, and
Surface, which are specializations of the Node abstraction.

Figure 4.6: Layering of Mesh Abstraction

A mesh Domain is the finite element application’s specialization of the SDDA. The
Domain uses the SDDA to store and distribute a dynamic set of mesh Nodes among
processors. The Domain provides the mapping from the N-dimensional finite element
domain to the one-dimensional index space required by a DDA.

A finite element mesh Node associates a set of finite element basis functions with a
particular location in the problem domain. Nodes also support inter-Node relationships,

which typically capture properties of inter-Node locality.

Specializations of the finite element mesh Node for a two-dimensional problem are
summarized in the following table and illustrated Figure 4.7.

Mesh Object Reference Location Relationships

Vertex vertex point

Edge midside point

Vertex endpoints

Element "owners"

Irregular edge constraints

Element centroid point
Edge boundaries

Element refinement heirarchy

Figure 4.7: Mesh Object Relationships

Extended relationships between mesh Nodes are obtained through the minimul set of
relationships given above. For example:

Extended Relationship Relationship "Path"

Element ->Vertex Element <-> Edge -> Vertex

Element <-> Element Element <-> Edge <-> Element (normal)

Element <-> Element Element <-> Edge <-> Edge <-> Element (constrained)

Finite element h-adaptation consists of splitting elements into smaller elements, or
merging previously split elements into a single larger elements. Finite element
p-adaptation involves increasing or decreasing the number of basis functions associated
with the elements. An application performs these hp-adaptations dynamically in response
to an error analysis of a finite element solution.

HP-adaptation results in the creation of new mesh Nodes and specification of new
inter-Node relationships. Following an hp-adaptation the mesh partitioning may lead to
load imbalance, as such the application may repartition the problem. A DDA significantly
simplifies such dynamic data structure update and repartitioning operations while
insuring data structure consistency throughout these operations.

4.3 Adaptive Trees

An adaptive distributed tree requires two main pieces of information. First it needs a tree
data structure with methods for gets, puts, and pruning nodes of the tree. This
infrastructure requires pointers between nodes. Second an adaptive tree needs an
estimation of the cost associated with each node of the tree in order to determine if any
refinement will take place at that node. With these two abstractions, an algorithm can
utilize an adaptive tree in a computation. At this point, we are developing a distributed
fast multipole method based on balanced trees, with the goal of creating a mildly adaptive
tree in the near future.

Adaptive trees could be defined in either of the DDAs. The implementation described
here is done using the SDDA. All references in the tree are made through a generalization
of the pointer concept. These pointers are implemented as indices into the SDDA, and
access is controlled by accessing the SDDA data object with the appropriate action and
index. This control provides a uniform interface into a distributed data structure for each
processor. Thus, distributed adaptive trees are supported on the SDDA.

The actual contents of a node includes a list of items.

1. An index of each node derived from the geometric location of the node.
2. Pointers to a parent and to children nodes.
3. An array of coefficients used by the computation.
4. A list of pointers to other nodes with which the given node interacts.

All of this information is stored in a node, called a subdomain. The expected work for
each subdomain is derived from the amount of computation to be performed as specified
by the data. Adaptivity can be determined on the basis of the expected work of a given
node, relative to some threshold. In addition, since each node is registered in the SDDA,

we can also compute the total expected work per processor. By collecting the total
expected work per processor with the expected work per subdomain, a simple load
balance can be implemented by repartitioning the index space.

5 Application Codes

There follow sketches of applications expressed in terms of each of the parallel adaptive
mesh refinement method, the parallel hp-adaptive method and the parallel many-body
problem each built on programming abstractions built upon a DDA.

5.1 Numerical Relativity using Hierarchical AMR

A distributed and adaptive version of H3expresso 3-D numerical relativity application
has been implemented using the the data-management infrastructure presented in this
paper. The H3expresso 3-D numerical relativity application is developed at the National
Center for Supercomputing Applications (NCSA), University of Illinois at Urbana, has
H3expresso (developed at National Center for Supercomputing Applications (NCSA),
University of Illinois at Urbana) is a ‘‘concentrated’’ version of the full H version 3.3
code that solves the general relativistic Einstein’s Equations in a variety of physical
scenarios [10]. The original H3expresso code is non-adaptive and is implemented in
FORTRAN 90.

Representation Overheads

Figure 5.1: DAGH Overhead Evaluation

The overheads of the proposed DAGH/SDDG representation are evaluated by comparing

the performance of a hand-coded, unigrid, Fortran 90+MPI implementation of the
H3expresso application with a version built using the data-management infrastructure.
The hand-coded implementation was optimized to overlap the computations in the
interior of each grid partition with the communications on its boundary by storing the
boundary in separate arrays. Figure 5.1 plots the execution time for the two codes. The
DAGH implementation is faster for all number of processors.

Composite Partitioning Evaluation

The results presented below were obtained for a 3-D base grid of dimension 8 X 8 X 8
and 6 levels of refinement with a refinement factor of 2.

Figure 5.2: DAGH Distribution: Snap-shot I - Figure 5.3: DAGH Distribution:
Snap-shot II

Figure 5.4: DAGH Distribution: Snap-shot III - Figure 5.5: DAGH Distribution:
Snap-shot IV

Load Balance:

To evaluate the load distribution generated by the composite partitioning scheme we
consider snap-shots of the distributed grid hierarchy at arbitrary times during integration.
Normalized computational load at each processor for the different snap-shots are plotted
in Figures 5.2-15.5. Normalization is performed by dividing the computational load
actually assigned to a processor by the computational load that would have been assigned
to the processor to achieve a perfect load-balance. The latter value is computed as the
total computational load of the entire DAGH divided by the number of processors.

Any residual load imbalance in the partitions generated can be tuned by varying the
granularity of the SDDG/DAGH blocks. Smaller blocks can increase the regriding time
but will result in smaller load imbalance. Since AMR methods require re-distribution at
regular intervals, it is usually more critical to be able to perform the re-distribution
quickly than to optimize each distribution.

Inter-Grid Communications:

Both prolongation and restriction inter-grid operations were performed locally on each
processor without any communication or synchronization.

Partitioning Overheads

Table 5.1: Dynamic Partitioning Overhead

Partitioning is performed initially on the base grid, and on the entire grid hierarchy after
every regrid. Regriding any level l comprises of refining at level l and all level finer than
l; generating and distributing the new grid hierarchy; and performing data transfers
required to initialize the new hierarchy. Table 5.1 compares the total time required for
regriding, i.e. for refinement, dynamic re-partitioning and load balancing, and
data-movement, to the time required for grid updates. The values listed are cumulative
times for 8 base grid time-steps with 7 regrid operations.

5.2 HP-Adaptive Finite Element Code

An parallel hp-adaptive finite element code for computational fluid dynamics is in
development. This hp-adaptive finite element computational fluid dynamics application
has two existing implementations: (1) a sequential FORTRAN code and (2) a parallel
FORTRAN code with fully a duplicated data structure. The hp-adaptive finite element
data structure has a complexity so great that is was not tractable to distribute the
FORTRAN data structure. As such the parallel FORTRAN implementation is not
scalable due to the memory consumed on each processor by duplicating the data
structure.

To make tractable the development of a fully distributed hp-adaptive finite element data
structure is was necessary to achieve a separation of concerns between the complexities
of the hp-adaptive finite element data structure and complexities of distributed dynamic
data structures in general. This separation of concerns in the development of a fully
distributed hp-adaptive finite element data structure provided the initial motivation for
developing the SDDA.

The organization of the new finite element application is illustrated in Figure 5.6. At the
core of the application architecture is the index space. The index space provides a very
compact and succinct specification of how to partition the application’s problem among
processors. This same specification is used to both distribute the mesh structure through
the SDDA and to define a compatible distribution for the vectors and matrices formed by
the finite element method.

Figure 5.6: Finite Element Application Architecture

The finite element application uses a second parallel infrastructure which supports
distributed vectors and matrices, as denoted in the lower right corner of Figure 5.6. The
current release of this infrastructure is documented in [11]. Both DDA and linear algebra
infrastructures are based upon the common abstraction of an index space. This
commonality provides the finite element application with uniform abstraction for
specifying data distribution.

5.3 N-Body Problems

General Description

Figure 5.7: Data flow in the fast multipole algorithm

The N-body particle problems arising in various scientific disciplines appear to require an
O(N2) computational method. However, once a threshold in the number of particles is
surpassed, approximating the interaction of particles with interactions between
sufficiently separated particle clusters allows the computational effort to be substantially
reduced. The best known of these fast summation approaches is the fast multipole method
[12], which, under certain assumptions, gives a method of O(N)

The fast multipole method is a typical divide and conquer algorithm. A cubic
computational domain is recursively subdivided into octants. At the finest level, the
influence of the particles within a cell onto sufficiently separated cells is subsumed into a
multipole series expansion. These multipole expansions are combined in the upper levels,
until the root of the oct-tree contains a multipole expansion. Then local series expansions
of the influence of sufficiently separated multipole expansions on cells are formed.

Finally, in a reverse traversal of the oct-tree the contributions of cells are distributed to
their children (cf. Figure 5.7). The algorithm relies on a scaling property, which allows
cells on the scale of children to be sufficiently separated when they were too close on the
scale of the current parents. At the finest level the influence of these sufficiently
separated cells is taken into account together with the interaction of the particles in the
remaining closeby cells. For a more mathematically oriented description of the shared
memory implementation with or without periodic boundary conditions we refer to
[13][14] and the references therein.

Figure 5.7 shows that the fast multipole algorithm is readily decomposed into three
principal stages:

1. populating the tree bottom-up with multipole expansions
2. converting the multipole expansions to local expansions
3. distribute local expansions top-down

These three stages have to be performed in sequential order, but it is easily possible to
parallelize each of the stages individually. For the second stage the interaction set of a
cell is defined as the set of cells which are sufficiently separated from the cell, but their
parents are not sufficiently separated from the cells parent cell. The local expansion about
the center of a cell is found by adding up all the influences from the cells of the
interaction set. For each cell these operations are found to be completely independent of
each other. But notice that the majority of communication requirements between different
processors is incurred during this stage. Hence, an optimization of the communication
patterns during the second stage can account for large performance gains.

A more detailed analysis of the (non-adaptive) algorithm reveals that optimal
performance should be attained when each leaf-cell contains an optimal number of
particles, thereby balancing the work between the direct calculations and the conversion
of the multipole expansions to the local expansions in the second stage. Distributed Fast
Multipole Results

Figure 5.8: Total Execution Time on SP2 vs. Problem Size for Multiple Levels of
Approximation

Next we describe preliminary performance results for the distributed fast multipole
method implemented on the HDDA. We verified the fast multipole method by computing
an exact answer for a fixed resolution of the computational domain. Test problems were
constructed by storing one to a few particles chosen randomly per leaf cell. This
comparison was repeated for several small problems until we were certain that the
algorithm behaved as expected. Performance measurements were taken from a 16 node
IBM SP2 parallel computer running AIX Version 4.1.

The total run times using 3, 4, and 5 levels of approximation on a variety of problem
sizes for 1, 2, 4, and 8 processors are presented in Figure 5.8. We also plot the expected
O(N) run time aligned with the 8 processor results. Each curve represents the total
execution time for a fixed level of spatial resolution while increasing the number of
particles in the computation. Two major components of each run time are an
approximation time and a direct calculation for local particles. The approximation time is
a function of the number of levels of resolution and is fixed for each curve. The direct
calculation time grows as O(N2) within a given curve. The problem size for which these
two times are equal represents the optimal number of particles stored per subdomain.
This optimal problem size appears as a knee in the total execution time curves.

The curves for 8 processors align relatively well with the O(N) run time for all problem
sizes. Thus, the algorithm appears scalable for the problems considered. Furthermore,
these results show that 1 processor has the longest time and 8 processors have the shortest
time, which indicates that some speedup is being attained. Ideally, one would expect that

8 processors achieve a speedup of 8.

We have presented results for a fast multipole method which demonstrates the O(N)
computational complexity. These results exhibit both scalability and speedup for a small
number of processors. Our preliminary results focused on validity and accuracy. The next
step is to performance tune the algorithm.

6 Conclusion and Future Work

The significant conclusions demonstrated herein are:

1. That there is a common underlying computational infrastructure for a wide family of
parallel adaptive computation algorithms.

2. That a substantial decrease in effort in implementation for these important
algorithms can be attained without sacrifice of performance through use of this
computational infrastructure.

There is much further research needed to complete development of a robust and
supportable computational infrastructure for adaptive algorithms. The existing versions
of DDA require extension and engineering. The programming abstractions for each
solution method require enriching. It is hoped to extend the programming abstraction
layer to support other adaptive methods such as wavelet methods. There is a need to do
many more applications to define the requirements for the programming abstraction layer
interfaces.

7 Acknowledgements

This research has been jointly sponsored by the Argonne National Laboratory Enrico
Fermi Scholarship awarded to Manish Parashar, by the Binary Black-Hole NSF Grand
Challenge (NSF ACS/PHY 9318152), by ARPA under contract DABT 63-92-C-0042,
and by the NSF National Grand Challenges program grant ECS-9422707. The authors
would also like to acknowledge the contributions of Jürgen Singer, Paul Walker and Joan
Masso to this work.

8 References

1. M. Parashar and J. C. Browne, System Engineering for High Performance Computing
Software: The HDDA/DAGH Infrastructure for Implementation of Parallel Structured
Adaptive Mesh Refinement, to be published in Structured Adaptive Mesh Refinement
Grid Methods, IMA Volumes in Mathematics and its Applications, Springer-Verlag,

1997.

2. Harold Carter Edwards,A Parallel Infrastructure for Scalable Adaptive Finite Element
Methods and its Application to Least Squares C-infinity Collocation, PhD Thesis, The
University of Texas at Austin, May 1997.

3. Hans Sagan, Space Filling Curves, Springer-Verlag, 1994.

4. H.F. Korth, A. Silberschatz, Database System Concepts,. McGraw Hill. New York,
1991.

5. W. Litwin. Linear Hashing: a New Tool for File and Table Addressing, Proceedings of
the 6th Conference on VLDB, Montreal, Canada, 1980.

6. Robert Sedgewick. Algorithms, Addison-Wesley, Reading, Massachusetts, 1983.

7. Marsha J. Berger, Joseph Oliger, Adaptive Mesh-Refinement for Hyperbolic Partial
Differential Equations, Journal of Computational Physics, pp. 484-512, 1984.

8. Manish Parashar and James C. Browne, Distributed Dynamic Data-Structures for
Parallel Adaptive Mesh-Refinement, Proceedings of the International Conference for
High Performance Computing, pp. 22-27, Dec. 1995.

9. Manish Parashar and James C. Browne, On Partitioning Dynamic Adaptive Grid
Hierarchies, Proceedings of the 29th Annual Hawaii International Conference on System
Sciences, 1:604-613, Jan. 1996.

10. J. Masso and C. Bona, Hyperbolic System for Numerical Relativity, Physics Review
Letters, 68(1097), 1992.

11. Robert van de Geijn, Using PLAPACK: Parallel Linear Algebra Package, The MIT
Press, 1997.

12. Leslie Greengard, The rapid evaluation of potential fields in particle systems, 1987.

13. Jürgen K. Singer, The Parallel Fast Multipole Method in Molecular Dynamics, PhD
thesis, The University of Houston, August 1995.

14. Jürgen K. Singer, Parallel Implementation of the Fast Multipole Method with
Periodic Boundary Conditions, East-West Journal on Numerical Mathematics, 3(3),
October 1995.

Author Biography

Manish Parahar is the current recipient of the Argonne National Laboratory Enrico
Fermi scholarship and holds joint appointments as Adjunct Assistant Professor,
Department of Computer Sciences, and Research Associate, Texas Institute for
Computational and Applied Mathematics, both at the University of Texas at Austin. He is
also a visiting researcher at the Max Planck Institute in Potsdam, Germnany. Manish’s
research interests include high performance parallel/distributed computing, software
engineering, application development tools and problem solving environments.
performance evaluation and prediction. Manish received a BE degree in Electronics and
Telecommunications from Bombay University, India in 1988, and MS and PhD degrees
in Computer Engineering from Syracuse University in 1994. He is a member of IEEE,
IEEE Computer Society, ACM, and the Phi Beta Delta honor society. Manish will be
joining Rutgers University as an Assistant Professor in Computer Engineering starting
Fall 1997.

James C. Browne is Professor of Computer Science and Physics and holds the Regents
Chair #2 in Computer Sciences at The University of Texas at Austin. Browne earned his
Ph.D. in Chemical Physics at The University of Texas in 1960. He taught in the Physics
Department at The University of Texas from 1960 through 1964. He held an NSF
Postdoctoral Fellowship in 1964/65. He was, from 1965 through 1968, Professor of
Computer Science at Queens University in Belfast and directed the Computer Laboratory.
Browne rejoined The University of Texas in 1968 as Professor of Physics and Computer
Science. Browne’s research interests span parallel computations, performance
measurement and analysis, operating systems and programming languages. Browne has
been a member of Technical Advisory Committees for Lawrence Livermore
Laboratories, Los Alamos National Laboratories, the National Bureau of Standards, the
National Science Foundation--Computer Research Section, the DARPA Information
Science and Technology Office and Sequent Computers. He is a fellow of the British
Computer Society and of the American Physical Society. He was Chairman of the ACM
Special Interest Group on Operating Systems (1974/76) and has been in the past an
Associate Editor of several journals. Browne has published approximately 100 papers in
computational physics and 200 papers in Computer Science.

Harold Carter Edwards is currently working for the Center for Subsurface Modeling
(CSM) developing parallel solution algorithms and solvers for the CSM’s
multi-component / multi-physics applications. In May of 1997 he earned a Ph.D. in
Computational and Applied Mathematics from the University of Texas at Austin. His
dissertation included a formal development data management infrastructure abstractions
and SDDA implementation presented here, as well as the development of a new adaptive
finite element method for solving higher order PDEs.

From 1981 through 1991 Mr. Edwards worked in the aerospace industry analyzing
mission, guidance, navigation, and control requirements and developing simulators for
manned and automated spacecraft. In this previous career he earned a B.S. (1982) and
M.S. (1993) in Aerospace Engineering from the University of Texas at Austin.

Kenneth Klimkowski received B.S. Electrical Engineering and B.S. Computer Science
degrees in 1991 from North Carolina State University. Afterwhich he earned degrees in
M.S. Engineering in 1993 and M.S. Computational and Applied Mathematics 1997 from
The University of Texas at Austin. He has worked on out-of-core high performance,
parallel numerical linear algebra with Dr. Robert van de Geijn at The University of
Texas. Also, he has worked on Fast Multipole Methods as applied to problems of
composite material analysis with Drs. Greg Rodin, Robert van de Geijn, and J.C. Browne
all of The University of Texas. At this time, Mr. Klimkowski works at National
Instruments in Austin, TX.

