
njm@npac.syr.edu 1

Java RMI:
Remote Method Invocation

January 1998
Nancy McCracken

NPAC

njm@npac.syr.edu 2

RMI
u Java RMI allows the programming of distributed

applications across the Internet. One Java application or
applet (the client in this context) can call the methods of an
instance, or object, of a class of a Java application (the server
in this context) running on another host machine.

u An example of Distributed Object Programming - similar to
CORBA, except that CORBA allows the remote objects to be
programmed in other languages.
– CORBA is a more general solution, but is not fully in place and has

more overhead.

u References:
– core Java 1.1, Volume II - Advanced Features, Cay Horstmann and

Gary Cornell, Sunsoft Press, 1998.
– advanced Java networking, Prashant Sridharan, Sunsoft Press, 1997.
– http://www.javasoft.com/

njm@npac.syr.edu 3

u Java RMI adds a number of classes to the Java language.
The basic intent is to make a call to a remote method
look and behave the same as local ones.

u Classes are added for
– naming Registry - associates a name with a remote Java object
– Remote interface - specification of remote methods
– RemoteObjects
– RMISecurityManager
– RemoteExceptions

The Java RMI package

Local Machine Remote Machine

Local Java

local method

Remote Java

remote method

njm@npac.syr.edu 4

A Remote Method Call

u The architecture of a method call from the client to a
method on the server.

Client Server

Stubs
Remote Reference

Skeletons
Remote Reference

Transport

njm@npac.syr.edu 5

Stubs
u To call a method on a remote machine, a surrogate method

is set up for you on the local machine, called the stub.
u It packages the parameters, resolving local references. This

is called marshalling the parameters:
– device-independent encoding of numbers
– strings and objects may have local memory references and so are

passed by object serialization

u The stub builds an information block with
– An identifier of the remote object to be used
– An operation number, describing the method to be called
– The marshalled parameters

u Stubs will also “unmarshall” return values after the call and
receive RemoteExceptions. It will throw the exceptions in
the local space.

njm@npac.syr.edu 6

Skeletons

u On the server side, a skeleton object receives the packet
of information from the client stub and manages the call
to the actual method:
– It unmarshals the parameters.
– It calls the desired method on the real remote object that lies on

the server.
– It captures the return value or exception of the call on the

server.
– It marshals that value.
– It sends a package consisting of the return values and any

exceptions.

njm@npac.syr.edu 7

Transport Layer

u The transport layer handles all the network issues.
– It sets up a connection over a physical socket.
– It knows the local and remote objects and how to translate to

the local and remote name space.
– It serializes objects as required.
– It monitors the connection for signs of trouble, such as the

remote server doesn¹t respond, and may throw
RemoteExceptions.

njm@npac.syr.edu 8

Local vs. Remote Objects
u The goal is for local and remote objects to be semantically

the same.
u For Java, an important issue is garbage collection, which

automatically deallocates memory for local objects.
Remote objects are also garbage collected as follows:
– Remote reference layer on the server keeps reference counts for

each object in Remote interface.
– Remote reference layer on the client notifies the server when all

references are removed for the object
– When all references from all clients are removed, the server object

is marked for garbage collection.

u One difference between local and remote method calls is
that objects are passed to local method calls effectively by
reference, whereas they are copied via the serialization
technique to pass to remote method calls.

njm@npac.syr.edu 9

RMI Remote Interface

u In setting up an RMI client and server, the starting point
is the interface. This interface gives specifications of all
the methods which reside on the server and are available
to be called by the client.

u This interface is a subclass of the Remote interface in the
Java rmi package, and must available to the compiler on
both the client and server.

u Example: A server whose object will have one method,
sayHello(), which can be called by the client:

public interface Hello extends java.rmi.Remote
{
 String sayHello() throws java.rmi.RemoteException;
}

njm@npac.syr.edu 10

u All remote servers are a subclass of the class
UnicastRemoteObject in the rmi.server package.
Extending this class means that it will be a (nonreplicated)
remote object that is set up to use the default socket-based
transport layer for communication.

u This is the inheritance diagram of the server classes:

u Beginning of example HelloImpl class:
 import java.rmi.*;
 import java.rmi.server.*;
 public class HelloImpl extends UnicastRemoteObject

 implements Hello

Server Implements the remote object

Object

Remote Object

RemoteStub RemoteServer

UnicastRemoteObject

Remote interface

njm@npac.syr.edu 11

Define the constructor for the remote object
u Creating an instance of this class calls the constructor in the

same way as for a normal local class. The constructor
initializes instance variables of the class.

u In this case, we also call the constructor of the parent class by
using the keyword “super”. This call starts the server of the
unicastremoteobject listening for requests on the incoming
socket. Note that an implementation class must always be
prepared to throw an exception if communication resources
are not available.

private String name; //instance variable
public HelloImpl (String s) throws java.rmi.RemoteException
 { super();
 name = s;
 }

njm@npac.syr.edu 12

Provide an implementation for each remote method

u The implementation class must provide a method for
each method name specified in the Remote interface.
(Other methods may also be given, but they will only be
available locally from other server classes.)

u Note that any objects to be passed as parameters or
returned as values must implement the
java.io.serializable interface. Most of the core Java
classes in java.lang and java.util, such as String, are
serializable.

public String sayHello() throws RemoteException
{

return “Hello, World! From” + name;
}

njm@npac.syr.edu 13

Main method: Create an instance and install
a Security Manager

u This method will call the constructor of the class to create an
instance.

u It will also install a security manager to make sure that any
calls initiated by a remote client will not perform any
“sensitive” operations, such as loading local classes.

public static void main (String args [])
{
System.setSecurityManager (new RMISecurityManager());
 try
 { HelloImpl obj = new HelloImpl(“HelloServer”);
 . . . // name registry code goes here
 } catch (Exception e) { . . . } // code to print exception message

}

njm@npac.syr.edu 14

Name Registry
u The rmi registry is another server running on the remote

machine - all RMI servers can register names with an object
by calling the rebind method.

u The name given to rebind should be a string of the form:
 Naming.rebind(“//osprey7:1099/HelloServer”, obj);

where the machine name can default to the current host
the port number can default to the default registry port, 1099

u For large distributed applications using RMI, a design goal is to
minimize the number of names in the registry. The client can obtain the
name of one remote object from the registry, and other remote objects
from that rmi server can be returned as values to the client. This is
called “bootstrapping”.

u Example call to rebind for the main method in HelloImpl:
Naming.rebind(“HelloServer”, obj);

u Look at full example Hello.java and HelloImpl.java

njm@npac.syr.edu 15

Client applet or application

u The client must also have a security manager. Applets
already have one; applications will make the same call
to System.setSecurityManager as the server did.

u The client will look up the server name in the name
registry, obtaining a reference to the remote object:

String url=“rmi://osprey7.npac.syr.edu/”;
Hello obj = (Hello) Naming.lookup(url +

“HelloServer”);
u Then the client can call any method in the interface to

this server:
obj.sayHello();

u Look at Hello.html and HelloApplet.java

njm@npac.syr.edu 16

Summary of steps for setting up RMI
u 1. Compile the java code.
u 2. Place the interface class extending Remote on the server

and the client.
u 3. Place the implementation class extending RemoteObject

on the server.
u 4. Generate stubs and skeletons on the server by running

the program rmic. Copy the stubs to the client.
u 5. Start the name registry server on the rmi server machine.
u 6. Start the program that creates and registers objects of the

implementation class on the rmi server machine.
u 7. Run the client program.
u For more details, see the RMI tutorial at

http://www.npac.syr.edu/projects/tutorials/JDBC

