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Chapter 1

Introduction

HPJava is a language for parallel programming. It extends the Java language
with some syntax for manipulating a new kind of parallel data structure—the
distributed array. The specific extensions evolved out of work on Fortran 90 and
High Performance Fortran (HPF), but the programming model of HP Java is dif-
ferent to HPF. The HP Java model is one of explicitly cooperating processes. It is
an implementation of of the Single Program, Multiple Data (SPMD) model. All
processes execute the same program, but the components of data structures—in
our case the elements of distributed arrays—are divided across processes. In-
dividual processes operate on the locally owned segment of an entire array. At
some points in the computation processes usually need access to elements owned
by their peers. Explicit communications are needed to permit this access.

This general scheme has been very successful in realistic programs. It is
probably no exaggeration to say that most successful applications of parallel
computing to large scientific and numerical problems are programmed in this
style. So HPJava is attempting to add some extra support at the language level
for established practises of programmers.

[HPJava is not a parallelizing compiler. Before writing an HPJava program
you must understand parallel algorithms. HPJava is a notation for expressing
and implementing parallel algorithms.]
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Chapter 2

Processes and Arrays

2.1 Processes and Process Grids

An HPJava program is started concurrently in all members of some process set?.
From the point of view of the HPJava program, the processes are organized and
identified through special objects representing process groups. In general the
processes in an HPJava group are arranged in multidimensional grids.

Suppose a program is running concurrently on 6 or more processes. It may
then define a 2 by 3 process grid as follows

Procs2 p = new Procs2(2, 3) ;

Procs2 is a class describing 2-dimensional grids of processes. The grid p is
visualized in Figure 2.1. This figure assumes that the program was executing
in 11 processes. The call to the Procs2 constructor selected 6 of these available
processes and incorporated them into a grid.

The Procs2 constructor is an example of a collective operation. It should be
invoked concurrently by all members of the active process group.

Procs2 is a subclass of the special class Group. The Group class has a
privileged status in the HPJava language. An object that inherits this class can
be used in various special places. For example, it can be used to parametrize
an on construct.

After creating p we will probably want to perform some operations within
the processes of the grid. An on construct restricts control to processes in its
parameter group. So in

Procs2 p = new Procs2(2, 3) ;
on(p) {
. body of on construct ...

}

IMost of the time we will talk about processes rather than processors. The different
processes may be running on different processors to achieve a parallel speedup.

9
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Figure 2.1: The process grid represented by p.

the code inside the construct is only executed by processes belonging to p. In
Figure 2.1, the five processors outside the grid would skip this block of code.

This on construct establishes p as the active process group within its body.
In several of the operations introduced later, the current active process group
will act as a “default” group parameter.

An auxilliary class called Dimension is associated with process grids. Ob-
jects of this class describe a particular dimension or axis of a particular process
grid. They will are called process dimensions. The process dimensions of a grid
are available through the inquiry method dim(r). The argument r is in the
range 0,..., R — 1, where in general R is the rank (dimensionality) of the grid.

The Dimension class in turn has a method crd, which returns the local
process coordinate associated with the dimension—ie, the position of the local
process within the dimension. If we executed the following HPJava program

Procs2 p = new Procs2(2, 3) ;
on(p) {
Dimension d = p.dim(0), e = p.dim(1) ;

System.out.println("My coordinates are (" + d.crd() +
n’ LS e.crd() + II)II) ;

}

we might see the output

My coordinates are (0, 2)
My coordinates are (1, 2)
My coordinates are (0, 0)
My coordinates are (1, 0)
My coordinates are (1, 1)
My coordinates are (0, 1)
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Figure 2.2: The process dimensions and coordinates in p.

Group

Procs

ProcsO Procsl Procs2

Figure 2.3: The Group hierachy of HPJava.

The dimensions of p are illustrated in Figure 2.2. Because the 6 processes are
running concurrently there is no way to predict the order in which the messages
appear (and if we were unlucky they might even be interleaved). If we applied
crd() to d or e in a process outside p (such as one of the shaded processes in
Figure 2.1) we should expect an exception.

There is nothing special about 2-dimensional grids. The full Group hierarchy
of HPJava includes the classes of Figure 2.3. Not surprisingly, Procs1 is a one-
dimensional process “grid”. Less obviously, Procs0 is a group containing exactly
one process. Higher dimensional grids are also allowed.

Note that so far the only special syntax we have added to the Java lan-
guage is the on construct. The Group class has special status in HPJavaZ2, but
syntactically it is just a class.

2Much as Throwable has a special status in normal Java—it is the only class that can
parametrize a catch clause.
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2.2 Distributed Arrays

The biggest new feature HPJava adds to Java is the distributed array. A dis-
tributed array is a collective object shared by a number of processes. Like an
ordinary array, a distributed array has some index space and stores a collec-
tion of elements of fixed type. Unlike an ordinary array, the index space and
associated elements are scattered across the processes that share the array.

There are some similarities between the way HPJava distributed arrays are
used and the way ordinary Java arrays are used. There are also a number of
differences. Apart from the fact that their elements are distributed in the man-
ner just mentioned, the new HPJava arrays are true multi-dimensional arrays
like those of Fortran (or, for that matter, C). As in Fortran, it is possible to
form a regular section of an array. These characteristics of Fortran arrays have
evolved to support scientific and parallel algorithms, and we consider them to
be very desirable.

Bearing in mind these distinctions it does not seem a good idea to try and
force the new HPJava arrays into a syntax directly reminiscent of ordinary Java
arrays. Instead, HPJava distributed arrays look and feel quite different from
standard arrays. Of course HPJava includes Java as a subset, and ordinary Java
arrays can and should be used freely in an HPJava program. But they do not
have a close relationship to the new distributed arrays.

The type signatures and constructors of distributed arrays use double brack-
ets to distinguish them from ordinary Java arrays. The distribution of the index
space is parametrized by objects belonging to another class that has a special
status in HPJava: the Range class. In the following example we create a two-
dimensional, N by N, array of floating point numbers, with elements distributed
over the grid p.

Procs2 p = new Procs2(2, 3) ;

on(p) {
Range x = new BlockRange(N, p.dim(0)) ;
Range y = new BlockRange(N, p.dim(1)) ;

float [[,]] a = new float [[x, yl] ;

}

The decomposition of this array for the case N = 8 is illustrated in Figure 2.4.
The choice of subclass BlockRange for the index ranges of the array means that
the index space of each array dimension is broken down into consecutive blocks.
Other possible distribution formats will be discussed later. Notice how process
dimensions are passed as arguments to the range constructors, specifying which
dimensions the range is to be distributed over. Ranges of a single array must
be distributed over different dimensions of the same process grid3.

3Unless they are collapsed; see section 3.3.
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a0,1] a[0,4] a[o, al0,7]
a[1,1] a[1,4] a[1, a[1,7]
a[2,1] a[2,4] a2, a[2,7]
p.dim(0) a[3,1] a[3,4] a3, a[3,7]

a[4,4] a[4,
a[5,4] a[5,
a[6,4] a6,
a[7,4] a[7,

Figure 2.4: A two-dimensional array distributed over p.

2.3 Parallel Programming

The previous section included a simple example of how to create a distributed
array. How do we use this kind of array? Figure 2.5 gives an example—parallel
addition of two matrices.

The overall construct is the second special control construct of HPJava. It
implements a parallel loop, sharing a heritage with the forall construct of HPF.
The colon in the overall headers of the example is shorthand for an index
triplet*. In general a triplet can include a lower bound, an upper bound, and a
step, as follows:

overall(i = x for 1 : u : s)

In general [, v and s can be any integer expressions. The third member of
the triplet (the step) is optional. The default step is 1, and most often we see
something like

overall(i = x for 1 : u)

Finally, either or both of the expressions [ and u can be omitted. The lower
bound defaults to 0 and the upper bound defaults to N—1, where NV is the extent
of the range appearing before the for keyword. So in the original example the
line

overall(i = x for :)

4The syntax for triplets is lifted directly from Fortran 90.
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Procs2 p = new Procs2(P, P) ;

on(p) {
Range x = new BlockRange(N, p.dim(0)) ;
Range y = new BlockRange(N, p.dim(1)) ;

float [[,]1] a
c

new float [[x, yl], b = new float [[x, ylIl,
new float [[x, yl] ;

. initialize values in ‘a’, ‘b’

overall(i = x for :)
overall(j = y for :)
c[i, jl =a [i, jl + b [i, j1 ;

Figure 2.5: A parallel matrix addition.

means “repeat for all elements, i, of the range x”, and is equivalent to
overall(i = x for O : x.size() - 1 : 1)

The size member of Range returns the extent of the range.

For readers familiar with the forall construct of HPF (or Fortran 95) the
only unexpected part of the overall syntax is the reference to a range object
in front of the triplet. The significance of this will be discussed at length in the
next section. Meanwhile we give another example of a parallel program. Figure
2.6 is a simple example of a “stencil update”. Each interior element of array a
is supposed to be replaced by the average of the values of its neighbours:

The shift operation is not a new feature of the HPJava language, as such.
Instead it is a member of a particular library called Adlib. This is a library of
collective operations on distributed arrays®. The function shift is overloaded
to apply to various kinds of array. In this example we are using the instance
applicable to two dimensional arrays with float elements:

void shift(float [[,]] destination, float [[,]] source,
int shiftAmount, int dimension) ;

The array arguments should have the same shape and distribution format. The

values in the source array are copied to the destination array, shifted by

shiftAmount in the dimension’th array dimension®.

5Many of them are modelled on the array transformational intrinsic functions of Fortran
90.

6Edge values from source that have no target in destination are discarded; edge elements
of destination that are not overwritten by elements from source are unchanged from their
input value.
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Procs2 p = new Procs2(P, P) ;

on(p) {
Range x = new BlockRange(N, p.dim(0)) ;
Range y = new BlockRange(N, p.dim(1)) ;

float [[,]1] a

new float [[x, y]l] ;

float [[,]] n = new float [[x, yl], s = new float [[x, yl],
e = new float [[x, y]], w = new float [[x, yl] ;

. initialize

Adlib.shift(s, a, 1, 0) ;
Adlib.shift(n, a, -1, 0) ;
Adlib.shift(w, a, 1, 1) ;
Adlib.shift(e, a, -1, 1) ;

overall(i = x for 1 : N - 2)
overall(j =y for 1 : N - 2)
a [i, j1 = 0.256 x (n [i, j1 + s [i, j1 + e [1i, j1 +w [1i, j1) ;

Figure 2.6: A parallel stencil update program.

In the example program, arrays of North, South, East and West neighbours
are created using shift, then they are averaged in overall loops. An obvious
question is: why go to the trouble of setting up these arrays? Surely it would
be easier to write directly:

overall(i = x for 1 : N - 2)
overall(j =y for 1 : N - 2)
af[i, j]=0.256 % (a [1 -1, jl +a i+ 1, j] +
afi, j-11+ali, j+ 11) ;

The answer relates to the nature of the symbols i and j. No declaration was
given for these names, but it would be reasonable to assume that they stand for
integer values.

They don’t.
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2.4 Locations

An HPJava range object can be thought of as a set of abstract locations. In our
earlier example,

Procs2 p = new Procs2(2, 3) ;

on(p) {
Range x = new BlockRange(N, p.dim(0)) ;
Range y = new BlockRange(N, p.dim(1)) ;

}

the range x, for example, contains N locations. In an overall construct such as

overall(i = x for 1 : N - 2) {

3

the symbol i is called a distributed index. The value associated with a dis-
tributed index is a location, not an integer value.

With a few exceptions that will be discussed later, the subscript of a dis-
tributed array must be a distributed index, and the location must be an element
of the range associated with the array dimension. This is why we introduced the
temporary arrays for neighbours in the stencil update example of the previous
section. Arbitrary expressions are not usually legal subscripts for a distributed
array. If we want to combine elements of arrays that are not precisely aligned,
we first have to use a library function such as shift to align them.

Figure 2.7 is an attempt to visualize the mapping of locations from x and
y. We will write the locations of x as x[0], x[1], ..., x[N - 1]. Each location
is mapped to a particular group of processes. Location x[1] is mapped to
the three processes with coordinates (0,0), (0,1) and (0,2). Location y[4] is
mapped to the two processes with coordinates (0,1) and (1,1).

Besides overall, there is another control construct in HPJava that defines
a distributed index—the simpler at construct. Suppose we want to update or
access a single element of a distributed array (rather than accessing a whole set
of of elements in parallel). it is not allowed to write simply

float [[,]] a = new float [[x, yl] ;

a [1, 4] =73 ;
because 1 and 4 are not distributed indices, and therefore not legal subscripts.
We can write:

float [[,]] a = new float [[x, yl] ;

at(i = x [1])
at(j =y [4D)
a [i, j1 =73 ;
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yl0] y[1] vI2] y[6] y[7]
x[0]
(1] ’
o .
X[3]
(0, 0) o (0,2)
x[4] |
X[5]
X[6]
X[7]
(1,0) L 1) 1,2

Figure 2.7: Mapping of x and y locations to the grid p.

The symbols i and j, scoped within the construct bodies, are distributed indices.

The operational meaning of the at construct should be fairly clear. It is
similar to the on construct. It restricts control to processes in the set that hold
the specified location. Referring again to Figure 2.7, the outer

at(i = x [1]1)

construct limits execution of its body to processes with coordinates (0, 0), (0, 1)
and (0,2). The inner

at(j =y [4D)

then restricts execution down to just process (0,1). This is exactly the pro-
cess that owns element al[1,4]. The odd restriction that subscripts must be
distributed indices helps ensure that processes only manipulate array elements
stored locally. If a process has to access non-local data, some explicit library
call is needed to fetch it.

An operational definition of overall can be given in terms of the simpler
at construct. If s is greater than zero, the construct

overall(i = x for 1 : u : s) {

}

is equivalent in behaviour to

for(int n = 1; n <= u ; n += s8)

at(i = x [n]) {

}
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If s is less than zero, it is equivalent to

for(int n = 1; n > u ; n += 8)
at(i = x [n]) {

}

The bodies of the at constructs are skipped for values of n that don’t correspond
to locally held elements. In practise an HPJava compiler can translate the
overall construct much more efficiently than this definition suggests.

The at construct completes the contingent of new control constructs in
HPJava. We sometimes refer to the three constructs on, at and overall as
distributed control constructs (and sometimes, more grandiosely, as structured
SPMD control constructs).

The backquote symbol, ¢, can be used as a postfix operator on a distributed
index, thus:

i <
This expression is read “i-primed”, and evaluates to the integer global index
value. In the operational definition of the overall given above, this is the value
called n.

We now know enough about HPJava to write some more complete examples.

2.5 A Complete Example

The example of Figure 2.8 only uses language features introduced in the pre-
ceding sections. It introduces two new library functions.

The problem is a very well-known one: solution of the two-dimensional
Laplace equation with Dirichlet boundary conditions by the iterative Jacobi
relaxation method”. The boundary conditions of the equation are fixed by set-
ting edge elements of an array. These elements don’t change throughout the
computation. The solution for the interior region is obtained by iteration from
some arbitrary starting values (zero, here). A single iteration involves replac-
ing each interior element by the average of its neighbouring values. A similar
update was already discussed in section 2.3. Here we put it in the context of a
working program.

The initialization is done with a pair of nested overall constructs. Inside,
a conditional tests if we are on an edge of the array. If so, the element values
are set to some chosen expression—the boundary function. Otherwise we zero
an interior element. As discussed at the end of the last section we, apply the
operator ¢ to distributed indices to get the global loop index.

Notice that one can freely use ordinary Java constructs like if inside an
overall construct. HPJava distributed control construct are true, composi-

"Maybe we could have chosen a more creative first example. But the point is to explain
language features—the more familiar the algorithm, the better.
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Procs2 p = new Procs2(P, P) ;

on(p) {
Range x = new BlockRange(N, p.dim(0)) ;
Range y = new BlockRange(N, p.dim(1)) ;

float [[,]] a = new float [[x, yll ;
// Initialize ‘a’: set boundary values.

overall(i = x for :)
overall(j = y for :)

if(i¢ == 0 || i N-1]] j¢==01Ij°=
a [i, j1 =41 *4i‘ - j° * j°;

else
a [i, j1 = 0.0 ;

// Main loop.

float [[,]] n = new float [[x, y]l], s = new float
new float

e = new float [[x, yl], w

float [[,]] r = new float [[x, yl] ;
do {
Adlib.shift(n, a, 1, 0) ;
Adlib.shift(s, a, -1, 0) ;
Adlib.shift(e, a, 1, 1) ;
Adlib.shift(w, a, -1, 1) ;

overall(i = x for 1 : N - 2)
overall(j =y for 1 : N - 2) {
float newA ;

newA = 0.25 * (n [i, j1 + s [i, j1 + e [i, j1 +w [i, j1) ;

r [i, j] = Math.abs(newA - a [i, j]) ;
a [i, j] = newA ;
}
} while(Adlib.maxval(r) > EPS) ;

// Output results.

Adlib.printArray(a) ;
}

Figure 2.8: Solution of Laplace equation by Jacobi relaxation.

N - 1)

[[x, y11,
[[x, y11 ;

19



20 CHAPTER 2. PROCESSES AND ARRAYS

tional control constructs. They differ in this respect from the HPF forall con-
struct, which has restrictive rules about what kind of statement can appear in
its body.

If preferred, the edges could have been initialized using at constructs:

at(i = x [0])
overall(j = y for :)
a [i, j1 =4 * i - j¢ % j< ;
at(i = x [N - 1])
overall(j = y for :)
a [i, j1 =4 * i - j¢ % 3¢ ;
at(j =y [0])
overall(i = x for :)
a [i, jl =4 * i - 3 * 3 ;
at(j =y [N - 11)
overall(i = x for :)
a[i,j]=i‘*i‘—j‘*j‘;

with the interior initialized separately using nested overall constructs:

overall(i = x for 1 : N - 2)
overall(j =y for 1 : N - 2)
a [i, j1 = 0.0

This version is more long-winded but potentially more efficient, because it sim-
plifies the inner loop bodies, improving the scope for compiler optimization.

The body of the main loop contains shift operations and nested overall
loops. The body of the inner loop is slightly more complicated than the version
in figure 2.6 because it saves changes to the main array in a separate array r.

Note the declaration of the float temporary newA inside the body of the
parallel loop. This is perfectly good practise. The temporary is just an or-
dinary scalar Java variable—the HPJava translator doesn’t treat it specially.
Also note the call to a Java library function abs inside the loop. As we have
emphasized, any normal Java operation is allowed inside an HPJava distributed
control construct.

The main loop terminates when the largest change in any element is smaller
than some predefined value EPS. The collective library function maxval finds the
largest element of distributed array, and broadcasts its value to all processes that
call the function. [Need to initialize edges of T to zero.]

Finally a collective library function printArray prints a formatted versions
of the array on the standard output stream.
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More on Mapping Arrays

3.1 Other Distribution Formats

HPJava follows HPF in allowing several different distribution formats for the
dimensions of its distributed arrays. The new formats are provided without fur-
ther extension to the syntax of the language. Instead the Range class hierarchy
is extended. The full hierarchy is shown in Figure 3.1.

The BlockRange subclass is very familiar by now. The Dimension class is
also familiar, although previously it wasn’t presented as a range class—later
examples will demonstrate how it can be convenient to use process dimensions
as array ranges. CyclicRange and BlockCyclicRange are directly analogous
with the cyclic and block-cyclic distribution formats available in HPF.

Cyclic distributions are sometimes favoured because they can lead to better
load balancing than the simple block distributions introduced so far. Some
algorithms (for example dense matrix algorithms) don’t have the kind of locality
that favours block distribution for stencil updates, but they do involve phases
where parallel computations are limited to subsections of the whole array. In
block distributions these sections may map to only a fraction of the available
processes, leaving the remaining processes idle. Here is a contrived example

Procs2 p = new Procs2(2, 3) ;

on(p) {
Range x = new BlockRange(N, p.dim(0)) ;
Range y = new BlockRange(N, p.dim(1)) ;

float [[,]] a = new float [[x, yl] ;

overall(i = x for 0 : N/ 2 - 1)
overall(j =y for 0 : N / 2 - 1)
a [i, j] = complicatedFunction(i¢, j*) ;
}
The point here is that the overall constructs only traverse half the ranges
of the array they process. As shown in Figure 3.2, this leads to a very poor

21
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——  BlockRange

—— CyclicRange

——1 BlockCyclicRange

Range ExtBlockRange

—— IrregRange

—— CollapsedRange

L Dimension

Figure 3.1: The Range hierachy of HP Java.

distribution of workload. The process with coordinates (0, 0) does nearly all the
work. The process at (0,1) has a few elements to work on, and all the other
processes are idle.

In cyclic distribution format, the index space is mapped to the process di-
mension in wraparound fashion. If we change our example to

Procs2 p = new Procs2(2, 3) ;

on(p) {
Range x = new CyclicRange(N, p.dim(0)) ;
Range y = new CyclicRange(N, p.dim(1)) ;

float [[,]] a = new float [[x, yl] ;

overall(i = x for 0 : N/ 2 - 1)
overall(j =y for 0 : N / 2 - 1)
a [i, j] = complicatedFunction(i®, j*) ;

}

Figure 3.3 shows that the imbalance is not nearly as extreme. Notice that noth-
ing changed in the program apart from the choice of range constructors. This
is an attractive feature that HPJava shares with HPF. If HPJava programs
are written in a sufficiently pure data parallel style (using overall loops and
collective array operations) it is often possible to change the distribution for-
mat of arrays dramatically while leaving much of the code that processes them
unchanged. HPJava does not guarantee this property in the same way that
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al0,7]
a[1,7]

a[2,7]
a[3,7]

a[4,0] a[4,1] a[4,
a[5,0] a[5,1] a5,
a[6,0] a[6,1] a6,
a[7,0] a[7,1] a[7,

a[4,7]
a[5,7]

al6,7]
al[7,7]

1,2)

Figure 3.2: Work distribution for an example with block distribution.

HPF does, and fully optimized HPJava programs are unlikely to be so easily
redistributed. But it is still a useful property.

As a more graphic example of how cyclic distribution can improve load
balancing, consider the Mandelbrot set code of Figure 3.4. Points away from
the set are generally eliminated in a few iterations, whereas those close to the
set or inside it take much more computation—points are assumed to be inside
the set, and the corresponding element of the array is set to 1, when the number
of iterations reaches CUTOFF. In the case N = 64 (with CUTOFF = 100), the block
decomposition of the set is shown in Figure 3.5. The middle column of processors
will do most of the work, because they hold most of the set. Changing the class
of the ranges to CyclicRange gives the much more even distribution shown in
Figure 3.6.

Block cyclic distribution format is a generalization of cyclic distribution that
is used in some libraries for parallel linear algebral. It will not be discussed
further here.

The ExtBlockRange subclass represents block-distributed ranges extended
with ghost regions.

INotably ScaLAPACK.
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- 3 a[0,4] a0, 3 a[0,5]
A2 al24] a27] | a2 al2.5]

a[4,1] a[4,4] al4, a[4,2] a[4,5]
a[6,1] a[6,4] a[6,7] | a[6,2] a[6,5]

§ a[1,4] a[1,7] § a[1,5]
g a[3,4] a[3,7] = a[3,5]
a[5,1] a[5,4] a[5,7] al5,2] a[5,5]
a[7,1] a[7,4] a[7,7] a[7,2] a[7,5]

1,1) 1,2)

Figure 3.3: Work distribution for an example with cyclic distribution.
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Procs2 p = new Procs2(2, 3) ;

on(p) {
Range x = new BlockRange(N, p.dim(0)) ;
Range y = new BlockRange(N, p.dim(1)) ;

int [[,]] set = new int [[x, y]l] ;

overall(i = x for :)
overall(j = y for :) {
float cr = (4.0 * i€ -

2*xN) /N ;
float ci = (4.0 * j* -2 % N) / N

float zr = cr, zi = ci ;
set [i, j1 =0 ;

int k = 0 ;
while (zr * zr + zi * zi < 4.0) {
if (k++ == CUTOFF) {
set [i, jl1 =1 ;
break ;
}

// z=c+ 2z * 2z

float newr = cr + zr * zr - zi * zi ;
float newi = ci + 2 * zr * zi ;

Zr = newr ;
newi ;

zi

}

Adlib.printArray(set) ;
}

Figure 3.4: Mandelbrot set computation.
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Figure 3.5: Blockwise decomposition of the Mandelbrot set (black region).

» &

Figure 3.6: Cyclic decomposition of the Mandelbrot set.
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3.2 Ghost Regions

In a distributed array with ghost regions, the memory for the locally held block
of elements is allocated with extra space around the edges. These extra locations
can be used to cache some of the element values properly belonging to adjacent
processors. The inner loop of algorithms involving stencil updates can then
written very simply. In accessing neighbouring elements, the edges of the block
don’t need special treatment. Rather than throwing an exception for an out
of range subscript, shifted indices find the proper values cached in the ghost
region. This is such an important technique in real codes that HPJava has a
special extension to make it possible.

This is one place where the rule that the subscript of a distributed array
must be a distributed index is relaxed. In a special, slightly idiosyncratic, piece
of syntax, the following expression

name % expression

is a legal subscript if name is a distributed index and expression is an integer
expression—in practice usually a small constant. This is called a shifted index.
The significance of the shifted index is that an element displaced from the
original location will be accessed. If the shift puts the location outside the
local block plus surrounding ghost region, an exception will occur. Using this
syntax the example at the end of section 2.2:

overall(i = x for 1 : N - 2)

overall(j =y for 1 : N - 2)
af[i, j]=0.256 % (a [1 -1, jl +a i+ 1, jl+
afli, j-1]1 +a [i, j + 11) ;

is allowed if the array a has suitable ghost extensions?.

Ghost regions are not magic. The values cached around the edges of a local
block can only be made consistent with the values held in blocks on adjacent
processes by a suitable communication. A library function called writeHalo
updates the cached values in the ghost regions with proper element values from
neigbouring processes.

Figure 3.7 is a version of the Laplace program that uses ghost regions. The
omitted code is unchanged from Figure 2.8. The last two arguments of the
ExtBlockRange constructor define the widths of the ghost regions added to the
bottom and top (respectively) of the local block.

In this version we still introduced one temporary array, called b. The reason
is is that in Jacobi relaxation one is supposed to express all the new values in
terms of values from the previous iteration. The library function copy copies

2We need to be rather clear about the semantics of this extension, because it is an odd
case. Suppose x is the range associated with the distributed index i. Let j be the location x
[i¢ + el. If j is mapped to the same processes as i, and the shifted index i + e is used as
a subscript, it behaves just like the location j. If j is mapped to a different set of processes
from i, and i + e is used as a subscript, the resulting reference must be to an element in a
ghost region on the process holding i.



28 CHAPTER 3. MORE ON MAPPING ARRAYS

elements between two aligned arrays (copy does not implement communication;
if it is passed non-aligned arrays, an exception occurs).

As a matter of fact, if we removed the temporary, b, and reassigned the a
elements on-the-fly in terms of the other partially updated a elements, nothing
very bad would happen. The algorithm may even converge faster because it is
locally using the more efficient Gauss-Siedel relaxation scheme. Figure 3.8 is
an implementation of the “red-black” scheme (a true Gauss-Siedel scheme), in
which all even sites are updated, then all odd sites are updated in a separate
phase. There is no need to introduce the temporary array b. This example
illustrates the use of a stepped triplet in an overall construct.

The “footprint” of the stencil update can be more general. Figure 3.9 shows
an implementation of Conway’s Game of Life. The local update involves de-
pendences on diagonal neighbours. This example also shows the most general
form of writeHalo library function, which allows one to specify exactly how
much of the available ghost areas are to be updated (this can be less than the
total ghost area allocated for the array) and to specify a “mode” of updating
the ghost cells at the extremes of the whole array. By specifying CYCLIC mode,
cyclic boundary conditions are automatically implemented.

As a final example, Figure 3.10 is a Monte Carlo simulation of the well-
known Ising model from condensed matter physics. It combines cyclic boundary
conditions with red-black updating scheme. Random numbers are generated
here using the Random class from the standard Java library. Random streams
are created with different values in each process using some expression that
depends on the local coordinate value. (The method used here is certainly too
naive for a reliable simulation, but it illustrates the principle.)
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Procs2 p = new Procs2(P, P) ;

on(p) {
Range x = new ExtBlockRange(N, p.dim(0), 1, 1) ;
Range y = new ExtBlockRange(N, p.dim(1), 1, 1) ;

float [[,]] a = new float [[x, yl] ;

// Main loop.

float [[,]] b = new float [[x, yl], r = new float [[x, yl] ;
do {
Adlib.writeHalo(a) ;

overall(i = x for 1 : N - 2)
overall(j =y for 1 : N - 2) {
float newA ;

newh = 0.25 * (a [i - 1, jl +a [i + 1, j] +
ali, j-11 +ali, j+ 1D ;

Math.abs(newA - a [i, j1) ;
newA ;

r [i, j]
b [i, j]
}

HPspmd.copy(a, b) ;

} while(Adlib.maxval(r) > EPS) ;

Figure 3.7: Solution of Laplace equation using ghost regions.

29
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do {
for(int parity = 0 ; parity < 2 ; parity++) {

Adlib.writeHalo(u) ;
overall(i = x for 1 : N - 2)
overall(j = y for 1 + (i¢ + parity) % 2 : N -2 : 2) {

float newA ;

newA = 0.25 * (a [i -1, jl +a [i + 1, j]1 +
afli, j-11 +a [i, j + 11) ;

Math.abs(newA - a [i, jl) ;
newlA ;

r [i, j]
a [i, j]
}

}

} while(Adlib.maxval(r) > EPS)) ;

Figure 3.8: Solution of Laplace equation using red-black relaxation (main loop
only).
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int wlo [] = {1, 1}, whi [] = {1, 1} ; // ghost widths for ‘writeHalo’
int mode [] = {CYCL, CYCL} ; // boundary conds for "

Procs2 p = new Procs2(2, 2) ;

on(p) {
Range x = new ExtBlockRange(N, p.dims(0), 1, 1) ;
Range y = new ExtBlockRange(N, p.dims(1), 1, 1) ;

int [[,]] state = new int [[x, yl] ;
. Define initial state of Life board

// Main update loop.

int sums [[,]] = new int [[x, yl] ;

for(int iter = 0 ; iter < NITER ; iter++) {
Adlib.writeHalo(state, wlo, whi, mode) ;
// Calculate neighbour sums.

overall(i = x for :)
overall(j = y for :)
sums [i, j] =
state [i - 1, j - 1] + state [i - 1, j] + state [i - 1, j + 1] +
state [i, j - 1] + state [i, j o+ 11 +
state [1i + 1, j - 1] + state [i + 1, j] + state [i + 1, j + 1] ;

// Update state of board values.

overall(i = x for :)
overall(j = y for :)
switch (sums [i, j1) {
case 2 : break;
case 3 : state [i, j] = 1; break;
default: state [i, j] 0; break;

}

Output final state

Figure 3.9: Conway’s Game of Life.
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int wlo [1 = {1, 1}, whi [1 = {1, 1} ;
int mode [] = {CYCL, CYCL} ;

Procs2 p = new Procs2(P, P) ;

on(p) {
Range x = new ExtBlockRange(N, p.dim(0), 1, 1) ;
Range y = new ExtBlockRange(N, p.dim(1), 1, 1) ;

float [[,]] latt = new float [[x, yl] ;

Random rand = new Random(97 * p.dim(0) .crd() +
89793 * p.dim(1).crd()) ;

. Initialize ‘latt’ randomly with +1’s and -1’s.
// Main loop.
for (int sweep = 0 ; sweep < NSWEEPS ; sweep++) {
for(int parity = 0 ; parity < 2 ; parity++) {
Adlib.writeHalo(latt, wlo, whi, mode) ;

overall(i = x for :)
overall(j = y for (i + parity) % 2 : : 2) {

int oldVal latt [i, j] ;
int newVal = rand.nextFloat() < 0.5 7 -1 : 1 ;
// Randomly choose +1 or -1

int deltaE

(newVal - oldVal) *
(latt [i - 1, j1 + latt [i + 1, j1 +
latt [i, j - 11 + latt [i, j + 11) ;

if (rand.nextFloat() < Math.exp(- BETA * deltaE))
latt [i, j] = newVal ; // Accept, biased by energy

. Analyse final configuration

Figure 3.10: Monte Carlo simulation of Ising model using the Metropolis algo-
rithm.
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g.dim(0)
0 1 2

(odl aon )

al0,1] a[0,2] af0,4] a[0,5] | a[0,6] a[0,7]
a[1,0] a[1,1] a[1, a[1,3] a[1,4] a[1,5] | a[l,6] a[l1,7]
a[2,0] a[2,1] a[2,2] | a[2,3] a[2,4] a[2,8] | a[2,6] a[2,7]
a[3,0] a[3,1] a[3,2] | a[3,3] a[3,4] a[3,8] | a[3,6] a[3,7]
a[4,0] a[4,1] a[4,2] | a[4,3] a[4,4] a[4,8] | a[4,6] a[4,7]
a[5,0] a[5,1] a[5,2] | a[5,3] a[5,4] a[5,8] | a[5,6] a[5,7]
a[6,0] a[6,1] a[6, al6,3] a[6,4] a[6,5] | a[6,6] a[6,7]

a[7,1] a[7,2] a[7,4] a[7,5] | a[7,6] a[7,7]

Figure 3.11: Two-dimensional array, a, distributed over the one-dimensional
grid, q.

3.3 Collapsed Distributions and Sequential Di-
mensions

The CollapsedRange subclass in Figure 3.1 stands for a range that is not
distributed—all elements of the range are mapped to a single process. The
code

Procsl q = new Procs1(3) ;

on(p) {
Range x = new CollapsedRange(N) ;
Range y = new BlockRange(N, q.dim(0)) ;

float [[,]] a = new float [[x, yll ;

creates an array in which the second dimension is distributed over processes in
q, with the first dimension collapsed. The situation is visualized for the case
N = 8 in Figure 3.11. (This is our first example of a one-dimensional process
“grid”.)

Unfortunately the language defined so far doesn’t provide a good way to
exploit the locality implied by a collapsed dimension. If we want to assign the
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value in a[6,1] to a[2,1] we have to do something convoluted like

Procsl q = new Procs1(3) ;
on(p) {
Range x = new CollapsedRange(N) ;
Range y = new BlockRange(N, q.dim(0)) ;

float [[,]] a = new float [[x, yl] ;

at(j =y [11) {
float local ;

at(i = x [6])
local = a [i, j] ;

at(i = x [2])
a [i, j] = local ;
}
¥

Because of the restriction that subscripts must be distributed indices, the value
of a[6,1] must first be read to a local variable in an at construct, then the
value of the local variable must be copied to a[2,1] in another. This is very
tedious, and probably inefficient.

To avoid this common problem, the HPJava model of distributed arrays is
extended with the idea of sequential dimensions. If the type signature of a
distributed array has an asterix in a particular dimension, that dimension will
implicitly have a collapsed range, and the dimension can be subscripted with
integer expressions just like a sequential array. The example becomes

Procsl q = new Procsi(3) ;
on(p) {
Range y = new BlockRange(N, q.dim(0)) ;

float [[*,]] a = new float [N, yll ;

at(j =y [11)
a [6, j1 =a[1, j1;
}

The outer at construct is retained to deal with the distributed dimension, but
there is no need for distributed indices in the sequential dimension. The ar-
ray constructor is passed integer extent expressions for sequential dimensions.
A CollapsedRange object will be created for the array, but the programmer
generally need not be aware of its existence.

Figure 3.12 is an example of a parallel matrix multiplication in which the first
input array, a, and result array, c, are distributed by rows—each processor is
allocated a consecutive set of complete rows. The first dimension of these array is
distributed, breaking up the columns, while the second dimension is collapsed,
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Procsl p = new Procsi(P) ;
on(p) {
Range x = new BlockRange(N, p.dim(0)) ;

float [[,*]] a
float [[*,]] b

new float [[x, N]], ¢ = new float [[x, NI1] ;
new float [[N, x]], tmp = new float [[N, x]] ;

. initialize ‘a’, ‘b’
for(int s = 0 ; s < N ; s++) {
overall(i = x for :) {
float sum = 0 ;

for(int j =0 ; j < N ; j++)
sum += a [i, j1 * b [j, 1] ;

=

c [i, (i€ +s) % NI
}

sum ;
// cyclically shift ‘b’ (by amount -1 in x dim)...

Adlib.cshift(tmp, b, -1, 0) ;
HPspmd . copy (b, tmp) ;

Figure 3.12: A pipelined matrix multiplication program.
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leaving individual rows intact. The second input array, b, is distributed by
columns.

Array types with sequential dimensions are technically subtypes of corre-
sponding array types without sequential dimension. All operations generally
applicable to distributed arrays are also applicable to arrays with sequential
dimensions. The asterisk in the type signature adds the option of subscripting
the associated with integer espressions. It does not remove any option allowed
for distributed arrays in general.

3.4 Replication and Distribution Groups

Allowing collapsed array dimensions means that an array can be distributed
over a process grid having smaller rank than the array itself. Conversely it is
also allowed to distribute an array over a process grid whose rank is larger than
the array.

Procs2 p = new Procs2(P, P) ;

on(p) {
Range x = new BlockRange(N, p.dim(0)) ;

float [[]] b = new float [[x]] ;

}

The array b has a dimension distributed over the first dimension of p, but none
distributed over the second. The interpretation is that b is replicated over the
second process dimension. Independent copies of the whole array are created at
each coordinate where replication occurs. Usually programs maintain identical
values for the elements in each copy (although there is nothing in the language
definition itself to require this).

Replication and collapsing can both occur in a single array, for example

Procs2 p = new Procs2(P, P) ;

on(p) {
float [[*]] c = new float [[N]] ;

}

The range of ¢ is sequential, and the array is replicated over both dimensions of
p- This makes it very similar to an ordinary Java array declared in all processes
by

float [] d = new float [N] ;
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Procs2 p = new Procs2(P, P) ;

on(p) {
Range x = new BlockRange(N, p.dim(0)) ;
Range y = new BlockRange(N, p.dim(1)) ;

float [[,]1]1 ¢

new float [[x, yl] ;

float [[,*]] a = new float [[x, N1] ;
float [[*,]] b = new float L[N, yll ;

. initialize

overall(i = x for :)
overall(j =

float sum = 0 ;
for(int k = 0 ; k < N ; k++)
sum += a [i, k] * b [k, j] ;

c [i, j] = sum ;

}

Figure 3.13: A direct matrix multiplication program.

The properties of ¢ and d are not identical, though. The array ¢ can be passed to
library functions that expect distributed arrays as arguments, whereas d cannot.

In the last section we saw a “pipelined” matrix multiply algorithm. A sim-
pler and potentially more efficient implementation of matrix multiplication can
be given if the operand arrays have carefully chosen replicated/collapsed distri-
butions. The program is given in Figure 3.13. As illustrated in Figure 3.14, the
rows of a are replicated in the process dimension associated with y. Similarly the
columns of b are replicated in the dimension associated with x. Hence all argu-
ments for the inner scalar product are already in place for the computation—no
communication is needed.

We would be very lucky to come across three arrays with such a special
alignment relation (distribution format relative to one another). There is an
important function in the Adlib library called remap, which takes a pair of
arrays as arguments. These must have the same shape and type, but they can
have unrelated distribution formats. The elements of the source array are copied
to the destination array. In particular, if the destination array has a replicated
mapping, the values in the source array are broadcast appropriately.

Figure 3.15 shows how we can use remap to adapt the program in Figure
3.13 and create a general purpose matrix multiplication routine. Besides the
remap function, this example introduces the two inquiry methods grp() and
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C /c[0,0] c[0,1] c[O,Z]\ /0[0,3] c[0,4] \

c[1,0] c[1,1] c[1,2] c[1,3] c[1,4]

c[2,0] c[21] c[2.2] [2,3] c[2,4]

c[3.0] c[3.1] c[3.2] c[3,3] c[3.4]

c[4,0] c[4,1] c[4,2] c[4,3] c[4,4]

2 D
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a[1,0]a[1,1]a[1,2]a[1,3]a[1,4] | a[1,0]a[1,1]a[1,2]a[1,3]a[1,4
a[2,0]a[2,1]a[2,2]a[2,3]a@ a[2,0]a[2,1]a[2,2]a[2,3]a[2,4

- N

a[3,0]a[3,1]a[3,2]a[3,3]a@ a[3,0]a[3,1]a[3,2]a[3,3]a[3,4

~N

a[4,0]a[4,1]a[4,2]a[4,3]a[4,4] | a[4,0]a[4,1]a[4,2]a[4,3]a[4,4

b[2,0] b[2.1] b[2.2] b[2,3] b[2,4]
b[3,0] b[3.1] b[3,2] b[3,3] b[3,4]

\b[4,0] b[4,1] b[4,2y \b[4,3] b[4,4] /
/ b[0,0] b[0,1] b[o,zﬁ / b[0,3] b[0,4] \

b[1,0] b[L1.1] b[L,2] b[1,3] b[1,4]
b[2,0] b[21] b[2.2] b[2,3] b[2,4]
b[3,0] b[3.1] b[3,2] b[3,3] b[3,4]

\b[4,0] b[4,1] b[4,2y \b[4,3] b[4,4] /

Figure 3.14: Distribution of array elements in example of Figure 3.13. Array a
is replicated in every column of processes, array b is replicated in every row.
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void matmul (float [[,]] c, float [[,]] a, float [[,]] b) {

Group p = c.grp(Q) ;
Range x = c.rng(0) ;
Range y = c.rng(1) ;
int N = a.rng(1).size() ;

float [[,*]] ta
float [[*,]] tb

new float [[x, N]] on p ;
new float [[N, yl] on p ;

Adlib.remap(ta, a) ;
Adlib.remap(tb, b) ;

on(p)
overall(i = x for :)
overall(j = y for :) {

float sum = 0 ;
for(int k = 0 ; k < N ; k++)
sum += ta [i, k] * tb [k, j] ;

c [i, j] = sum ;

}

Figure 3.15: A general matrix multiplication program.
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Procs2 p = new Procs2(P, P) ;

Range x = new BlockRange(N, p.dim(0)),
y = new BlockRange(N, p.dim(1)) ;

float [[,]] a = new float [[x, y]l] on p;

on(p) {
. compute elements in 2d block-distributed ‘a’

}

Procsl q = new Procsi(Q) ;
Range z = new BlockRange(N, q.dim(0));

float [[,*]] b = new float [[z, N]1] on g;

Adlib.remap(b, a); // copy elements of ‘a’ to row-distributed ‘b’

on(q) {
. process elements of ‘b’

}

Figure 3.16: Sketch example exchanging data between different grids.

rng () which are defined for any distributed array. The inquiry grp() returns
the distribution group of the array, and the inquiry rng(r) returns the rth range
of the array. The argument r is in the range 0,..., R — 1, where R is the rank
(dimensionality) of the array.

The example also illustrates the most general form of the distributed array
constructor. In all earlier examples arrays were distributed over the whole of
the active process group, defined by an enclosing on construct. In general an
on clause attached to an array constructor itself can specify that the array is
distributed over some subset of the active group. This allows one to create
an array outside the on construct that will processes its elements. Through
communication functions like remap, values can then be exchanged between
different process grids. A sketch example is given in Figure 3.16.

To allow for this kind of situation, where arguments might be distributed
over distinct process groups—not the active process group—the generic matrix
multiplication of Figure 3.15 included on p clauses in the constructors of its
temporary arrays, and explicitly restricts control with an on(p) construct before
processing. As we will see in the next section, this refinement also allows the
arguments of matmul to be arbitrary array sections.
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Array Sections

HPJava has a mechanism for representing subarrays. This mechanism is mod-
elled on the array sections of Fortran 90. In HPJava an array section expression
has a similar syntax to a distributed array element reference but uses double
brackets. Whereas an element reference is a variable, an array section is an
expression that represents a new distributed array object.

The new array does not contain new elements. It contains a subset of the
elements of the parent array. Those elements can subsequently be referenced—
read or updated—either through the parent array or through the array section!.

We have seen that the subscripts in a distributed array element reference
are either locations or (restrictedly) integer expressions. Options for subscripts
in array section expressions are wider. Most importantly, as in Fortran 90, a
section subscript is allowed be a triplet. For each triplet subscript a section
expression has an array dimension. So in a normal array section expression
the rank of the result is equal to the number of triplet subscripts. The section
may also have some scalar subscripts, similar to those appearing in element
references. In this case the rank of the result will be lower than the rank of the
parent array.

This fragment includes two examples of array section expressions:

Procs2 p = new Procs2(P, P) ;

on(p) {
Range x = new BlockRange(N, p.dim(0)) ;
Range y new BlockRange(N, p.dim(1)) ;

float [[,]] a = new float [[x, yl] ;
float [[1] b =a [[0, :]]

foo(a [[0 : N/ 2 -1, 0 :N-1:2]11) ;
}
IThe HPJava idea of an array section expression has a close relationship to the Fortran
90 idea of an array pointer. In Fortran an array pointer can reference an arbitrary regular
section of an array
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208 Al

a[1,6] a[1,7]
a[2,1] a[2,4] a[2,6] a[2,7]
a[3,1] a[3,4] a[3,6] a[3,7]

a4,1] al4,4] al4,7]
a[5,1] a[5,4] a[5,7]
al6,1] al6,4] al6,7]
al7,1] al7,4] al7,7]

Figure 4.1: A one-dimensional section of a two-dimensional array (shaded area).

The first array section expression appears on the right hand side of the definition
of b. It specifies b as an alias for the first row of a (Figure 4.1). In an array
section expression, unlike in an array element reference, a scalar subscript is
always allowed to be an integer expression?. The second array section expression
appears as an argument to the method foo. It represents a two-dimensional,
N/2 by N/2, subset of the elements of a, visualized in Figure 4.2.

Array sections allow us to implement a number of interesting applications.
They are often passed as arguments to library functions like remap, implement-
ing various interesting patterns of communication and arithmetic on subarrays.

4.1 Two-dimensional Fourier transform

In image processing applications Fast Fourier Transforms (FFTs) and related
transformations are sometimes applied to two-dimensional images. A two-
dimensional FFT can be broken down into a series simpler one-dimensional
FFTs—the one-dimensional transform is simply applied to every row of the im-
age, then to every column. All rows can be transformed in parallel, then all
columns can be transformed in parallel. An implementation is sketched in Fig-
ure 4.3 This implementation assumes the availability of a function for calculat-
ing FFTs on one-dimensional collapsed arrays (ie, a sequential one-dimensional
FFT. Because Java doesn’t have complex numbers, we store real and imaginary
parts in pairs of arrays whose names are prefixed re and im). Alternatively a
an extra dimension of extent 2 could be added to the arrays. After processing
all columns, the data is remapped so that each row is a collapsed subarray. A
section dimension naturally inherits the sequential property (the asterisk in the
type signature) from the associated dimension of the parent array.

2Distributed indices are allowed as well, if the location is in the proper range.
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TWO-DIMENSIONAL FOURIER TRANSFORM

al4,1] a[4,2]
a[5,1] a[5,2]
al6,1] a[6,2]
a[7,1] a[7,2]

al4,3] a[4,4]
a[5,3] a[5,4]
a[6,3] a[6,4]
a[7,3] a[7,4]

Q

[5,
a[e6,

[ a[4,6] a[4,7] \
a[5,6] a[5,7]
a[6,6] a[6,7]

a[7,6] a[7,7]
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Figure 4.2: A two-dimensional section of a two-dimensional array (shaded area).

void fftid(float [[*]] re, float [[*]] im) {

}

new BlockRange(N, p.dim(0)) ;

float [[x, N]], imA

Procsl p = new Procsi(P) ;
on(p) {
Range x =
float [[,*]] reA = new
float [[*,]] reB = new

overall(i =

Adlib.remap(reB, red) ;
Adlib.remap(imB, imA) ;

x for :)

float [[N, x]]1, imB

. initial values in ‘reA’, ‘imA’
overall(i = x for :)
fftid(reA [[i, :11, imA [[i, :11) ;

fftid(reB [[:, ill1, imB [[:, i11) ;

. result is in ‘reB’,

“imB’

// One-dimensional FFT on sequential (non-distributed) data.

new float [[x, NI]
new float [[N, x]]

Figure 4.3: A two-dimensional Fourier Transform.

’

>
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4.2 Cholesky decomposition

If A is a symmetric positive definite matrix, associated linear equations are often
solved using Choleski decomposition:

A=LLT

where L is a lower triangular matrix. In practise this is followed by forward and
back substitutions:

Ly=b, LTx=y

to complete the solution of Ax = b. A pseudocode algorithm for Cholesky
decomposition is

Fork=1ton—1

1/2
Uik = ayy,

Fors=k+1ton
lsk = ask/lkk
Forj=k+1ton
Fori=jton
aij = aij — likljk
lnn = a711412
A parallel version, assuming the main array is stored by columns with the
rows cyclically distributed, is given in figure 4.4. The [ array is accumulated
in the lower part of the input array a. Note that the array b has a replicated
distribution, so the remap operation is a broadcast of the relevant part of column
k.

[Discuss the expression b[j ‘] —why it must be j*.]

4.3 Matrix multiplication with reduced memory

One disadvantage of the program in Figure 3.15 is that it allocates two very
large temporary arrays, ta and tb. Because these are both replicated in one
dimension, they can easily consume more memory than the original arguments.
This problem can be solved by only storing copies of elements in restricted bands
of the original matrices at any one time. Figure 4.5 gives a modified algorithm
where the maximum band width is B.

For simplicity we assumed here that B is a compile-time constant. Alterna-
tively we can compute this value dynamically. The volume () method on Range
is used internally by array constructors to control allocation of memory for array
elements. It defines the largest block of locations of the current range held by
any processor. Hence an upper bound on the number of elements held by any
processor for ta and tb combined is

B * x.volume() + B * y.volume()
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Procsl p = new Procsi(P) ;
on(p) {
Range x = new CyclicRange(N, p.dim(0));
float [[*,]] a = new float [[N, x]]

’

float [[*]] D

new float [[N]] ; // a buffer
. some code to initialise ‘a’
for(dint k =0 ; k < N -1 ; k++) {

at(j = x [k]) {
float d = Math.sqrt(a [k, j1) ;

a [k, jl =4d;
for(int s =k + 1 ; s < N ; s++)
a[s, j1 /=4 ;
}
Adlib.remap(b [[k + 1 : 11, a [[k + 1 : , kI1);

overall(j = x for k + 1 : )
for(int i = j¢ ; i < N ; i++)
a [i, j1 -=b [11 * b [j] ;
}

at(j = x [N - 1]1)
a [N -1, jl = Math.sqrt(a [N - 1, j1) ;

Figure 4.4: Cholesky decomposition.
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void matmul (float [[,]] ¢, float [[,]] a, float [[,]] b) {

Group p = c.grp() ;
Range x = c.rng(0) ;
Range y = c.rng(l) ;
int N = a.rng(1).size() ;

float [[,*]] ta
float [[*,]] tb

new float [[x, B]] on p ;
new float [[B, y]] on p ;

on(p)
overall(i = x for :)
overall(j = y for :)
c [i, j1=0;

for(int base = 0 ; base < N ; base += B) {
int w = min(B, N - base) ; // minimum value

Adlib.remap(ta [[:, O : w - 1]]1, a [[:, base : base + w - 1]]) ;
Adlib.remap(tb [[0 : w - 1, :1]1, b [[base : base + w - 1, :11) ;

on(p)
overall(i = x for :)
overall(j = y for :)
for(int kX = 0 ; k < w ; k++)
c [i, j1 += ta [1i, k] * tb [k, j] ;

Figure 4.5: Matrix multiplication with reduced memory requirement.
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If MAX_TEMPORARY SIZE is a constant defining a limit on the total volume of
memory we ever wish to allocate for temporary arrays, a suitable formula for B
might be

B = MAX_TEMPORARY_SIZE / (x.volume() + y.volume())

With a few refinements like this, the algorithm of Figure 4.5 becomes a credi-
ble basis for a library matrix multiplication routine, applicable to generic dis-
tributed arrays.

4.4 Subranges

Consider again the example of the array section in figure 4.2. We can capture
this object in a named variable as follows

float [[,]] a = new float [[x, yl] ;

float [[,]] ¢

af[[0: N/2-1,0 :N-1:2]] ;

Now, what are the ranges of c—the objects returned by the rng() inquiry
applied to c?

In fact they are a different sort of range from any considered so far—they are
subranges. For completeness the HP Java language provides a special syntax for
constructing subranges directly. Ranges equivalent to those of ¢ can be created
by

Range u = x [0 : N / 2 - 1] ;
Range v =y [0 : N -1 : 2] ;

This syntax should look quite natural. It is similar to the subscripting syntax
for locations, but the subscript is a triplet.

The global indices associated with the subrange v, for example, are in the
range 0,...,v.size(). A subrange inherits locations from its parent range, but
it specifically does not inherit global indices from the parent.

A non-trivial subrange is one for which the lower bound is not equal to zero,
or the upper bound is not equal to size() — 1, or the stride is not equal to 1.

A non-trivial subrange is never considered to have ghost extensions, even
if its parent range does. This avoids various ambiguities that might otherwise
crop up.

What about the distribution groups of sections? Now triplet subscripts don’t
cause problems—the distribution group of ¢ above can be defined to be the same
as the distribution group of the parent array a. But the example of figure 4.1
is problematic. This was constructed using a scalar subscript, effectively as
follows:

float [[,]] a = new float [[x, y]] on p ;

float [[1] b = a [[0, :]1]
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The single range of b is clearly y, but identifying the distribution group of b
with that of a doesn’t seem to be right. If a one dimensional array is newly
constructed with range y and distribution group p, like this:

float [[]] bnew = new float [[y]] on p ;

it is understood to be replicated over the first dimension of p. The section
b clearly isn’t replicated in this way. Where does the information that b is
localized to the top row of processes go?

4.5 Restricted Groups

In the last section triplet section subscripts motivated us to define subranges as
a new kind of range. Likewise, scalar section subscripts will drive us to define
a new kind of group. A restricted group is defined to be the subset of processes
in some parent, group to which a particular location is mapped. In the current
example, the distribution group of b is defined to be the subset of processes
in p to which the location x[0] is mapped. Rather than of further extend-
ing subscripting notations to describe these subgroups, the division operator is
overloaded. The distribution group of b is equivalent to g, defined by

Group q = p / x [0] ;

The expression in the initializer is called a group restriction operation.

In a sense the definition of a restricted group is tacit in the definition of an
abstract location. Without formally defining the idea, we used it implicitly in
section 2.4. In Figure 2.7 of that section the set of processes with coordinates
(0,0), (0,1) and (0,2), to which location x[1] is mapped, can now be written
as

p / x [1]

and the set with coordinates (0, 1) and (1,1), to which y[4] is mapped, can be
written as

p/ v [4]

The intersection of these two—the group containing the single process with
coordinates (0,1) can be written as

p/ x [1]1 / y [4]
or as
p/ vy [4] / x [1]

At first sight the definition of HP Java restricted groups may appear slightly
arbitrary. One good way to argue that a language construct is “natural” is
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to demonstrate that it has a simple and efficient implementation. The sub-
groups introduced here have an attractively simple concrete representation. A
restricted group is uniquely specified by its set of effective process dimensions
and the identity of the lead process in the group—the process with coordinate
zero relative to the dimensions effective in the group. The dimension set can
be specified as a subset of the dimensions of the parent grid using a simple
bitmask. The identity of the lead process can be specified through a single in-
teger ranking the processes of the parent grid. So a general HPJava group can
be parametrized by a reference to the parent Procs object, plus just two int
fields. It turns out that this representation is not only compact; it also lends
itself to efficient computation of the most commonly used operations on groups.

Note that the inquiry function dim() is a member of the Procs class (the
process grid class), not the superclass Group.

4.6 Mapping of array sections

Now we can give a formal definition of the mapping (distribution group and
ranges) of a general array section.

If the rth dimension of array a is non-sequential, an integer section subscript,
n, in this dimension behaves like a location-valued subscript, a.rng(r) [n]3.
Suppose any such integer subscripts are replaced by their equivalent location
subscripts in this way. If the set of all location subscripts is now 4,7, ..., the
distribution group of the section is

p/ilif -

where p is the distribution group of the parent array. For a shifted index, as a
matter of definition,

p/ (i £ expression) = p/ i

This makes sense—a shifted index is supposed to find an array element in the
same process as the original location, albeit that the element could be in a ghost
region.

The kth range of the section is determined by the kth triplet-valued sub-
script. If the kth triplet-valued subscript is [:u:s in dimension r, the kth range
of the section is a.rng(r) [:u:s].

Note that, because non-trivial subranges are never considered to have ghost
extensions, a section constructed with non-trivial triplet subscripts in some di-
mensions is not be considered to have accessible ghost extensions in those di-
mensions, even if its parent array had them.

It shouldn’t come as a surprise that subranges and restricted groups can
be used in array constructors, on the same footing as the ranges and groups

3If the rth dimension is sequential, this equivalence is not strict; an integer subscript in
a sequential dimension may have extended bounds in the peculiar case that the sequential
dimension has ghost extensions. But there are no locations associated with subscript values
in ghost extensions.
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described in earlier sections. This means, for example, that temporary arrays
can be constructed with identical mapping to any given section. This facility
is useful when writing generic library functions, such as the matmul of Figure
3.15, which must accept full arrays or array sections without discrimination®.

The last three sections were unusual in that they introduced some new pieces
of syntax but did not give any full example programs that use them. The
reason is that restricted groups and subranges largely exist “below the surface”
in HPJava. The new notations are mainly needed to add a kind of semantic
completeness to the language. It is not especially common to see subgroups or
subranges constructed explicitly in HPJava programs.

4.7 Scalars

We imposed no restriction that the list of subscripts in an array section expres-
sion must include some triplets (or ranges). It is legitimate for all the subscript
to be “scalar”. In this case the resulting “array” has rank 0.

There is nothing pathological about rank-0 arrays. They logically maintain
a single element, bundled with the distribution group over which this element is
replicated. Because they are logically distributed arrays they can be passed as
arguments to Adlib functions such as remap. If a and b are distributed arrays,
we cannot usually write a statement like

a [10, 10] = b [30] ;

because the elements involved are generally held on different processors. As we
have seen, HPJava imposes constraints that forbid this kind of direct assignment
between array element references. However, if it is really needed, we can usually
achieve the same effect by writing

Adlib.remap(a [[10, 1011, b [[30]11);

The arguments are rank-0 sections holding just the destination and source ele-
ments.

There is a trivial syntactic problem with rank-0 arrays: the usual form
of type signature for distributed arrays does not generalize down to the zero-
dimensional case. The type signature for a one-dimensional distributed array
typically has one empty slot enclosed in double brackets; there is no way to
write zero empty slots! The symbol # is used as a degenerate form of the double
brackets, and the type signature for a rank-0 array with element of type T is
written 1" #.

The story of subranges and restricted groups repeats itself. The operation of
array sectioning drives us to introduce a new kind of object into the language.
Once that happens we should have a syntax for creating the new kind of object

41t also allows HPJava arrays to reproduce the full panoply of alignment options supported
by the ALIGN directive of High Performance Fortran.
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directly. Rank-0 distributed arrays, which we will also call simply “scalars”, can
be created as follows

float # ¢ = new float # ;
float a [[,]] = new float [[x, yll ;
Adlib.remap(c, a [[10, 10]1]) ;

float d = ¢ [] ;

This example illustrates one way to broadcast an element of a distributed array:
remap it to a scalar replicated over the active process group. The element of
the scalar is extracted through a distributed array element reference with an
empty subscript list. Like any other distributed array, scalar constructors can
have on clauses, specifying a non-default distribution group.

4.8 Array restriction

Library functions operating on distributed arrays often specify certain alignment
relations between their array arguments. In HPJava it is atural to define two
arrays to be aligned if they have the same distribution group and all their ranges
are aligned®. The Adlib member dotProduct, for example, takes two distributed
array arguments. These arguments must be aligned.

Occasionally it happens that two arrays we want to pass as arguments to
a library function are essentially aligned, but one is replicated over a particu-
lar process dimension and the other isn’'t. It may be intuitively obvious that
all the data needed by the function is in the right place, but still we cannot
call the function the ranges may match, but the replicated array has a larger
distribution group. By the definition given above the arrays are not identically
aligned.

One possibility is to relax the definition of argument alignment to take ac-
count of this situation. But experience suggests that the simple definition of
alignment given above is easy to understand, and the specification and imple-
mentation of library functions are simpler if thay are based on this definition.

A minor extension to the HPJava language takes care of this situation. The
restriction operation introduced for groups in the previous section can also be
applied to an array. It returns a new array object—akin to an array section—
which has the same ranges as the parent array, but has its group restricted by
the specified location. Applied to a replicated array, it returns an array object
referencing only the copies of the elements held in the restricted group.

Figure 4.6 is a generalization of the matrix multiplication program in Figure
3.13 to the case where the arrays are suitably distributed over a 3-dimensional
process grid. Note that array c is replicated over the process dimension of z, a
is replicated over the dimension of y, and b is replicated over the dimension of

5Later we will give more detailed definitions.
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Procs3 p = new Procs3(P, P, P) ;

on(p) {
Range x = new BlockRange(N, p.dim(0)) ;
Range y = new BlockRange(N, p.dim(1)) ;
Range z = new BlockRange(N, p.dim(2)) ;

float [[,]1] c

new float [[x, yl] ;

float [[,]1] a
float [[,]] b

new float [[x, z]l] ;
new float [[z, yl] ;

. initialize ‘a’, ‘b’
overall(i = x for :)
overall(j = y for :)
c [i, j] = Adlib.dotProduct(a [[i, :1]1 / j, b [[:, j11 / 1) ;

Figure 4.6: A maximally parallel matrix multiplication program.

x. The sequential inner loop of Figure 3.13 is replaced by a call to dotProduct
which directly forms the inner product of two sections with distributed range z.

If we didn’t know about array restriction we would probably try to write the
loop body as

c [i, j] = Adlib.dotProduct(a [[i, :]11, b [[:, j11) ;

The trouble is that according to the rules of the previous section the first argu-
ment of dotProduct has distribution group p/i whereas the second has distribu-
tion group p/j. So the arrays are not identically aligned. By forming restricted
versions of both these sections we reduce both groups down to p/i/j. Luckily
this is also the home group of the array element ¢ [i, j], so the program will
work correctly.

This is the first example we have given of a call to a collective library function
inside the parallel overall construct. The library, Adlib, supports this kind
of “nested parallelism” provided a few precautions are taken. These will be
explained in section 6.



Chapter 5

Some Rules and Definitions

In the preceding chapter we completed the definition of the HPJava process
group by adding the idea of a restricted group to the earlier idea of a process
grid. This development has some useful applications to the basic distributed
control constructs of the HPJava language.

5.1 Rules for distributed control constructs

In earlier sections we sometimes referred informally to the “active process group”.
One concrete role of this group was as the default distribution target in dis-
tributed array constructors. We used the fact that the on construct establishes
its group argument as the active process group inside the body of the construct.
The other distributed control constructs, at and overall, also affect the active
process group—recall the discussion in section 2.4. We can use the notations
introduced in the last section to state their effect more formally

First, for completeness, we restate the effect of the on construct and give an
associated rule. As explained in section 2.1, the construct

on(p) {

. ..
changes the active group to p inside its body. The associated rule is:
Rule 1 The construct

on(p) { ... 1}

can only appear at a point in the program where the of the p is contained in the
active process group.

In other words, an on construct cannot add any new process to the active group.

53
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Now, if the current active group is p, executing the construct construct
at(i = x [n]) {

}

or

overall(i = x for 1 : u : s) {

}

will change the active group to p/i inside the bodies of the constructs.
The expression p/i is only well defined if the location i belongs to a range
distributed over a dimension of p!. So we can conclude that:

Rule 2 Unless x is a collapsed range, a control construct
at(i=x @) { ...}

or
overall(i = x for 1 : u:s) { ...}

can only appear at a point in the program where the process dimension of x
occurs in the dimension set of the active process group.

As an example of the application of this rule, notice that the the dimension set
of the restricted group p/x[n] certainly does not include the process dimension
associated with x. So one of the implications of rule 2 is that we should never
expect to see exactly the two constructs above nested thus:

at(i = x [n])
overall(i = x for 1 : u : s) { // error!

}

This is good, because the outer construct already restricts control to a single
coordinate value, and it surely doesn’t make sense to try distributing control
across all coordinates of the same process dimension inside that construct?.

5.2 Rules for distributed array constructors

There are several restrictions on distributed array constructor, which we will
group together in:

1 Alternatively x can be a collapsed range, in which case p/1i is defined to be equal to p.
2Strictly speaking this nesting is legal (but pointless) if x is collapsed.
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Rule 3 The distributed array constructor expression
new T[[eg, ---» €75 -..1]1 on p

can only appear in a context where the distribution group, p, is contained in
the currently active process group. If e, is a (non-collapsed) range object, its
process dimension must belong to the dimension set of p. No two range objects
M €g,---,€r,... can be distributed over the same process dimension of p.

If the “on p” clause is omitted, we identify the distribution group, p, with the
active process group, and the remaining conditions must still apply.

5.3 Rules for access to distributed array ele-
ments

First we will collect together rules for distributed array element references im-
plied or informally stated in 2.4 and subsequent sections. The first rule is part
of the static semantics of the language—it can be enforced by the type checker:
Rule 4 If a is a distributed array, then in the element reference

aleg, ... €py...1
the expression e, is either an integer expression—allowed only if the corre-
sponding dimension of a has the sequential attribute—or a (possibly shifted)
distributed indez.
Depending on whether e, is in fact an integer, an index declared in an at
construct, or an index declared in an overall construct, exactly one of the
following three “run-time”? rules applies. To simplify the discussion, we first
ignore ghost regions. The three rules are: either
Rule 5 In the distributed array element reference:

aleg, ... €ry...1]
if e, is an integer, its value must lie in the range

0<e. <x.size()

where r = a.rng(r).

or

30f course there is nothing to prevent a compiler applying these checks at compile-time if
it can do so.
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Rule 6 The distributed array element reference in:

at(i =z [n]) {
aleg, ... €r—1,%,€p41, ---]

}
s allowed if and only if

1. The expression a is invariant in the at construct—it does not depend on
i, or any variable declared or modified within the scope of i*.

2. The location x[n] is an element of the range a.rng(r)®.
or
Rule 7 The distributed array element reference in:

overall(i = x for l : u : s) {
a[eO:'--:e’l‘fl:ire’l‘—‘rlx---]

}
is allowed if and only if
1. The expression a is invariant in the overall construct.
2. All locations in x[l:u:s] are of elements a.rng(r).

A subtle and important point to appreciate is that rules 6 and 7 are statements
about the at and overall constructs as a whole, not about the array accesses in
isolation. They apply unconditionally to any access that appears textually inside
the constructs, even if some conditional test in the body of the construct might
prevent, those accesses from actually being executed. This is very important
because it allows any associated run-time checking code to be lifted outside the
constructs, and in particular to be lifted outside the local loops implied by an
overall.

4 Actually this condition is more important for the case of an index subscript declared by
an overall (next rule). It is imposed here to preserve the semantic relation between at and
overall specified in 2.4.

5This statement needs some interpretation, because locations in certain ranges may be
identified with locations in others. For example, locations in a subrange will be identified
with the matching locations of the parent range. In fact it is possible for two independently
created ranges to be considered “aligned”, in which case their locations will be identified. In
general this will happen if the two ranges are are distributed over exactly the same process
dimension and they have sufficiently similar distribution formats. “Sufficiently similar” usually
means the distribution formats should be structurally identical, but their is even some leeway
here. In particular locations in an ExtBlockRange can be identified with the corresponding
locations of a BlockRange if the ranges have the same extent and process dimension. The
Range class has includes methods such as isAligned that can be used to determine if two
ranges are aligned, and thus logically share locations.
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5.3.1 Changes for ghost regions

If the array a appearing in rule 5 has ghost regions®, the range of allowed
subscripts is changed to

—z.loExtension() <e, < z.size() + z.hiExtension()

If the array appearing in rule 6 has ghost regions, the index subscript may be
shifted:
at(i =z [n]) {
. a[eo, ,er,l,i:td,er+1, ]

}

and the following requirement is added:
3. The expression £d is in the range

—2.1oExtension() < #+d < z.hiExtension()

Rule 7 is modified in a completely analogous way if the array appearing there
has ghost regions.

5.3.2 A final rule for array element access

The rules on subscripts given in the last two subsections go a long way towards
ensuring a crucial requirement of HP Java, namely that a process may only access
locally held array elements. There are still odd cases—typically involving array
sections—where those rules are insufficient. Consider the pathological example
of Figure 5.1. The subscripts on the element reference b [j] are legal—j is
certainly a location in b.rng(0) (which is equal to y). But, as illustrated,
the section b is localized to p/x[0]—the top row of processes in the figure—
whereas the at construct specifies that the element assignments are performed
in the group p/x [N-1]—the bottom row of processes.
This kind of error can be excluded by the following rule:

Rule 8 An element reference in an array a can only be made by a process that
is contained in the distribution group a.grp().

The error above is now exposed, because the distribution group of b is p/x[0].
This does not contain the active process group inside the overall construct,
namely p/x[N-11/j. So the processes executing the array access fail to meet
the criterion of rule 8.

5.4 A recommendation for updating variables

Suppose the distribution group of a is p, and the list of subscripts eg, ..., e, ...
in the element reference
aleg, ..., €py ...]

6See section 7.3.1 for an example of a sequential dimension with ghost regions.
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Procs2 p = new Procs2(P, P) ;

on(p) {
Range x = new BlockRange(N, p.dim(0)) ;
Range y = new BlockRange(N, p.dim(1)) ;

float [[,]] a = new float [[x, yl] ;

float [[1]1 b = a [[0, :1]1 ;

at(i = x [N - 1])
overall(j = y for :)

b [G1 =3°; // error!

x[0]
X[1]
X[2] | a[2,0] a[2,1] a[2,

x[3]\ a[3,0] a[3,1] a[3,2] | a[3,3] a[3.,4]

208 Ay

a[1,6] a[l1,7]

a[2,6] a[2,7]
a[3,6] a[3,7]

a[4,1] a[4,3] ( a[4,3] a[4,4] a[4.9]
al5,1] a[5,4] | a[5,3] a[5.,4] a[5,4] | a[5,6] a[5,7]
a[6,1] a[6,4] | a[6,3] a[6,4] a[6,9] | a[6,6] a[6,7]

a[7,1] a[7,q] | a[7,3] a[7.,4] a[7.,9] | a[7.6] a[7,7] |

a[4,6] a[4,7]

Figure 5.1: Access error discussed in text. Section b is shaded area at top. The
at construct restricts control to the bottom row of processes.
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includes locations 1, j, ..., then the home group of the array element is defined

to be
p/i/i/ ..

If the array has a replicated distribution this group may contain several pro-
cesses; otherwise it contains a single process.

The definition of the home group of a distributed array element can be ex-
tended to other kinds of variable: the home group of a variable (not a distributed
array element) is simply the active process group at the point where the variable
is declared.

A good rule of thumb for updating variables in general is

Recommendation 1 A variable should only be updated when the active process
group is identical to the home group of the variable.

If this rule is followed rigorously throughout a program (and if different processes
only ever diverge in behaviour through dependencies on values of global indexes
in overall constructs, or values of locally held program variables) it has the
interesting result that all variables remain coherent. A variable is coherent if,
at corresponding stages of execution of an SPMD program, all processes in the
home group of a variable hold identical values in their local copies of the variable.

There are many places in HPJava programs where variables are required to
be coherent. This is particularly true of arguments to collective operations.
There are other places where it can be convenient to relax the coherence rule,
which is one reason why it is only advisory (another reason is that it is relatively
expensive to enforce this rule by runtime checks).

We call the style of programming in which all variables are held coherent
the canonical HPspmd style. Out of the examples given so far in this document,
the only one that doesn’t follow canonical style is the Monte Carlo program
of Figure 3.10. In that program the variable rand has home group p, but it
is updated inside nested overall constructs, where the active process group
is p/i/j. Also, the initialization of rand involves a dependency on the crd ()
method of Dimension, which is intrinsically incoherent. All other variables in
all other algorithmic examples are coherent”. The canonical HPspmd style has
a special affinity with the pure data parallel programming style of languages
like HPF.

"There is a short example in section 2.1 that uses the crd() inquiry, and therefore isn’t
canonical.
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Chapter 6

A Distributed Array
Communication Library

Many of the examples in this article use a communication library called Adlib.
This library is not supposed to have a uniquely special status so far as the
HPJava language definition is concerned. Adlib was developed independently
of the HPJava project, to support HPF translation. Eventually HPJava bindings
for other communication libraries will be needed. For example, the Adlib library
does not provide the one-sided communication functionality of libraries like
the Global Arrays toolkit; it doesn’t provide optimized numerical operations
on distributed arrays like those in ScaLAPACK; it does not provide highly
optimized collective operations for irregular patterns of array access, like those
in CHAOS. All these libraries (and others) work with distributed arrays more
or less similar to HPJava distributed arrays. We hope that bindings to these
libraries, or functionally similar libraries, will be made available in HP Java. For
now, this section summarizes essential features of the HPJava binding to Adlib.

6.1 Regular collective communications

There are three main families of collective operation in Adlib: regular commu-
nications, reduction operations, and irregular communications.

The regular communications are exemplified the operations shift, cshift,
writeHalo and remap, introduced in earlier sections. The last of these, remap,
is a very characteristic example. The remap function takes two distributed array
arguments—a source array and a destination. These two arrays must have the
same size and shape! but they can have any, unrelated, distribution formats.
The effect of the operation is to copy the values of the elements in the source
array to the corresponding elements in the destination array, performing any

1The shape of a distributed array is the list of its extents, (a.rng(0).size(),
a.rng(1) .size(), ...).
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communications required to do that. If the destination array has replicated
mapping, the remap operation will broadcast source values to all copies of the
destination array elements.

The remap function is a static member of the Adlib class. Like most of the
functions in Adlib, the remap function is overloaded to apply to various ranks
and types of array:

void remap(int [[1] destination, int [[1] source) ;
void remap(float [[]] destination, float [[]] source) ;
void remap(double [[]] destination, double [[]] source) ;

void remap(int [[,]] destination, int [[,]1] source) ;
void remap(float [[,]] destination, float [[,]] source) ;
void remap(double [[,]] destination, double [[,]] source) ;

void remap(int [[,,]] destination, int [[,,]] source) ;
void remap(float [[,,]] destination, float [[,,]] source) ;
void remap(double [[,,]] destination, double [[,,]] source) ;

and scalars:

void remap(int # destination, int # source) ;
void remap(float # destination, float # source) ;
void remap(double # destination, double # source) ;

Currently the element-type overloading includes all Java primitive types. Later
Adlib will be extended to support Object types.
There are four preconditions for a call to remap:

1. All processes in the active process group must make the call, and they
must pass coherent arguments for each argument, all processes pass local
references to logically the same distributed array.

2. As mentioned above, the source and destination arrays should have the
same shape and element types.

3. The arrays source and destination must not overlap—mno element of
source must be an alias for an element of destination. This is only an
issue if both arguments are sections of the same array.

4. Both arguments must be fully contained in the active process group.

By definition, an array is “fully contained” if its distribution group is contained
in the active process group. So the requirement is that every copy of every
element of the array is held on one of the processors engaging in the collective
operation.

Most of the functions in Adlib have a similar set of preconditions—all oper-
ations are called collectively with coherent arguments, input and output arrays



6.1. REGULAR COLLECTIVE COMMUNICATIONS 63

should never overlap, and array arguments must always be fully contained in
the active group. The last requirement is probably the easiest to overlook. Con-
sider the example of section 3.4, Figure 3.15. An easy mistake would be to put
the calls to remap inside the following on construct. This is an error, because
there is no guarantee that distribution groups of a and b are contained in the
distribution group, p, of c. The function matmul is supposed to work for ar-
guments with any, unrelated, distribution format. The Adlib library includes
runtime checks for containment of arrays. If an argument is not fully contained,
an exception occurs.

So long as the rule on containment is observed, Adlib calls can be made freely
inside distributed control constructs, including the parallel loop, overall. If,
for example, we want to “skew” an array—shift rows in the y direction by an
amount that depends on the x index—we can do something like

on(p) {
int [[,]] a = new int [[x, y1], b = new int [[x, yl] ;

overall(i = x for :)
Adlib.shift(b [[i, :11, a [[i, :11, i¢) ;
}

The section arguments of shift have distribution group p/i, which is identical
to the active process group at this point, so the arguments are fully contained.
A slightly more complicated example involving dotProduct was given earlier in
section 4.8, Figure 4.6.
A prototype of the shift function was given in section 2.3. In general we
have
void shift(7T" [[]] destination, T [[]] source,
int shiftAmount) ;
void shift(7" [[,]] destination, 7' [[,]] source,
int shiftAmount, int dimension) ;
void shift(7T" [[,,]] destination, 7" [[,,]] source,
int shiftAmount, int dimension) ;

where T stands as a shorthand for any primitive type of Java. The dimension
argument is in the range 0, ..., R—1 where R is the rank of the arrays. It selects
the array dimension in which the shift occurs. The shiftAmount argument,
which may be negative, specifies the amount and direction of the shift. Again
the source and destination arrays must have the same shape, but now there
is an extra precondition—they must also be identically aligned. That is, their
distribution groups must be identical and all their ranges must be identical or
satisfy the isAligned test. By design, shift implements a simpler pattern
of communication than general remap. The alignment relation allows a more
efficient implementation. The library includes runtime checks on alignment
relations between arguments, where these are required.

The shift operation discards values from source that are moved past the
edge of destination. At the other end of the range, elements of destination
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that are not targetted by elements from source are unchanged from their input
value. The operation cshift is essentially identical to shift except that it
implements a circular shift.

The function writeHalo is applied to distributed arrays that have ghost
regions. It updates those regions. The simplest versions have prototypes

void writeHalo(1' [[1] a) ;
void writeHalo(7T [[,]] a) ;
void writeHalo(71' [[,,]1] a) ;

We can distinguish between the locally held physical segment of an array and
the surrounding ghost region, which is used to cache local copies of remote
elements. The effect of writeHalo is to overwrite the ghost region with values
from processes holding the corresponding elements in their physical segments.

A more general form of writeHalo allows to specify that only a subset of
the available ghost area is to be updated, and to select circular wraparound for
updating ghost cells at the extreme ends of the array, if desired.

void writeHalo(7T [[]] a, int wlo, int whi, int mode) ;
void writeHalo(7' [[,]] a, int wlo [], int whi [1, int [] mode) ;
void writeHalo(7T' [[,,]] a, int wlo [], int whi [], int [] mode) ;

The integer vectors are all of length R, the rank of the argument a. The values
wlo and whi specify the widths at upper and lower ends of the bands to be
updated (these values must be less than or equal to the widths of the actual
ghost areas on the array). The mode values define for each dimension whether
to update in the normal way, leaving ghost edges at extreme edges of the arrays
unwritten (value should be WriteHalo.EDGE), whether to update using circular
wraparound (WriteHalo.CYCL), or whether to not update any ghost regions in
this dimension at all (WriteHalo.NONE, equivalent to setting the corresponding
elements of wlo, whi to zero).
Operation of writeHalo is visualized in figure 6.1.

6.2 Reductions

Reduction operations take one or more distributed arrays as input. They com-
bine the elements to produce one or more scalar values, or arrays of lower rank.
Adlib provides a large set of reduction operations, supporting the many kinds
of reduction available in as “intrinsic functions” in Fortran. Here we mention
only a few of the simplest reductions.

The maxval operation simply returns the maximum of all elements of an
array. It has prototypes

T maxval(Z7 [[1] a) ;
T maxval(7T [[,]1] a) ;
T maxval(T [L[,,]1] a) ;



6.2. REDUCTIONS 65

Physical
segment
of array

“Declared” ghost region Ghost area written
of array segment by WriteHalo

Figure 6.1: Tlustration of the effect of executing the writeHalo function.

The result is broadcast to the active process group, and returned by the function.
Other reduction operations with similar interfaces are minval, sum and product.
Of these minval is minimum value, sum adds the elements of a in an unspecified
order, and product multiplies them.

The function dotProduct used in some earlier examples is also logically a re-
duction, but it takes two one-dimensional arrays as arguments and returns their
scalar product—the sum of pairwise products of elements. The situation with
element types is complicated because the types of the two arguments needn’t
be identical. If they are different, standard Java binary numeric promotions are
applied—for example if the dot product of an int array with a float array is
a float value. Some of the prototypes are

int dotProduct (int [[1] a, int [[11 b) ;
float dotProduct(int [[1] a, float [[]] b) ;
double dotProduct(int [[]1] a, double [[]] b) ;
float dotProduct(float [[]] a, int [[11 b) ;
float dotProduct(float [[]] a, float [[]1] b) ;
double dotProduct(float [[]] a, double [[]] b) ;

The arguments must have the same shape and must be aligned. As usual the
result is broadcast to all members of the active process group.

The function broacast is not actually a reduction, but it has some features
in common with other functions discussed in this section. The prototype is

T broadcast(T # s) ;
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It takes a scalar (rank-0 distributed array) as argument and broadcasts the
element value to all processes of the active process group. Typically it is used
in conjunction with a scalar section to broadcast an element of a general array,
as in this fragment:

int [[,]] a = new int [[x, yl] ;

int n = 3 + Adlib.broadcast(a [[10, 10]]) ;

6.3 Irregular collective communications

Adlib has some support for irregular communications in the form of collective
gather and scatter operations. The simplest form of the gather operation for
one-dimensional arrays has prototypes

void gather(7" [[]] destination, 7' [[]] source, int [[]] subscripts) ;

The subscripts array should have the same shape as, and be aligned with, the
destination array. In pseudocode, the gather operation is equivalent to

for all ¢ in {0,...,N — 1} in parallel do
destination [{] = source [subscripts [i]] ;

where N is the size of the destination (and subscripts) array. If we are
implementing a parallel algorithm that involves a stage like

for all ¢ in {0,...,N — 1} in parallel do
a [i]1 = b [fun(i)] ;

where fun is an arbitrary function, it can be expressed in HPJava as

int [[1] tmp = new int [[x]] on p ;

on(p)
overall(i = x for :)
tmp [i] = fun(i) ;

Adlib.gather(a, b, tmp) ;

where p and x are the distribution group and range of a. The source array may
have a completely unrelated mapping.

The one-dimensional case generalizes to give a rather complicated family of
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prototypes for multidimensional arrays:

void gather (1" [[]] destination, 7' [[]] source,
int [[]] subscripts) ;

void gather(7T" [[,]] destination, 7" [[]] source,
int [[,]] subscripts) ;

void gather(7" [[,,]] destination, 7" [[]] source,
int [[,,]] subscripts) ;

void gather(7" [[]] destination, 7" [[,]] source,

int [[]] subscriptsl, int [[]] subscripts2) ;
void gather (7' [[,]] destination, 7" [[,]] source,

int [[,]] subscriptsil, int [[,]] subscripts2) ;
void gather(T" [[,,]] destination, 7" [[,]] source,

int [[,,]] subscriptsi, int [[,,]] subscripts2) ;

The complexity arises because now that the source and destination arrays can
have different ranks. The pattern is that the subscript arrays have the same and
alignment shape as the destination arrays. The number of subscript arrays is
equal to the rank of the source array. As an example, the last of the prototypes
enumerated above behaves like

for all ¢ in {0,...,L — 1} in parallel do
for all j in {0,...,M — 1} in parallel do
for all k in {0,...,N —1} in parallel do

destination [i, j, k] = source [subscriptsl [i, j, kI,
subscripts2 [i, j, k11 ;

where (L, M, N) is the shape of destination array.
The basic scatter function has very similar prototypes, but the names
source and destination are switched. The one-dimensional case is

void scatter(7 [[]] source, T [[]] destination,
int [[]] subscripts) ;
and it behaves like

for all ¢ in {0,...,N — 1} in parallel do
destination [subscripts [i]] = source [i] ;

6.4 Schedules

In general the collective communication functions introduced in the last few
sections involve two phases: an inspector phase in which the arguments are
analysed to determine what communications and local copies will be needed to
complete the operation, and an executor phase in which the schedule of these
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WriteHalo writeHalo = new WriteHalo(u) ;
MaxvalFloat maxval = new MaxvalFloat(r) ;

do {
for(int parity = 0 ; parity < 2 ; parity++) {

writeHalo.execute() ;
overall(i = x for 1 : N - 2)
overall(j = y for 1 + (i¢ + parity) % 2 : N - 2 : 2) {

float newA ;

newA = 0.25 * (a [1 -1, j] +a [1i + 1, j] +
ali, j-11 +a [i, j+ 11) ;

Math.abs(newA - a [i, jl) ;
newA ;

r [i, j]
a [i, j]
}

}

} while(maxval.execute() > EPS)) ;

Figure 6.2: Red-black relaxation, re-using communication schedules.

data transfers is actually performed. In iterative algorithms, it often happens
that exactly the same communication pattern is repeated many times over. In
this case it is wasteful to repeat the inspector phase in every iteration, because
the data transfer schedule will be the same every time.

Adlib provides a class of schedule objects for each of its communication func-
tions. The classes generally have the same names as the static functions, with
the first letter capitalized (the name may also be extended with a result type).
Each class has a series of constructors with arguments identical to the instances
of the function. Every schedule class has one public method with no arguments
called execute, which executes the schedule.

Using WriteHalo and Maxval schedules, the main loop of the red-black re-
laxation program from section 3.2, Figure 3.8 could be rewritten as in Figure
6.2.

[Need to document HPspmd. copy () somewhere.]
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Low level SPMD
programming

It often happens that some parts of a large parallel program cannot be written
efficiently in the pure data parallel style, using overall constructs to process all
elements of distributed arrays on essentially the same footing. Sometimes, for
efficiency, a process has to be more “introspective”—it has to get down and do
some procedure that combines the locally held array elements in a non-trivial
way. The local results may be combined with off-processor results in a separate
step.

7.1 An Example

We will consider a fragment from a parallel N-body classical mechanics problem.
As the name suggests, this problem is concerned with the dynamics of a set of
N interacting bodies. The total force on each body includes a contribution from
all the other bodies in the system. The size of this contribution depends on the
position, z, of the body experiencing the force, and the position, y, of the body
exerting it. If the individual contribution is given by force(z,y), the net force

on body i is
Z force(a;, a;)
J

where now a; is the position of the jth body. The total force can be computed
in parallel by the program given in 7.1. We repeatedly rotate a copy, b, of
the position vector, a, using cshift. Every element in b thus passes by every
element in the fixed vector a, and contributions to the force are accumulated as
we go. The approach is similar to the pipelined matrix multiplication in Figure
3.12.

The trouble is that this involves N small shifts (Figure 7.2). Calling out to
the communication library so many times (and copying a whole array so many
times) is likely to produce an inefficient program.
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Procsl p = new Procsi(P) ;
on(p) {
Range x = new BlockRange(N, p.dim(0)) ;

float [[1] f = new float [[x]], a = new float [[x]],
b = new float [[x]] ;
. initialize ‘a’
overall(i = x for :) {
f [i] = 0.0 ;
b [i]l = a [i] ;
}

for(int s 0 ; s <N ; s+t+t) {

overall(i = x for :)
f [i] += force (a [i], b [i]) ;

// cyclically shift ‘b’ (by amount -1 in x dim)...

Adlib.cshift(tmp, b, -1) ;
HPspmd.copy (b, tmp) ;

Figure 7.1: Data parallel version of the N-body force computation.

In fact we can achieve an equivalent effect passing the value of every el-
ement by every other if we do just P iterations of an outer loop, with each
iteration shifting the whole block of locally held elements of the moving copy to
the neighbouring process (Figure 7.3).

We can express the second algorithm straightforwardly enough in the lan-
guage defined so far, but the price is that we have to change the way the dis-
tributed arrays are represented in the program.

One legitimate way to express the algorithm is in a direct SPMD message-
passing style. Example code is given in Figure 7.4. The local block size is B, so
the value of N is P x B. For the sake of being concrete, we have used the methods
Rank () and Sendrecv_replace() from the mpiJava [?] binding of the Message
Passing Interface, MPI [?]. Figure 7.4 is a valid SPMD Java program and
thus a valid HPJava program. Unfortunately it is lives in a different universe of
data structures and communication functions from the parallel-array, collective-
communication oriented algorithms we have seen so far. We need to build some
bridge between these two extreme styles of parallel programming.

One approach—perhaps not the most obvious, but quite natural in HPJava—
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AN EXAMPLE

7.1.

Processor 1 Processor 2

Processor O

Iteration C

Iteration 1

Iteration Z

Iteration 8

Figure 7.2: Simple “data parallel” N-body force computation. The array b is

shifted one element to the right in each iteration. Arrows define element pairs

combined in the iteration.
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Processor 1 Processor 2

Processor O
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[}
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Iteration 1

Iteration Zz

Figure 7.3: Efficient N-body force computation. The array b is shifted one block

to the right in each iteration. Arrows define element pairs combined in the

iteration.
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int myID = MPI.COMM_WORLD.Rank() ;

float [] f = new float [B], a = new float [B], b = new float [B] ;

. initialize ‘a’

for(dint i = 0 ; i < B ; i++) {
f[i] = 0.0 ;
bl[il = al[il ;

}

for(int s = 0 ; s <P ; s++) {

0 ; i <B ; i++) // B : local block size
=0 ; j<B; j+t)
= force(a [i], b [j1) ;

for(int i
for(int

£ [i]

+ Q.

// cyclically shift ‘b’...
int right = (myID + 1) % P, left = (myID + P - 1) % P ;

MPI.COMM_WORLD.Sendrecv_replace(b, O, B, MPI.FLOAT,
right, 0, left, 0) ;

Figure 7.4: MPI version of the N-body force computation.

is to explicitly split the index space of the original one-dimensional arrays across
two dimensions: a distributed dimension representing the process dimension it-
self, and a sequential dimension explicitly representing the local block. The
code is given in Figure 7.5.

Although there is only one element of d associated with each process, the
rules of HP Java force us to explicitly subscript in the associated array dimension.
This leads to some extra verbosity, but this style of programming has some
attractive features:

e As a practical matter, the fact we are dealing with true HPJava dis-
tributed arrays means we can continue to employ concise calls to collective
library functions like cshift (), instead of relatively clumsy functions like
Sendrecv._replace().

e More esoterically, the program follows the canonical HPspmd style, de-
scribed briefly in section 5.4. As defined in that section, all variables are
coherent. The elements of the arrays in the program of Figure 7.4 are not
coherent, because they take different values in each process, although their
home group is the set of all processes. Respecting the canonical style may
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Procsl p = new Procsi(P) ;
Dimension d = p.dim(0) ;

on(p) {

new float [[d, Bl]l, a = new float [[d, BlIl,
new float [[d, BI] ;

float [[,#]] £
b

. initialize ‘a’
overall(i = d for :)
for (int j =0 ; j < B ; j+t) {
f [i, j1 =0.0;
b [i, jl = a [i, j] ;
}

for(int s =0 ; s < P ; s++) {

for :)

j < B ; j++)

; kK < B ; k++)

force(a [i, jl, b [i, k1) ;

overall(i =
for(int j
for(int

£ [i, j1 +

Ol
N o
N o -

// cyclically shift ‘b’ in ‘d’ dim...
float [[,*]] tmp = new float [[d, B]] ;

Adlib.cshift(tmp, b, 1, 0) ;
HPspmd.copy (b, tmp) ;

Figure 7.5: Efficient HP Java version of the N-body force computation.

not have immediate practical advantages, but it is somehow aesthetically
pleasing. In this style there is no need for incoherent functions like Rank ()
to get the local process id—instead one uses global index values associated
with overall constructs.
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7.2 Dimension Splitting

This style goes some way toward forging a link between low-level SPMD pro-
gramming and the higher level data-parallel style of HPJava, but by itself
it doesn’t help if we are presented with an ezisting one-dimensional, block-
distributed array, and required to do some low-level processing on its blocks.
To allow for this situation, the language is extended to support dimension split-
ting. Dimension splitting is introduced as an extension of the array section
mechanism described at length in Chapter 4. The extra syntactic baggage is
minimal, but the repercussions are quite far-reaching.

First we note that a particular element in a distributed array can be identified
in one of two ways. It can be identified by giving a global subscript in the
distributed range, which is effectively what we have done in HPJava in earlier
chapters. Alternatively it can be identified by giving a process coordinate and
a local subscript—a subscript within the array segment held on the associated
process. Dimension splitting provides a way of accessing an element through its
process coordinate and local subscript, by allowing a distributed dimension of
an array to be temporarily viewed as two dimensions—a coordinate dimension
plus a local subscript dimension.

If the subscript in a particular dimension of a section expression is the special
symbol <>, that dimension of the array is split. Whereas a triplet subscript in a
section expression yields one dimension in the result array, a splitting subscript
yields two—a distributed dimension and a sequential dimension. The range of
the distributed dimension is the process dimension over which the original array
dimension was distributed!; the local blocks of the original array are embedded
in the the sequential dimension of the result. The two new dimensions appear
consecutively in the signature of the result array, distributed dimension first.

Now we can combine the examples from Figures 7.1 and 7.5 of the last
section. The version in Figure 7.6 initally creates the arrays as distributed, one-
dimensional arrays, and uses this convenient form to initialize them. It then
uses a split representation of the same arrays to compute the force array. Note
that, because as and fs are semantically sections of a and f, they share common
elements—they provide aliases through which the same element variables can
be accessed. So when the computation loop is complete, the vector of forces
can be accessed again through the one-dimensional array £. This is likely to be
what is needed in this case.

As a similar but slightly more complicated example, Figure 7.7 contains an
optimized version of the pipelined matrix multiplication from Figure 3.12. Here
the arithmetic is done in local blocks by a method matmul, which implements
the matrix multiplication ¢ = a X b on sequential two-dimensional arrays. It

1'Usually, but see Section 7.8.
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could be written in elementary style as
void matmul (float [[*, *]] c, float [[*, *]] a, float [[*, *]] b) {

int 1 = c.rng(0).size(), m = c.rng(l).size(), n = a.rng(l).size() ;

N o
I O O«

i< 1 ; i++)

3 J <m; jv) {

.0 ;

0 ; k<n ; k++)

+=a [i, k] * b [k, j] ;

for (int i =
for (int j

c [i, j1 =

for (int k

]

or it could be an optimized library routine. The operation of the parallel algo-
rithm for P = 2 is illustrated in 7.8.
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Procsl p = new Procsi(P) ;
Dimension d = p.dim(0) ;

on(p) {
Range x = new BlockRange(N, d) ;

float [[1] £
b

new float [[x]], a = new float [[x]],
new float [[x]] ;

. initialize ‘a’
overall(i = x for :) {
f [i] = 0.0 ;
b [i] = a [i] ;
}

// split ‘x’ dimensions:
float [[,*]1] fs = £ [[<>]], as = a [[<>]], bs = b [[<>]] ;
for(int s =0 ; s <P ; s++) {

overall(i = 4 for :)

for(int j =0 ; j < B ; j++)
for(int k = 0 ; k < B ; k++)
fs [i, j] += force(as [i, jl, bs [i, k]) ;

// cyclically shift ‘bs’ in ‘d’ dim...

Adlib.cshift(tmp, bs, 1, 0) ;

HPspmd. copy (bs, tmp) ;

}
}

Figure 7.6: Version of the N-body force computation using dimension splitting.
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Procsl p = new Procsi(P) ;
Dimension d = p.dim(0) ;

on(p) {
Range x = new BlockRange(N, p.dim(0)) ;

float [[,*]] a = new float [[x, N]], ¢ = new float [[x, N]] ;
float [[*,]] b = new float [[N, x]1] ;

. initialize

// split ‘x’ dimensions:

float as [[,*,*x]] = a [[<>, :1] ;
float bs [[*,,*x]] = b [[:, <>1] ;
float cs [[,*,*¥]] = ¢ [[<>, :11 ;

for(int s = 0 ; s < P ; s++) {

overall (i = d for :) {
const int base = B * ((i¢ + s) % P) ;

matmul (cs [[i, :, base : base + B - 1]],
as [[i, :, :11, bs [L:, i, :11) ;
}
// cyclically shift down ‘bs’ in ‘d’ dim...

float tmp [[*,,*]] = new float [[N, 4, Bl] ;

Adlib.cshift(tmp, bs, -1, 1) ;
HPspmd.copy(bs, tmp) ;

Figure 7.7: Pipelined matrix multiplication program using dimension splitting.
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Processor O
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Processor 1
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Iteration O

Iteration 1

Figure 7.8: Operation of efficient pipelined matrix computation. The matrix b
is shifted one block to the right in each iteration.
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7.3 Block Parameters

That is quite neat, but unfortunately it isn’t the end of the story. The examples
of the previous section will only work properly if N is an exact multiple of the
number of processes, P, so that the block size, B, is identical in all processes. In
general we do not want to limit ourselves to this case.

A few of the possibilities for mapping a 50-element, one-dimensional array
to 4 processes are illustrated in Figure 7.9. They presume the declarations:

Procs p = new Procsi(4) ;
Dimension d = p.dim(0) ;

In the first case the array a is divided into four contiguous blocks of sizes
(13,13,13,11). In the second case the blocking is different—(13,13,12,12)—
and the formula for computing the global index value is quite different. The
third case illustrates that a might actually be some section of an array. In this
example the blocking is (13,12, 13,12) and we must take into account that the
subscripting into the local segment of the array is strided. Also there is an offset
of the first element, which in some processes is zero and in others is one.

At this point one might feel inclined to abandon the idea of dimension split-
ting. These examples doesn’t seem to fit at all with the idea of dividing a
distributed dimension of extent N into P blocks of constant size B, which is what
is needed if dimension splitting is to work.

Persistence will pay off. For the sake of making progress, we note that for
a given range there is a fixed bound on the number of array elements held by
any process. We can now redefine the symbol B to refer to this constant bound.
The operational assumption is that all processes allocate enough space to hold
this bounding number of elements, although not all processes necessarily use all
slots. For the dimension-split array, the extent of the the sequential dimension
is the constant number, B, of locally allocated slots. The elements of the original
array are embedded somehow in these slots.

In Figure 7.9 the most likely value for B in the first two examples is [50/4] =
13. For the third example the amount of space allocated will presumably be
enough to hold the parent distributed array—most likely B is [100/4] = 252.

The embedding of actual elements is determined by a new method, local-
Block(). This is a member of the Range class. It has no arguments, and returns

2In this case the dimension-split version of a is the same as the dimension-split version
of the parent array b. A curious feature of a section with a dimension-splitting subscript
is that the “section” may have more accessible elements than the parent array. This is a
little counter-intuitive, and introduces some possibilities for abuse. But it is not a logically
inconsistent situation, and, used carefully, it has various benefits.
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Range x = new BlockRange(50, d4) ;
float [[]] a = new float [[x]] ;

Process 0 Process 1 Process 2 Process 3

[o]1]2 IT77|10|11|12”'13|14|15|T77|23|24|25”‘|26|27|28|T77|36|37|38H‘|39l40|41|T77‘

Range x = new CyclicRange(50, d) ;
float [[]] a = new float [[x]] ;

Process 0 Process 1 Process 2 Process 3

[o]a]s W”|4o|44|4sﬂ‘l1 [s]s W”|41|45|49H‘|2 [6 |10W"|42|46m‘|3 [7 |11W”|43|47H—“

Range x = new BlockRange(100, d) ;
float [[J] b = new float [[x]] ;

float [[]] a=Db [[0 : 99 : 2]] ;

Process 0 Process 1 Process 2 Process 3

Figure 7.9: Example embeddings of array elements in local blocks
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an object of class Block, declared as:

class Block {
public int count ;

public int sub_bas ;
public int sub_stp ;

public int glb_bas ;
public int glb_stp ;
}

The value of count specifies the number of actual array elements in the selected
block, and the pair sub_bas, sub_stp define a base and step for the local sub-
script values associated with those elements. The pair glb_bas, glb_stp define
a base and step for the global index values associated with the elements.

(Note that unfortunately there is a overlap of nomenclature between the
blocks of an arbitrary range, and the distribution format of one particular kind
of range: BlockRange. The Block class and the localBlock() method are in
no way specifically tied to the “block-wise” distribution format embodied in
BlockRange. Equivalent methods are defined for any range.)

One of the most important applications of the 1localBlock() method is in
a translation scheme for the overall construct, and this is a natural way to
illustrate its use.

Consider this fragment of HP Java:

float [[]1] a;
Range x = a.rng(0);

overall(i = x for :)
a [i] = (float) i‘ ;

By applying dimension splitting to the array a, the overall construct can be
translated as illustrated in Figure 7.10.

At first sight we have just replaced one overall construct with another. But
recall that the range d can be assumed to be a process dimension, so the role of
the new overall construct is essentially “formal”—k% only has one location in
each process, so the new overall yields no local loop. Although the k subscript
of as is required by the rules of the language, it is essentially does nothing,
again because there is only one location. In fact the only substantive effect of
the reduced construct is to change the active process group inside its body.

Effectively, this transformation has reduced the overall construct to a se-
quential local for loop. Subscripting with a distributed index has essentially
been reduced to subscripting into the sequential local array as[ [k, :]11. More-
over, the subscript expression and the global index expression on the right hand
side have been reduced to expressions linear in the loop index. Such expres-
sions can be translated efficiently by a compiler using a strength reduction op-



7.3. BLOCK PARAMETERS

SOURCE:
float [[]] a;
Range x = a.rng(0);

overall(i = x for :)
a [i] = (float) i‘ ;

TRANSLATION:
float [[1] a;
Range x = a.rng(0);
float [[,*]] as = a [[<>]] ;
Range d = as.rng(0) ;

overall(k = d for :) {
Block b = x.localBlock();

for (int 1 = 0 ; 1 < b.count ; 1++)
as [k, b.sub_bas + b.sub_stp * 1] =
(float) (b.glb_bas + b.glb_stp * 1) ;

Figure 7.10: Recursive translation of a simple overall construct.
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timization (replacing the linear expressions with an incremented accumulation
variable).

Because it involves reducing an overall construct to a kind of lower-level
overall, we call this general scheme recursive translation.

Note that technically the localBlock() inquiry is incoherent (see section
5.4). This could be fixed by requiring an argument that specified the local coor-
dinate, similar to the argument of the coherent (though otherwise lower-level)
block () method that will be introduced in section 7.7. This argument was omit-
ted here to simplify usage, and also to allow the unique result of localBlock ()
to be computed once and cached inside the Range object. Effectively the inco-
herent crd() inquiry is used internally.

7.3.1 Ghost regions and dimension splitting

If the distributed range has ghost extensions, this does not affect the values in the
block description returned by localBlock(). These values describe the layout
of elements associated with the “physical” portion of the array, not elements in
the ghost region. In this case, however, the range of legal subscripts in the local
sequential array dimension is increased. In the absence of ghost regions that
range may be, for example, 0,..., B — 1, where typically B would be [N/P].
If the original range has lower and upper ghost extensions of width wy,, wy;,
so does the new sequential range, exposed by dimension splitting. The allowed
range of local subscripts will be —wy,,..., B + wy; — 13. Figure 7.11 gives
the recursive translation of an overall construct involving a shifted index. It

assumes a has a suitable ghost extensions.*.

7.3.2 Local blocks of subranges

So far our recursive translation scheme does not apply to general overall con-
structions, which include some non-default triplet parameters. Overloaded ver-
sions of 1localBlock() that take 1, u, s arguments are provided. Translation in
this case is illustrated in Figure 7.12. There is also a version of 1localBlock()
that omits the stride argument, s. This can be used in the case of unit stride.

3Note however that the size() inquiry applied to the associated collapsed range will still
return the “physical” extent, B.

4This example actually assumes z has alignment stride of 1. In general the displacement
in the translation should be multiplied by x.str(), where x is the range parametrizing the
original overall.
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SOURCE:
float [[]] a;
Range x = a.rng(0);

overall(i = x for :)
al[i+1] = ... ;

TRANSLATION:
float [[1] a;
Range x = a.rng(0);
float [[,*]] as = a [[<>]] ;
Range d = as.rng(0) ;

overall(k = d for :) {
Block b = x.localBlock();

for (int 1 = 0 ; 1 < b.count ; 1++)
as [k, b.sub_bas + b.sub_stp * 1 + 1] = ... ;

Figure 7.11: Recursive translation of a shifted index subscript.

85
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SOURCE:
float [[1] a;
Range x = a.rng(0);

overall(i = x for 1 : u : s)
a [i] = (float) i‘ ;

TRANSLATION:
float [[1] a;
Range x = a.rng(0);
float [[,#1] as = a [[<>]] ;
Range d = as.rng(0) ;

overall(k = d for :) {
Block b = x.localBlock(l, u, s);

for (int 1 = 0 ; 1 < b.count ; 1++)

as [k, b.sub_bas + b.sub_stp * 1] =
(float) (b.glb_bas + b.glb_stp * 1) ;

Figure 7.12: Recursive translation of overall construct with triplet index range.
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7.4 Reduction to Java arrays

Dimension splitting allows one to access the local blocks of distributed arrays
as sequential HPJava arrays. In many cases this may be all one needs to do
low level SPMD programming. But the translation scheme for HP Java actually
assumes that ultimately all Fortran-like arrays are implemented in terms of the
standard arrays of Java. The spirit of HPspmd languages is not to conceal such
things. In fact the spirit of HPspmd languages is to shamelessly expose internal
workings at all levels. Hence the underlying Java arrays should be available if
they are needed.

The inquiry dat () can be applied to any HPJava array. It returns a reference
to a Java array with the same type of elements as the target array. This is the
actual array in which the local elements are stored.

This gives us yet another way to optimize the original data-parallel N-body
example of Figure 7.1. We can express the compute loop in the MPI style of
Figure 7.4. The code is given in Figure 7.13. This particular implementation
assumes that the process grid p coincides with the MPI group associated with
the COMM_WORLD communicator.

Again this simple example hides the complexities that arise if we have to deal
with a general distributed array. As we saw in the previous section, the local
elements of a general distributed array are effectively stored in a multidimen-
sional sequential array. The detailed embedding is defined by the localBlock ()
inquiry on the distributed array ranges.

The mapping of the local sequential multidimension array into the Java array
is defined in turn by new inquiries bas () and str() on an HPJava array. These
integer-valued methods define a base offset, and a stride for each dimension®. If
an element of a sequential HPJava array, a, has integer subscripts g, ...,ir—1
it is stored in element

a.dat() [a.bas() +ig x a.str(0) +...+ir_1 X a.str(R —1)]

of the local Java array.

This formula can be extended to a formula for finding the local elements
of distributed arrays. First we note that through dimension splitting any dis-
tributed array can be reduced to an array that has a mix of only sequential
dimensions and level 0 ranges. The level 0 ranges contribute nothing to the
total offset of the element in the local Java array. So if the subscript list is
10, - - . ,2r—1—a mix of integers and level 0 distributed index symbols—the local
element is

a.dat() [a.bas() + Z i, X a.str(r)]

/r7
rth subscript
an integer

5Note these “memory” bases and strides are distinct from the subrange alignment param-
eters returned by similarly named inquiries on ranges.
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To complete the story, we need to know how the values of the str() and bas()
members are defined on a dimension split array. If as is a section defined by
splitting dimension r of an array a, to yield dimensions r’ and r’ + 1 of as, then

e as.bas() is equal to a.bas(),

e as.str(r’ +1) (the stride associated with the new sequential dimension)
is equal to a.str(r), and

e as.str(r’) (the stride associated with the new distributed dimension) is
equal to a.str(r) x as.rng(r’ + 1) .volume().

The complicated final definition only really matters in the block cyclic case
(section 7.8), where we have to apply dimension splitting a second time. Tem-
porarily ignoring that case, we can use our new formulae to further simplify the
recursive translation given earlier. The new translation is given in Figure 7.14.
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Procsl p = new Procsi(P) ;
on(p) {
Range x = new BlockRange(N, p.dim(0)) ;

float [[1] f = new float [[x]], a = new float [[x]],
b = new float [[x]] ;
. initialize ‘a’
x for :) {
.0 ;
(i1 ;

overall(i
£ [i] =
b [i]
}

P O 1

// extract the local vectors of elements:
float [1 f_blk = f.dat(), a_blk = a.dat(), b_blk = b.dat() ;
int myID = MPI.COMM_WORLD.Rank();
for(int s = 0 ; s <P ; s++) {

for(int i =0 ; i < B ; i++) // B : local block size

for(int j = 0 ; j < B ; j++)
f_blk [i] += force(a_blk [i], b_blk [jl) ;
// cyclically shift ‘b_blk’...
int right = (myID + 1) % P, left = (myID + P - 1) % P ;

MPI.COMM_WORLD.Sendrecv_replace(b_blk, 0, B, MPI.FLOAT,
right, 0, left, 0) ;

Figure 7.13: Version of the N-body force computation using reduction to Java
arrays
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SOURCE:
float [[1] a;
Range x = a.rng(0);

overall(i = x for :)
a [i] = (float) i¢ ;

TRANSLATION:
float [[]] a ;
Range x = a.rng(0) ;
Block b = x.localBlock() ;
for (int 1 = 0 ; 1 < b.count ; 1++)

a.dat() [a.bas() + (b.sub_bas + b.sub_stp * 1) * a.str(0)] =
(float) (b.glb_bas + b.glb_stp * 1) ;

Figure 7.14: Reduction of subscripting in simple overall construct to local
Java array accesses.



7.5. LOCAL ARRAYS 91

7.5 Local arrays

We have seen that the HPJava language provides two complementary ways to
access the local part of a distributed array—through the dimension splitting
syntax, and through the dat () inquiry.

Neither of these return exactly what one might originally have expected—a
local sequental array containing exactly the local elements of the distributed
array—mno more and no less.

We refrained from complicating the language definition with this functional-
ity, because it can now be implemented using a library function. For example,
for a two dimensional array of float the following procedure would do the jobS:

public static float [[*,*]] local(float [[,]] a) {
Range x = a.rng(0), y = a.rng(1l) ;

Block b = x.localBlock(), c = y.localBlock() ;

int b_sub_top = b.sub_bas + (b.count - 1) * b.sub_stp ;
int c_sub_top = c.sub_bas + (c.count - 1) * c.sub_stp ;

float [[,*,,*]] as = a [[<>, <>]] ;

return as [[x.dim().crd(), b.sub_bas : b_sub_top : b.sub_stp,
y.dim() .crd(), c.sub_bas : c_sub_top : c.sub_stp]] ;

6This doesn’t work if either array dimension has block-cyclic distribution
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7.6 An extended example: prefix computation

In this section we will give a non-trivial example of how dimension splitting
can be combined with the new inquiries on the Range class to write optimized
parallel code that works for input arrays with general distribution formats.

A prefix computation (also sometimes known as the “scan” operation) takes
an array as input, and outputs an array containing the set of partial sums of
the elements of that array. If the input array is a and the result array is r, we
want the outcome to be:

r [i] = a[0l+...+a [i]

This is the inclusive form of prefix computation. There is also an ezclusive form

which would be defined by

r [0] = 0
r ] = al0l+...4a [—-1]; 1<i<N

We will be interested in computing the inclusive form, but sometimes the ex-
clusive form is needed in intermediate steps.

We can give a straightforward data-parallel algorithm for this computation
using a doubling technique. Possible code is given in Figure 7.15. The algorithm
is very simple. In a given iteration, the current value in the result array is shifted
by an amount that doubles between iterations. The shifted array is added into
the current array. The algorithm takes log,(NN) iterations to complete. Its
operation is illustrated in Figure 7.16.

As often happens, the pure data parallel program is concise and quite read-
able. However it isn’t very efficient. It requires a total of N x log,(N) floating
point additions, whereas the naive sequential algorithm only needs N. So we
can only expect useful parallel speedup if P > log,(N). The pure data parallel
version needs optimization.

7.6.1 Optimization for block distribution formats

For the most straightforward, block-based distribution formats—these include
arrays parameterized BlockRange, ExtBlockRange and IrregRange, there is
a fairly straightforward optimization. We can do prefix computation within
individual blocks, then do a global exclusive prefix combining the sums of the
blocks. Finally we add the global prefix back to the incomplete prefixes within
the blocks. This is illustrated in Figures 7.17, 7.18.

This version has a hope to be reasonably efficient if N > P, so arithmetic
costs have a chance to dominate communication cost. It still does about 2NV
total additions operations instead the IV operations for the sequential code. But
in principle if P > 2 it should be possible to compensate for this factor, and
gain some parallel speedup.
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void doublingPrefix(float [[1] a) {
Group p = a.grp() ;

Range a.rng(0) ;
int N = x.size();

o]
1]

on(p) {
float [[]1] t = new float [[x]] ;

for(int s =1 ; s <N ; s *x= 2) {
Adlib.shift(t, a, s) ;

overall(i = x for s : N - 1)
a [i] += t [i] ;

Figure 7.15: Simple doubling algorithm for parallel prefix

x[0] x[1] x[2] x[3] x[4] x[5] x[6]

a_ & | a | & | & | a | a | a |

t & [ & [ & [ & [ & | & |
Iteration 1

al @ | &ta | aytd | Htag | 8ty | ta; | 85t |

| a, | ata | a+a, | arag | ara; |
Iteration 2

al @ | ata [qgt..+@|agt. +ag[at.. +8y |8t F85 |t ..+ 8]

t | ay | a+ra [a+.. +ay|
Iteration 3

al 2y | @+d [8g+..+8 |3+ . +83]|8*. +3y|at.. +85 [+ .+
Finally

Figure 7.16: Illustration of doubling algorithm for parallel prefix for N = 7.
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void blockPrefix(float [[]] a) {
Range x = a.rng(0) ;

float [[,*]] as = a [[<>]] ;

Range z = as.rng(0) ;

float [[]] t = new float [[z]], s = new float [[z]] ;

// 1. Do intra-block prefix. Set ‘t’ elements to sums of blocks

overall (k = z for :) {
Block b = x.localBlock() ;

float sum = 0.0f ;
for (int 1 =0 ; 1 < b.count ; 1++) {
int sub = b.sub_bas + b.sub_stp * 1 ;

sum = (as [k, sub] += sum) ;

}

t [k] s [k] = sum ;

}

// 2. Do "global prefix"

prefix(t) ;

// 3. Add exclusive global prefix to intra-block prefixes in ‘a’

overall (k = z for :) {
Block b = x.localBlock() ;

float sum = t [k] - s [k] ;

for (int 1 =0 ; 1 < b.count ; 1++) {
int sub = b.sub_bas + b.sub_stp * 1 ;

as [k, sub] += sum ;

}
}

Figure 7.17: Parallel prefix optimized for block-wise distribution formats.
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Figure 7.18:
= 3.

After stage 3

Prefix optimized for block distributions: illustration for N = 8, P
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The code given here will work for the ranges mentioned above, and subranges
of these”. Tt will not work for cyclic distributions.

7.6.2 Cyclic distribution formats

It seems difficult to give a truly efficient parallel prefix algorithm when the data
has cyclic distribution format. It looks like an IO bound problem. It is certainly
possible to find optimized algorithms that are better than our naive data parallel
version—for example reducing the number of communication operations.

In general, even if an operation like this cannot be implemented with really
good arithmetic performance, it does not follow that it is a useless operation, or
that it is not worth optimizing. The operation in question might be a necessary
step in larger program (for example the block-cyclic prefix that we will mention
in section 7.8). So it may be worth our while to optimize the procedure so that
it does not form a bottleneck in the larger context, even if we can’t make it
truly efficient as an arithmetic operation in its own right.

An improved scheme is illustrated in Figure 7.19. To make the example a
bit more interesting, it covers the case of an array with a non-trivial (stride 2)
alignment to a cyclic range.

The input array is copied to a temporary (dimension split) array ts, with
zeros in positions for which there is no corresponding element of a. Then the
global prefixes are formed across individual rows (as drawn here). With the
the blocks (columns) treated as vectors, we would only need log,(P) shift-type
operations to do this, if we used a naive doubling algorithm for this stage.

An exclusive prefix of the final column—the row sums—is broadcast to all
processes. This exclusive prefix is added to the incomplete prefixes across the
rows, computed previously. The results are copied back to a.

It is straightforward enough to implement this scheme in HPJava using di-
mension splitting. However the improvement in efficiency is probably not dra-
matic, and we will save space here by omitting the specialized code. To tell the
truth the “naive” data parallel version is probably not much worse in practise.

7.6.3 Optimization for “general” distribution formats

We can combine the procedures given in the preceding sections to produce a
single optimized prefix procedure that works for any distribution format by
using the format () inquiry on Range. The code is given in Figure 7.20.

The inquiry format () returns the constant DIST_DIMENSION if the range is
a process dimension and DIST_CYCLIC if it is a cyclically distributed range (or
subrange). In these two cases we use the naive algorithm. In all other cases we
use the improved blockPrefix().

Notice that blockPrefix () will work OK for a collapsed range (correspond-
ing to a sequential array). It is permitted to do dimension splitting on a col-
lapsed array. The range of the resulting distributed dimension is a “degenerate”

7At least for subranges with positive alignment stride. We will return to this issue in
section 7.6.3
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a
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exclusive
prefix of
last column
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Process 0 Process 1 Process 2 Process 3 Process 4
= ) ) [y ) [ ]
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a

Initially
a5 0 3 0 o
0 ] 0 3y 0
=) 0 a 0 &
After copying elements of ‘a’ to ‘ts’
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After doing global prefix across rows
8ot + 8y pt. .+ Gp*.. + 8y 8ot + 8y Gt +qy
g+ .+ &y ay+. . + &y g+ . + &y g+ .+ &y ag+. .+ &y
0 0 0 0 0
After broadcasting exclusive prefix of last column
p+.. + Qg Ap+.. + g p+.. + Qg ap+.. + g t.. + Ay
Gt .+ t. . + 83 G+ . + 83 Gt .+ Yy Gt .+ 8y
) =) Bt Bt )
After adding last-column—prefix to local column
.. + 85 [ ] .. + 8 [ ] t. .+ 8
— 7S | — N DR [ w—
aO+ al ’7 a0+' .t a2

s

After copying elements of ‘ts’ back to ‘a’

Figure 7.19: Possible optimization of prefix for cyclic distributions: illustration
for stride 2 subrange of cyclic range with extent 15. P = 5.
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void prefix(float [[]1] a) {
Group p = a.grp() ;

on(p) {
Range x = a.rng(0) ;

switch (x.format()) {

case HPspmd.DIST_DIMENSION :
case HPspmd.DIST_CYCLIC :

doublingPrefix(a) ;
break ;

default :
blockPrefix(a) ;

Figure 7.20: Optimized parallel prefix for any distribution format.

internal process dimension of size 1. Everything will work, although it might
be more efficient to test for DIST_COLLAPSED and handle this in a separate,
optimized subroutine. [Yes. Add the code to do this.]

In the interests of simplifying the presentation, we left a bug in the algorithm
of section 7.6.1. It will fail in the case where the original array range is a
subrange with negative alignment stride. [Give an example.] To deal with this
case the “recursive” call to compute global prefixes could be replaced with a
call that computes the global suffir—partial sums of elements that start at the
topmost element and increment downwards [Give a formal definition]. So stage
2 in Figure 7.17 could be replaced with something like®:

if(x.str() > 0)
prefix(t) ;
else
suffix(t) ;

The suffix computation procedure can use essentially the same algorithms as
the prefixes, with some loop orders and shift directions reversed. A slightly
more elegant solution to this problem will be given in section 7.7.1. Note that
there is no need to change the individual block processing to take account of

8The inquiry str() on Range returns the alignment stride of an arbitrary range. There
is a related inquiry, bas(), that returns the alignment base. These alignment parameters of
ranges are distinct from “memory” base and strides returned by the similarly-named inquiries
on distributed arrays.
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negative alignment strides: the localBlock() inquiry does this automatically.
The sub_stp field will be negative in this case.

There is one distribution format we have not considered here—block cyclic
distribution format. Section 7.8 will explain one way HPJava can deal with this
case.
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7.7 Non-local blocks

Section 7.3 described the relatively easy-to-use localBlock() inquiry. This
inquiry returned block parameters for the local coordinate value in the process
dimension associated with the range.

There are other situations, for example inside the implementation of com-
munication functions like Ad1ib.remap, where all blocks—local and remote—of
a subrange must be enumerated.

To deal with these situations there is a general method called block (). This
method takes one integer argument—a coordinate in the process dimension as-
sociated with the range. Like localBlock() it returns a Block object, defining
the layout of distributed array elements in that process.

One might expect the block() inquiry should be well-defined for any valid
process coordinate. However there are some array alignment options that such
a scheme doesn’t handle particularly well. Consider the example array sections
illustrated in Figure 7.21, which presume the declarations:

Procs p = new Procs1(6) ;
Dimension d = p.dim(0) ;

The first example involves a narrow subrange of a block distributed range.
Only two of the six processes hold any elements of the array section. This isn’t
a problem with for the simple version of block parametrization presented in
section 7.3—the localBlock () inquiry will simply return “empty” blocks, with
count set to zero. When translating simple overall constructs, the overhead
of calling localBlock() unconditionally in all processes is not a problem—
the method is called at most once in each process anyway. But in situations
where all blocks—local and remote—of a subrange must be enumerated it may
become genuinely inefficient to blindly work through every coordinate value,
sifting through many empty blocks.

The second example in Figure 7.21, illustrates that a similar problem can
arise for the case of a strided section of a cyclic range. In this particular example
half the processes hold no elements. Again, blindly computing localBlock() for
all coordinates can lead to inefficiencies, especially in communication functions
(where this kind of situation actually arises quite naturally when one is dealing
with cyclic ranges).

The final example of Figure 7.21 is rather different. It illustrates the case
of an array section with a negative alignment stride. The natural enumeration
order for coordinates of blocks is reversed here, and there are some situations
where failure to take this into account can lead to wrong results. In fact we
already saw one such example in section 7.6.

7.7.1 The crds() method

To allow for these kinds of situation, an new method crds() is added to the
Range class. It takes no arguments, and returns an object of class Triplet,
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Range x = new BlockRange(20, d) ;
float [[]] b = new float [[x]] ;

float [[1] a =b [[5 : 1011 ;

Process 0 Process1 Process?2 Process3 Process4 Process 5

b|0|1|2|3n |4|5|6|7H |8|9|10|11H |12|13|14|15H |16|l7|18|19H W
a ([ 1] [lkhk) |s|4|srm_;1 | ‘

Range x = new CyclicRange(20, d) ;
float [[J] ¢ = new float [[x]] ;

float [[1] a =c [[0 : 18 : 2]] ;

Process 0 Process1 Process?2 Process3 Process4 Process 5

C|0|6|12|18H |1|7|13|19H |2|8|14”—‘ |3|9|15m |4|10|16”—‘

Range x = new BlockRange(20, d) ;
float [[]] b = new float [[x]] ;

float [[1] a =b [[19 : 0 : -1]] ;

Process 0 Process1 Process?2 Process3 Process4 Process 5

b |0|1|2|3H |4|5|6|7H |8|9|10|11H |12|13|14|15H |16|17|18|19H W
a‘|19|1s|17|1en ‘|15|14|13|12H ‘|11|10|9 [s H ‘|7 [6 [5 |4H ‘ ‘|3 [2]1]0 H b (T T 1] :

Figure 7.21: Example sections with unusual coordinate ranges.
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declared as:

class Triplet {
public int lo, hi ;
public int stp ;

public boolean inRange(int n) {...}
}

The values of 1o, hi and stp define the parameters of some strided interval:

hi — 1o
lo, lo+stp, lo+2Xstp, ..., lo—l—(\‘ " J—I—l)Xstp
stp

The method inRange () returns true if and only if its argument is in this inter-
val.

The Triplet object returned by the crds() method defines a triplet range
of coordinates for which the block() method is well-defined. The method
localBlock() introduced earlier can be defined in terms of the more primi-
tive block() as follows:

Block localBlock() {
int crd = dim() .crdQ;
if (crds() .inRange(crd))
return block(crd) ;
else
return Block.EMPTY ;
¥

The EMPTY block can be assumed to have fields:

EMPTY. count =0 ;
EMPTY.sub_bas = 0 ;
EMPTY.sub_stp = 1 ;
EMPTY.glb_bas = 0 ;
EMPTY.glb_stp = 1 ;

Calling block() for an argument outside the range defined by crds() is an
error.

As an immediate application of the new methods, consider the parallel prefix
of Figure 7.17. We noted at the end of section 7.6.3 that this code fails for the
case of a negative alignment stride. An ad hoc solution was given there. A more
elegant and systematic approach would be to replace stage 2 with:

Triplet crds = x.crds() ;

prefix(t [[crds.lo : crds.hi : crds.stpl]) ;
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If the original range has negative alignment stride, then the value of crds.stp
will be negative. The recursive call to prefix on a negative alignment stride
section of t effectively implements the suffix computation on t itself’.

7.7.2 Blocks of subranges

As in the case of localBlock, there are overloaded versions of crds() and
block () that take 1, u, s arguments. Their use will be illustrated in a transla-
tion scheme for overall constructs parametrized by block cyclic ranges in the
next section.

9This change will also improve performance of the recursive call if x has many empty
blocks, as in the first two array sections of Figure 7.21.
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7.8 Block cyclic distribution—up a level

High Performance Fortran included the block cyclic distribution format, whereby
a distributed array range is divided into contiguous blocks of some fixed size, and
these blocks are distributed over the process dimension in a cyclically wrapped
way. There are various implementation problems associated with this distribu-
tion format, and it is not universally accepted that its benefits really justify the
added complexity. But we will dedicate this section to describing how block
cyclic distribution can be incorporated into the HPJava framework described so
far.

An individual process now generally holds many primitive blocks for a range.
A straightforward local translation of an overall construct may now involve
a pair of nested for loops: an inner loop over a single block as before, and an
outer loop enumerating the list of blocks allocated to the local process.

One idea for dealing with this is to leave the syntax for dimension split-
ting unchanged. But, when we split the array dimension in Figure 7.12, the
distributed range, d, associated with dimension-split array is now no longer a
process dimension (class Dimension). Instead it is a range of class CyclicRange.
We call this cyclic range the kernel of the original block-cyclic range.

The localBlock() inquiry is ill-defined on a block-cyclic range, because
there are usually many local blocks. We must generalize the recursive transla-
tion schemes presented in section 7.3 to use the crds() and block() inquires
(Figure 7.22). In the current example, the “coordinates” returned by the crds ()
inquiry are “virtual coordinates”: they are actually global subscripts in the
cyclic kernel range. The overall construct in the transformed code is no longer
a trivial single-pass local loop. On the other hand, it can be reduced by apply-
ing the original recursive translation tranformation to the generated overall,
as illustrated in Figure 7.23°,

The correctness of this translation in the case where the original array had
negative-stride alignment (to a block cyclic range) relies on the fact that t.stpis
negative in this case. Otherwise the locally held blocks would not be enumerated
in the correct order, and we would not strictly implement the semantics for
overall defined way back in section 2.4—viz that if s is negative then

overall(i = x for 1 : u : s) {

}

is equivalent in behaviour to

for(int n = 1; n > u ; n += s)

at(i = x [n]) {

}

10Use of the original recursive translation scheme using localBlock(), rather than the
generalized scheme using crds() and block(), is not mandatory for the second application.
But it is allowed, and is slightly more convenient.
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SOURCE:
float [[]1] a;
Range x = a.rng(0);

overall(i = x for 1 : u : s)
a [i] = (float) i‘ ;

TRANSLATION:
float [[]] a;
Range x = a.rng(0);
float [[,*]] as = a [[<>]] ;
Range d = as.rng(0) ;
Triplet t = x.crds(1, u, s);

overall (k
Block b

d for t.lo : t.hi : t.stp) {
x.block(k‘, 1, u, s);

for (int 1 = 0 ; 1 < b.count ; 1++)
as [k, b.sub_bas + b.sub_stp * 1] =

(float) (b.glb_bas + b.glb_stp * 1) ;

105

Figure 7.22: Recursive translation of an overall construct, using crds() and

block().
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SOURCE:
float [[1] a;
Range x = a.rng(0);
float [[,*]] as = a [[<>]] ;

Range d = as.rng(0) ;

Triplet t = x.crds(1l, u, s);

overall(k = d for t.lo : t.hi : t.stp) {
Block b = x.block(k‘, 1, u, s);

for (int 1 = 0 ; 1 < b.count ; 1++)
as [k, b.sub_bas + b.sub_stp * 1] =
(float) (b.glb_bas + b.glb_stp * 1) ;
}

TRANSLATION:
float [[1] a;
Range x = a.rng(0);
float [[,*1] as = a [[<>]] ;
Range d = as.rng(0) ;
Triplet t = x.crds(l, u, s);
float [[,*,*]] ass = as [[<>,:]1] ;
Range e = ass.rng(0) ;

for :) {
.localBlock(t.lo, t.hi, t.stp) ;

overall(m
Block ¢

nou
Q. o

for(int n = 0 ; n < c.count ; n++) {
Block b = x.block(c.glb_bas + c.glb_stp * n, 1, u, s) ;

for (int 1 = 0 ; 1 < b.count ; 1++)
ass [m, c.sub_bas + c.sub_stp * n, b.sub_bas + b.sub_stp * 1] =
(float) (b.glb_bas + b.glb_stp * 1) ;

Figure 7.23: Applying recursive translation a second time, for an overall con-
struct parametrized by a block cyclic range.
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The parallel prefix implementation of section 7.6 needs only minor modifi-
cations to allow for arguments with block cyclic distribution. The enumeration
of local blocks should be changed to use crds() and block() (Figure 7.24).
The blocks of a block-cyclically distributed array will now be handled correctly
by blockPrefix (), and the function will correctly recurse to the cyclic code to
handle the kernel prefix'!.

We will sometimes refer to block cyclic ranges as “level 2” ranges. Most other
distribution formats are associated with “level 1” ranges. Process dimensions
are “level 0” ranges.

17Tt is a slightly esoteric point, but it is arguable that the reason we had to make any
changes at all is because the original version used the incoherent localBlock() inquiry. If
we had stuck to the canonical HPspmd style, we would have been forced to use the coherent
block() inquiry from the start.
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void blockPrefix(float [[]1] a) {
Range x = a.rng(0) ;

float [[,*]] as = a [[<>]] ;
Range z = as.rng(0) ;

float [[1] t

new float [[z]], s = new float [[z]] ;

Triplet crds = x.crds();

// 1. Do intra-block prefix. Set ‘t’ elements to sums of blocks

overall (k = z for crds.lo : crds.hi : crds.stp) {
Block b = x.block(k‘) ;

float sum = 0.0 ;

for (int 1 = 0 ; 1 < b.count ; 1++) {
int sub = b.sub_bas + b.sub_stp * 1 ;

sum

}

(as [k, sub] += sum) ;

t [k]

s [k] = sum ;

}

// 2. Do "global prefix"

prefix(t [[crds.lo : crds.hi : crds.stpll) ;

// 3. Add exclusive global prefix to intra-block prefixes in ‘a’

overall (k = z for crds.lo : crds.hi : crds.stp) {
Block b = x.block(k‘) ;

float sum = t [k] - s [k] ;

for (int 1 = 0 ; 1 < b.count ; 1++) {
int sub = b.sub_bas + b.sub_stp * 1 ;

as [k, sub] += sum ;

}

Figure 7.24: Block-wise version of parallel prefix modified to allow for block-
cyclic distribution formats.



Chapter 8

Translation scheme

This chapter describes a basic translation scheme for HPJava. The transla-
tion scheme is given in some detail; in effect it represents the most formal and
complete definition of the language itself.

8.1 Preliminaries

8.1.1 On distributed array types
A general distributed array type has the form:

T [Lattro, ..., attrr_11]

where R is the rank of the array and each term attr; is either empty or consists
of a single asterisk, *. In principle 7" can be any Java type.

In normal Java, arrays are not considered to be objects, but they are con-
sidered to have a class—a class representing an array type. We prefer to avoid
making the statement “distributed arrays have a class”. If we made this state-
ment it would probably commit us to either:

A. extending the definition of class in the Java base language, or

B. creating genuine Java classes for each type of HPJava array that might be
needed.

Class is such a fundamental concept in Java that option A looks like a
hard road to follow. Would people expect us, for example, to integrate the
complex runtime inquiries on HPJava distributed arrays into some extended
version of the Java reflection API? Or into the Java Native Interface, JNI? Such
fundamental extensions to Java don’t seem very practical.

Option B has its own problems. Presumably the associated class types
should capture the rather complicated system of array types we have described
for HPJava. Because there is an infinite number of array types, the associated

109
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float[[,,]]

float [[ ] float [, 1

Peasl ’ e

; \ float[[, *]] || float[[.,* 1] || float[[*, .,]]

: float [ 4] || float [[*, ]] ——
float [[] - / T S

. ~. . '
1 . b et

float [ ,**]] || float[[*, ,*]]|| float [[*,* 1]

‘o s

float [[*¥]]

R ' -
et

float [[*,*,*]]

Figure 8.1: Part of the lattice of types for distributed arrays of float

classes would certainly have to be created on demand by the translator. Does
the translator have to create class files for these automatically generated classes?
If so how should these files be managed? Distributed array types have a rather
complex, multiple-inheritance-like lattice of subtype relations, illustrated in Fig-
ure 8.1. This kind of type-lattice can be reproduced in Java by using interface
types. But then, when we generate a new array class, we have to make sure all
the interfaces it implements directly and indirectly are also defined.

We will finesse these issues by saying that an HPJava distributed array has
an “extended class”. The extended class concept embraces ordinary Java classes
and HPJava distributed array types, as separate concepts.

The fact that a distributed array is not a member of any Java class has a real
impact on how a distributed array can be used. For example, a distributed array
cannot be an element of an ordinary Java array, nor can a distributed array
reference be stored in a standard library class like Vector, which expects an
Object. In practise this is not such a drastic limitation as it sounds, because the
programmer can always create wrapper classes for particular types of distributed
array. For example suppose we need a “stack” of two-dimensional distributed



8.1. PRELIMINARIES 111

arrays of floating point numbers. We can set this up as follows:

class Level implements hpjava.lang.HPspmd {
public Level(float [[,]] arr) {this.arr = arr ; }

public float [[,]] arr ;
}

Range x, y ;

Level [] stack = new Level [S] ;
for (int 1 =0 ; 1 < 8 ; 1++)
stack [1] = new Level(new float [[x, yl11) ;

So the fact that distributed arrays cannot be treated as normal objects is
usually a minor inconvenience, not a fundamental limitation'. The interface

hpjava.lang.HPspmd will be discussed in the next section.

8.1.2 HPspmd classes

We will define a translation scheme from HPJava class definitions to standard
Java-language class definitions. The existing HPJava translator literally goes
through these stages, generating Java source as its output. In the future a
more advanced HPJava compiler might directly generate Java byte code, or
even machine code. Nevertheless, the early phases of compilation will probably
apply transformations similar to the ones described here.

In general only a subset of the classes in an HPJava program will actually
use the special syntax of distributed arrays and distributed control constructs.
Many of the classes used will be written in standard Java, or may be part of
standard Java libraries.

Methods that do use HPJava syntax have some special properties. Apart
from the fact that they may take distributed array arguments, they also assume
that there is a well-defined active process group (APG) at their point of invoca-
tion. So in general it is problematic (although not impossible) to invoke HP Java
code from a piece of ordinary Java. These problems reflect genuine limitations
of the underlying SPMD programming model—it is difficult to directly invoke
distributed parallel procedures from sequential code.

The HPJava translator tries to make a clear distinction between code that
may use HPJava syntax extensions and Java code that may not. It introduces
a special interface, hpjava.lang.HPspmd, which must be implemented by any
class that uses the special syntax.

INote that Fortran 90 also does not allow arrays of arrays to be declared directly. If they
are needed they have to be simulated by introducing a derived datatype wrapper, just as we
introduced a class here.
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We will refer to a class that implements the hpjava.lang.HPspmd interface
as an HPspmd class. Any other class is a non-HPspmd class. Likewise, an inter-
face that extends the hpjava.lang.HPspmd interface is an HPspmd interface,
and any other interface is a non-HPspmd interface. The extended syntax of
HPJava can only be used in methods, constructors and fields declared in HP-
spmd classes and interfaces. To discourage invocation of HPspmd code from
non-HPspmd code, the HPJava translator imposes the following limitations:

1. An HPspmd interface may not extend any non-HPspmd interface.
2. An HPspmd class may not implement any non-HPspmd interface.

3. An HPspmd class may not extend any non-HPspmd class, except for the
mandatory base class, Object.

4. An HPspmd class may not override the non-final methods from the base
class Object.

Although it is possible for code in a non-HPspmd classes to use HPspmd mem-
bers, it requires detailed knowledge of the transformations the HPJava trans-
lator applies to signatures and distributed array variables, and in general it is
discouraged. Of course (emphatically!) an HPspmd class can freely use any
non-HPspmd Java class, limited only by the normal accessibility rules.

The HPJava translator will not allow an HPspmd class to override methods
from the base class Object. For example, an HPspmd class cannot define a
finalize () method. This is just as well, because the finalize () method is
invoked asynchronously by the garbage collector. In this context there is no
well-defined active process group, and any attempt to, say, invoke a collective
operation from a finalize () method would almost certainly be a disaster.

It should be clear that the distinction between HPspmd and non-HPspmd
classes is orthogonal to the discussion in section 8.1.1 about the types of dis-
tributed arrays themselves. Here we are essentially concerned with what kind
of code is allowed to use distributed arrays. HPspmd classes are unequivocally
a kind of Java class, whereas distributed array types are not Java classes of any
kind.
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8.2 Translation functions

This assumes the existence of several “translation functions”. A function on
expression terms, T, [e], returns the result of translating an expression e. We
may expect that in general such translation involves the execution of a series of
statements as well as the evaluation of a final expression. These statements may,
for example, assign values to temporary variables. The sequence of statements
that needs to be executed before T, [e] is evaluated is given by the function
Tpre [6]

For convenience, we introduce the variants TV,

val’
lation of e that is guaranteed to return a simple name for T“/’al [e] (the value

associated with which is invariant in the part of the program that uses the re-
sult) by having Tgre [e] define an extra temporary variable to hold the expression
value, if necessary.

Translation functions for array expressions are more complicated. Tpre [¢]
works in the same way, but now there are 3+ R separate parts of the evaluation:
Tgat [€], Thag [€], Terp [€] and To [e], ..., Tr_1 [e], where R is the rank of the
array. The interpretation of these separate terms will be given in the following
sections.

As a shorthand we will allow the function Tpre to be applied to more general
syntactic terms, including lists of expressions and triplet terms. This should be
interpreted as a sequence of applications to the subexpressions in the argument.

The translation function for statements, T[S |p], translates the statment
or block S in the context of p as active process group. In the schemas given
below for translation of statements we will just use the name apg to refer to the
effective active process group. Hence a schema of the form

Tgre, which define a trans-

SOURCE:
S

TRANSLATION:
Sl

should be read more precisely as

SOURCE:
s = S
TRANSLATION:

Ts|lapg] = 9
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SOURCE:
T [Lattrg, ..., attrg—11] a ;
TRANSLATION:
o

rn Aat>

int alba§;

Group agyp;

DIMENSION_TYPE (attrg) af ;

DIMENSION_TYPE (attrr—1) a’z_4 ;
where:

T is a Java type,
each term attr, is either empty or a single asterisk, *,
a is an array name in the source program, rank R,
l4 / / / I H
Ugat’ Dhas’ derps and ag,...,a’r_; are names of new variables, and

the macro DIMENSION_TYPE is defined in the text.

Figure 8.2: Translation of local distributed array declaration.
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8.3 Translating local variable declarations

The general scheme for translating declaration of a local variable holding a
distributed array reference is illustrated in Figure 8.2. The single variable in
the source program is converted to 3+ R variables in the output program, where
R is the rank of the array.

The variable a/dat will hold a reference to the Java array containing the
locally held elements of the distributed array. This is the value that would
be returned by the inquiry a.dat () in the source program. The variable albas
will hold an offset from the start of the Java array, where the first locally held
element of the distributed array is stored (the value that would be returned
by the inquiry a.bas() in the source program). The variable a’grp will hold a
reference to the distribution group of the array (the value that would be returned
by the inquiry a.grp() in the source program).

The R variables aj), ..., a’, ; will hold descriptors for the dimensions of the
arrays. The macro DIMENSION_TYPE is defined as

DIMENSION_TYPE(attr,) = ArrayDim
if the term attr,. is empty, or
DIMENSION_TYPE (attr,) = SeqArrayDim

if the term attr, is an asterisk, *. Instances of the class ArrayDim contain a
distributed range object and an associated “memory stride”—the values that
would be returned by the inquiries a.rng(r) and a.str(r), respectively, in
the source program. These values are stored in the fields range and stride
of ArrayDim. The class SeqArrayDim is a subclass of ArrayDim that contains
extra information that can be used to simplify the computations associated with
subscripting a sequential array dimension.
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SOURCE:
T [Lattrg, ..., attrp—111 id ;

TRANSLATION:
T [1 TRANS.ID(id) ;

int TRANS.ID_BAS(id) ;
Group TRANS_ID_GRP(id) ;

DIMENSION_TYPE (attry) TRANS.ID_DIM(id,0) ;

DIMENSION_TYPE (attrg 1) TRANS.ID_DIM(id, R — 1) ;

where:

T is a Java type, the element type of the declared array,

R is the rank of the declared array,

each term attr, is either empty or a single asterisk, *,

the identifier id is the name of the declared field, and

the macros TRANS_ID, TRANS_ID_BAS, TRANS_ID_GRP and
TRANS_ID_DIM and DIMENSION_TYPE are defined in the text.

Figure 8.3: Translation of a distributed-array-valued field declaration.
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8.4 Translating field declarations

The general scheme for translating declaration of a field holding a distributed
array reference is illustrated in Figure Figure 8.16. This scheme is almost iden-
tical to the translation for a local variable decalation given in section 8.3, but in
this case we have to be specific about the names of the generated fields, because
they are exposed in (for example) the generated class files.

The macro TRANS_ID transforms the identifier of the field in a way that
encodes the dimension signature of the result. This information is necessary in
order that the HPJava signature of the method can be reconstructed from the
class file of the translated (and compiled) class. Note that the element type of
the distributed array field is known from the type of Java array in translated
field—this information is automatically encoded in the Java class file.

The values returned by the TRANS_ID macro and the macros TRANS_ID-
_BAS, TRANS_ID_GRP and TRANS_ID_DIM all start with the prefix “__HPJ_”.
This is followed by a string characteristic of the individual macro, described be-
low. The characteristic string is terminated by one underscore, “_", and this
underscore is followed by the original id string.

The characteristic string for TRANS_ID(id) is a string of R letters, each of
which is “D” (for a distributed dimension) or “S” (for a sequential dimension).
The characteristic string for TRANS_ID_BAS(id) is “BAS”. The characteristic
string for TRANS_ID_GRP(id) is “GRP”. The characteristic string for TRA-
NS_ID_DIM(id, r) is the decimal representation of the constant integer value
T.

The macro DIMENSION_TYPE is defined in section 8.3.

If the original class has a field:

float [[,,*]] bar ;
the translated class can be assumed to have the six fields:
float [] __HPJ_DDS_bar ;

int __HPJ_BAS_bar ;
Group __HPJ_GRP_bar ;

ArrayDim __HPJ_O_bar ;
ArrayDim __HPJ_1_bar ;
SegArrayDim __HPJ_2_bar ;

Unless the class containing the field declaration is an inner class, defined
inside a method of an HPspmd class, there is no active process group in effect
at the point at which the declaration appears. Consequently an initializer for a
field usually cannot contain calls to methods of HPspmd classes, or distributed
array creation expressions.
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SOURCE:
T Zd(UQ VOy +oo» UN,1 ’UNfl) {S}

TRANSLATION:

T id(TRANS_PARAMS(Uy wvo,...,Un—1 vn—_1), Group p) {
T[S |p]
}

where:

T is a Java type,

the identifier id is the name of the method,

each of the terms Uy, ..., Uy_1 is a Java type or a distributed array type,
Vg, ..., UN_1 are parameter names appearing in the original program,

S is a block of statements in the original program,

p is the name of a new parameter, and

the macro TRANS_PARAMS is defined in the text.

Figure 8.4: Translation of method declaration.
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8.5 Translating method declarations

There are two cases to consider. The case where the result of the method is not
a distributed array, and the case where the result is a distributed array. First
we consider the case where the result is not a distributed array.

The general scheme is illustrated in Figure 8.4. This scheme is modified in
trivial ways if the method has a void result, or involves other modifiers (they
are copied to the translated code).

The macro TRANS_PARAMS evaluates to a list of formal parameters. We
will define it in terms the simpler macro TRANS_PARAM which operates on a
single formal parameter declaration:

TRANS_PARAMS(UU Voy---, UN,:[ ’UN,]_) =
TRANS_PARAM (Uy vo), ..., TRANS.PARAM(Uy_1 vn_1)

Now, if U is not a distributed array type, we have
TRANS_PARAM(U v)= U w
Otherwise, if U has the form
T [Llattry, ..., attrp_11] a ;

where as usual 7' is a Java type and each term attr, is either empty or a single
asterisk, *, then the macro TRANS_PARAM is defined by

TRANS_PARAM(U v) =
T [1 aéiat’ int a{)as, Group a'grp,
DIMENSION_TYPE (attry) df, ...,
DIMENSION.TYPE (attrg_1) al

where a;_,, a’b o a'grp, and q, ..., ajp_, are new formal parameter names.
The macro DIMENSION_TYPE is defined in section 8.3.

In other words, each distributed array parameter is split into 3 + R param-
eters.

The final paramter p added by the translator will hold the value of the active
process group in effect at the point of invocation of the method.
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SOURCE:

T [Lattrg, ..., attrg—11] dUqy vg, ..., Un—1 vn_1) {
S
}

TRANSLATION:

T [1 TRANS.ID(id)(DAD d,
TRANS_PARAMS(UO VOy-- -y UNfl ’UNfl) N
Group p) {
T[S]p]
}

where:

T is a Java type,

R is the rank of the returned array,

each term attr,. is either empty or a single asterisk, *,

the identifier id is the name of the method,

each of the terms Uy, ..., Un—1 is a Java type or a distributed array type,
Vg, ---, UN—1 are parameter names appearing in the original program,

S is a block of statements in the original program,

d and p is the names of new parameters, and

the macros TRANS_ID and TRANS_PARAMS is defined in the text.

Figure 8.5: Translating declaration of method returning a distributed array.
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8.5.1 Methods that return distributed arrays

The scheme for translating a distributed-array-valued method declaration is
illustrated in Figure 8.5.

The macro TRANS_ID encodes the dimension signature of the returned array
and is defined in section 8.4. The macro TRANS_PARAMS was defined earlier
in this section.

Instances of the class DAD (the initials stand for Distributed Array Descriptor)
contain an integer base, a reference to a group object, and a vector of R instances
of ArrayDim. These values are stored in fields base, group, and dimensions,
respectively. Before the translated method returns, it will store the parameters
describing the layout of the distributed array result in these fields (see sections
8.16.1 and 8.16.2).
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SOURCE:
on (egrp) S

TRANSLATION:

Tgre [egrp)

ASSERT(apyg. contains (egp,))

if (egyp-member()) {

T [Ijg €orp

where:

egrp is an expression in the source,
S is a statement in the source program,
1 _mV
€orp = Tval [egrp}, and
the macro ASSERT is defined in the text.

Figure 8.6: Translation of on construct.
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8.6 Translating on constructs

A translation for the on construct is given in Figure 8.6.
The ASSERT macro throws an exception if its argument is boolean false.
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SOURCE:
at ('L = erng [eglb]) S

TRANSLATION:
Thre [ermg]
SN
Location [ = epq.location(Tyy [eglb}) ;

Dimension d = €jpg.dim() ;
if (d.crd() == l.crd) {
Group p = ((Group) apg.clone()).restrict(d) ;

T[S p]

where:
i is an index name in the source program,

erng and €glh Are expressions in the source,
S is a statement in the source program,
6{‘ng = T\‘//al [emg], and

l, d and p are the names of new variables.

Figure 8.7: Translation of at construct.
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8.7 Translating at constructs

A translation for the at construct is given in Figure 8.7.

The coordinate and local subscript associated with the specified location is
returned by the method, location(), which is a member of the Range class.
It takes one argument, the global subscript, and returns an object of class
Location, declared as:

class Location {
public int crd ;
public int sub ;

}

The restrict () method will throw an exception if d is not an effective dimen-
sion of apg.

The local subscript for the index i is the value of [.sub. This value is used
in subscripting distributed arrays.

The global index for the index ¢ is the value of T\‘//al [eglb] This value is

used in evaluating the global index expression 7 °.
The shift step for the index i is defined to be the value of ejo.str (). This
value is used in computation of offsets associated with shifted index subscripts.
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SOURCE:

overall (i = erng for e, : epj : estp) S

TRANSLATION:
Tgre [erng]

Tpre [€lo: €his Estp)

Block b = ep,,.localBlock(T,le,], Tyarlenil, Tyal lestp])

Group p = ((Group) apg.clone()).restrict(e{«ng.dim()) ;
for (dnt [ =0 ; [ < b.count ; (++) {

int sub = b.sub_bas + b.sub_stp * [ ;

int glb = b.glb_bas + b.glb_stp * [ ;

T[S |p]

where:
1 is an index name in the source program,

erng; €lo, €hi» and eggp are expressions in the source,
S is a statement in the source program,

ei«ng = T\‘//a.l [erng}, and

b, p, [, sub and glb are names of new variables.

Figure 8.8: Translation of overall construct.



8.8. TRANSLATING OVERALL CONSTRUCTS 127

8.8 Translating overall constructs

A translation for the overall construct is given in Figure 8.8. The 1localBlock()
method and the Block class have been discussed at length in section 7.3.

The local subscript for the index ¢ is the value of sub. This value is used in
subscripting distributed arrays.

The global index for the index i is the value of glb. This value is used in
evaluating the global index expression 7°.

The shift step for the index i is defined to be the value of eppg.str (). This
value is used in computation of offsets associated with shifted index subscripts.

The restrict() method will throw an exception if e, .dim() is not an
effective dimension of apg.
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SOURCE:
e = if
TRANSLATION:
Tprele] = (empty)
Tyale] = glb
where:

1 is an index name in the source program, and
glb is the global index variable for the index 3.

Figure 8.9: Translation of global index for 3.
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8.9 Translating global index expression

The scheme is illustrated in Figure 8.9. The global index variable associated
with a distributed index is defined in sections 8.7 and 8.8.
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SOURCE:
e = a
TRANSLATION:
Tprele] = (empty)
Tgatle] = aélat
Tbas [e} = a“/bas
Tgrp [6} = algrp
Tole] = aq
Tro1le] = dy ,
where:

a is an array name in the source program, rank R, and
ls / ls / / H
Aat> Whas) derp and ag,...,aR_; are corresponding
names of variables in the translated program.

Figure 8.10: Translation of a distributed-array-valued local variable access.
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8.10 Translating local variable accesses

We only need to consider the case where the variable is a distributed array. The
general scheme is illustrated in Figure 8.10.

The names a’d at? a{) as? aé;rp, and a(),...,a’, ; are the names introduced by
the translator when translating the corresponding local variable declaration or
formal parameter in the source program (see sections 8.3 and 8.5).
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SOURCE:
e = e = e

TRANSLATION:

Tprele] = Tpre[ed]

Tpre [es]

Taatlel = Tgagled] = Tqag [es]

Thasle] = Tpasled = Thag les]

Taple] = Taple] = Tarp[es]

T() [6] = T() [et] = T(] [65}

Tr_1le] = Tr_1le:] = Tro1les

where:

e; has distributed array type,
es is assignment convertible to the type of e;, and
R is the rank of both arrays.

Figure 8.11: Translation of a distributed-array assignment.



8.11. TRANSLATING ASSIGNMENT 133

8.11 Translating assignment

When the expresssions involved are distributed arrays, the general scheme is
illustrated in Figure 8.11.
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SOURCE:
e = new T [[leg, ..., er—11]1 on egrp
TRANSLATION:
Tprele] = Tgre [eo]
Tgre [er—1]
Tgre [egrp]
s =1;
b=0;
DEFINE_DIMENSION (aR_l, T\‘z/al ler—1], s, b)
DEFINE_DIMENSION (aq, T3, [eo] , s,b)
T qat [€] Corp -member ) ? new T [s] : null
Tpaslel = b
Tglp [6] = elgrp
To [€] ag
Tr_1le] = ar—
where:

T is a Java type,

R is the rank of the created array,

each expression e, is either range-valued or integer-valued,
a is the assigned array name in the source program,

s, b and aq, ..., agr_1 are names of new temporaries,

e'grp = TXal [egrp], and

the macro DEFINE_DIMENSION is defined in the text.

Figure 8.12: Translation of distributed array creation expression.
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8.12 Translating distributed array creation

The general scheme for translating creation of a distributed array is illustrated
in Figure 8.12. If the “on egrp” clause is omitted in the source program, the
value of e’grp in the translation can be taken to be apg.

The macro DEFINE_DIMENSION is defined as follows:

DEFINE.DIMENSION (a,, €., ,b) =
ar = el..arrayDim(s) ;
b += s * e..loExtension() ;
s *= e/ .volume() ;

. . .
if the expression e, is a range, or

DEFINE-DIMENSION (ay, ., s,b) =
a, = new SeqArrayDim(e], s) ;
s *= el ;

if the expression e/, is an integer. As each dimension is processed, the memory
stride for the next dimension is computed by multiplying the variable s by the
number of locally held range elements in the current dimension. The final value
of s is the total number of locally held elements. The variable b is incremented
to allow space for a lower ghost regions, below the base of the physical array, if
this is demanded by the ranges involved.

The method arrayDim() on the Range class creates an instance of ArrayDim,
with the memory stride specified in its argument. It is used in place of a call
to the ArrayDim constructor because arrayDim() has the property that if the
range is actually a collapsed range, the returned object will be an instance of the
SeqArrayDim subclass. This allows a new array created with a collapsed range
to be cast to an array with a sequential dimension, should it prove necessary at
a later stage (see section 8.22).
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SOURCE:
e = ear leg, ..., er-1l
TRANSLATION:
Tprele] = Tgre [earr]
Tpre [€0s ..., er—1]
Tyale] = Ty, learr] [OFFSET(earr,€q, ..., er—1)]
where:

The expression eapr is the subscripted array,

each term e, is either an integer, a distributed index name,
or a shifted index expression, and

the macro OFFSET is defined in the text.

Figure 8.13: Translation of array access expression.
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8.13 Translating element access

We only need to consider the case where the array reference is a distributed
array. The general scheme is illustrated in Figure 8.13. The macro OFFSET is
defined as

OFFSET(earr, €0yeeny eRfl) =
Tbas [earr] + OFFSET_DIM (T(‘)/ [earr] ,60)
+ OFFSET.DIM (T, lear] . en1)

There are three cases for the macro OFFSET_DIM depending on whether the
subscript argument is a distributed index, a shifted index, or an integer sub-
scripts (in a sequential dimension).

If e, is a distributed index 4, then

OFFSET_DIM (al.,e,) = a...stride * sub

where sub is the local subscript variable for this index (see sections 8.7 and 8.8).
Otherwise if e, is a shifted index ¢ & d, then

OFFSET_DIM (a,.,e,) = a,..stride * (sub £ shfstp x Ty, [d])

where sub is the local subscript variable and shf_stp is the shift step for ¢ (again,
see sections 8.7 and 8.8). Otherwise if e, is an integer expression (which implies
that a]. has type SeqArrayDim), then

OFFSET_DIM (a.,er) = al.off_bas + al.off_stp * T, [er]

The fields of £ bas and off_stp are initialized by the constructors for SeqArray-
Dim. They do not exist in the superclass ArrayDim.
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SOURCE:
e = ear L[Lsubsy, ..., subsp_11]
TRANSLATION:
Tprele] = Tpre[earr]
Tpre [subso, . . ., subsp_1]
b = Thyglearr] ;
PROCESS_SUBSCRIPTS (0, earr, 0)
Taarlel = Tyag learr]
Thas (] = b
Tgrp le] = Tgrp [ean]
Tole] = ao
Tr_1le] = ar-1
where:

The expression egpy is the subscripted array,
each term subss is either an integer, a triplet, or <>,
b and aq, ..., agr_1 are names of new temporaries,

the macro PROCESS_SUBSCRIPTS is defined in the text.

Figure 8.14: Translation of array section without scalar subscripts in distributed
dimensions.
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8.14 Translating array sections

The rules for translating array sections are more complicated than any other
part of the basic translation scheme.

We will break it down into two cases: the case where there are no scalar
subscripts—integer or distributed index—in distributed dimensions (we will al-
low integer subscripts in sequential dimensions), and the general case. The first
case is simpler because there is no non-trivial effect on the distribution group,
so we will consider it first. The scheme for translating is illustrated in Figure
8.14.

The macro OFFSET_SEQUENTIAL is defined as in section 8.13. The macro
PROCESS_SUBSCRIPTS will be defined in a tail-recursive way. The intention
is that it should be expanded to a compile-time loop over the subscripts.

Let R be the rank of the subscripted array. If s = R, then the macro
PROCESS_SUBSCRIPTS (v, earr, s) is empty. Otherwise, if subs, is an integer
expression, and the sth dimension of a is sequential, then

PROCESS_SUBSCRIPTS (r, earr, s) =
b += OFFSET_DIM (T [earr], subss) ;
PROCESS_SUBSCRIPTS (r,earr, s+ 1)

where the macro OFFSET_DIM is defined in section 8.13. Otherwise, if subs
is the degenerate triplet, :, then

PROCESS_SUBSCRIPTS (r, eary, s) =
a, = T, [earr] 5
PROCESS_SUBSCRIPTS (r + 1, earr, s + 1)

Otherwise, if subss is the triplet, e),:ep;:egtp, and the sth dimension of a is
distributed, then

PROCESS_SUBSCRIPTS (r, earr, s) =
ar = al,.range. subrng(eio, eiﬂ, e/stp) .arrayDim(a}.stride) ;
PROCESS.SUBSCRIPTS (r + 1, earr. s + 1)

where a;, = T [eart], €], = Tya1 [e10]: €f; = Tar lenil, and g, = Tyq [estp)-

Otherwise, if subss is the triplet, e, :ey;:estp, and the sth dimension of a is
sequential, then

PROCESS_SUBSCRIPTS (r, earr, $) =
ar = new SeqArrayDim(a;.range.subrng(e] , €p., €
PROCESS_SUBSCRIPTS (r + 1,earr, s + 1)

with definitions as above. Two similar cases using the two-argument form of
subrng () take care of triplets of the form ej,:ep;. Otherwise, if subsg is the
splitting subscript, <>, then

PROCESS_SUBSCRIPTS (r,earr, s) =
r = al.range ;
u = a,.stride ;
z = x.shell() ;
ar+1 = new SeqArrayDim(z, u) ;
a, = new ArrayDim(x.dim(), u * z.volume()) ;
PROCESS_SUBSCRIPTS (r + 2, earr, s + 1)

where z, u, and z are the names of new temporaries.

/

/ . .
Stp), al.stride) ;



140 CHAPTER 8. TRANSLATION SCHEME

SOURCE:
e = egrr L[lsubsy, ..., subsp_11]
TRANSLATION:
Tprele] = Tgre earr]
Tpre [subso, . .., subsp_1]
b = Tbas [earr] 5
p = (Group) Tgrp [earr] .clone() ;
PROCESS_SUBSCRIPTS (0, earr, 0)
Tyatle] = p.member() 7 Tgat [earr] : null
Thasle] = b
Tgrp [e] = p
Tole] = ag
Tr1le] = ag-1
where:

The expression earr is the subscripted array,

each term subss is either an integer, a distributed index name,
a shifted index expression, a triplet, or <>,

b, p and ag, ..., agr_1 are names of new temporaries, and

the macro PROCESS_SUBSCRIPTS is defined in the text.

Figure 8.15: Translation of array section allowing scalar subscripts in distributed
dimensions.
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8.14.1 Scalar subscripts in distributed dimensions

The scheme for translating array sections when scalar subscripts appear in some
distributed dimension is illustrated in Figure 8.15.

We add two new cases for the definition of the macro PROCESS_SUB-
SCRIPTS. If subss is the integer €olb> and the sth dimension of eapr is dis-
tributed, then

PROCESS_SUBSCRIPTS (1, earr, s) =
x = al,.range ;
l = x.location(e'glb) ;
b += l.sub * a.stride ;
p.restrict(z.dim(), l.crd) ;
PROCESS_SUBSCRIPTS (r, carr, s + 1)

where z and [ are the names of new temporaries, a’, = TY [earr], and e/glb =

Ty {eglb:| . Otherwise, if subs;, is a distributed index ¢ or a shifted index i £d,
then
PROCESS_SUBSCRIPTS (r, earr, S) =
b += OFFSET_DIM (T [earr], subss) ;
p.restrict(x.dim()) ;
PROCESS_-SUBSCRIPTS (r, earr, s + 1)

where in this case x is the range associated with ¢ and the macro OFFSET_DIM
is defined in section 8.13.
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SOURCE:

TRANSLATION:
Tpre [6]
T gat €]
Thas €]
Tgrp [6]

TO [e

TR,1 [6}

where:

CHAPTER 8. TRANSLATION SCHEME

e = eobj.id

14
Tpre

/
eobj .
/
eobj .
/
€obj
/
eobj .

/
eobj .

o]

TRANS_ID(id)
TRANS_ID_BAS(id)

.TRANS_ID_GRP(id)

TRANS_ID_DIM(id, 0)

TRANS_ID_DIM(id, R — 1)

the expression €obj has class type,
the identifier id is the name of the field,
R is the rank of the field,

_ TV )
eé)bj - lTval [eObJ} » and
the macros TRANS_ID, TRANS_ID_BAS, TRANS_ID_GRP and
TRANS_ID_DIM are defined in the text.

Figure 8.16: Translation of a distributed-array-valued field access.
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8.15 Translating field accesses

We only need to consider the case where the field is a distributed array. The
general scheme is illustrated in Figure 8.16. This scheme is modified in trivial
ways if the field is a class variable, or an instance variable of the current object.

The macros TRANS_ID, TRANS_ID_BAS, TRANS_ID_GRP and TRANS_-
ID_DIM are defined in section 8.4.
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SOURCE:
e = eobj.id(eo, eee, EN—1)
TRANSLATION:
Tprele] = Tpre [eobj}
Tpre [€0s .-, en—1]
Tyale] = Toal {eobﬂ .id(TRANS_ARGS(eq, ...,en—1), apg)
where:

The expression €obj has class type,
the identifier id is the name of the method,
each term e, is an actual argument in the original program,

the macro TRANS_ARGS is defined in the text.

Figure 8.17: Translation of method invocation expression.
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8.16 Translating method invocations

There are two cases to consider. The case where the result of the method is not
a distributed array, and the case where the result is a distributed array. First
we consider the case where the result is not a distributed array. The general
scheme is illustrated in Figure 8.17. This scheme is modified in trivial ways if
the method is static, or is applied to the current object.

The macro TRANS_ARGS evaluates to a list of translated expressions. We
will define it in terms of the simpler macro TRANS_ARG which operates on a
single argument:

TRANS_ARGS(B(), cee eN,l) =
TRANS_ARG (eq), ..., TRANS.ARG(exn_1)

Now, if e is not a distributed array, then
TRANS_ARG(e) = e
Otherwise, if e is a distributed array expression of rank R, then

TRANS_ARG (e) =
Tqat [€], Thas le]s Torp le], Tole], ..., Tr 1]e]

In other words, each distributed array argument is split into 3 + R arguments.
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SOURCE:
e = eobj.id(eo, e, EN—1)

TRANSLATION:
Tprele] = Tpre {eobj}

Tpre [605 ey eN—l]

v = Ty [eobj] . TRANS.ID(id)(d, TRANS.ARGS(eq, ... ,ex—1), apg) ;
Taarle] = v
Thas le] = d.base
Tgp le] = d.group

Tole] = TRANS-DIM(d,0)

Tro1l] = TRANS-DIM(d,R—1)
where:

The expression €obj has class type or is a class,
the identifier id is the name of the method,
each term e, is an actual argument in the original program,
v is a new temporary,
d is a new temporary, referencing an allocated DAD object, and
R is the rank of the result, and
the macros TRANS_ID, TRANS_ARGS, and TRANS_DIM
are defined in the text.

Figure 8.18: Translation of array-valued method invocation expression.
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8.16.1 Methods that return distributed arrays

The scheme for translating a distributed-array-valued method invocation is il-
lustrated in Figure 8.18.

The macro TRANS_ID encodes the dimension signature of the returned array
and is defined in section 8.4. The macro TRANS_ARGS was defined earlier in
this section.

The macro TRANS_DIM is defined as

TRANS_DIM(d,r) = d.dimensions [r]
if the rth dimension of the result is distributed, or
TRANS_DIM(d,r) = (SeqArrayDim) d.dimensions [r]

if the rth dimension is sequential.
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SOURCE:
return earr
TRANSLATION:
Tpre [earr]
d.base = Ty, [earr] ;
d.group = Tgrp [earr] 5
d.dimensions [0] = Tq[earr] ;
d.dimensions [R— 1] = Tg_1 [earr] ;
return Tg. [earr] ;
where:

earr is the array-valued result expression,
R is its rank, and
d is the DAD passed as first argument of the translated method.

Figure 8.19: Translation of return statement in array-valued method.
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8.16.2 Translation of return statement

The scheme for translating a return statement in the definition of an array-
valued method is illustrated in Figure 8.19.
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SOURCE:
e = new T(e, ..., en—_1)
TRANSLATION:
Tprele] = Tpre[eo
Tpre [eN,ﬂ
T,,le] = new T(TRANS_ARGS(eg,...,en—1))
where:

T is a Java type,

each term e, is an actual argument in the original program,
the macro TRANS_ARGS is defined in the text.

Figure 8.20: Translation of class instance creation expression.
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8.17 Translating constructor invocations

The rules for translating constructor invocations follow directly from the rules
for method invocations given in section 8.16.

Figure 8.17 illustrates the translation for a class instance creation expression.
Explicit constructor invocations (specifying this or super) do not introduce any
new features.
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SOURCE:
€ = Eégrr / €loc
TRANSLATION:
Tpre [6] = Tpre [earr]
Tpre [eloc}
p = RESTRICT_-GROUP (Tgrp [ea‘rr} ’EIOC)
Tyat le] = p.member() ? Ty, learr] : null
Thasle]l = Thug learr]
Torple] = p
Tole] = Tolearr)
Tr_1le] = Tr_1learr]
where:

The expression egyy is the array to be restricted,

the expression e, is either a distributed index, a shifted index,
or a range element,

p is a new temporary, and

the macro RESTRICT-GROUP is defined in the text.

Figure 8.21: Translation of array restriction operation.
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8.18 Translating array restriction

The scheme is illustrated in Figure 8.21.
If €14 is a range element of the form erpg [eglb] , the macro RESTRICT_-GROUP
is defined as

RESTRICT_-GROUP (p, ejpc) =
r = eéng 5
l= m.location(eé,lb);
((Group) p.clone()).restrict(x.dim(), l.crd) ;

where x and [ are the names of new temporaries, e{«ng =TV [emg], and e’g b=

Tyal {eglb:|' Otherwise, if e, is a distributed index ¢ or a shifted index i &= d,
it is defined as

RESTRICT_-GROUP (p, €1c) =
((Group) p.clone()) .restrict(x.dim()) ;

where in this case x is the range associated with 7.



154 CHAPTER 8. TRANSLATION SCHEME

SOURCE:
€ = e€grp / €loc
TRANSLATION:
Tprele] = Tpre [egrp]
Tpre e10c]
Taat [V] = RESTRICT-GROUP (T [egrp] s €10c)
where:

The expression egrp is the group to be restricted,
the expression e) is either a distributed index, a shifted index,
or a range element, and

the macro RESTRICT_-GROUP is defined in the text.

Figure 8.22: Translation of group restriction operation.
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8.19 Translating group restriction

The scheme is illustrated in Figure 8.22. The macro RESTRICT_-GROUP is
defined in section 8.18.
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SOURCE:
e = emg [e @ epil
TRANSLATION:
Tpre le] = Tpre [erng}
Tpre [€10; €nil
Taat V] = Tya [erng] .subrng (T, [eo] 5 Tyar [enil)
SOURCE:
e = emg leg @ ep; ¢ egtpl
TRANSLATION:
Tpre [6] = Tpre [erng]
Tpre [€1os €his estp)
T qat ] = Tyal [erng] .subrng (T, [elo] s Tyal [ehi} > Tyal [estp] )
where:

The expression erpg is the parent range, and
€lo: €phi and egtp are integer-valued expressions in the source program.

Figure 8.23: Translation of subrange expressions.
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8.20 Translating subrange expressions

The schemes are illustrated in Figure 8.23.
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SOURCE:
€ = €phool 7 €1 ° €2

TRANSLATION:

Tprele] = Tgre [ebool]

Tpre [e]_, 62]

Tgat e] = e/bool ? Tqat lea] Tyat [e2]

Thas e] = elbool ? Thas le1] - Thas [e2]

Teple] = €000 7 Tarplea] = Tgrp [e2]

Tole] = e{aool ? Toler] : Toles]

Tr_1 [6] = ei)ool ? Tr_1 [61] . Troq [62}

where:

€hool has boolean type, and
e1 and ey have distributed array type,
both have the same rank, R, and

ei)ool = T\‘//al [ehooll -

Figure 8.24: Translation of conditional operator selecting distributed arrays.
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8.21 Translating the conditional operator

The general scheme is illustrated in Figure 8.11. The definition of the result
type, and the associated conditions for legality of selecting between e; and e,
follow from this translation together with the normal Java rules applied to the
parts of the arrays.
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SOURCE:

TRANSLATION:

SOURCE:

TRANSLATION:

SOURCE:

TRANSLATION:

where:

e =

Tpre [¢]

T €]

Tpre [€]

Tal le]

Tpre [€]

Tyal le]

CHAPTER 8. TRANSLATION SCHEME

éarr - dat ()

= Tprc [earr]

= Tyat lear]

earr - bas ()

= Tprc [earr]

= Thus [earr]

earr - grp O

= Tprc [earr]

= Tgrp [earr]

The expression eapr has distributed array type.

Figure 8.25: Translation of distributed array inquiries.
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SOURCE:
e = ear.rng(r)
TRANSLATION:
Tpre [e] = Tpre [earr]
Tyale] = T, learr] .range
SOURCE:
e = egrr.-str(r)
TRANSLATION:
Tpre e] = Tpre learr]
Tyale] = Tylear] .stride
where:

The expression eapr has distributed array type, and

the term 7 is a compile-time constant integer expression
in the range 0 < r < R, where R is the rank of eayr.

Figure 8.26: Translation of distributed array inquiries, continued.
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SOURCE:
e = (T [lattrog, ..., attrr—111) earr

TRANSLATION:

Tprele] = Tpre [earr]

Taagle] = (T 1) Tyut [ean]

Thasle] = Thag [earr]

Tgorp le] = Tgrp [earr]

Tole] = CAST_DIMENSION (attry, To [earr])

TR,1 [6] = C(CAST_DIMENSION (attT‘R,l, TR,1 [earr])

where:

T is a Java type,

each term attr, is either empty or a single asterisk, *,

earr 1S an array expression in the source program, rank R, and
the macro CAST_DIMENSION is defined in the text.

Figure 8.27: Translation of cast of array expression.
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8.22 Translating casts

The scheme for translating a cast of a distributed-array valued expression is
illustrated in Figure 8.27. The macro CAST_DIMFENSION is defined as follows:

CAST_DIMENSION (attr,,e].) = (ArrayDim) el
if the term attr, is empty, or
CAST_DIMENSION (attry,e].) = (SeqArrayDim) e!.

if the term attr, is an asterisk, *.
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SOURCE:
e = egrr instanceof T [[attryg, ..., attrr_i1]1]
TRANSLATION:
Tpre [e] = Tpre [earr}
Ty lel] = (Tyat learr] instanceof 7' [1) &&
(T [earr] instanceof DIMENSION_TYPE (attry)) &&
(TRr-1]earr] instanceof DIMENSION_TYPE (attrr—1))
where:

earr 1S an array expression in the source program, rank R,
T is a Java type,

each term attr, is either empty or a single asterisk, *, and
the macro DIMENSION_TYPE is defined in the text.

Figure 8.28: Translation instanceof applied to array expression.
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8.23 Translating instanceof

The scheme for translating an instanceof test applied to a distributed-array
valued expression is illustrated in Figure 8.28. The macro DIMENSION_TYPE
is in section 8.3.
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SOURCE:
TRANSLATION:
Tpre [6] =
Toalel =
SOURCE:
TRANSLATION:
Tpre [6] =
Toale]l =
where:
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e = € == €&

Tpre [e1]

Tpre [e2]

(Tgag lea] == Tgag le2]) &&

(Tbas [61} == Tbas [62] ) &&

(Toler] == Tolez]) &&

(Tr-1[e1] == Tr1le2])
€1 1= €9

Tpre [€1]

Tpre [e2]

(Tqat le1] '= Tgagle2]) 11

(Tbas [61} I= Tbas [62] ) | I

(T le1] '= Tolea]) |1

(Tr-1le1] '= Tro1[e2])

e1 and es have distributed array type, and
both have the same rank, R.

Figure 8.29: Translation of reference equality tests, applied to array expressions.
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8.24 Translating reference equality

The scheme for translating the reference equality operators == and !=, applied
to distributed arrays is illustrated in Figure 8.29.

Because there is no single Java reference to a distributed array (or, equiv-
alently, because a distributed array is not considered to be an object) there is
no obvious, a priori definition for reference equality between distributed arrays.
The translations given here can be read as definitions.

One consequence of these definitions, together with the translation for array
sections given in section 8.14, is that an array section in which every subscript
is the default triplet : is considered to be identical (in the sense of reference
equality) to its parent array.

[Define the value of null here?? Have to define it somewhere.]



