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ABSTRACT

Several Java bindings of the Message Passing Interface stan-
dard, MPI, have been developed recently. Message buffers
have usually been restricted to arrays with elements of prim-
itive type. We discuss use of the Java object serialization
model for marshalling general communication data in MPI.
This approach is compared with a Java transcription of the
standard MPI derived datatype mechanism. We describe
an implementation of the mpiJava interface to MPI incor-
porating automatic object serialization. Benchmark results
show that the current JDK implementation of serialization
is (not unexpectedly) probably not fast enough for high per-
formance applications. Means of solving this problem are
discussed.

1 INTRODUCTION

The Message Passing Interface standard, MPI [?], defines an
interface for parallel programming that is portable across a
wide range of supercomputers and workstation clusters. The
MPI Forum defined bindings for Fortran, C and C++. Since
those bindings were defined, Java has emerged as a major
language for distributed programming. There are reasons to
believe that Java may rapidly become an important language
for scientific and parallel computing [?, 7, ?]. Over the past
two years several groups have independently developed Java
bindings to MPI and Java implementations of MPI subsets.
With support of several groups working in the area, the Java
Grande Forum drafted an initial proposal for a common Java
interface to MPI [?].

A characteristic feature of MPI is its flexible method
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for describing message buffers consisting of mixed primi-
tive fields scattered, possibly non-contiguously, over the local
memory of a processor. These buffers are described through
special objects called derived datatypes run-time analogues
of the user-defined types supported by languages like C. The
standard MPI approach does not map very naturally into
Java. In [?, 7, 7] we suggested a Java-compatible restric-
tion of the general MPI derived datatype mechanism, in
which all primitive elements of a message buffer have the
same type, and they are selected from the elements of a one-
dimensional Java array passed as the buffer argument. This
approach preserves some of the functionality of the original
MPI mechanism—for example the ability to describe strided
sections of a one dimensional buffer argument, and to repre-
sent a subset of elements selected from the buffer argument
by an indirection vector. But it does not allow description
of buffers containing elements of mixed primitive types.

The derived datatype mechanism is retained in the initial
draft of [?], but its usefulness seems to be limited. In the
context of Java, a more promising approach may be the addi-
tion a new basic datatype to MPI representing a serializable
object. The buffer array passed to communication functions
is still a one-dimensional array, but as well as allowing arrays
with elements of primitive type, the element type is allowed
to be Object. The serialization paradigm of Java can be
adopted to transparently serialize buffer elements at source
and unserialize them at destination. An immediate applica-
tion is to multidimensional arrays. A Java multidimensional
array is an array of arrays, and an array is an object. There-
fore a multidimensional array is a one-dimensional array of
objects and it can be passed directly as a buffer array. The
options for representing sections of such an array are limited,
but at least one can communicate whole multidimensional
arrays without explicitly copying them (of course there may
well be copying inside the implementation).

1.1 Overview of this article.

This article discusses our current work on use of object seri-
alization to marshal arguments of MPI communication op-
erations. It builds on earlier work on the mpiJava interface
to MPI [?], which is implemented as a set of JNI wrap-
pers to native C MPI packages for various platforms. The
original implementation of mpiJava supported MPI derived
datatypes, but not object types.



Section ?? reviews the parts of the API of [?] relating
to derived datatypes and object serialization. Section 77
describes our prototype implementation of automatic ob-
ject serialiation in mpiJava. In section 77 we describe some
benchmarks for this initial implementation. The results im-
ply that naive use of existing Java serialization technology
does not provide the performance needed for high perfor-
mance message passing environments. Possible remedies for
this situation are outlined briefly in the final discussion sec-
tion.

1.2 Related work

Early work by the current authors on Java MPI bindings is
reported in [?]. A comparable approach to creating full Java
MPT interfaces has been taken by Getov and Mintchev [?, 7].
A subset of MPI is implemented in the DOGMA system for
Java-based parallel programming [?]. A pure Java imple-
mentation of MPI built on top of JPVM has been described
in [?]. So far these systems have not attempted to use object
serialization for data marshalling.

For an extensive discussion of performance issues sur-
rounding object serialization see section 3 of [?] and refer-
ences therein. The discussion there mainly relates to seri-
alization in the context of fast RMI implementations. The
cost of serialization is likely to be an even more critical issue
in MPI, because the message-passing paradigm usually has
lower overheads.

2 DATATYPES IN A JAVA API FOR
MPI

The MPI standard is explicitly object-based. The C++
binding specified in the MPI 2 standard collects these ob-
jects into suitable class hierarchies and defines most of the
library functions as class member functions. The Java API
proposed in [?] follows this model, and lifts its class hierarchy
directly from the C++ binding,.

In our Java version a class MPI with only static members
acts as a module containing global services, such as initializa-
tion of MPI, and many global constants including a default
communicator COMM_WORLD'. The communicator class Comm is
the single most important class in MPI. All communication
functions are members of Comm or its subclasses. Another
class that is relevant for the discussion below is the Datatype
class. This describes the type of the elements in the mes-
sage buffers passed to send, receive, and other communica-
tion functions. Various basic datatypes are predefined in the
package. These mainly correspond to the primitive types of
Java, shown in figure ?77.

The standard send and receive operations of MPI are
members of Comm with interfaces

void send(Object buf, int offset, int count,
Datatype datatype, int dst, int tag)

Status recv(Object buf, int offset, int count,
Datatype datatype, int src, int tag)

Tt has been pointed out that if multiple MPI threads
are allowed in the same Java VM, the default communicator
cannot be obtained from a static variable. The final version
of the API may change this convention.

MPT datatype Java datatype
MPIL.BYTE byte
MPI.CHAR char
MPI.SHORT short
MPI.BOOLEAN | boolean
MPILINT int
MPI.LONG long
MPL.FLOAT float
MPI.DOUBLE double
MPI.OBJECT Object

Figure 1: Basic datatypes in proposed Java binding

In both cases the actual argument corresponding to buf
must be a Java array with element type determined by the
datatype argument. If the specified type corresponds to a
primitive type, the buffer will be a one-dimensional array.
Multidimensional arrays can be communicated directly if an
object type is specified, because an individual array can be
treated as an object. Communication of object types im-
plies some form of serialization and unserialization. This
could be the built-in serialization provided in current Java
environments, or it could be some specialized serialization
optimized for MPI (or some combination of the two).

Besides object types the draft Java binding proposal re-
tains a model of MPI derived datatypes. In C or Fortran
bindings of MPI, derived datatypes have two roles. One is
to allow messages to contain mixed types. The other is to
allow noncontiguous data to be transmitted.

The first role involves using the MPI_TYPE_STRUCT derived
data constructor, which allows one to describe the physical
layout of, say, a C struct containing mixed types. This will
not work in Java, because Java does not expose the low-
level layout of its objects. In C or Fortran MPI_TYPE_STRUCT
also allows one to incorporate displacements computed as
differences between absolute addresses, so that parts of a
single message can come from separately declared arrays and
other variables. Again there is no very natural way to do this
in Java. Effects similar to of these uses of MPI_TYPE_STRUCT
can be achieved by using MPI.0BJECT as the buffer type, and
relying on object serialization.

We conclude that in the Java binding the first role of
derived dataypes should probably be abandoned—derived
types can only include elements of a single basic type. This
leaves description of noncontiguous buffers as the essential
role for derived data types.

Every derived data type constructable in the Java binding
has a uniquely defined base type. This is one of the 9 basic
types enumerated above. A derived datatype is an object
that specifies two things: a base type and a sequence of
integer displacements. In contrast to the C and Fortran
bindings the displacements can be interpreted in terms of
subscripts in the buffer array argument, rather than as byte
displacements.

In Java a derived dataype constructor such as MPI_TYPE_ -
INDEXED, which allows an arbitray indirection array, has a
potentially useful role. It allows to send (or receive) mes-
sages containing values scattered randomly in some one-
dimensional array. The draft proposal incorporates ver-
sions of this and other type constructors from MPT including



MPI_TYPE_VECTOR for strided sections?.

3 IMPLEMENTATION ISSUES FOR
OBJECT DATATYPES

As described in the previous section the proposal of [?] in-
cludes a restricted, Java-compatible version of the general
datatype mechanism of MPI. The proposal retains much of
the complexity of the standard MPI mechanism, but its value
is apparently reduced in Java. In this section we will discuss
the other option for representing complex data buffers in the
Java binding—introduction of an MPI.0BJECT datatype.

It is natural to assume that the elements of arrays passed
as buffer arguments to send and other output operations are
objects whose classes implement the Serializable interface.
There are at least two ways one may consider communicating
object types in the MPI interface

1. Use the standard ObjectOutputStream to convert the
object buffers to byte vectors, and communicate these
byte vectors using the same method as for primitive
byte buffers (for example, this might involve a native
method call to C MPI functions). At the destination,
use the standard ObjectInputStream to rebuild the ob-
jects.

2. Replace calls to the writeObject, readObject methods
on the standard streams with specialized functions that
use platform specific knowledge to communicate data
fields more efficiently. For example, one might replace
writeObject with a native method that creates an MPI
derived datatype structure describing the layout of data
in the object, and passes this buffer descriptor to a
native MPI_Send function.

In the second case our implementation is responsible for
prepending a suitable type descriptor to the message, so that
objects can be reconstructed at the receiving end before the
data fields are copied to them. This complexity is hidden in
the first approach.

Evidently the first implementation scheme is more strai-
ghtforward, and only this approach will be considered in the
rest of this section. We discuss an implementation based on
the mpiJava wrappers, combining standard JDK object seri-
alization methods with a JNT interface to native MPI. Bench-
mark results presented in the next section suggest, however,
that something like the second approach (or some suitable
combination of the two) deserves serious consideration.

The original version of mpiJava was a direct Java wrapper
for standard MPI. Apart from adopting an object-oriented
framework, it added only a modest amount of code to the
underlying C implementation of MPI. Derived datatype con-
structors, for example, simply called the datatype construc-
tors of the underlying implementation and returned a Java
object containing a representation of the C handle. A send

2We note, though, that the value of providing strided sec-
tions is reduced because Java has no natural mapping be-
tween elements of its multidimensional arrays and elements
of equivalent one-dimensional arrays. This thwarts one com-
mon use of strided sections, for representing portions of mul-
tidimensional arrays.

operation or a wait operation, say, dispatched a single C
MPI call. Even using standard JDK object serialization and
a native MPI package, uniform support for the MPI.0OBECT
basic type complicates the wrapper code significantly.

In the new version of the wrapper, every send, receive,
or collective communication operation tests if the base type
of the datatype argument describing a buffer is OBJECT. If
not—if the buffer element type is a primitive type—the na-
tive MPI operation is called directly, as in the old version.
If the buffer is an array of objects, special actions must be
taken in the wrapper. If the buffer is a send buffer, the ob-
jects must be serialized. To support MPI derived datatypes
as described in the previous section, we must also take ac-
count of the possibility that the message is actually some
subset of the of array of objects passed in the buffer argu-
ment, selected according to the displacement sequence of the
derived datatype. Making the Java wrapper responsible for
handling derived data types when the base type is OBJECT
requires additional state in the Java-side Datatype class. In
particular the Java object explicitly maintains the displace-
ment sequence as an array of integers.

A further set of changes to the implementation arises be-
cause the size of the serialized data is not known in advance,
and cannot be computed at the receiving end from type in-
formation available there. Before the serialized data is sent,
the size of the data must be communicated to the receiver,
so that a byte receive buffer can be allocated. We send two
physical messages—a header containing size information, fol-
lowed by the data. This, in turn, complicates the implemen-
tation of the various wait and test methods on communi-
cation request objects, and the start methods on persistent
communication requests, and ends up requiring extra state
to the Java Request class. Comparable changes are needed
in the collective communication wrappers. A gather opera-
tion, for example, involving object types is implemented as
an MPI_GATHER operation to collect all message lengths, fol-
lowed by an MPI_GATHERV to collect possibly different-sized
data vectors.

4 BENCHMARK RESULTS FOR
MULTIDIMENSIONAL ARRAYS

We assume that in the kind of Grande applications where
MPI is most likely to be used, some of the most pressing
performance issues about buffer description and object com-
munication will concern arrays and multidimensional arrays
of small objects—most especially arrays with primitive ele-
ments such as ints and floats. For initial benchmarks we
concentrated on the overheads introduced by object serial-
ization when the objects contain many arrays of primitive
elements. Specifically we concentrated on communication of
two-dimensional arrays with primitive elements.?.

The “ping-pong” method was used to time point-to-point
communication of an N by N array of primitive elements
treated as a one dimensional array of objects, and compare
it with communication of an N? array without using serial-

3We note that there some debate about whether the Java
model of multidimensional arrays is appropriate for high per-
formance computing. There are various proposals for for
optimized HPC array class libraries [?].



ization. As an intermediate step we also timed communica-
tion of a 1 by N? arrey treated as a one-dimensional (size
1) array of objects. This allows us to extract an estimate of
the overhead to “serialize” an individual primitive element.
The code for sending and receiving the various array shapes
is given schematically in Figure 77.

As a crude timing model for these benchmarks, one can
assume that there is a cost t%, to serialize each primitive
element of type T, an additional cost tje, to serialize each
subarray, similar constants tT or and Y., for unserializa-
tion, and a cost X, to physically tranfser each element of
data. Then the total time for benchmarked communications
should be

2
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2
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(taer + toom + tunser) N7 (3)

These formulae do not attempt to explain the constant initial
overhead, don’t take into account the extra bytes for type
description that serialization introduces into the stream, and
ignore possible non-linear costs associated with analysing
object graphs, etc. Empirically these effects are small for
the range of N we consider.

All measurements were performed on a cluster of 2-proc-
essor, 200 Mhz UltraSparc nodes connected through a Sun-
ATM-155/MMF network. The underlying MPI implemen-
tation was Sun MPI 3.0 (part of the Sun HPC package).
The JDK was jdk1.2betad. Shared memory results quoted
are obtained by running two processes on the processors of
a single node. Non-shared-memory results are obtained by
running peer processes in different nodes.

In a series of measurements, element serialization and un-
serialization timing parameters were estimated by indepen-
dent benchmarks of the serialization code. The parameters
toer and tyoser were estimated by plotting the difference be-
tween serialization and unserialization times for T[1][N?]
and TINI1[N]1%. The raw communication speed was esti-

mated from ping-pong results for {TLN A . Table 77 contains
the resulting estimates of the various parameters for byte
and float elements.

Figure 7?7 plots actual measured times from ping-pong
benchmarks for the mpiJava sends and receives of arrays
with byte and float elements. In the plots the array extent,
N, ranges between 128 and 1024. The measured times for
tT [sz, sy [N2] and tTINIINT e compared with the
formulae given above (setting the ¢ constants to zero). The
agreement is good, so our parametrization is assumed to be
realistic in the regime considered.

According to table 7?7 the overhead of Java serializa-
tion nearly always dominates other communiation costs. In
the worst case—floating point numbers—it takes around 2
microseconds to serialize each number and a smaller but

4Our timing model assumed the values of these parame-
ters is independent of the element type. This is only approx-
imately true, and the values quoted in the table and used in
the plotted curves are averages. Separately measured values
for byte arrays were smaller than these averages, and for int
and float arrays they were larger.

thyte = 0.043 tloat = 2.1 e = 100
thyte = 0.027 thoat -~ — 1.4 tyee . = 53
toe = 0.062f tloat = (.25
thyte = 0.008" thoat = 0.038"

Table 1: Estimated parameters in serialization and commu-
nication timing model. The tL,, values are respectively for
non-shared memory () and shared memory (§) implemen-
tations of the underlying communication. All timings are in

microseconds.

comparable time to unserialize. But it only takes a few
hundredths of a microsecond to communicate the word
through shared memory. Serialization slows communication
by nearly two orders of magnitude. When the underlying
communication is over a fast network rather than through
shared memory the raw communication time is still only a
fraction of a microsecond, and serialization still dominates
that time by about one order of magnitude. For byte el-
ements serialization costs are smaller, but still larger than
the communication costs in the fast network and still much
larger than the communication cost through shared memory.
Serialization costs for int elements are intermediate.

The constant overheads for serializing each subarray, cha-
racterized by the parameters tis, and tymser are also quite
large, although, for the array sizes considered here they only
make a dominant contribution for the byte arrays, where
individual element serialization is relatively fast.

5 DISCUSSION

In Java, the object serialization model for data marshalling
has various advantages over the MPI derived type mecha-
nism. It provides much (though not all) of the flexibility
of derived types, and is presumably simpler to use. Object
serialization provides a natural way to deal with multidi-
mensional arrays. Such arrays are, of course, very common
in scientific programming. The Java mapping of derived
datatypes, on the other hand, is problematic—a significant
part of the flexibility in the original C/Fortran specification
is lost in the transcription to Java. It is at least arguable
that in Java the MPI derived datatypes mechanism should
be abandoned altogether in favour of using object serializa-
tion.

Our initial implementation of automatic object serializa-
tion in the context of MPI is somewhat impaired by perfor-
mance of the serialization code in the current Java Devel-
opment Kit. In our implementation buffers were serialized
using standard technology from the JDK. The benchmark
results from section 7?7 show that this implementation of se-
rialization introduces very large overheads relative to under-
lying communication speeds on fast networks and symmetric
multiprocessors. Similar problems were reported in the con-
text of RMI implementations in [?]. We find that in the
context of fast message-passing environments (not surpris-
ingly) the issue is even more critical. Overall communication
performance can easily be downgraded by an order of mag-
nitude or more.

The standard Java serialization framework allows the pro-



N? float vector

float [] buf = new float [N * N] ;

MPI.COMM_WORLD.send(buf, 0, N * N,
MPI.FLOAT,
dst, tag) ;

float [] buf = new float [N * N] ;

MPI.COMM_WORLD.recv(buf, O, N * N,
MPI.FLOAT,
src, tag) ;

N x N float array

float [] [] buf = new float [N] [N]

MPI.COMM_WORLD.send(buf, O, N,
MPI.OBJECT,
dst, tag) ;

)

float [] [] buf = new float [N] [] ;
MPI.COMM_WORLD.recv(buf, O, N,
MPI.OBJECT,
src, tag) ;

1 x N? float array

float [] [] buf =
MPI.COMM_WORLD.send(buf, 0, 1,
MPI.OBJECT,
dst, tag) ;

new float [1] [N * N]

; float [] [] buf = new float [1] [] ;
MPI.COMM_WORLD.recv(buf, 0, 1,
MPI.OBJECT,
src, tag) ;

Figure 2: Send and receive operations for various array shapes.

grammer to provide optimized serialization and unserializa-
tion methods for particular classes, but in scientific program-
ming we are often more concerned with the speed of oper-
ations on arrays, and especially arrays of primitive types.
The documented parts of the standard Java framework for
serialization do not to our knowledge allow a way to cus-
tomize handling of arrays. However the available source code
for ObjectOutputStream and ObjectInputStream classes in-
cludes the methods for serializing arrays, and we are opti-
mistic that by tuning these classes it should be possible to
greatly improve performance for cases that concern us here.
In any case the message is clear: we need much faster im-
plementations of object serialization, better attuned to the
needs of scientific computation. Especially, arrays of primi-
tive elements need to be handled much more carefully.
While we expect that there is considerable scope to opti-
mize the JDK serialization software, an interesting alterna-
tive from the point of view of ultimate efficiency is to replace
calls to the writeObject, readObject methods with spe-
cialized, MPI-specific, functions. A call to standard write-
Object, for example, could be replaced with a native method

that creates an MPI derived datatype structure describing
the layout of data in the object. This would allow one to
provide the conceptually straightforward object serialization
model at the user level, while retaining the option of fast,
“zero-copy” communication strategies (enabled by MPI de-
rived datatypes) inside the implementation.

Implementing this general scheme for every kind of Java
object is difficult because the JVM hides the internal rep-
resentation of objects. Ongoing work intends, less ambi-
tiously, to eliminate the serialization and copy overheads for
all arrays of primitive elements embedded in the serialization
stream. The general idea is to produce specialized versions of
ObjectOutputStream and ObjectInputStream that produce
byte streams identical to the standard version except that
array data is omitted. The “data-less” byte stream is sent as
a header, and it allows the objects to be reconstructed at the
receiving end. The array data is then sent separately using,
say, suitable native MPI_TYPE_STRUCT types to send all the
array data in one logical communication. In this way the se-
rialization overhead parameters measured in the benchmarks
of the previous section can drastically reduced or eliminated.
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Figure 3: Communication times from Pingpong benchmark in
model defined by Equations ?7 to 77 and Table 77.

non-shared-memory and shared-memory cases, compared with



