
RuleWizard User’s Guide
Table of Contents

Introducing RuleWizard
Welcome! ...........................................................................................1
Contacting ParaSoft ...........................................................................3

Creating Custom Coding Standards
Overview: How to Create a Rule........................................................5
Exploring Example Rules ...................................................................11
How to Customize Rule Properties ....................................................13
How to Save and Enable a Rule ........................................................14
How to Automatically Enforce Your Custom Coding Standards.........15
Tutorial: Creating and Enforcing Custom Coding Standards .............17
Lesson 1: Begin Instance Fields with Underscore .............................19
Lesson 2: Assignment Within an IF Statement ..................................29
Lesson 3: Checking for Documentation .............................................35
Automatic Rule Creation ....................................................................43
Working With Node Sets ....................................................................44

RuleWizard GUI
File Menu ...........................................................................................55
Nodes Menu.......................................................................................56
Rule Menu..........................................................................................57
View Menu .........................................................................................58
Help Menu..........................................................................................59
Nodes Tab..........................................................................................60
Results Tab ........................................................................................61
Files Tab ............................................................................................62
Status Bar ..........................................................................................63
Rule Properties Panel ........................................................................64
RuleWizard Preferences Panel ..........................................................66



Reference Guide
RuleWizard Commands ..................................................................... 69
Expressions and Regular Expressions .............................................. 76
Available Rule Nodes......................................................................... 80

Index
Index .................................................................................................. 103



Welcome!

1

Introduction

Introducing RuleWizardWelcome!
Welcome to RuleWizard, a feature that allows you to create custom
coding standards. Jtest can automatically enforce any rule created in
RuleWizard.

By allowing you to easily create and enforce standards that are perfectly
tailored to your personal, project, team, and company needs, RuleWizard
and Jtest provide the most effective and efficient error prevention solution
available.

With RuleWizard, you create custom rules by graphically expressing the
pattern that you want Jtest to look for when it parses code during static
analysis. Rules are created by selecting a main "node," then adding
additional elements until the rule expresses the pattern that you want
Jtest to check for. Rule elements are added by pointing, clicking, and
entering values into dialog boxes. No knowledge of the parser is required
to write or modify a rule.



Welcome!

2

In
tr

od
uc

tio
n



Contacting ParaSoft

3

Introduction

Contacting ParaSoft
ParaSoft is committed to providing you with the best possible product
support for RuleWizard. If you have any trouble installing or using
RuleWizard, please follow the procedure below in contacting our Quality
Consulting department.

• Check the manual.

• Be prepared to recreate your problem.

• Know your RuleWizard version. (You can find it in Help> About ).

• If the problem is not urgent, report it by e-mail or by fax.

• If you call, please use a phone near your computer. The Quality
Consultant may need you to try things while you are on the
phone.

Contact Information
• USA Headquarters

Tel: (888) 305-0041

Fax: (626) 305-9048

Email: quality@parasoft.com

Web Site: http://www.parasoft.com

• ParaSoft France

Tel: (33 1) 64 89 26 00

Fax: (33 1) 64 89 26 10

Email: quality@parasoft-fr.com

• ParaSoft Germany

Tel: +49 (0) 78 05 95 69 60

Fax: +49 (0) 78 05 95 69 19

Email: quality@parasoft-de.com

mailto:quality@parasoft.com
mailto:quality@parasoft-fr.com
mailto:quality@parasoft-de.com


Contacting ParaSoft

4

In
tr

od
uc

tio
n • ParaSoft UK

Tel: +44 (020) 8263 2827

Fax: +44 (020) 8263 2701

Email: quality@parasoft-uk.com

mailto:quality@parasoft-de.com
mailto:quality@parasoft-uk.com


Overview: How to Create a Rule

5

C
reating

R
ules

Creating Custom Coding Standards

Overview: How to Create a
Rule
When you create a rule, your goal is to graphically express the pattern
that you do not want to appear in your code. When Jtest enforces a rule, it
searches for instances where the specified pattern occurs, then flags any
violations that it finds.

To open RuleWizard

1. In either Jtest UI, open the Global Test Parameters window by
clicking the Global button.

2. In the Global Test Parameters window, go to Static Analysis>
Rules> User Defined Rules .

3. Right-click User Defined Rules and choose Add/Edit Rules
(RuleWizard) from the shortcut menu.

Or,

• In either Jtest UI, right-click the Rules button and choose Launch
RuleWizard .

When the RuleWizard GUI opens, you will see two main panels. The
Node tab on the left side of the GUI contains the nodes that you can use
as rule subjects.The right side of the GUI is the area where your rule
patterns will be displayed.

There are two ways to create a rule: manually and using the Auto-Create
feature.

Manually
Creating a rule generally involves the following steps:

1. Using plain English, define the rule that you want to create and
enforce.

For example: "Begin class names with an uppercase letter."

2. Express this concept in terms of RuleWizard elements.



Overview: How to Create a Rule

6

C
re

at
in

g
R

ul
es

• Create the parent rule node that is the subject of your
rule.

a. In the Node tab, select the node that is the
subject of your rule.

Tip: For a description of a certain node,
right-click the node, and choose View
Documentation from the shortcut menu that
opens.

If you can’t find the node you want, right-click
inside the white space and choose Find from the
shortcut menu that opens.

b. Right-click the selected node, then choose
Create Rule from the shortcut menu. A rule node
will appear in the GUI’s right panel.

• Add further qualifications to your node until it fully
expresses your rule.

a. Right-click any of your rule's nodes. All available
options for the chosen node will be displayed in
the shortcut menu that opens. Any options that
are not programming elements or concepts are
explained in the section “RuleWizard
Commands” on page 69.

b. Choose a command from the shortcut menu.
Depending on the command that you choose,
RuleWizard will add a rule element, modify a rule
element, or open a dialog box that lets you add
or modify a rule element.

c. If you want to continue adding to and modifying
the rule, you can do so by right-clicking any rule
node or rule element, then choosing one of the
available commands.

• Determine what error message will be displayed when
this rule is violated.



Overview: How to Create a Rule

7

C
reating

R
ules

a. Create an output arrow by right-clicking a rule
node (the placement of the output arrow
determines what line number is used for the
output message; to have the line number of node
C included in the output message, place the
output arrow on node C), then choosing Create
Output from the shortcut menu. The Customize
Output window will open.

b. In the Customize Output window, enter a brief
explanation of the violation.

c. Click OK.
An output arrow will then be added to your rule.

The rule is complete once it:

• Expresses the pattern that you want Jtest to search for, and

• Contains an output arrow and message.

After you customize this rule's properties (you must at least enter a rule
header) and save the rule, you can enforce it with Jtest.

Auto-Create
To use Auto-Create, simply right-click inside the white space of the Node
tab and choose Auto-Create Rules from the short-cut menu. Then in the
RuleWizard Automatic Creation window type the code you do not want to
appear and click OK. RuleWizard automatically generates the nodes and
conditions for you. Then you can customize the rule’s properties, save it,
and enforce it with Jtest.

For more information see “Automatic Rule Creation” on page 43.

Searching for Nodes
To search for a node, simply right-click inside the white space of the
Dictionary tab and choose Find from the short-cut menu. Then, in the
Dictionary window that opens, type the name of the node you want.
RuleWizard will search through the nodes and highlight the node that
matches what you type. Click Next to go to the next node that matches

cust_prp.htm
save.htm


Overview: How to Create a Rule

8

C
re

at
in

g
R

ul
es

the text you typed. Click Clear to clear the field. Click Select to have
RuleWizard keep that node highlighted as you continue your search.

Tips

General
• Remember that you are trying to express a pattern that

constitutes a violation of the rule.

• As you create your rule, look at the status bar for tips on creating
a valid rule. The color of the bar in the right side of the status bar
indicates whether or not a rule is valid: a red bar indicates that the
rule is not yet valid; a green bar indicates that the rule is valid.
The messages in the status bar tell you how to make an invalid
rule valid.

• Be sure to include at least one output arrow in each rule. If a rule
does not have an output arrow, Jtest will not report an error if this
pattern is found in the code under test. To include an output
arrow, right-click a rule node (the placement of the output arrow
determines what line number is used for the output message; to
have the line number of node C included in the output message,
place the output arrow on node C), then choose Create Output
from the shortcut menu.

• The relationship between all rule branches is AND unless you
indicate otherwise. If you want to express a different relationship
between branches (for example, OR, NAND, or NOR
relationships), you can do so by adding or changing logic
components. For more detail on logic components, see
“RuleWizard Commands” on page 69.

• To undo a command, simply right-click the gray portion of the
workspace and choose Undo .

• Be sure to enter a header when you customize this rule's
properties; rules without headers are not valid.

• Any node (such as bool Constant ) or folder of nodes
(Constants ) can be used as a rule node.

cust_prp.htm
cust_prp.htm


Overview: How to Create a Rule

9

C
reating

R
ules

• To view a description of a node in the Nodes tab, right-click the
node that you want more information about, then choose View
Documentation from the shortcut menu.

• Be aware that RuleWizard is order-specific. If your rule has more
than one child node, you can move the child up or down one
position by right-clicking the vertical line common to all children,
then choosing Move up one or Move down one from the
shortcut menu.

Expressions and Regular Expressions
• Use expressions to match number values, and regular

expressions to match strings of text. For guidelines on using
expressions and regular expressions, see “Expressions and
Regular Expressions” on page 76.

Rule Conditions
• To create a rule with a pattern that involves a union, intersection,

exclusive-or relationship, or difference of multiple nodes, see
“Working With Node Sets” on page 44.

• To create a rule condition that restricts the number of a certain
element that can appear in a block (like a file or a class), create a
collector to track the number of instances of that pattern, then use
Count to specify the number of instances that constitutes a
violation. For information on determining exactly how “counts” are
calculated, see “Working With Node Sets” on page 44.

• To create a rule condition about the code element that contains
the parent node, use Context .

• To create a rule condition about the parent node’s condition
statement (if , else , init , increment , for , with , while , switch , and
do while ), use Condition .

• To create a rule condition about the code element that is a
subnode of the parent node, use Body .

• To indicate whether or not Jtest searches nodes recursively when
it searches for the rule condition, use Indirect Check and Direct
Check .

command.htm
command.htm
command.htm
command.htm
command.htm
command.htm
command.htm


Overview: How to Create a Rule

10

C
re

at
in

g
R

ul
es

Indirect Check is the default setting; to use a Direct Check ,
right-click the node whose checking type you want to change,
then choose Direct Check from the shortcut menu.



Exploring Example Rules

11

C
reating

R
ules

Exploring Example Rules
One of the best ways to familiarize yourself with RuleWizard is to look at
how example rules are constructed. You can find a set of example rule
files in <jtest installation directory>/brules . These rule files
are the source for many of Jtest’s built-in static analysis rules.

To open a rule file, choose Rule> Open Rule , then select one of the avail-
able .rule files from the file chooser.

Once the rule is open, you can view the rule description by choosing
Rule> Properties .



Exploring Example Rules

12

C
re

at
in

g
R

ul
es

Note: You can also open example rule files by:

1. Clicking Global in one of Jtest’s UIs.

2. Opening Static Analysis> Rules> Built-in Rules .

Right-clicking the rule that you want to open and choose View RuleWiz-
ard Rule from the shortcut menu.

This menu item is only available if the rule is implemented in RuleWizard.



How to Customize Rule Properties

13

C
reating

R
ules

How to Customize Rule
Properties
To specify such rule properties as Rule ID, header, severity, author,and
description, choose Rule> Properties , then enter the desired properties
in the Rule Properties panel.

panel_pr.htm


How to Save and Enable a Rule

14

C
re

at
in

g
R

ul
es

How to Save and Enable a
Rule
In order to enforce a rule, you must save it. To save your rule, choose
Rule> Save or Rule> Save As . This command will invoke a file chooser
in which you can specify the rule's filename and path. A .rule extension is
automatically assigned to each rule. If you do not use this exact
extension, Jtest will not load your rules properly.

After you have saved your rule(s), you can exit RuleWizard.

To enable your rule:

1. Click Global in either of Jtest’s UIs.

2. In the Global Test Parameters window, go to Static Analysis>
Rules> User Defined Rules , then right-click User Defined
Rules . A shortcut menu will open.

3. Choose Reload Rules from the shortcut menu that opens.

Your rule will then be enabled; it will be contained in in the Static
Analysis> Rules> User Defined branch of the Global Test Parameters
tree.



How to Automatically Enforce Your Custom Coding Standards

15

C
reating

R
ules

How to Automatically
Enforce Your Custom
Coding Standards
To have Jtest enforce a custom coding standard that you created, saved
and enabled:

1. Verify that Jtest is configured to enforce the custom coding
standards you want it to enforce. Both the rule and its severity
level must be enabled.

• To do this, open the Global Test Parameters window,
then go to Static Analysis> Rules> Severity Levels
and Static Analysis Rules> User Defined Rules .
Enable all severity level(s) corresponding to the rule(s)
you want to enforce. (Each rule’s severity level is
appended to its label in the User Defined Rules branch).
Also, verify that the option that corresponds to the appro-
priate rule is enabled.

2. Run Jtest as normal.

Enabling and Disabling Rules
If a custom rule is not relevant to a particular situation, you might want to
suppress the reporting of this rule’s violations. Rules created in
RuleWizard can be suppressed in the same way that built-in Jtest rules
are suppressed. For information about suppressions, refer to the Jtest
User's Guide.

When you suppress a rule, Jtest checks for violations, but does not report
them. If you do not want violations of a particular rule reported under most
circumstances, you may improve testing performance by disabling the
rule, then enabling the rule only when you want to enforce it.

If you never enabled a rule, the rule is already disabled.

To disable or enable a rule:



How to Automatically Enforce Your Custom Coding Standards

16

C
re

at
in

g
R

ul
es

1. Open the Global Test Parameters window by clicking the Global
button.

2. Go to Static Analysis> Rules> Static Analysis Rules> User
Defined Rules.

3. To disable a rule, check the box associated with the rule you want
to disable (rules are grouped by Rule ID and listed by Rule
Header).

To enable a rule, check the box associated with the rule you want
to enable.



Tutorial: Creating and Enforcing Custom Coding Standards

17

C
reating

R
ules

Tutorial: Creating and
Enforcing Custom Coding
Standards
This tutorial will walk you through the steps required to compose and
automatically enforce three rules:

1. Instance fields should begin with an underscore (_) (Lesson 1)

2. Assignment within IF statements (Lesson 2)

3. Documentation for methods with over 17 lines

Getting Started
To open RuleWizard:

1. In the Jtest UI, open the Global Test Parameters window by click-
ing the Global button.

2. Go to Static Analysis> Rules> User Defined Rules .

3. Right-click User Defined Rules and choose Add/Edit Rules
(RuleWizard) from the shortcut menu.

Or,

• In either Jtest UI, right-click the Rules button and choose Launch
RuleWizard .

When you first open RuleWizard you will see the following GUI:

demo1jav.htm
demo2jav.htm


Tutorial: Creating and Enforcing Custom Coding Standards

18

C
re

at
in

g
R

ul
es

The nodes with which you build your rules are displayed on the left pane
of the GUI. The gray pane on the right of the GUI will be your workspace
for composing rules.



Lesson 1: Begin Instance Fields with Underscore

19

C
reating

R
ules

Lesson 1: Begin Instance
Fields with Underscore
This rule will report a violation when instance fields do not begin with an
underscore.

Designing the Rule Pattern

Creating the Parent Node
Whenever you create a rule, the first thing you need to do to is right-click
the node that you want to be your rule’s main subject, then select Create
Rule from the shortcut menu. To start composing this rule, open
Declarations> Variables , right-click the Field node, then choose Create
Rule from the shortcut menu.

After you choose Create Rule , you will see the following parent rule node
in the right pane of the GUI:

We now have the basic building block for a rule about fields.



Lesson 1: Begin Instance Fields with Underscore

20

C
re

at
in

g
R

ul
es

Adding Further Qualifications to the Parent Rule Node
To specify that we want this rule to check instance (non-static) fields, first
add the IsStatic property by right-clicking the Field rule node and
choosing IsStatic from the shortcut menu that opens. This says to check
if the field is static. This is not what we want to check for, so we will need
to modify this node.

To have Jtest check if the field is not static, right-click the IsStatic box and
choose Toggle . This will change this rule condition to say “if an instance
variable is present.”



Lesson 1: Begin Instance Fields with Underscore

21

C
reating

R
ules

To specify that this rule will be about naming conventions, right-click the
Field rule node and choose Name from the shortcut menu that opens.

A rule node with the content Name: -none- will now be attached to your
parent rule node.

To continue developing the rule, right-click the Name rule node, then
choose Modify from the shortcut menu.



Lesson 1: Begin Instance Fields with Underscore

22

C
re

at
in

g
R

ul
es

The Modify String window will then open.

In the Regexp field of the Modify String window, specify what value Jtest
should look for in the name of the instance variable.

• If you want Jtest to report an error if a certain value is not present
in the code, (as we do in our example), enter the value that you
want to require the presence of, then check the Negate check
box. This tells Jtest to report an error if the specified value is not
present.

• If you want Jtest to report an error if a certain value is present in
the code, enter the value that you do not want to appear in your
code, then leave the Negate check box empty. This tells Jtest to
report an error if the specified value is present.

• In our example, we want the Name value to begin with an under-
score. Thus, we would enter

^_.

in the Regexp field, and check the Negate check box. (The “^”
indicates the beginning of an expression and the “.” matches any
single character).



Lesson 1: Begin Instance Fields with Underscore

23

C
reating

R
ules

After you have typed this value and checked the check box, click OK.

Specifying an Error Message
Finally, we need to specify what text Jtest should print when this rule is
violated. The first step in doing this is right-clicking the parent rule node
(here, the Field rule node), then choosing Create Output from the
shortcut menu.This action will invoke the following Customize Output
window:

In the Customize Output window, enter the message that you want Jtest
to deliver when this rule is violated. In this example, you might enter
“Invalid field name: $name”. When this message is reported by Jtest,
$name will be replaced by the actual name of the field.



Lesson 1: Begin Instance Fields with Underscore

24

C
re

at
in

g
R

ul
es Click OK.

Your rule should now look like this:

Your rule now tells Jtest to report the specified error message when an
instance variable’s name does not begin with an underscore. Your rule is
now complete. After you customize this rule's properties and save it, Jtest
will be able to enforce it.

Customizing Rule Properties
Rule properties can be customized via the Rule Properties panel. To
access this panel, choose Rule> Properties .

You will then see the Rule Properties panel.



Lesson 1: Begin Instance Fields with Underscore

25

C
reating

R
ules

This panel lets you determine the rule's properties. In the CodeWizard
tab, enter...

• a rule ID: the unique ID you want to assign to this rule. If you
want Jtest to organize your custom rules into categories, use the
following format:

category.id

For example, you could use “Example.IFM”

• a header: the name you want Jtest to assign to this rule. For this
example, you could enter

Instance fields should start with the character “_”

Next, choose the rule's severity (the severity category in which Jtest will
classify the rule). This rule should be categorized as a Violation.



Lesson 1: Begin Instance Fields with Underscore

26

C
re

at
in

g
R

ul
es

Finally, click the Info tab, and enter the name of the rule's author (your
name and/or development group) and a description of the rule. (This
description will be displayed when users choose View Rule Description
within Jtest).

When you have entered all of these values, click OK to close this panel.

For more information on any of the fields in the Rule Properties panel, see
the Rule Properties Panel page.

Saving and Enabling Your Rule
Before you begin composing another rule, or before you exit the program,
you will want to save your rule (Jtest only enforces rules that have been
saved).

To save your rule, choose Rule> Save or Rule> Save As . This command
will invoke a file chooser in which you can specify the rule's filename and
path. Be sure to give each rule you save a .rule extension. If you do not
use this exact extension, Jtest will not load your rules properly. Also, be
sure to save your rules within the default directory (<Jtest installation
directory>/jrules). If a rule is not contained in this directory, Jtest will not
enforce it.

After you save your rule, exit RuleWizard. To enable your rule:

panel_pr.htm


Lesson 1: Begin Instance Fields with Underscore

27

C
reating

R
ules

1. Click Global in either of Jtest’s UIs.

2. In the Global Test Parameters window, go to Static Analysis>
Rules> User Defined Rules , then right-click User Defined
Rules . A shortcut menu will open.

3. Choose Reload Rules from the shortcut menu that opens.

Your rule will then be enabled.

Enforcing Your Rule Automatically
If you look at the Global Test Parameters tree’s Static Analysis> Rules>
User Defined Rules branch, you will see that Jtest automatically added
and enabled the rule you just created.

This rule will now be included in the set of rules Jtest applies to your class
or classes during static analysis.

To see how this rule is used, test the Point class (located in <Jtest
installation directory>/examples/static/userdef). Two errors will be
reported for this test.



Lesson 1: Begin Instance Fields with Underscore

28

C
re

at
in

g
R

ul
es



Lesson 2: Assignment Within an IF Statement

29

C
reating

R
ules

Lesson 2: Assignment
Within an IF Statement
We will now demonstrate how to build a rule that flags instances where
assignment is used in IF statement condition. While using assignment
within if statement condition is legal (so it won’t be caught by a compiler),
developers that use a=b in IF statement condition usually intended to use
a==b, but made a typographical error. In these cases, using assignment
would prevent the code from functioning as intended.

Designing the Rule Pattern

Creating the Parent Node
First, open RuleWizard (if it is not already open).

To start creating this rule, open Statements , right-click the if node, then
choose Create Rule from the shortcut menu.



Lesson 2: Assignment Within an IF Statement

30

C
re

at
in

g
R

ul
es

After you choose Create Rule , you will see the following parent rule node
in the right pane of the GUI:

We now have the basic building block for a rule about IF statements.

Adding Further Qualifications to the Parent Rule Node
To specify that you want to write a rule about something used in IF
statement condition, right-click the if rule node and choose Condition
from the shortcut menu.

This will create a Condition line and a Condition box that contains the
value -none-.

To specify what value you do not want used in if statement condition,
right-click the Condition box, then choose Modify from the shortcut menu.

The Modify Node window will open. Because you want to specify that
you do not want assignment used in IF statement condition, choose the
assignment node (a=b) by opening Expressions> Assignment , clicking
the a=b node, then clicking the OK button.



Lesson 2: Assignment Within an IF Statement

31

C
reating

R
ules

Your rule should now look like this:

At this point, the rule says to look for instances where assignment is used
in IF statement condition. This is what we want the rule to look for, so we
will stop modifying the rule and begin specifying output.

Specifying an Error Message

We now need to specify what text Jtest should print when this rule is
violated. The first step in doing this is right-clicking the parent rule node
(here, the if rule node), then choosing Create Output from the shortcut
menu.



Lesson 2: Assignment Within an IF Statement

32

C
re

at
in

g
R

ul
es

This action opens the Customize Output window. Enter the message that
you want Jtest to deliver when this rule is violated. In this example, you
might enter "Avoid assignment in IF statement condition." After you have
entered a message, click OK.

Your rule should now look like this:

Your rule now tells Jtest to report the specified error message when a
developer uses assignment in IF statement condition. Your rule is now
complete. At this point, you may want to customize rule properties such
as severity, description, author, etc.; these properties can be specified in
the Rule Property panel that is accessible by choosing Rule> Properties .
You should at least specify a header and Rule ID so that Jtest knows how
to classify your rule and report rule violations.

Saving and Enabling Your Rule
Before you begin composing another rule, or before you exit the program,
you will want to save your rule (Jtest only enforces rules that have been
saved).

To save your rule, choose Rule> Save or Rule> Save As . This command
will invoke a file chooser in which you can specify the rule's filename and
path. Be sure to give each rule you save a .rule extension. If you do not



Lesson 2: Assignment Within an IF Statement

33

C
reating

R
ules

use this exact extension, Jtest will not load your rules properly. Also, be
sure to save your rules within the default directory (<Jtest installation
directory>/jrules). If a rule is not contained in this directory, Jtest will not
enforce it.

After you save your rule, exit RuleWizard. To enable your rule:

1. Click Global in either of Jtest’s UIs.

2. In the Global Test Parameters window, go to Static Analysis>
Rules> User Defined Rules , then right-click User Defined
Rules . A shortcut menu will open.

3. Choose Reload Rules from the shortcut menu that opens.

Your rule will then be enabled.

Enforcing Your Rule Automatically
If you look at the Global Test Parameters tree’s Static Analysis> Rules>
User Defined Rules branch, you will see that Jtest automatically added
and enabled the rule you just created.

This rule will now be included in the set of rules Jtest applies to your class
or classes during static analysis.

Note: This rule is included with the product; it’s under Possible Bugs as
“Avoid assignment within an ‘if’ condition.”



Lesson 2: Assignment Within an IF Statement

34

C
re

at
in

g
R

ul
es



Lesson 3: Checking for Documentation

35

C
reating

R
ules

Lesson 3: Checking for
Documentation
This rule will report a violation when methods with more than 17
statements do not have documentation.

Designing the Rule Pattern

Creating the Parent Node
To start composing this rule, open Declarations , right-click the Method
node, then choose Create Rule from the shortcut menu.

You should see the following parent rule node in the right pane of the GUI:

We now have the basic building block for a rule about methods.

Adding Further Qualifications to the Parent Rule Node
To specify that we want this rule to check only declared methods and not
references to methods, first add the IsDecl property by right-clicking the
Method rule node (in the workspace panel) and choosing IsDecl from the
shortcut menu that opens.

To have Jtest check the statements in the body of the method, right-click
the Method node and choose Body .

Right-clickthe Body node and choose Modify . Choose the Statements
node from the list of items in the Modify Node window that appears, then
click OK.



Lesson 3: Checking for Documentation

36

C
re

at
in

g
R

ul
es Right-click the Body rule node again, then choose Create Collector from

the shortcut menu. A collector symbol (pentagon) will appear below the
Body node.

Right-click on the collector and choose Count # . To modify the value of
Count , right-click he Count box and choose Modify . In the Modify
Expression dialog window that opens, enter $$>17 in the Expression
field.

Right-click the Method node and choose HasJavadoc from the list.
Then right-click HasJavadoc and choose Toggle from the shortcut menu
that appears. In our example, we want the method to be flagged if it does
not have any Java documentation, so we need to set HasJavadoc to
false (F).



Lesson 3: Checking for Documentation

37

C
reating

R
ules

Specifying an Error Message
Finally, we need to specify what text Jtest should print when this rule is
violated. The first step in doing this is right-clicking the parent rule node
(here, the Method rule node), then choosing Create Output from the
shortcut menu. This action will invoke the following Customize Output
window.

In the Customize Output window, enter the message that you want Jtest
to deliver when this rule is violated. In this example, you might enter,
"Missing Javadoc comment for: $name". When this message is reported
by Jtest, $name will be replaced by the actual name of the method.



Lesson 3: Checking for Documentation

38

C
re

at
in

g
R

ul
es Click OK.

Your rule should now look like this:

Your rule now tells Jtest to report the specified error message when a
method with more than 17 lines does not contain documentation. Your
rule is now complete. After you customize this rule's properties and save
it, Jtest will be able to enforce it.



Lesson 3: Checking for Documentation

39

C
reating

R
ules

Customizing Rule Properties
Rule properties can be customized via the Rule Properties panel. To
access this panel, choose Rule> Properties .

You will then see the Rule Properties panel.

This panel lets you determine the rule's properties. In the CodeWizard
tab, enter...

• a rule ID: the unique ID you want to assign to this rule. If you
want Jtest to organize your custom rules into categories, use the
following format:

category.id

For example, you could use “Example.JAVADOC”

• a header: the name you want Jtest to assign to this rule. For this
example, you could enter

All methods with statements greater than 17 need java
documentation

Next, choose the rule's severity. This rule should be categorized as a
Violation.



Lesson 3: Checking for Documentation

40

C
re

at
in

g
R

ul
es

Finally, click the Info tab, and enter the name of the rule's author (your
name and/or development group) and a description of the rule. (This
description will be displayed when users choose View Rule Description
within Jtest).

When you have entered all of these values, click OK to close this panel.

For more information on any of the fields in the Rule Properties panel, see
the section “Rule Properties Panel” on page 64.

Saving and Enabling Your Rule
Before you begin composing another rule, or before you exit the program,
you will want to save your rule (Jtest only enforces rules that have been
saved).

To save your rule, choose Rule> Save or Rule> Save As . This command
will invoke a file chooser in which you can specify the rule's filename and
path. Be sure to give each rule you save a .rule extension. If you do not
use this exact extension, Jtest will not load your rules properly. Also, be
sure to save your rules within the default directory (<Jtest installation
directory>/jrules). If a rule is not contained in this directory, Jtest will not
enforce it.

After you save your rule, exit RuleWizard. To enable your rule:



Lesson 3: Checking for Documentation

41

C
reating

R
ules

1. Click Global in either of Jtest’s UIs.

2. In the Global Test Parameters window, go to Static Analysis>
Rules> User Defined Rules , then right-click User Defined
Rules . A shortcut menu will open.

3. Choose Reload Rules from the shortcut menu that opens.

Your rule will then be enabled.

Enforcing Your Rule Automatically
If you look at the Global Test Parameters tree’s Static Analysis> Rules>
User Defined Rules branch, you will see that Jtest automatically added
and enabled the rule you just created.

This rule will now be included in the set of rules Jtest applies to your class
or classes during static analysis.



Lesson 3: Checking for Documentation

42

C
re

at
in

g
R

ul
es



Automatic Rule Creation

43

C
reating

R
ules

Automatic Rule Creation
One of RuleWizard’s most powerful features is the Auto-Create Rules
function. You can indicate what code you don’t want to appear and
RuleWizard does the rest.

To have RuleWizard automatically generate a rule based on dictionary
elements:

1. Right-click in the white space of the Node tab and choose
Auto-Create Rules from the short-cut menu. The Automatic Cre-
ation window will open.

2. In the RuleWizard Automatic Creation window, type the code you
do not want to appear in your program into the Sample Java
section.

3. Click Create .
The graphical representation of the rule appears with nodes and
conditions in the GUI’s right panel.

4. Right-click the Output arrow, replace the text, “Replace this with
your own text“, then click OK.

5. Right-click the gray area in the GUI’s right panel and choose
Properties .

6. In the Rule Properties window, type over the “Automatic Rule“
text in the Header field, and specify any other properties.

7. Click OK.

8. Choose Rule> Save to save the rule.

9. In the Save As window, type a name for the rule in the File name
field and click Save.

The rule is saved.

• Once the rule is saved, you can have Jtest enforce it. For more
information, see “How to Automatically Enforce Your Custom
Coding Standards” on page 15



Working With Node Sets

44

C
re

at
in

g
R

ul
es

Working With Node Sets

About Node Sets
When creating complex rules, you may want to create conditions that
depend on specific attributes or relationships between multiple nodes. For
example, if you have multiple nodes in a rule condition, you may want to
specify exactly where Jtest starts and stops counting the number of “hits”
(instances where the specified conditions are met). Or, you may want a
rule to check if the total number of “hits” in two different sets of nodes is
greater than 0. In such cases, you would create a rule that includes one or
more set components.

Set components are a category of components that represent sets of
nodes. These components include collectors and set operators. Collec-
tors let you restrict a node or node set’s quantity. Set operators let you
specify a relationship between two or more set components (for example,
they could be used to create a rule that checks that the total number of
hits in two rule conditions is less than 1).



Working With Node Sets

45

C
reating

R
ules

Using Set Operators to Specify
Relationships Between Set
Components
You can use set operators to create rule segments that collect the number
of hits of a specific relationship between two set components. For exam-
ple, you could use set operators to create a rule segment that collects the
number of hits of the pattern of nodes that are in either set component A,
or in set component B.

Set operators are rule elements that indicate two things:

• Which two set components you want to represent a relationship
between.

Collectors

Set operator



Working With Node Sets

46

C
re

at
in

g
R

ul
es

• What type of relationship you want to establish between the two
associated set components.

Because set operators establish relationships between set components,
they must be connected to one set component (the set component that
the set operator is attached to) and reference another set component (the
“operand” of the set operator; i.e., the other set component that this set
operator works with). Set operators can be used to establish four types of
relationships:

• a union of two set components

• an intersection of two set components

• an exclusive-or relationship between two set components

• a difference between two set components

A union is the set of nodes that are:

• in the attached collector, or

• in the operand, or

• in both the attached collector and the operand.

For example, if A represents a set component that contains nodes xx, yy,
and zz, and B represents a set component that contains nodes ww, xx,
and yy, a union between A and B would match xx, yy, zz, and ww.

An intersection is the set of nodes that are in both the attached set com-
ponent and the operand. For example, if A represents a set component
that contains nodes xx, yy, and zz, and B represents a set component that
contains nodes ww, xx, and yy, an intersection between A and B would
match xx and yy.



Working With Node Sets

47

C
reating

R
ules

A difference is the set of nodes that are either:

• In the attached set component (the “left” side) but not in the oper-
and (the “right” side), or

• In the operand (the “right” side), but not in the attached set com-
ponent (the “left” side).

Thus, a right - left difference represents the nodes in the operand, but not
the set operator, while a left - right difference represents the nodes that
are in the set operator, but not in the operand. For example, if A repre-
sents a set component that contains nodes xx, yy, and zz, and B repre-
sents a set component that contains nodes ww, xx, and yy, an A-B
difference between A and B would match zz, while a B-A difference would
match ww.

An XOR (exclusive-or) relationship is the set of nodes that are in either
the attached set component or the operand, but not the nodes that are in
both. For example, if A represents a set component that contains nodes
xx, yy, and zz, and B represents a set component that contains nodes ww,
xx, and yy, a XOR between A and B would match zz and ww.



Working With Node Sets

48

C
re

at
in

g
R

ul
es

To establish such relationships between two set components (X and Y),
you would:

1. Attach a set operator to one set component (X) by right-clicking it
and choosing Set Operator> <desired relation> from the short-
cut menu that opens.

2. Attach a label to the other set component (Y).

3. Specify that you want Y to be the set operator’s operand by
selecting Y’s label as the set component’s operand value.

One common reason that you might use set operators is to create a rule
that restricts the number of “hits” for a union, intersection, difference, or
XOR node set.

The following image is the implementation of "Unused local variable".
Please note the following features of this rule:



Working With Node Sets

49

C
reating

R
ules

1. The first collector, labelled A, will collect local variables that are
used in non-declaration statements.

2. The second collector will collect local variables that are declared
in the method.

3. “IsDecl” represents “Is this declaration?” If it's set to true, it
returns true for declaration statements and if it's set to false, it
returns true for non-declaration statement.

4. The Difference set operator is used to find the difference of the
two node sets.

5. The Count node with $$>0 checks if the Difference set has at
least one item. If it has at least one item, Jtest will report an error.

To create a rule that counts and restricts the total number of hits that
occur for a specific type of relationship between two node sets:

label

operand

set operator

3

1

2

4 5



Working With Node Sets

50

C
re

at
in

g
R

ul
es

1. Create a rule condition that contains a set component (such as a
collector).

2. Label the set component by right-clicking it, then choosing Add
Label> <label name> from the shortcut menu that opens. Once
you have done this, you can make this component an operand of
a set operator.

3. Create another rule condition that contains a set component.

4. Right-click the newly-added set component, then choose Create
Set Operator> <desired type of relationship> from the shortcut
menu that opens. A set operator will then be attached to this set
component.

5. Indicate the operand of this set operator by right-clicking the cir-
cle on the top right of the set operator and choosing the label of
the first set component from the shortcut menu.

6. Restrict the number of “hits” allowed for the specified relationship
by right-clicking the set operator, choosing Count from the short-
cut menu, then (if necessary) modifying the value included in the
count node.

Once you have added an output arrow to your rule and specified rule
properties, your rule will be complete.

Customizing Counts With Collectors,
Counts, and Trigger Points

About Trigger Points
RuleWizard’s Collector and Count commands let you create a rule con-
dition that restricts a node or node set’s quantity. To create such a rule
condition, you would first create a collector, then right-click the collector
and choose Count . The collector keeps track of the number of times that
the specified pattern is found; Count places a condition on what number
of instances constitutes a rule violation. When a rule that restricts a
node’s quantity is enforced, the number of instances of the pattern are
collected in the collector, the count is checked, and a violation is reported
if the count falls within the parameters specified in the rule.



Working With Node Sets

51

C
reating

R
ules

By specifying when Jtest should empty the collector, you can determine
precisely how the count is determined. This is done through the use of
“trigger points.” Trigger points determine the node at which Jtest starts
and stops counting the number of instances that occur. The correct trigger
point number to use is determined by counting back from the node to
which the collector is attached, to the node at which you want the collec-
tor emptied and a violation reported (if the specified pattern is found).

For example, consider the following example:

In this example, a trigger point of 1 indicates to empty the collector after
each member function is searched. (The Member Function node is one
node “back” from the a=b node to which the collector and trigger point are
attached). When enforced, this rule would, for each class, look for a mem-
ber function in the class’ body, then look in that member function for
expressions in the form “a=b”. The number of expressions that met this
criteria would be placed in the collector, the count would be checked, and
a violation would be reported if the count were zero. When another mem-
ber function was parsed, the collector would then be emptied, and this
process would be repeated for that member function.

If you changed the trigger point to 2, Jtest would look at all member func-
tions and count the number of matching expressions in all member func-
tions before emptying the collector. (The collector accumulates all values
found from the Class node (2 nodes back from the node to which the trig-

trigger point indicator



Working With Node Sets

52

C
re

at
in

g
R

ul
es

ger point and collector are attached), and the collector is not emptied until
it a new class is parsed).

If you had a trigger point of 3 (the highest possible value in this example),
Jtest would empty the collector only after the entire file was searched.
(The collector accumulates all values found from the file node (2 actual
and one applied node (the file is an applied node) back from the node to
which the trigger point and collector are attached), and the collector is not
emptied until a new file is parsed).

Creating a Trigger Point
When you create a collector, it is assigned a number 1 trigger point by
default. To change the trigger point value, right-click the trigger point num-
ber and choose the desired value from the shortcut menu that opens.

Guidelines for using trigger points:

• To get the maximum value for a particular trigger point, count the
number of nodes from the node with the attached collector to the
top node of the rule, then add 1.

• You cannot place a trigger point on a node for which a direct
check is performed.

• You cannot add an output arrow between the collector and the
node/applied node that the trigger point number points to. For
example, in the above rule you could place an output arrow at the
Class node when you have a trigger point of 1 or 2, but for trigger
point 3 you would need to attach the output arrow to the collector
(rather than to the Class node).

Determining the Output Type of a Set
Component
If you place an output arrow on a set component, you will be asked to
determine when the output “fires” (reports that the pattern has been vio-
lated). The available output options for set components are:

• Hits Output: Fires on each “hit”, or each node contained in the
set. This type of output arrow is placed below the center of the set



Working With Node Sets

53

C
reating

R
ules

operator that it is attached to. When you choose this type of out-
put, the violation output can contain fields of nodes contained in
the set operator. For example, if you have a collector that con-
tains variables in Java or C++ and you select a Hits Output, you
can use an output message such as “Initialize all variables in con-
structor. Variable $name is not initialized.” (When this rule is actu-
ally violated, the $name variable will be replaced with the name of
the uninitialized variable).

• Trigger Output: Fires once for the set when the set is triggered
at the trigger point. This type of output arrow is placed below the
left side of the set operator that it is attached to, or below the trig-
ger point number. When you choose this type of output, the viola-
tion output can contain properties of the collector, but not
properties of nodes contained in the set operator. Currently, the
only variable you can use here is $count.

If your rule includes a collector, you can have your output include the
number of “hits” that the collector has accumulated. To do this, enter
COUNT(A) (where A is the label of the collector whose count you want
reported) in the appropriate output message.

You can also have your output message list the items that a collector has
accumulated. To do this, enter LIST(A) (where A is the label of the collec-
tor whose “list” you want reported) in the appropriate output message.

These two variables (COUNT and LIST) are called set references.



Working With Node Sets

54

C
re

at
in

g
R

ul
es



File Menu

55

R
uleW

izard
G

U
I

RuleWizard GUIFile Menu
The File menu contains the following commands:

• Customize Preferences: Opens the RuleWizard Preferences
panel, which allows you to customize such RuleWizard options as
rule view and rule file directory.

• Save Preferences: Saves the current RuleWizard Preferences.

• Print: Prints the contents of the current window. How well this

works depends on your JavaTM implementation.

• Exit: Closes RuleWizard. Any rules that were open will be saved
as you exit.



Nodes Menu

56

R
ul

eW
iz

ar
d

G
U

I

Nodes Menu
The Nodes menu contains the following command:

• Properties: Indicates which Node Dictionary you are currently
using.



Rule Menu

57

R
uleW

izard
G

U
I

Rule Menu
The Rule menu contains the following commands:

• New Rule: Closes the current rule and adds the first node of a
new rule.

• Open Rule: Opens a saved rule.

• Close: Closes the current rule.

• Save: Saves the current rule.

• Save As: Saves the current rule; lets specify rule name and
location.

• Recent Files: Provides a shortcut menu of recently opened
rules. To re-open a rule, choose it from the menu.

• Properties: Allows you to describe the properties of the current
rule, including Rule ID, Header, Severity, Author and Description
fields.

• RuleDocs: Allows you to Update and View documentation
automatically generated by RuleWizard for custom rules.



View Menu

58

R
ul

eW
iz

ar
d

G
U

I

View Menu
The View menu contains the following commands:

• Show/Hide status bar: Displays/hides the status bar at the bot-
tom of the GUI.

• Show/Hide file viewer: Displays/hides the file tab.

status.htm
tab_file.htm


Help Menu

59

R
uleW

izard
G

U
I

Help Menu
The Help menu contains the following commands:

• View: Displays the RuleWizard User's Guide.

• About...: Displays RuleWizard's version number.



Nodes Tab

60

R
ul

eW
iz

ar
d

G
U

I

Nodes Tab
The Nodes tab contains the main elements of Java code. You can use the
Nodes tab to start creating rules (by right-clicking the node that you want
to be your parent rule node and choosing Create Rule from the shortcut
menu that opens).

oview.htm


Results Tab

61

R
uleW

izard
G

U
I

Results Tab
Clicking the Results tab opens the results tree, which displays all
messages that RuleWizard has generated. To view the results tree, click
the Results tab at the bottom of the left GUI pane. To view RuleWizard
Messages, simply click on that category; all results will be displayed in the
right GUI pane.

Clicking the RuleWizard Messages results category will allow you to
access all messages that have appeared on the status bar. This feature
provides you with a convenient way to go back and review a message
that is no longer visible. To clear the RuleWizard Messages, right-click
that category and then click Clear in the shortcut menu.



Files Tab

62

R
ul

eW
iz

ar
d

G
U

I

Files Tab
The Files tab displays the structure of your directories. You can use it to
open rule files; to do this, right-click the rule file that you want to open,
then choose Open Rule from the shortcut menu.

If you do not see the Files tab, you may enable it by choosing View>
Show File Viewer .



Status Bar

63

R
uleW

izard
G

U
I

Status Bar
The status bar displays RuleWizard messages, including tips on how to
make the rule-in-progress valid. The color of the bar in the right side of the
status bar indicates whether or not a rule is valid: a red bar indicates that
the rule is not yet valid; a green bar indicates that the rule is valid. The
messages in the status bar tell you how to make an invalid rule valid.



Rule Properties Panel

64

R
ul

eW
iz

ar
d

G
U

I

Rule Properties Panel
The Rule Properties panel allows you to specify the following rule proper-
ties:

• Rule ID

• Header

• Severity

• Author

• Description

To open the Rule Properties panel, choose Rule> Properties .

The Rule Properties panel has two tabs:

• CodeWizard: Determines properties that will be used within
Jtest.

• Info: Lets you store general information about the rule.

CodeWizard Tab
The CodeWizard tab allows you to specify the following properties:

• Rule ID: Type the category and rule name in the format

category.name

Jtest will organize your rules according to category, then
according to name. For example, you might want to use a Rule ID
such as PROJECT1.ABC

• Header: the name assigned to this rule.

• Severity: Choose the severity category in which you want Jtest
to classify the rule.

Jtest classifies rules into groups based on the severity of violating
the rule:

• Severe Violation (Level 1)



Rule Properties Panel

65

R
uleW

izard
G

U
I

• Possible Severe Violation (Level 2)

• Violation (Level 3)

• Possible Violation (Level 4)

• Informational (Level 5)

The Severe Violation category should contain rules whose
violation will definitely result in a bug. Each category below
Severe Violation should contain rules whose violations have a
progressively lower probability of resulting in an error.

Jtest users can suppress rules according to their severity, so it is
important to classify each error appropriately (If a violation of this
rule will very likely lead to an error, give it a high severity; if you
classify a severe rule as Informational, a violation of that rule may
be overlooked by a user suppressing Informational violations.)

Note: If you do not specify the rule's severity, it will be
categorized as a Violation (the default setting).

Info Tab
The Info tab allows you to specify the following properties:

• Author: Indicates the name of the rule's author.

• Description: Contains a description of this rule. This description
will be displayed when you choose View Rule Description in
Jtest



RuleWizard Preferences Panel

66

R
ul

eW
iz

ar
d

G
U

I

RuleWizard Preferences
Panel
The RuleWizard Preferences panel lets you specify RuleWizard options
related to:

• Where rules are stored.

• The web browser to be used.

To open the RuleWizard Preferences panel, select File> Customize
Preferences .

The Rule Properties panel has three tabs:

• View: Determines how rules are displayed.

• Rule Files: Determines where rule files are stored.

• Browser: Sets browser-related options (such as browser used,
browser commands, etc.).

View Tab
The View Tab allows you to specify the following preferences:

• Pixel spacing between components : Determines the space
between rule nodes. Available options include:

• Horizontal: Determines the horizontal spacing between
rule nodes.

• Vertical: Determines the vertical spacing between rule
nodes.

• Reset to defaults: Returns spacing settings to their
default values.



RuleWizard Preferences Panel

67

R
uleW

izard
G

U
I

Rule Files Tab
The Rule Files tab lets you configure the following preferences:

• Rule Directory: Determines where your rule files are stored. You
can either choose the default directory, or specify an alternate
directory in the Other field.

Browser Tab
The Browser tab lets you configure the following preferences:

• Browser: Determines what browser RuleWizard uses. If you
want to use a browser that is not listed, select Other and enter
the path to the browser executable, as well as any arguments that
you want to send to the executable.

• Command: Determines browser commands such as executable
name and any arguments that you want RuleWizard to pass to
that browser. If you select a browser name that is provided,
RuleWizard will automatically fill in both Executable and
Arguments . If you select Other , you can click Browse to
navigate to the appropriate Executable settings. For
Arguments , enter "%1".

• Use DDE: Determines whether or not Dynamic Data Exchange
(DDE) lets programs share information. If you select Use DDE,
the changes you make to files as you are using RuleWizard will
automatically be applied to other programs that use those same
files. Use DDE is selected by default and may not be disabled for
the Automatic option in the Browser field. It is selected by
default but may be disabled for Netscape Navigator and
Internet Explorer . When Other is selected in the Browser field,
Use DDE is disabled by default and may not be enabled.



RuleWizard Preferences Panel

68

R
ul

eW
iz

ar
d

G
U

I



RuleWizard Commands

69

R
eference

Reference GuideRuleWizard Commands
When you right-click the workspace area around the rule, a shortcut menu
containing all available commands will open.

• Undo: Undoes the previous command.

• Paste New Head Node: Pastes the node from the clipboard as
the new head node.

When you right-click a rule node or element, a shortcut menu containing
all available commands for that node or element will open. Most
commands are programming elements or concepts. The following
commands are unique to RuleWizard:

• Edit: Lets you use the editing commands; you can cut, copy,
delete, or paste the selected node or element.

• Cut: Cuts the selected node from the workspace area
and places it on the clipboard.

• Copy: Copies the selected node or element onto the
clipboard

• Delete: Deletes the selected node or element from the
workspace.

• Paste: Pastes the contents of the clipboard onto the
workspace.

• Paste As: This command allows you to paste the
contents of the clipboard as a different form. For a copied
or cut node this can be as a condition (Body , Context ,
etc.). For a copied or cut element, they can be pasted as
another element (IsDecl , IsFinal , etc.).

• Create Assertion: Adds an assertion. An assertion specifies the
numerical relationship between node collectors. Assertions use
the set references MIN, MAX, AVERAGE, and MEDIAN. They are
used on set components whose elements are number nodes to
compare the values of the counts.
For information on assertions, see “Working With Node Sets” on
page 44.



RuleWizard Commands

70

R
ef

er
en

ce

• Add Logic Component: (Only available if logic components are
enabled. To enable logic components, change the
showLogicComponent variable in <jtest install
dir>/bin/lib/Java.cwd from "false" to "true" If logic components are
not enabled, AND will always be used).
Adds a logic component. Logic components let you place AND,
OR, NAND, and NOR conditions on rule branches. Available
options are:

• AND: Every branch must be true for the expression to
return true.

• OR: At least one branch must be true for the expression
to return true.

• NAND: At least one branch must be false for the
expression to return true. (This is the negation of AND).

• NOR: Every branch must be false for the expression to
return true.

• Change Type: (Only available if logic components are enabled.
To enable logic components, change the showLogicComponent
variable in <jtest install dir>/bin/lib/Java.cwd from "false" to "true"
If logic components are not enabled, AND will always be used).
Changes the type of logic component.

• Create Collector: Adds a collector, displayed as a pentagon, to
the selected rule node. The collector allows you to place
numerical stipulations on the outcome of a rule. Works with the
Count command (available by right-clicking the collector). The
collector keeps track of the number of times a pattern is found;
Count places a condition on what number of instances
constitutes a rule violation.

• Create Output: Adds an output arrow to the selected rule node.
The output arrow is the essential closing to any rule. An output
arrow tells RuleWizard to report an error if the specified pattern is
found; if no output arrow is included, no violations of this rule can
be reported. The placement of the arrow determines what line
number is reported in the error message. For example, if you
have a rule with nodes A, B, and C and you attach the output
arrow to node C, the line number will reference the line where C



RuleWizard Commands

71

R
eference

occurs; if you attach the output to node A, the line number will
reference the line where A occurs.

If you are adding an output arrow to a set component (a collector
or set operator), you must choose between the following two
types of output arrows:

• Hits Output: Choose this output to indicate that:

• One output message should be reported each
time that the attached node is matched

• The output message should reference the line
number of the node to which the collector is
attached. For example, if you have a collector
that contains variables in Java or C++ and you
select a Hits Output, you can use an output mes-
sage such as “Initialize all variables in construc-
tor. Variable $name is not initialized.” (When this
rule is actually violated, the $name variable will
be replaced with the name of the uninitialized
variable).

This type of output can contain variables (such
as “$tag”, or “$value”) for nodes contained in the
set collector or operator. For example, if you
have a collector that contains variables in Java or
C++ and you select a Hits Output, you can use
an output message such as “Initialize all vari-
ables in constructor. Variable $name is not initial-
ized.” (When this rule is actually violated, the
$name variable will be replaced with the name of
the uninitialized variable).

• Trigger Output: Choose this output to indicate that:

• One output message should be reported each
time that the trigger point is matched (for exam-
ple, if the trigger point references a file, one mes-
sage will be reported for each file).

• The output message’s line number should refer-
ence the line number of the trigger point node.



RuleWizard Commands

72

R
ef

er
en

ce

This type of output arrow is placed below the
center of the set operator that it is attached to.

When you choose this type of output, the viola-
tion output can contain properties of the collector,
but not properties of nodes contained in the set
operator. Currently, the only variable you can use
here is “$count”.

• Indirect/Direct Check: When an indirect check is performed,
Jtest searches for the specified condition in all nodes that have
the specified relationship to the given node.
When a direct check is performed, Jtest searches for the
specified condition only in the first node that has the specified
relationship to the given node.

• Create Set Operator: Creates a set operator. Set operators are
used to specify relationships between set components.

Available options include:

• Union: The set of nodes that are in either the attached
set component or the operand, including the nodes that
are in both.

• Intersection: The set of nodes that are in both the
attached set component and the operand.

• Difference: The set of nodes that are in the attached set
component but not in the operand, or the set of nodes
that are in the operand but not in the attached set
component.

• Left minus Right: The set of nodes that are in
the attached set component (to the left of the set
operator), but which are not in the operand (as
indicated in the circle attached to the right of the
set operator).

• Right minus Left: The set of nodes that are in
the operand (as indicated in the circle attached to
the right of the set operator), but which are not in



RuleWizard Commands

73

R
eference

the attached set component (to the left of the set
operator).

• XOR: The set of nodes that are either in the attached set
component, the operand, but not in both.

For information on set components and set operators, see
“Working With Node Sets” on page 44.

• Label: Labels a set component so that it can be used as the
operand of a set operator.

RuleWizard commands will be displayed at the top of the shortcut menu;
options that pertain to programming elements and concepts are displayed
below the menu's line.

Each non-RuleWizard command in the shortcut menu is followed by a
symbol that describes the function of the item:

[...] indicates an item which can have either a direct or indirect check.

(S) indicates an item that takes a string input.

[T/F] indicates an item that lets you toggle between true and false inputs.

[M] indicates an item that lets you choose between predetermined input
options. For example, Permission [M].

(#) indicates an item that takes a numerical input.

* indicates a property/node that is available from more than one
command. For example, if you can choose the Body property from more
than one of the available commands, the Body command will contain an
asterisk.

The commands available depend on which node or rule element was
selected. Some of these commands that you may not be familiar with
include:

• Count: Lets you create a rule condition that restricts a node’s
quantity. Must be used in conjunction with the Create Collector
command (First, create a collector, then right-click the collector
and choose Count ). The collector keeps track of the number of
times a pattern is found; Count places a condition on what
number of instances constitutes a rule violation. For information



RuleWizard Commands

74

R
ef

er
en

ce

on determining exactly how counts are calculated, see “Working
With Node Sets” on page 44.

• Body: Lets you create a rule condition about the code element
that is a subnode of the parent node. (The body of Node A returns
a “body” that is A’s subnode; the exact definition of the “body”
depends on the node itself).

• Context: Lets you create a rule condition about the code element
that contains the parent node. (The context of Node A returns the
node that contains Node A). For example, if you wanted to create
a rule that said “always put X inside of Y,” you would create a
parent node for X, use Context to attach Y, create a collector, then
use Count to specify that a count of $$==0 constitutes a violation.

Note: Some rules can use only Body , some can use only
Context , some can use neither, and some can use both. If you
have a choice, choose Body because Body will result in better
performance than Context . In many-- but not all-- cases, Body
and Context are inverse operations. For example, an expression
can be in the context of a statement, but be contained in the
condition (rather than the body) of the statement.

• Condition: Lets you create a rule condition about the parent
node’s statement (if , increment , for , while , switch , and do
while ).



RuleWizard Commands

75

R
eference



Expressions and Regular Expressions

76

R
ef

er
en

ce

Expressions and Regular
Expressions

Expressions
Expressions are used to match values; $$ is used with expressions to
indicate a variable. You can enter expressions in the Modify Expression
window. A few examples of valid expressions that you could enter in this
window include:

Expression Matches Example

$$==n a value equal to n $$==1 matches values
equal to 1

$$<n a value less than
n

$$<100 matches values
less than 100

$$>n a value greater
than n

$$>100 matches values
greater than 100

$$<=n a value less than
or equal to n

$$<=550 matches values
less than or equal to 550

$$>=n a value greater
than or equal to n

$$=>1 matches values
greater than or equal to 1



Expressions and Regular Expressions

77

R
eference

Regular Expressions
Regular expressions are used to match strings. Regular expressions are
supported by many languages, including Perl, Python, and Ruby.
RuleWizard’s regular expressions are similar to those supported by Perl.
You can enter regular expressions in Regexp fields of Modify String
windows. Here are some guidelines for entering regular expressions:

character/
metacharacter

Matches Examples

anystring an occurrence
of the string
“anystring”

“soft” matches parasoft,
software, soften, etc.

. exactly one
non-null
character

“.at” matches hat, cat, bat, fat,
etc., but not at
w...ing matches webking,
working, but not what a king or
wing

? 0 or 1
occurrences of
the preceding
character

“j?test” matches either jtest or
test

* 0 or more
occurrences of
preceding
character

“a*soft” matches asoft, or
aaaaasoft;
“.*ing” matches webking,
waning, wing, what was that
thing

+ 1 or more
occurrences of
the preceding
character

“a+soft” matches aaaaasoft, or
aaasoft, but not asoft



Expressions and Regular Expressions

78

R
ef

er
en

ce

[] matches one
occurrence of
any character
inside the
brackets; ^
inverts the
brackets
metacharacter

“[cpy]up” matches cup, pup, or
yup
“rule0[1-4]” matches rule01,
rule02, rule 03, rule 04
“[^ch]at” matches all 3 letter
words ending with “at” except
for cat and hat.

[A-Z] any uppercase
letters from A
to Z

“[A-Z]” matches any uppercase
letter from A to Z

[a-z] any lowercase
letters from a -z

“[a-z]” matches any lowercase
letter from a-z

[0-9] any integer
from 0 to 9

“rule[0-9]” matches any
expression that begins with
“rule” and ends with an integer

{} like *, but the
string it
matches must
be of the length
specified in the
braces

“a{2}” matches aa, aaa, aaa,
etc.
“a{3,}” matches at least 3
occurrences of the preceding
character (aaaaaa, or
aaaaaaaa, but not aa
“a {2,5}” matches between 2
and 5 occurrences of the
preceding character (aaa,
aaaaaa, but not aa or
aaaaaaaaaaaaaaaaaa)
“^(a{2})$” matches only aa

character/
metacharacter

Matches Examples



Expressions and Regular Expressions

79

R
eference

Additional Tips
• ^ indicates the beginning of a string in parentheses; $ indicates

the end of a string in parentheses. Thus, to get an exact match for
a string, use the format ^(STRING)$. For example ^(soft)$ would
only flag “soft”.

• If you want Jtest to report an error if the expression is detected,
leave the Regexp window’s Negate check box empty.
Note: You reach the Regexp window when you choose to modify
a string (such as a name value).

• If you want Jtest to report an error if the expression is not
detected, check the Regexp window’s Negate check box.

• Regular expressions searches are case sensitive by default.

• When using regular expressions, “\" is an escape character that
you can use to match a "." , "*", or another character that has a
non-literal meaning.

| matches the
string before
the “|”, the
string after the
“|”, or both

“rulewizard|codewizard”
matches rulewizard,
codewizard, or both

character/
metacharacter

Matches Examples



Available Rule Nodes

80

R
ef

er
en

ce

Available Rule Nodes
The nodes that you can use to create your rule are listed below, in the
order in which they appear in a fully expanded node tree.

Constants
Nodes which represent values which cannot be changed.

boolean Constant
A node which represents a boolean constant.

Example:

public final boolean isHuman = true; // boolean constant

char Constant
A node which represents a character constant.

Example:

private final char FIRST_LETTER = 'A'; // char constant

int Constant
A node which represents an integer constant.

Example:

private final int MIN_AGE = 21; // int constant

long Constant
A node which represents a long integer constant.

Example:

long MAX_TEMP = 451L; // long constant

float Constant
A node which represents a floating point constant.

Example:



Available Rule Nodes

81

R
eference

private final float yourNumber = 2.5f; // float constant

double Constant
A node which represents a double floating point constant.

Example:

public final double myNumber = 314159e-5d; // double constant

null
A node which represents the built-in value null.

Example:

private StringTokenizer tokenizer = null; // null

String Constant
A node which represents a String constant.

Example:

public final String name = "Mercury"; // String constant

Declarations
Represents a user-defined data type or method.

The engine uses the IsDecl property to distinguish between the actual
declaration and references to the declaration.

Method
A method (function) declaration.

Example:

public int myMethod() { // Method
int myValue = 17;
return myValue;

}

Parameter
A declaration which is in the parameter list of a method.



Available Rule Nodes

82

R
ef

er
en

ce

Example:

public void setNumber(int number) { // parameter declaration
this.number = number;

}

Static Initializer
A declaration using the keyword static. A block of statements can be
declared to be static, in which case it is executed when, and only when,
the class is initialized.

Example:

public class Converter {
public static int factor; // static initializer
static { // static initializer

factor = 5;
}

}

super
A reference to the immediate super class.

Example:

public void execute() {
// calling super class
super.execute(); // reference to super
doMyOwn();

}

this
A reference to the current object.

Example:

public void startEngine(int type) {
this.type = type; // reference to this

}

Variables
Variable declarations.



Available Rule Nodes

83

R
eference

The engine uses the IsDecl property to distinguish between the actual
declaration and references to the declaration.

Local Variable
A variable for which the scope is the current block.

Example:

public void collect(String name) {
boolean isGood = false; // isGood is local to this

method
isGood = getHasFunds();

}

Field
Fields are the declarations of class or instance variables.

Example:

public class Deck {
public static int num_decks=0; // static int field
public final int NUM_CARDS = 52; // int field
private int[] cards = new int[NUM_CARDS]; // array field
public Deck() {

num_decks++;
}

}

Expressions
Includes all types of expression nodes.

Assignment
Expressions utilizing assignment operators.

a=b
Direct assignment.

Assigns the value of b to a.

Example:



Available Rule Nodes

84

R
ef

er
en

ce

int x;
int y = 5;
x = y; // a=b

a+=b
Add-equals assignment.

Assigns the result a+b to a.

Example:

int x=1;
x += 5; // a+=b

a-=b
Subtract-equals assignment.

Assigns the result of a-b to a.

Example:

int x=5;
x -= 2; // a-=b

a/=b
Divide-equals assignment.

Assigns the result of a/b to a.

Example:

float x = 10.0;
x /= 2.0; // a/=b

a*=b
Multiply-equals assignment

Assigns the result of a*b to a.

Example:

int x = 2;
x *= 3; // a*=b



Available Rule Nodes

85

R
eference

a%=b
Mod-equals assignment.

Assign the remainder of a/b to a.

Example:

int x = 10;
x %= 7; // a%=b

a&=b
Bitwise-And-equals assignment.

Assigns the result of a&b to a.

Example:

int x = 9;
x &= 5; // a&=b

a^=b
Bitwise XOR assignment.

Assigns the result of a^b to a.

Example:

int x = 2;
x ^= 3; // a^=b

a|=b
Bitwise OR assignment.

Assigns the result of a|b to b.

Example:

int x = 9;
x |= 8; // a|=b

a<<=b
Left-shift-equals assignment.



Available Rule Nodes

86

R
ef

er
en

ce

Assigns the result of a<<b to a.

Example:

int x = 2;
x <<= 3; // a<<=b

a>>=b
Right-shift-equals assignment.

Assigns the result of a>>b to a.

Example:

int x = 16;
x >>= 3; // a>>=b

a>>>=b
Unsigned right-shift-equals assignment.

Assigns the result of a>>>b to a.

Example:

int x = 16;
a >>>= 3; // a>>>=b

--a
Pre-decrement operator.

Decrement a before being used in expression.

Example:

int x = 5;
--x; // --a

++a
Pre-increment operator.

Increment a before being used in expression.

Example:

int x = 5;
++x; // ++x



Available Rule Nodes

87

R
eference

a--
Post-decrement operator.

Decrement a after being used in expression.

Example:

int x = 5;
x--; // a--

a++
Post-increment operator.

Increment a after being used in expression.

Example:

int x = 5;
x++; // a++

Bitwise
All nodes using Java bitwise non-assignment operators.

~a
Bitwise negate operator.

Example:

int x = 7;
int y = ~x; // ~a

a|b
Bitwise or operator.

Example:

int x = 3;
int y = 5;
int z = x|y; // a|b

a&b
Bitwise and operator.



Available Rule Nodes

88

R
ef

er
en

ce

Example:

int x = 16;
int y = 9;
int z = x&y; // a&b

a^b
Bitwise XOR operator.

Example:

int x = 16;
int y = 17;
int z = x^y; // a^b

Comparison
All nodes using Java comparison operators.

a==b
Logical test for equality.

Example:

boolean method(int x, int y) {
return x == y; // a==b

}

a!=b
Logical test for inequality.

Example:

boolean method(int x, int y) {
return x != y; // a!=b

}

a<b
Logical test for less-than.

Example:

boolean method(int x) {
return x > 5; // a>b



Available Rule Nodes

89

R
eference

}

a<=b
Logical test for less-than or equal-to.

Example:

boolean method(int x) {
return x <= 5; // a<=b

}

a>b
Logical test for greater-than.

Example:

boolean method(int x) {
retur n x > 5; // a>b

}

a>=b
Logical test for greater-than or equal-to.

Example:

boolean method(int x) {
return x >= 5; // a>=b

}

Logical
Nodes using logical operators.

!a
Logical negation.

Example:

boolean method(boolean x) {
return !x; // !a

}



Available Rule Nodes

90

R
ef

er
en

ce

a&&b
Logical 'and'.

Example:

boolean x = true;
boolean y = false;
boolean z = x && y; // a&&b

a||b
Logical 'or'.

Example:

boolean x = true;
boolean y = false;
boolean z = x || y; // a||b

Miscellaneous
Other operators not covered previously.

a.b
Dot operator.

Used to specify methods and fields of a particular class or object.

Example:

Object o;
String s = o.toString(); // dot operator

a[b]
Array Notation.

Specifies element with index = b of array a.

Example:

String[] args = new String[5];
args[3] = "sample string"; // Array notation.

instanceof



Available Rule Nodes

91

R
eference

Tests whether or not an object is an instance of a particular class.

Example:

if (apple instanceof fruit) { // Use of instanceof
...
}

a(b)
Method invocation.

Example:

class Foo {
Foo() {

setNum(3); // a(b)
}
public void int setNum(int n) {

num = n;
}
private int num;

}

a?b:c
Ternary operator.

Example:

int method(boolean ok) {
return o k ? 0 : -1; // a?b:c

}

Cast
Conversion of one data type into another.

Example:

char a = 'a';
int b = ( int) a; // Cast

new
Object instantiation.

Example:



Available Rule Nodes

92

R
ef

er
en

ce

public class AnyClass {
...
}
AnyClass aClass = new AnyClass(); // Object instantiation

Numerical
Nodes involving numerical operations.

+a
Represents the positive of a number.

The value of a remains unchanged.

Example:

int x = -6;
int y = +x; // +a

-a
Represents the negative of a number.

Example:

int x = -6;
int y = -x; // -a

a+b
The addition operator.

Example:

int x = 4;
int z = x + 3; // a+b

a-b
The subtraction operator.

Example:

int x = 4;
int z = x - 4; // a-b



Available Rule Nodes

93

R
eference

a*b
The multiplication operator.

Example:

int x = 4;
int z = x * 3; // a*b

a/b
The division operator.

Example:

int x = 4;
int z = x / 3; // a/b

a%b
Mod operator.

Returns the remainder of a/b.

Example:

int x = 18;
int y = x%5; // a%b

a<<b
Left bit-shift.

Example:

int x=2;
int y = x <<2; // a<<b

a>>b
Right bit-shift.

Example:

int x=2;
int y = x >>2; // right bit-shift

a>>>b



Available Rule Nodes

94

R
ef

er
en

ce

Unsigned right bit-shift.

Example:

int x = -1;
int y = y> >>1; // a>>>b

Javadoc
Java comments.

Tags
Javadoc tags fir the comments (i.e., @author).

Packages
Nodes involving packages and imports.

import
The import statement.

Example:

import javax.swing.*; // import statement
import javax.swing.border.*; // import statement

package
The package statement.

Example:

package com.brijac.nn; // package statement

Statements
Nodes involving various Java statements.

break
The 'break' statement.

Used to break out of a loop structure.



Available Rule Nodes

95

R
eference

Example:

for (int t=1; t<5; t++) {
if (t<2) break; // break statement

}

case
The case statement.

Specifies a particular case of the switch statement.

Example:

int method(int i) {
int ret = 0;
switch (i) {

case 2: // case
ret = 3;
break;

case 3: // case
break;

}
return ret;

}

continue
The continue statement.

Used to skip to the next iterator in a loop.

Example:

for (int t=0; t<5; ++t) {
if ((t%2) != 0) continue; // continue statement
System.out.println(t);

}

do while
do while statement.

Example:

boolean done = false;
do { // do while
} while (!done);



Available Rule Nodes

96

R
ef

er
en

ce

declaration statement
A statement involving the declaration of an object or primitive type.

Example:

int x = 7; // Declaration
Object o = new Object(); // Declaration

for
The 'for' loop.

Example:

for (int t = 1; t<5; t++) { // for statement
...
}

if
The 'if' statement.

Example:

int x=5;
if (x==5) { // The if statement

System.out.println("x="+x);
}

return
The return statement.

Example:

int x = 7;
public void int getNumber() {

return x; // return statement
}

synchronized
The synchronized statement.

Locks object when in use so that it can be accessed by only one caller at
a time.



Available Rule Nodes

97

R
eference

Example:

public class Foo
{

public static Thread get ()
{

final Object resource1 = "resource1";
return new Thread () {

public void run () {
synchronized (resource1) { // synchronized
}

}
};

}
}

switch
The switch statement.

Example:

int t=2;
switch(t) { // switch

case 1:
break;

case 2:
break;

}

throw
The throw statement.

Example:

void method(Object t) {
if (t == null) {

throw new Exception();
}

}

try
The try statement.

Example:



Available Rule Nodes

98

R
ef

er
en

ce

try { // try statement
} catch (Exception e) {
}

while
The while statement.

Example:

boolean here = true;
while (here) { // while statement
}

Block
The code block

Example:

{ // A block
// statements within this block

}

Simple
A simple statement.

A singular code statement which does not fall in any of

the other statement categories.

Example:

for (int count=1; count<10; count++) {
System.out.println(count); // simple statement

}

Types
Nodes representing complex or primitive types.

Complex
Non-primitives.



Available Rule Nodes

99

R
eference

Array
The array type.

Example:

String[] stringArray = new String[5]; // array

Class
The Java class type.

Example:

public class Foo { // class
}

Interface
The Java interface type.

Example:

public interface Plug { // interface
}

Primitive
Nodes representing primitive types.

boolean
The boolean primitive type.

Example:

boolean bool = true; // boolean

char
The character primitive type.

Example:

char a = 'a'; // char

byte



Available Rule Nodes

100

R
ef

er
en

ce

The byte integral type.

Example:

byte b = 23; // byte

short
The short integer.

Example:

short s = 4; // short

int
The integer type.

Example:

int t = 5; // int

long
The long integer.

Example:

long size = 84578734; // long

float
The floating point type.

Example:

float width = 78.3e+12f; // float

double
The double numeric type.

Example:

double length = 93.45e+301d; // double



Available Rule Nodes

101

R
eference

Javadoc

Tags

================



Available Rule Nodes

102

R
ef

er
en

ce



Index

103

Index

Index

Index

A
Add Logic Component 70
AND 8
author of rule 65
automatic rule creation 7, 43

B
Body command 74
Browser tab 67

C
Change Type 70
Collector 50
commands 69
Condition command 9, 74
contacting ParaSoft 3
Context command 9, 74
Copy command 69
COUNT 53
Count command 9, 73

customizing 50
Create Assertion 69
Create Collector command 50, 70
Create Output command 8, 70
Create Set Operator command 72
Cut command 69

D
Delete command 69
description of rule 65
Difference command 72
differences 47
Direct Check command 9, 72

disabling rules 15

E
Edit command 69
enabling rules 14, 15
enforcing rules 15
expressions 76

F
File menu 55
Files tab 62

H
header of rule 64
Help menu 59
Hits Output command 52, 71

I
Indirect Check command 9, 72
Info tab 65
Intersection command 72
intersections 46

L
Label command 73
Left minus Right command 72
LIST 53
logic components 8, 70

M
menus

File 55
Help 59
Nodes 56



Index

104

In
de

x

Rule 57
View 58

Move Down One command 9
Move Up One command 9

N
NAND 8
Nodes

searching for 7
Nodes menu 56
Nodes tab 60
nodes, available 80
NOR 8

O
OR 8
output

creating and customizing 7, 8
placement in rules with trigger

points 52
set component output options 52

P
panels

Rule Properties 64
RuleWizard Preferences 66

ParaSoft, contacting 3
Paste As command 69
Paste command 69
Paste New Head Node command 69
Preferences Panel 66
Properties Panel 64
properties, customizing 13

Q
Quality Consulting 3

R
regexp 77
regular expressions 77
Results tab 61
Right minus Left command 72
Rule Files tab 67
Rule ID 64
Rule menu 57
Rule Properties panel 64
rules

author 65
creating

automatically 7, 43
demonstration 17
overview 5
tips 8

customizing rule properties 13, 64
description 65
disabling 15
enabling 14, 15
enforcing 15
header 64
Rule ID 64
saving 14
severity 64
suppressing 15
viewing examples 11

RuleWizard
about 1
commands 69
customizing 66
launching 5

RuleWizard Preferences Panel 66

S
saving a rule 14
searching for nodes 7
set components 44

output options 52
set references 53
severity of rule 64
status bar 8, 63
suppressing rules 15



Index

105

Index

suppressions 65

T
tabs

File 62
Nodes 60
Results 61
Rule Files 67
View 66

technical support 3
Trigger Output command 53, 71
trigger points 50

U
Undo command 8, 69
Union command 72
unions 46

V
View menu 58
View tab 66

X
xor 47
XOR command 73


	RuleWizard User’s Guide Table of Contents
	Introducing RuleWizard
	Welcome!
	Contacting ParaSoft

	Creating Custom Coding Standards
	Overview: How to Create a Rule
	Manually
	Auto-Create
	Searching for Nodes
	Tips

	Exploring Example Rules
	How to Customize Rule Properties
	How to Save and Enable a Rule
	How to Automatically Enforce Your Custom Coding Standards
	Tutorial: Creating and Enforcing Custom Coding Standards
	Getting Started

	Lesson 1: Begin Instance Fields with Underscore
	Lesson 2: Assignment Within an IF Statement
	Lesson 3: Checking for Documentation
	Automatic Rule Creation
	Working With Node Sets
	About Node Sets
	Using Set Operators to Specify Relationships Between Set Components
	Customizing Counts With Collectors, Counts, and Trigger Points
	Determining the Output Type of a Set Component


	RuleWizard GUI
	File Menu
	Nodes Menu
	Rule Menu
	View Menu
	Help Menu
	Nodes Tab
	Results Tab
	Files Tab
	Status Bar
	Rule Properties Panel
	CodeWizard Tab
	Info Tab

	RuleWizard Preferences Panel
	View Tab
	Rule Files Tab
	Browser Tab


	Reference Guide
	RuleWizard Commands
	Expressions and Regular Expressions
	Expressions
	Regular Expressions
	Additional Tips

	Available Rule Nodes

	Index
	Index


