
ÿ ParaSoft Corporation, 1992

User’s Guide
Version 1.1

ParaSoft Corporation
2031 S. Myrtle Ave.
Monrovia, CA 91016
Phone: (888) 305-0041
Fax: (626) 305-9048
E-mail: info@parasoft.com
URL: www.parasoft.com

PARASOFT END USER
LICENSE AGREEMENT
REDISTRIBUTION NOT PERMITTED
This Agreement has 3 parts. Part I applies if you have not purchased a license to
the accompanying software (the "SOFTWARE"). Part II applies if you have pur-
chased a license to the SOFTWARE. Part III applies to all license grants. If you
initially acquired a copy of the SOFTWARE without purchasing a license and you
wish to purchase a license, contact ParaSoft Corporation ("PARASOFT"):

(626) 305-0041

(888) 305-0041 (USA only)

(626) 305-9048 (Fax)

info@parasoft.com

http://www.parasoft.com

PART I -- TERMS APPLICABLE WHEN LICENSE FEES NOT (YET)
PAID GRANT.

DISCLAIMER OF WARRANTY.
Free of charge SOFTWARE is provided on an "AS IS" basis, without warranty of
any kind, including without limitation the warranties of merchantability, fitness for a
particular purpose and non-infringement. The entire risk as to the quality and per-
formance of the SOFTWARE is borne by you. Should the SOFTWARE prove
defective, you and not PARASOFT assume the entire cost of any service and
repair. This disclaimer of warranty constitutes an essential part of the agreement.
SOME JURISDICTIONS DO NOT ALLOW EXCLUSIONS OF AN IMPLIED WAR-
RANTY, SO THIS DISCLAIMER MAY NOT APPLY TO YOU AND YOU MAY
HAVE OTHER LEGAL RIGHTS THAT VARY BY JURISDICTION.

PART II -- TERMS APPLICABLE WHEN LICENSE FEES PAID

GRANT OF LICENSE.
PARASOFT hereby grants you, and you accept, a limited license to use the
enclosed electronic media, user manuals, and any related materials (collectively
called the SOFTWARE in this AGREEMENT). You may install the SOFTWARE in
only one location on a single disk or in one location on the temporary or perma-
nent replacement of this disk. If you wish to install the SOFTWARE in multiple
locations, you must either license an additional copy of the SOFTWARE from
PARASOFT or request a multi-user license from PARASOFT. You may not trans-
fer or sub-license, either temporarily or permanently, your right to use the SOFT-
WARE under this AGREEMENT without the prior written consent of PARASOFT.

LIMITED WARRANTY.
PARASOFT warrants for a period of thirty (30) days from the date of purchase,
that under normal use, the material of the electronic media will not prove defec-
tive. If, during the thirty (30) day period, the software media shall prove defective,
you may return them to PARASOFT for a replacement without charge.

THIS IS A LIMITED WARRANTY AND IT IS THE ONLY WARRANTYMADE BY
PARASOFT. PARASOFT MAKES NO OTHER EXPRESS WARRANTY AND NO
WARRANTY OF NONINFRINGEMENT OF THIRD PARTIES' RIGHTS. THE
DURATION OF IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION,
WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR A PARTICU-
LAR PURPOSE, IS LIMITED TO THE ABOVE LIMITED WARRANTY PERIOD;
SOME JURISDICTIONS DO NOT ALLOW LIMITATIONS ON HOW LONG AN
IMPLIED WARRANTY LASTS, SO LIMITATIONS MAY NOT APPLY TO YOU.
NO PARASOFT DEALER, AGENT, OR EMPLOYEE IS AUTHORIZED TO MAKE
ANY MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.

If any modifications are made to the SOFTWARE by you during the warranty
period; if the media is subjected to accident, abuse, or improper use; or if you vio-
late the terms of this Agreement, then this warranty shall immediately be termi-
nated. This warranty shall not apply if the SOFTWARE is used on or in
conjunction with hardware or software other than the unmodified version of hard-
ware and software with which the SOFTWARE was designed to be used as
described in the Documentation. THIS WARRANTY GIVES YOU SPECIFIC
LEGAL RIGHTS, AND YOU MAY HAVE OTHER LEGAL RIGHTS THAT VARY
BY JURISDICTION.

YOUR ORIGINAL ELECTRONIC MEDIA/ARCHIVAL COPIES.
The electronic media enclosed contain an original PARASOFT label. Use the orig-
inal electronic media to make "back-up" or "archival" copies for the purpose of
running the SOFTWARE program. You should not use the original electronic
media in your terminal except to create the archival copy. After recording the
archival copies, place the original electronic media in a safe place. Other than
these archival copies, you agree that no other copies of the SOFTWARE will be
made.

TERM.
This AGREEMENT is effective from the day you install the SOFTWARE and con-
tinues until you return the original SOFTWARE to PARASOFT, in which case you
must also certify in writing that you have destroyed any archival copies you may
have recorded on any memory system or magnetic, electronic, or optical media
and likewise any copies of the written materials.

CUSTOMER REGISTRATION.
PARASOFT may from time to time revise or update the SOFTWARE. These revi-
sions will be made generally available at PARASOFT's discretion. Revisions or

notification of revisions can only be provided to you if you have registered with a
PARASOFT representative or on the ParaSoft Web site. PARASOFT's customer
services are available only to registered users.

PART III -- TERMS APPLICABLE TO ALL LICENSE GRANTS

SCOPE OF GRANT.

DERIVED PRODUCTS.
Products developed from the use of the SOFTWARE remain your property. No
royalty fees or runtime licenses are required on said products.

PARASOFT'S RIGHTS.
You acknowledge that the SOFTWARE is the sole and exclusive property of
PARASOFT. By accepting this agreement you do not become the owner of the
SOFTWARE, but you do have the right to use the SOFTWARE in accordance with
this AGREEMENT. You agree to use your best efforts and all reasonable steps to
protect the SOFTWARE from use, reproduction, or distribution, except as autho-
rized by this AGREEMENT. You agree not to disassemble, de-compile or other-
wise reverse engineer the SOFTWARE.

SUITABILITY.
PARASOFT has worked hard to make this a quality product, however PARASOFT
makes no warranties as to the suitability, accuracy, or operational characteristics
of this SOFTWARE. The SOFTWARE is sold on an "as-is" basis.

EXCLUSIONS.
PARASOFT shall have no obligation to support SOFTWARE that is not the then
current release.

TERMINATION OF AGREEMENT.
If any of the terms and conditions of this AGREEMENT are broken, this AGREE-
MENT will terminate automatically. Upon termination, you must return the soft-
ware to PARASOFT or destroy all copies of the SOFTWARE and Documentation.
At that time you must also certify, in writing, that you have not retained any copies
of the SOFTWARE.

LIMITATION OF LIABILITY.
You agree that PARASOFT's liability for any damages to you or to any other party
shall not exceed the license fee paid for the SOFTWARE.

PARASOFT WILL NOT BE RESPONSIBLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OF
THE SOFTWARE ARISING OUT OF ANY BREACH OF THE WARRANTY,
EVEN IF PARASOFT HAS BEEN ADVISED OF SUCH DAMAGES. THIS PROD-
UCT IS SOLD "AS-IS".

SOME STATES DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIA-
BILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE
LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU. YOU MAY ALSO
HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

ENTIRE AGREEMENT.
This Agreement represents the complete agreement concerning this license and
may be amended only by a writing executed by both parties. THE ACCEPTANCE
OF ANY PURCHASE ORDER PLACED BY YOU IS EXPRESSLY MADE CONDI-
TIONAL ON YOUR ASSENT TO THE TERMS SET FORTH HEREIN, AND NOT
THOSE IN YOUR PURCHASE ORDER. If any provision of this Agreement is held
to be unenforceable, such provision shall be reformed only to the extent neces-
sary to make it enforceable. This Agreement shall be governed by California law
(except for conflict of law provisions).

All brand and product names are trademarks or registered trademarks of their
respective holders.

Copyright 1993-2001

ParaSoft Corporation

2031 South Myrtle Avenue

Monrovia, CA 91016

Printed in the U.S.A, July 30, 2001

Jcontract User’s Guide
Table of Contents

Introduction
Welcome ..1
Window Installation and Setup...3
UNIX Installation and Setup ...6
Contacting ParaSoft ...9

Design by Contract
About Design by Contract ..11
The Design by Contract Specification Language14

Jcontract Basics
Using Jcontract ..25
Using Jcontract: A Simple Example ...28
Jcontract’s Monitors ...34
The Log File ...38

Customizing Jcontract
Jcontract Preferences ..41
Runtime Handlers ..48

Man Pages
dbc_javac ...53
dbc_preferences ..57

Appendix
Using dbc_javac with Ant ... 59

Index
Index .. 61

Welcome

Introduction
Introduction

Welcome
Welcome to Jcontract, a tool that enables Design by Contract (DbC) in
Java.

Jcontract instruments and compiles DbC-commented Java code, then
automatically checks whether contracts specified in the DbC comments
are violated at runtime. Jcontract is independent of Jtest, but the two tools
are complementary. You can use Jtest to verify that the class or compo-
nent is solid and correct at the unit-level, and you can use Jcontract to
verify system-level functionality and check whether the system misuses
specific classes or components.

Jcontract uses a unique dbc_javac compiler that is a Design by Con-
tract-enabled replacement for javac ; it checks the DbC specification in
the Javadoc comments, generates instrumented .java files with extra
code to check the contracts in the Javadoc comments, and compiles the
instrumented .java files with the javac compiler. This process is com-
pletely transparent; the only difference between using javac and
dbc_javac is that with dbc_javac , the resulting .class files are instru-
mented with extra bytecodes to check the contracts at runtime.

After files are compiled and instrumented, Jcontract checks the contracts
at runtime, and reports any violations found and stack trace information in
the Jcontract GUI Monitor, the Jcontract TEXT Monitor, or a file. This
helps you determine exactly when and where a violation occurs.

Jcontract is completely customizable. By default, Jcontract uses a com-
pletely non-intrusive Runtime Handler that reports violations found, but
does not alter program execution. You can also choose a Runtime Han-
dler that throws exceptions when violations occur, choose a Runtime
Handler that logs violations in a file, or create a customized Runtime Han-
dler that is specially tailored to your unique needs.

It's also possible to embed the contract enforcing comments in your Java-
doc and have these contracts enforced without any Jcontract runtime. No
Jcontract libraries are required on the user side-- just compile all of the
Java source with the command and flag dbc_javac
-Zruntime_handler NONE . When contracts are violated,
java.lang.RuntimeExceptions are thrown to stdout with the contract as
1

Welcome

2

In
tr

od
uc

tio
n

the String message of the exception. This helps you debug your code
without having to ship any Jcontract-related components.

Jcontract also adapts to your needs by letting you select which contract
conditions you want it to instrument. This way, you can optimize applica-
tion performance by having Jcontract only monitor the exact conditions
that are relevant at your current stage of the development process. For
example, after a well-tested class is integrated into the application, you
might only want to instrument and check preconditions that verify whether
the application uses the class correctly.

Window Installation and Setup

Introduction
Window Installation and
Setup
Before you can use Jcontract on your own code, you need to install the
program, install a license, then set the necessary environment variables.

Prerequisites
• Windows NT or 2000

• JDK 1.2 or higher (1.3 is preferred)

Installing Jcontract
To install Jcontract:

1. Run the setup executable that you downloaded from the ParaSoft
Web site or that is on your CD.

2. Follow the installation program’s onscreen directions. The instal-
lation program will automatically install Jcontract on your system.

You must install a license and set your environment before you start using
Jcontract on your own code.

Note: A license is not required to run Jcontract’s built-in examples.

Installing a License
To install a machine-locked Jcontract license on your machine:

1. Open the License window by choosing Start> Programs> Jcon-
tract 1.1> License .

2. Call 1-888-305-0041 to get your license.

3. In the License window, enter your expiration date and password.

4. Click Set to set and save your license.
3

Window Installation and Setup

4

In
tr

od
uc

tio
n

To install a network license and have ParaSoft’s LicenseServer manage
license access across your local area network:

1. Open the License window by choosing Start> Programs> Jcon-
tract 1.1> License .

2. In the License window, check the Use License Server option.
The License window will then change.

3. Enter your LicenseServer host in the License Server Host field.

4. Enter your LicenseServer port in the License Server Port field
(the default port is 2002).

5. Click Set to set and save your LicenseServer information.

6. Call 1-888-305-0041 to get your license.

7. Add your license to the LicenseServer as described in the
LicenseServer documentation.

Setting the Environment
Before you use Jcontract, you need to set your environment. You can do
this by running a script or by setting it manually.

Setting the Environment with a Script
To set the environment with a script:

1. Open a DOS command prompt.

2. Change directories to the Jcontract installation directory.

3. Enter the following command at the prompt:
jcvars
Or, if you are using a UNIX-like shell, see the UNIX instructions in
“UNIX Installation and Setup” on page 6.

Setting the Environment Manually
To set the environment manually:

1. Set the environment variable "JCONTRACT_HOME" to the direc-
tory where Jcontract was installed.

Window Installation and Setup

Introduction
2. Prepend "%JCONTRACT_HOME%\bin" to the "Path" environ-
ment variable.

3. Prepend "%JCONTRACT_HOME%\bin\jcontract.jar" to the
"CLASSPATH" environment variable.
5

UNIX Installation and Setup

6

In
tr

od
uc

tio
n

UNIX Installation and Setup
Before you can use Jcontract on your own code, you need to install the
program, install a license, then set the necessary environment variables.

Glossary
<jcontract-home>: The Jcontract installation directory (the directory where
Jcontract is installed).

<arch>: The platform on which Jcontract will be run. For example, solaris,
linux, etc..

<compression-scheme>: The compression scheme used to create the
Jcontract installation archive. "compressed" is standard. "gzipped" is
faster and smaller, but not common.

Prerequisites
• JDK 1.3.1

• One of the following platforms:

• Solaris 7 or 8. All relevant patches from Sun that will
allow the machine to run the interpreter from JDK 1.3.1
must be installed.

• RedHat Linux 6.2 or 7.1 with one of the following kernels:
2.2.14-5.0, 2.4.2-2.

Installing Jcontract
1. Copy the jcontract.<arch>.tar.<compression-scheme> to the

directory where you would like to install Jcontract.

2. Extract the archive. During extraction, a directory named 'jcon-
tract' will be created with the program files necessary to run the
program.

• For .gz files, enter:
gzip -dc jcontract.<arch>.tar.gz | tar xvf -

UNIX Installation and Setup

Introduction
• For .Z files, enter:
uncompress -c jcontract.<arch>.tar.Z | tar xvf -

• Remember to substitute your specific architecture name
(for example, solaris, linux, etc.) for <arch>.

You must install a license and set your environment before you start using
Jcontract on your own code.

Note: A license is not required to run Jcontract’s built-in examples.

Installing a License
To install a license:

1. Call 1-888-305-0041 to receive your license.

2. Run dbc_license to install your license.

Setting the Environment
After installing Jcontract, you must set up your environment before you
can run Jcontract. To set the environment:

1. Use the provided shell script to set up your environment or set up
the environment by hand.

• To use the script:

• For bash or sh shells: Run the 'jcvars.sh' script in
<jcontract-home>. For example:
$ cd <jcontract-home>
$. jcvars.sh

• For csh, tcsh, or ksh shells: Source the 'jcvars'
script in <jcontract-home>. For example:
$ cd <jcontract-home>
$ source jcvars

• To determine which shell you are using, enter:
$ echo $SHELL

• To set up the environment by hand:
The script sets up a couple of environment variables
needed to run Jcontract. It adds to the PATH environment
7

UNIX Installation and Setup

8

In
tr

od
uc

tio
n

variable the '<jcontract-home>/bin' directory. Additionally,
it adds to the LD_LIBRARY_PATH environment variable
the '<jcontract-home>/lib' directory. These two settings
are required for proper functionality of Jcontract.

2. Make your changes to LD_LIBRARY_PATH and PATH perma-
nent. To make these changes permanent, include the call to the
script in your shell’s login script. If you are confused about this
step, then it is best to ask a sysadmin for help. Until the sysadmin
responds, use the scripts provided in the <jcontract-home> direc-
tory.

Additional Requirement
Jcontract needs to know the location of Sun's 'javac' compiler on your
machine. The ‘bin’ directory of the JDK must be added to your path.
Example commands you can use to do this include:

• For sh-like shells:
$ export PATH=$PATH\:/usr/java/jdk1.3.1/bin

• For tcsh, csh, and ksh:
$ set path=($path /usr/java/jdk1.3.1/bin)
$ rehash

Contacting ParaSoft

Introduction
Contacting ParaSoft
ParaSoft is committed to providing you with the best possible product
support for Jcontract. If you have any trouble installing or using Jcontract,
please follow the procedure below in contacting our Quality Consulting
department.

• Check the manual.

• Be prepared to recreate your problem.

• Know your Jcontract version.

Contact Information
• USA Headquarters

Tel: (888) 305-0041

Fax: (626) 305-9048

Email: jcontract@parasoft.com

Web Site: http://www.parasoft.com

• ParaSoft France

Tel: +33 (0) 1 64 89 26 00

Fax: +33 (0) 1 64 89 26 10

Email: jtest@parasoft-fr.com

• ParaSoft Germany

Tel: +49 (0) 78 05 95 69 60

Fax: +49 (0) 78 05 95 69 19

Email: quality@parasoft-de.com

• ParaSoft UK

Tel: +44 (020) 8263 2827
9

mailto:jcontract@parasoft.com
mailto:jtest@parasoft-fr.com
mailto:quality@parasoft-de.com

Contacting ParaSoft

10

In
tr

od
uc

tio
n

Fax: +44 (020) 8263 2701

Email: quality@parasoft-uk.com

mailto:quality@parasoft-uk.com

About Design by Contract

T
esting
Design by Contract

About Design by Contract
Design by Contract is a structured way of writing comments to define
what code should do. The contract requires components of the code
(such as classes or methods) to follow certain specifications as they inter-
act with each other. The interactions between these components must ful-
fill a set of predetermined mutual obligations.

Design by Contract originated in Eiffel. Eiffel classes are components that
cooperate through the use of the contract, which defines the obligations
and benefits for each class. DbC is not yet commonly a part of program-
ming languages such as C, C++, and Java, but ideally it should be. After
all, any piece of code in any language has implicit contracts attached to it.
The simplest example of an implicit contract is a method to which you are
not supposed to pass null . If this contract is not met, a NullPointer-
Exception will occur. Another example is a component whose specifica-
tion states that it only returns positive values. If it occasionally returns
negative values and the consumer of this component is expecting the
functionality described in the specification (only positive values returned),
this contract violation could lead to a critical problem in the application.

Tools like Jtest and Jcontract bring Design by Contract to Java by helping
you specify the contracts in comments and check whether or not the con-
tract has been fulfilled.

Example
This is an example of a class with Design by Contract comments.

public class ShoppingCart
{

/**
* @pre item != null
* @post $result > 0
*/

public float add (Item item) {
_items.addElement (item);
_totalCost += item.getPrice ();
11

About Design by Contract

12

T
es

tin
g

return _totalCost;
}
private float _totalCost = 0;
private Vector _items = new Vector ();

}

The contract specifies:

1. A precondition ("@pre item != null") which specifies that the item
to be added to the shopping cart shouldn't be "null".

2. A postcondition ("@post $result > 0") which specifies that the
value returned by the method should always be greater than 0.

Preconditions and postconditions can be thought of as sophisticated
assertions. Preconditions are conditions that the client of the method
needs to satisfy in order for the method to work properly. Postconditions
are conditions that the implementor of the class guarantees will always be
satisfied.

Benefits
Benefits of using DbC include:

• The code’s assumptions are clearly documented (for example,
you assume that item should not be null). Design concepts are
placed directly in the code itself.

• The code’s contracts can be checked for consistency because
they are explicit.

• The code is much easier to reuse.

• The specification will never be lost.

• When you see the specification while writing the code, you are
more likely to implement the specification correctly.

• When you see the specification while modifying code, you are
much less likely to introduce errors.

Once you start using Jtest and Jcontract, the benefits of using DbC also
include:

About Design by Contract

T
esting
• Black-box test cases are created automatically. If you currently
create your black-box test cases manually, this means fewer
resources spent creating test cases and more resources you can
dedicate to more complex tasks, such as design and coding. If
you do not currently perform black-box testing, this will translate
to more reliable software/components.

• Black-box test cases are automatically updated as the code’s
specification changes.

• Class/component misuse is automatically detected.

• The class implementation can assume that input arguments sat-
isfy the preconditions, so the implementation can be simpler and
more efficient.

• The class client is guaranteed that the results will satisfy the post-
conditions.

For More Information
For more information about DbC see:

• Interactive Software Engineering, "Building Bug-Free O-O Soft-
ware: An Introduction to Design by ContractTM."
http://www.eiffel.com/doc/manuals/technology/contract/page.html

• Eldridge, G. "Java and `Design by Contract.'”
http://www.elj.com/eiffel/feature/dbc/java/ge/

• Kolawa, A., "Automating the Development Process." Software
Development, July 2000. http://www.sdmagazine.com

• Meyer, B. Object-Oriented Software Construction. Prentice Hall,
2000.

Note: “Design by Contract” is a trademark of Interactive Software Engi-
neering.
13

The Design by Contract Specification Language

14

T
es

tin
g

The Design by Contract
Specification Language
This document describes the syntax and semantics for the Design by
Contract (DbC) specification supported by Jtest and Jcontract.

The Design by Contract contracts are expressed with Java code embed-
ded in Javadoc comments in the .java source file.

This document is divided into the following sections:

• “Tags Used for Design by Contract” on page 14

• “Contract Syntax” on page 19

• “Contract Semantics” on page 21

• “Contract Inheritance” on page 22

• “Coding Conventions” on page 23

Tags Used for Design by Contract
The reserved Javadoc tags for DbC are:

• @invariant: Specifies class invariant condition.

• @pre: Specifies method precondition.

• @post: Specifies method postcondition.

• @concurrency: Specifies the method concurrency.

Other tags supported by Jtest and Jcontract include:

• @throws/@exception: Used to document exceptions.

• @assert: Used to add assertions in the method bodies.

• @verbose: Used to add verbose statements to the method bod-
ies. (Not currently used by Jtest)

The following subsections describe each DbC tag in detail.

The Design by Contract Specification Language

T
esting
@pre

Description
Pre-conditions check that the client calls the method correctly.

Point of execution
Right before calling the method.

Scope
Can access anything accessible from the method scope except local vari-
ables. For example, it can access method arguments, and methods/fields
of the class.

@post

Description
Post-conditions check whether the method works correctly.

Sometimes when a post-condition fails it means that the method was not
actually supposed to accept the arguments that were passed to it. The fix
in this case is to strengthen the precondition.

Point of execution
Right after the method returns successfully. Note that if the method
throws an exception the @post contract is not executed.

Scope
Same as @pre, plus it can access "$result" and "$pre (type, expression)".

Accessibility
Same as @pre.

@invariant

Description
15

The Design by Contract Specification Language

16

T
es

tin
g

Class invariants are contracts that the objects of the class should always
satisfy.

Point of execution
Same as @pre/@post: invariant checked before checking the precondi-
tion and after checking the postcondition.

Done for every non-static, non-private method entry and exit and for every
non-private constructor exit.

If a constructor throws an exception, its @invariant contract is not exe-
cuted.

Not done for "finalize ()".

When inner class methods are executed, the invariants of the outer
classes are not checked.

Scope
Class scope, can access anything a method in the class can access,
except local variables.

Accessibility
Same as @pre/@post.

@concurrency

Description
The @concurrency tag specifies how the method can be called by multi-
ple threads. Its possible values are:

• Concurrent: The method can be called simultaneously by differ-
ent threads (i.e., the method is multi-thread safe). Note that this is
the default mode for Java methods.

• Guarded: The method can be called simultaneously by different
threads, but only one will execute it in turn, while the other
threads will wait for the executing one to finish. In other words, it
specifies that the method is synchronized. Jcontract will only

The Design by Contract Specification Language

T
esting
report a compile-time error if a method is declared as “guarded”
but is not declared as “synchronized”.

• Sequential: The method can only by executed by one thread at
once and it is not declared synchronized. It is thus the responsi-
bility of the callers to ensure that no simultaneous calls to that
method occur. For methods with this concurrency contract, Jcon-
tract will generate code to check if they are being executed by
more than one thread at once. An error will be reported at runtime
if the contract is violated.

Point of execution
Right before calling the method.

@throws/@exception
These are the standard @throws and @exception tags found in Javadoc;
they are used to document that the method throws a given exception.
@throws and @exception are synonymous. In this entry, we use
@throws to represent both tags.

The syntax for the @throws tag is:

ThrowsContract
: @throws ExceptionName Text

Example:

/** @throws NegativeArraySizeException if size is negative */

When a method throws an exception, the Jcontract Runtime Handler will
call 'documentedExceptionThrown (Throwable t)' if that exception is docu-
mented with a @throws tag.

Note that the Runtime Monitors provided with Jcontract don't take any
action when 'documentedExceptionThrown' is called. You can neverthe-
less take a specific action by defining a user defined Runtime Handler.

Jtest suppresses exceptions that are documented with the @throws tag
as long as the the classes were instrumented with the instrument
@throws condition preference set to “true”.
17

The Design by Contract Specification Language

18

T
es

tin
g

@assert

Syntax
The syntax for the @assert tag is:

AssertStmt
: @assert BooleanExpression
| @assert '(' BooleanExpression ')'
| @assert '(' BooleanExpression , MessageExpression ')'

The MessageExpression can be of any type.

For example:

/** @assert valu e > 0 */
/** @assert (value > 0) */
/** @assert (value > 0, "value should be positive */
/** @assert (value > 0, value) */

The @assert tags should appear in Javadoc comments inside the method
bodies. If the classes are compiled with 'dbc_javac' and the Instru-
ment.InstrumentAssertConditions preference is true/enabled, then the
@assert boolean expression will be evaluated. If the expression evalu-
ates to false, then one or more of the following actions take place:

• An error message is reported in Jtest’s Design by Contract>
@assert Results panel/Errors Found panel branch or in the Jcon-
tract Monitor.

• A runtime exception (jcontract.AssertException) is thrown.

• The program exits by invoking System.exit (1).

See “Contract Semantics” on page 21 for more information about how to
select the actions that take place. The default action is to report an error
and continue program execution.

@verbose
The syntax for the @verbose tag is:

VerboseStmt
: @verbose MessageExpression

The Design by Contract Specification Language

T
esting
| @verbose '(' MessageExpression ')'

For example:

/** @verbose "process starts" */
/** @verbose ("process ends") */
/** @verbose 26.7 */

The @verbose tags should appear in Javadoc comments inside the
method bodies. If the classes are compiled with 'dbc_javac' and the
Instrument.InstrumentVerboseConditions preferences is true/enabled,
then the classes are instrumented with the verbose expression.

By default, all verbose statements are inactive; once they are activated,
they print the MessageExpression to System.out.

The @verbose statements can be separately activated for each class.The
@verbose statements for a class are active if the system property jcon-
tract.verbose.CLASSNAME is set to the value ON (where CLASSNAME
is the name of the class without the package part). For example, to acti-
vate the verbose statements in class pkg.DataDictionary on Windows
use:

$ java -Djcontract.verbose.DataDictionary=ON ...

Note that the MessageExpression in a verbose statement is not evaluated
if the verbose statement is inactive.

Contract Syntax
The general syntax for a contract is:

DbcContract:
DbcTag DbcCode

| @concurrency { concurrent | guarded | sequential }

where

DbcTag:
@invariant

| @pre
| @post
19

The Design by Contract Specification Language

20

T
es

tin
g

DbcCode:
BooleanExpression

| '(' BooleanExpression ')'
| '(' BooleanExpression ',' MessageExpression ')'
| CodeBlock
| $none

MessageExpression:
Expression

Any Java code can be used in the DbcCode with the following restriction:
the code should not have side effects (i.e., it should not have assignments
or invocation of methods with side-effects).

The following extensions to Java (DbC keywords) are allowed in the con-
tract code:

• $result: Used in a @post contract, evaluates to the return value of
the method.

• $pre: Used in a @post contract to refer to the value of an expres-
sion at @pre-time. The syntax to use it is:
$pre (ExpressionType, Expression).
Note: The full "$pre (...)" expression should not extend over mul-
tiple lines.

• $assert: Can be used in DbcCode CodeBlocks to specify the con-
tract conditions.
The syntax to use it is:
$assert (BooleanExpression)
or
$assert (BooleanExpression , MessageExpression)

• $none: Used to specify there is no contract.

Notes
• The @pre, @post and @concurrent tags apply to the method that

follows in the source file.

• The MessageExpression is optional and will be used to identify
the contract in the error messages or contract violation excep-
tions thrown. The MessageExpression can be of any type. If it is a

The Design by Contract Specification Language

T
esting
reference type it will be converted to a String using the "toString
()" method. If it is of primitive type it will first be wrapped into an
object.

• There can be multiple conditions of the same kind for a given
method. If there are multiple conditions, all conditions are
checked. The conditions are ANDed together into one virtual con-
dition. For example it is equivalent (and encouraged for clarity) to
have multiple @pre conditions instead of a single big @pre con-
dition.

Examples

/**
* @pre {
* for (int i = 0; i < array.length; i++)
* $assert (array [i] != null, "array elements

are non-null");
* }
*/

public void set (int[] array) {...}

/** @post $result == ($pre (int, arg) + 1) */

public int inc (arg) {...}

/** @invariant size () >= 0 */

class Stack {...}

/**
* @concurrency sequential
* @pre (value > 0, "value positive:" + value)
*/

void update (int value) {...}

Contract Semantics
The contracts are specified in comments and will not have any effect if
compiling or executing in a non DbC enhanced environment.
21

The Design by Contract Specification Language

22

T
es

tin
g

In a DbC-enhanced environment, the contracts are executed/checked
when methods of a class with DbC contracts are invoked.

A contract fails if any of these conditions occur:

• The "BooleanExpression" evaluates to "false."

• An "$assert (BooleanExpression)" is called in a "CodeBlock" with
an argument that evaluates to "false."

• The method is called in a way that violates its @concurrency con-
tract.

If a contract fails, the Runtime Handler for the class is notified of the con-
tract violation. Jcontract provides several Runtime Handlers; the default
one uses a GUI Monitor that shows program progress and contract viola-
tions. You can also write your own Runtime Handlers; for details on how
to do this, see “Runtime Handlers” on page 48.

With the Monitor Runtime Handlers provided by Jcontract, program exe-
cution continues as if nothing has happened when a contract is violated.
For example, if a @pre contract is violated, the method will still be exe-
cuted.

This option makes the DbC-enabled and non DbC-enabled versions of
the program work in exactly the same way. The only difference is that in
the DbC-enabled version, the contract violations are reported to the cur-
rent Jcontract Monitor.

Note: Contract evaluation is not nested; when a contract calls another
method, the contracts in the other method are not executed.

Contract Inheritance
Contracts are inherited. If the derived class or overriding method doesn't
define a contract, it inherits that of the super class or interface. Note that a
contract of $none implies that the super contract is applied.

If an overriding method does define a contract then it can only:

• Weaken the precondition: Because it should at least accept the
same input as the parent, but it can also accept more.

• Strengthen the postcondition: Because it should at least do as
much as the parent one, but it can also do more.

The Design by Contract Specification Language

T
esting
To enforce this:

• When checking the @pre condition, the precondition contract is
assumed to succeed if any of the @pre conditions of the chain of
overridden methods succeeds (i.e., the preconditions are ORed).

• When checking the @post condition, the postcondition contract is
assumed to succeed if all the @post conditions of the chain of
overridden methods succeed (i.e., the postconditions are
ANDed).

Note: If there are multiple @pre conditions for a given method, the pre-
conditions are ANDed together into one virtual @pre condition and then
ORed with the virtual @pre conditions for the other methods in the chain
of overridden methods.

For @invariant conditions, the same logic as for @post applies.

@concurrency contracts are also inherited. If the overriding method
doesn't have an @concurrency contract, it inherits that of the parent. If it
has an inheritance contract, it can only weaken it (as it does for @pre
conditions). For example, if the parent has a “sequential” @concurrency,
the overriding method can have a “guarded” or “concurrent” @concur-
rency.

Coding Conventions
When using Design by Contract in Java, the following coding conventions
are recommended:

• Place all the @invariant conditions in the class Javadoc comment
with the Javadoc comment appearing immediately before the
class definition.

• Javadoc comments with the @invariant tag should appear before
the class definition.

• All public and protected methods should have a contract. All
package-private and private methods should also have a con-
tract.

• If a method has a DbC tag, it should have a complete contract.
This means that if you have both a precondition and a postcondi-
23

The Design by Contract Specification Language

24

T
es

tin
g

tion, you should use "DbcTag $none" to specify that a method
doesn't have any condition for that tag.

• No public class field should participate in an @invariant clause.
Because any client can modify such a field arbitrarily, there is no
way for the class to ensure any invariant on it.

• The code contracts should only access members visible from the
interface. For example, the code in a method’s @pre condition
should only access members that are accessible from any client
that could use the method. In other words, the contract of a public
method should only use public members from the method's class.

Note: Jcontract does not currently enforce these conventions.

Using Jcontract

T
esting
Jcontract Basics

Using Jcontract
You can use Jcontract to instrument and compile any .java file with or
without Design by Contract comments.

Using Jcontract involves two main steps:

• Compiling your code with the special Jcontract compiler.

• Running the program in the normal manner.

These steps are described below.

Before you use Jcontract for the first time, you need to set the environ-
ment for Jcontract as described in “Window Installation and Setup” on
page 3 or “UNIX Installation and Setup” on page 6.

Adding Contracts to Your Code
Jcontract can be used to perform some checks on code without DbC con-
tracts, but to get the full benefit of Jcontract, you should add DbC con-
tracts to your code.

For a general introduction to Design by Contract, see “About Design by
Contract” on page 11. For information on adding Design by Contract com-
ments to your code, see “The Design by Contract Specification Lan-
guage” on page 14.

Running Jcontract on Files With DbC
Contracts
If you use Jcontract with code that contains DbC comments, it will instru-
ment the comments and check the contracts.

To use Jcontract on code that contains contracts:

1. Compile the program classes using the dbc_javac command
instead of the javac command.

The dbc_javac compiler will then instrument the DbC com-
25

Using Jcontract

26

T
es

tin
g

ments as it compiles the program's classes. When this process is
completed, Jcontract will report the number of files compiled and
the number of files instrumented.

For example, to compile and instrument the DbC comments in
Example.java, you could enter the following command at the
prompt:
dbc_javac Example.java

For more information about the dbc_javac command, see
“dbc_javac” on page 53.

2. Run the program in the normal manner.

The Jcontract runtime will check the contracts and report
progress and contract violations in the Jcontract Monitor (or in
any other output location you have selected).

For example, to run Example.class, you could enter the following
command at the prompt:
java Example

Note: You must have the ‘java’ program on the environment’s
path in order to run your program with ‘java’.

Running Jcontract on Files Without
DbC Contracts
If you use Jcontract on code without DbC comments (i.e. code that
doesn't yet contain @pre/@post/@invariant/@concurrency, etc. tags),
you can have it check whether any methods are executed concurrently by
more than one thread.

To use Jcontract on code that does not contain contracts:

1. Compile the program classes using the following command
instead of javac :

dbc_javac -Zdefault_concurrency sequential

Using Jcontract

T
esting
This will add code to check that no methods are executed concur-
rently by more than one thread.

2. Run the program in the regular manner.
If more that one thread is executing a method at a given time, a
contract violation will be reported in the Jcontract Monitor (or in
any other output location you have selected).
27

Using Jcontract: A Simple Example

28

T
es

tin
g

Using Jcontract: A Simple
Example

Introduction
The following example demonstrates how to use Jcontract to instrument
and compile a simple class, then check its contracts at runtime.

Before you try this example on your own system, make sure that you
have already set your environment for Jcontract as described in “Window
Installation and Setup” on page 3 or “UNIX Installation and Setup” on
page 6.

A Simple Example

The Example.java File
In this example, we check the contract of the following simple example
file, Example.java. This file is located in the examples subdirectory of your
Jcontract installation directory.

public class Example
{

/** @pre month >= 1 && month <= 12 */
static void setMonth (int month) {

// ...
}

//////////

public static void main (String[] args)
{

setMonth (13);
}

}

Using Jcontract: A Simple Example

T
esting
If you look at the contract in this code, you’ll see that it contains a @pre
tag that states that the month value must be an integer between 1 and 12.
Preconditions check whether or not a method is called correctly. They are
checked right before the method is called, and they can access anything
accessible from the method scope except for local variables.

Checking the Contract
To check if this contract is met, compile the class with Jcontract’s
dbc_javac compiler, then run it as normal. To do this, perform the follow-
ing steps:

1. Compile the class by entering the following command at the
prompt:
dbc_javac Example.java

2. Run the class by entering the following command at the prompt:
java Example

If you have not modified the Jcontract default setting, the Jcontract GUI
Monitor will then open.
29

Using Jcontract: A Simple Example

30

T
es

tin
g

Exploring Results
By default, the Jcontract Monitor reports runtime progress and lists any
contract violations found. In addition, all result information is saved in a
Jcontract log file. For more information about this log file, see “The Log
File” on page 38.

If you look at the Jcontract Monitor, you will see that Jcontract found one
contract violation in this example. This violation is listed in the Contract
Violations branch in the right side of the monitor. The violation message
reveals that the @pre contract condition that stated that the month value
must be between 1 and 12 was not met and that the method was called
incorrectly.

To learn more about the violation found, expand that branch by clicking
the plus sign to the left of the violation message.

Using Jcontract: A Simple Example

T
esting
The stack trace information reveals that the violating value was set in line
13. To see the code in a source viewer, with line 13 highlighted, dou-
ble-click the stack trace line that refers to line 13 of Example.java

Violation
message

Stack trace
31

Using Jcontract: A Simple Example

32

T
es

tin
g

This line of code sets the month value to 13. Because the @pre condition
stated that the month value had to be an integer between 1 and 12, this
value violates the contract.

Fixing Errors Found
When you are ready to fix any Design by Contract violation found, there
are two main things you’ll want to do:

1. Examine the code to determine if there is a problem with the code
or a problem with the contract.

2. If the problem was with the code, fix the code; if the problem was
with the contract, modify the contract.

In this case, the problem appears to be with the code. If you wanted to
modify this code, you could do so by right-clicking any line of the stack
trace information, then choosing Edit Source from the shortcut menu.
This opens the code in the default editor (WordPad).

Note: You can configure Jcontract to open code in your preferred Source
Editor by performing the following steps:

1. Open the JContract preferences tab in one of the following ways:

• In the Jcontract Monitor, choose Edit> Preferences .

• Enter the following command at the command prompt:
dbc_preferences

• Choose Start> Programs> Jcontract> Edit Prefer-
ences .

2. In the Editor tab, enter the command for your preferred editor as
well as any parameters you want to pass to that editor.

Using Jcontract: A Simple Example

T
esting
3. Click OK.

Additional Examples
A number of example .java files that contain DbC contracts are available
in <jcontract_install_dir>/examples. To learn more about Jcontract, try
compiling and running these examples on your system.
33

Jcontract’s Monitors

34

T
es

tin
g

Jcontract’s Monitors
Jcontract’s monitors report contract violations detected at runtime and
program progress (i.e. the number of contract checked).

Currently there are two types of monitors available with Jcontract: a TEXT
mode monitor and a GUI mode monitor.

The GUI Monitor is used by default. You can specify which type of monitor
you would like to use by modifying the Jcontract Preferences. See “Jcon-
tract Preferences” on page 41 for information about how to set monitor
preferences.

GUI Monitor
If Jcontract’s "Monitor.Type" option is set to the value "GUI", the Jcontract
GUI Monitor will start as soon as the program under execution loads a
class with instrumented contracts on it.

The GUI Monitor consists of the following elements:

• The Report Area

• The Menu Bar

• The Tool Bar

• The Status Bar

The Report Area
The Report Area of the Jcontract GUI Monitor displays:

• Runtime Progress: Reports the number of instrumented classes
loaded and the number of contracts executed.

• Contract Violations: Each time a contract violation occurs, the
Jcontract GUI Monitor reports it in the Contract Violations area.
If you expand the violation report, the monitor will display the
stack trace where the violation occurred.

To view the violating file’s source code, with the stack trace line
highlighted, double-click the node which represents the stack

Jcontract’s Monitors

T
esting
trace line that you want highlighted.

To edit the source code, right-click any line of the stack trace
information, then choose Edit Source from the shortcut menu.
This opens the code in the default editor.

Note: The source viewer looks for source files in the CLASS-
PATH environment variable. To specify additional directory where
to look for source, set the SOURCEPATH environment variable.

If you would like to hide either the Runtime Progress information or the
Contract Violations information, clear the appropriate button on the left
side of the GUI.

The Menu Bar
The menu bar lets you access commands related to monitor functionality.
35

Jcontract’s Monitors

36

T
es

tin
g

File Menu
• Exit: Closes that monitor GUI.

Edit Menu
• Find: Opens a dialog box that allows you to search for items in

the monitor.

• Preferences: Opens a dialog box that allows you to modify Jcon-
tract preferences. For information on available preference
options, see “Jcontract Preferences” on page 41.

Help Menu
• Contents: Opens the Jcontract User's Guide.

• Feedback: Displays information about how to send feedback
about Jcontract to ParaSoft.

• Support: Opens the Jcontract online support page.

• About: Displays the Jcontract version number and logo.

The Tool Bar

The Status Bar
The status bar reports Jcontract messages.

Button Name Action

Reset Resets all monitor counters and lists
to 0.

Log Opens the Jcontract log file (this file
is discussed in “The Log File” on
page 38).

Jcontract’s Monitors

T
esting
TEXT Monitor
If the Monitor.Type preference in
<jcontract_install_dir>\u\<username>jcontract.prefer-
ences is set to the value Text , the Jcontract TEXT Monitor will start as
soon as the program under execution loads a class that contains instru-
mented contracts.

The TEXT Jcontract Monitor sends all messages to the console (stdout)
by default. Use the Monitor.LINEOutputFile preferences in
<jcontract_install_dir>\u\<username>jcontract.prefer-
ences to send the output to a file or to stderr.

When the instrumented program exits, the runtime progress at the point of
exit is displayed (this feature requires running with JDK 1.3 or higher).
37

The Log File

38

T
es

tin
g

The Log File
All test parameters and results are recorded in the Jcontract log file.

You can access this log file by the clicking the Log button in the Jcontract
GUI Monitor, or by opening the file directly (by default, it is named jcon-
tract.log and is saved in the same directory as the program under
test.

The log file contains the following sections:

• Jcontract: Lists Jcontract version information.

• Environment: Lists environment variables.

• Started on : Lists the time and date the test was started.

• Jcontract installation directory: Lists the Jcontract installation
directory.

• Jcontract Preferences: Lists all preference option settings used
for the current test.

• Loaded instrumented class: Lists the name of the class that
Jcontract tested.

• Jcontract Exceptions: Lists details about any contract violations
that occurred.

• Jcontract Runtime Statistics: Lists the number of classes
loaded and the number of each type of check that was per-
formed.

• Ended on: Lists the time and date the test ended.

The Log File

T
esting
39

The Log File

40

T
es

tin
g

Jcontract Preferences

C
ustom

izing
Customizing Jcontract

Jcontract Preferences
User preferences for the Jcontract package are stored in a preference file.
Jcontract searches for a preferences file in the following locations (in the
order listed):

1. The location specified by the DBC_PREFERENCES environment
variable.

2. The “jcontract.preferences” file in your home directory.

3. The “jcontract.preferences” files in the Jcontract installation direc-
tory.

The first preference file found will be used.

The preference file contains preferences of the form:

Category.Item=value

For example:

Instrumentation.InstrumentPreConditions=true

Changing Preference Options
The preference values can be changed in either of the following ways:

• Edit the preferences file directly.

• Edit the preference options through the Preference panel GUI
interface that modifies the jcontract.preferences file. The
are three ways to reach this Preferences panel:

• Choose Start> Programs> Jcontract> Edit Prefer-
ences .

• Enter the following command at the command prompt:
dbc_preferences

• (If the Jcontract Monitor is already open) Choose Edit>
Preferences in the Jcontract Monitor.

• Edit the preference options with commands that work with the
dbc_preferences command.
41

Jcontract Preferences

42

C
us

to
m

iz
in

g

For example, to change the Instrument.InstrumentPre-
Conditions preference to false use the following command:
$ dbc_preferences -set Instrument.InstrumentPre-
Conditions=false
For more information see “dbc_preferences” on page 57.

Jcontract Preferences

C
ustom

izing
Available Preference Options
All of the following preference options can be modified in the Jcontract
Preferences panel; all options that are not exclusive to the Jcontract GUI
Monitor can be modified directly in the jcontract.preferences
file or from the command line. The GUI options related to each prefer-
ence option are listed in parentheses below the name of each option.

Instrumentation Preferences
Instrumentation.InstrumentPreConditions
(Instrumentation tab> Instrument @pre Conditions)

Specifies if the "dbc_javac" compiler should generate code to
check the "@pre" contracts in the class.

Possible values are "true" and "false". The default value is "true".

The value specified here can be overridden in the "dbc_javac"
command by using the "-Z@pre (on|off)" flag.

Instrumentation.InstrumentPostConditions
(Instrumentation tab> Instrument @post Conditions)

Specifies if the "dbc_javac" compiler should generate code to
check the "@post" contracts in the class.

Possible values are "true" and "false". The default value is "true".

The value specified here can be overridden in the "dbc_javac"
command by using the "-Z@post (on|off)" flag.

Instrumentation.InstrumentInvariantConditions
(Instrumentation tab> Instrument @invariant Conditions)

Specifies if the "dbc_javac" compiler should generate code to
check the "@invariant" contracts in the class.

Possible values are "true" and "false". The default value is "true".

The value specified here can be overridden in the "dbc_javac"
command by using the "-Z@invariant (on|off)" flag.
43

Jcontract Preferences

44

C
us

to
m

iz
in

g

Instrumentation.InstrumentConcurrencyConditions
(Instrumentation tab> Instrument @concurrency Conditions)

Specifies if the "dbc_javac" compiler should generate code to
check the "@concurrency" contracts in the class.

Possible values are "true" and "false". The default value is "true".

The value specified here can be overridden in the "dbc_javac"
command by using the "-Z@concurrency (on|off)" flag.

Instrumentation.DefaultConcurrency
(Instrumentation tab> Default Concurrency)

Default concurrency to be used by "dbc_javac" for methods with-
out a "@concurrency" contract.

Possible values are "concurrent", "guarded" and "sequential".The
default value is "concurrent".

See “The Design by Contract Specification Language” on
page 14 for more information about these values.

Note: This preference is not used for methods with empty bodies
and get/set methods. Those methods are always assumed to
have "concurrent" @concurrency if they don't have an explicit
@concurrency tag.

Instrumentation.InstrumentThrowsConditions
(Instrumentation tab> Instrument @throws Conditions)

Specifies if the "dbc_javac" compiler should generate code to
check the "@throws" conditions in the class.

Possible values are "true" and "false". The default value is "true".

The value specified here can be overridden in the "dbc_javac"
command by using the "-Z@assert (on|off)" flag.

Instrumentation.InstrumentAssertConditions
(Instrumentation tab> Instrument @assert Conditions)

Jcontract Preferences

C
ustom

izing
Specifies if the "dbc_javac" compiler should generate code to
check the "@assert" conditions in the class.

Possible values are "true" and "false". The default value is "true".

The value specified here can be overridden in the "dbc_javac"
command by using the "-Z@assert (on|off)" flag.

Instrumentation.InstrumentVerboseStatements
(Instrumentation tab> Instrument @verbose Conditions)

Specifies if the "dbc_javac" compiler should generate code for the
"@verbose" statements in the class.

Possible values are "true" and "false". The default value is "true".

The value specified here can be overridden in the "dbc_javac"
command by using the "-Z@verbose (on|off)" flag.

Instrumentation.WriteLog
(Instrumentation tab> Write Log File)

Specifies if a log file should be written by the Jcontract runtime.

Possible values are "true" and "false". The default value is “true".

The value specified here is ignored if the “dbc_javac” flag
"-Zruntime_preference Instrumentation.WriteLog..." was used
with “dbc_javac” to compile the first instrumented class loaded.

Instrumentation.LogFile
(Instrumentation tab> Log File)

Specifies the path to the log file Jcontract writes.

The default value is "jcontract.log".

The value specified here is ignored if the flag
"-Zruntime_preference Runtime.LogFile..." was used with
“dbc_javac” to compile the first instrumented class loaded.
45

Jcontract Preferences

46

C
us

to
m

iz
in

g

Instrumentation.TmpDirectory
(Instrumentation tab> Temporary Directory)

Specifies the directory where Jcontract writes the temporary files
generated by "dbc_javac".

The default value is "\Temp".

Instrumentation.RuntimeHandler
(Instrumentation tab> Temporary Directory)

Specifies which Runtime Handler will be associated with the
classes compiled with "dbc_javac".

The default value is "jcontract.MonitorRuntimeHandler".

The value specified here can be overridden in the "dbc_javac"
command using "-Zruntime_handler {class_name}".

For more information about Runtime Handlers see “Runtime Han-
dlers” on page 48.

Monitor Preferences
Monitor.Type
(Monitor tab> Monitor Type)

Specifies the type of monitor Jcontract uses at runtime.

The possible values are "TEXT" or “GUI". The default is "GUI".

See “Jcontract’s Monitors” on page 34 for more information about
the Jcontract monitors.

Monitor.GUI.Bounds:
(Monitor tab> GUI Monitor Bounds)

Specifies the bounds of the Jcontract GUI Monitor.

This preference is updated automatically if the GUI monitor is
moved or resized.

Jcontract Preferences

C
ustom

izing
Monitor.TEXT.Output
(Monitor tab> TEXT Monitor Output)

Specifies the path to the file that the TEXT monitor will write to.

The possible values are "stdout", "stderr" and a file system path.
The default value is "stdout".

For "stdout" and "stderr", the monitor sends the output to the
standard output and standard error (the console).

Editor Preferences (GUI Only)
Editor
(Editor tab> Editor command)

Lets you specify which editor you want to Jcontract to invoke
when you choose to edit files from the Jcontract GUI Monitor.
47

Runtime Handlers

48

C
us

to
m

iz
in

g

Runtime Handlers
The classes instrumented with Jcontract use a Runtime Handler to per-
form appropriate actions when a contract is violated and to gather statis-
tics on the running program.

A Runtime Handler is a class extending "jcontract.RuntimeHandler". A
single Runtime Handler object is created when the first instrumented
class is loaded; this same Runtime Handler object is shared by all the
classes that have the same Runtime Handler class associated to them.

Jcontract provides several built-in Runtime Handlers. If you would prefer
to use a customized Runtime Handler, you can create one by extending
"jcontract.RuntimeHandler".

The Runtime Handler associated with a class can be specified either in
the Jcontract preferences file or using the -Zruntime_handler flag with
"dbc_javac".

Runtime Handlers provided with
Jcontract

jcontract.MonitorRuntimeHandler
This is the default Runtime Handler used. This Runtime Handler is com-
pletely non-intrusive. The instrumented program behaves exactly the
same as the non-instrumented program. When a contract violation
occurs, the violation is logged into the monitor, but program execution
continues as if nothing has happened.

For more information about the monitors provided with Jcontract see
“Jcontract’s Monitors” on page 34.

jcontract.ExceptionRuntimeHandler
With this Runtime Handler, a jcontract.ContractException is thrown when-
ever a contract is violated.

The exceptions thrown are:

Runtime Handlers

C
ustom

izing
jcontract.LogRuntimeHandler
This is a non-intrusive logging Runtime Handler. Whenever a contract is
violated, the stack trace where it occurred is logged into a "./jcontract.log"
file. The logging information also includes the instrumented classes
loaded, environment information, and statistics collected while running
the program.

jcontract.LogStdoutRuntimeHandler
This is a "jcontract.LogRuntimeHandler" that writes the logging informa-
tion to the standard output.

jcontract.LogStderrRuntimeHandler
This is a "jcontract.LogRuntimeHandler" that writes the logging informa-
tion to the standard error output.

To run programs with the "jcontract.MonitorRuntimeHandler" Jcontract
must be installed in the target machine.

To run programs with the "jcontract.ExceptionRuntimeHandler" and "jcon-
tract.LogRuntimeHandler" the file "jcontract.jar" must be in the classpath
of the target machine.

Type of Violation Exception Thrown

@pre violated jcontract.PreException: ...

@post violated jcontract.PostException: ...

@invariant violated jcontract.InvariantException: ...

@concurrency violated jcontract.ConcurrencyExcep-
tion: ...

@assert violated jcontract.AssertException: ...
49

Runtime Handlers

50

C
us

to
m

iz
in

g

To generate programs that do not require any support in the target
machine see “Generating Instrumented Classes that Require no Runtime”
on page 50.

Note that you can also define your own Runtime Handlers. For details,
see “Defining Your Own Runtime Handler” on page 51.

Multiple Runtime Handlers
A single Runtime Handler object is created when the first instrumented
class is loaded and this same Runtime Handler object is shared by all the
classes that have the same Runtime Handler class associated to them.

If there is more than one Runtime Handler class type in the running pro-
gram a single Runtime Handler object is created for each type and those
single instances are shared by all the classes that have the same runtime
handler associated to them. The Runtime Handler that a class as associ-
ated is the one that was specified when the class was compiled using
"dbc_javac".

Overriding the Runtime Handlers at
Runtime
The Runtime Handler that was associated with a class when it was com-
piled with "dbc_javac" can be overrided by setting the property "jcon-
tract.runtime.handler". For example if a program is run using:

$ java -Djcontract.runtime.handler jcontract.LogRunt-
imeHandler Main

then all the classes will use "jcontract.LogRuntimeHandler" as their Runt-
ime Handler.

Generating Instrumented Classes that
Require no Runtime

Runtime Handlers

C
ustom

izing
Jcontract can generate classes that require no runtime at all (i.e., classes
that can be run without requiring "jcontract.jar" on the classpath).

To generate classes that require no runtime at all, use "-Zruntime_handler
NONE" when compiling with "dbc_javac". Note that for those classes, the
Runtime Handler cannot be specified by setting the property "jcon-
tract.runtime.handler". Also, those classes will throw the following excep-
tions when a contract is violated:

Defining Your Own Runtime Handler
You can define your own Runtime Handler by writing a class that extends
"jcontract.RuntimeHandler" and overriding at least the "contractViolation
(RuntimeException ex)" method.

For an example see <jcontract_install_dir>\examples\
UserDefinedRuntimeHandler.java.

For Jcontract API documentation, see
<jcontract_install_dir>\docs\api\index.html.

Type of Violation Exception Thrown

@pre violated java.lang.RuntimeException: @pre: ...

@post violated java.lang.RuntimeException: @post: ...

@invariant violated java.lang.RuntimeException: @invariant: ...

@concurrency
violated

java.lang.RuntimeException: @concur-
rency: ...

@assert violated java.lang.RuntimeException: @assert: ...
51

Runtime Handlers

52

C
us

to
m

iz
in

g

dbc_javac

M
an

P
ages
Man Pages

dbc_javac

Name
dbc_javac - javac with “Design by Contract” enabled.

Synopsis
dbc_javac [dbc_javac options] [javac options]

Description
The dbc_javac command is a “Design by Contract” enabled replace-
ment for javac . dbc_javac should be used in place of the javac com-
mand whenever you want the code’s contracts to be checked at runtime.

The dbc_javac command checks the DbC specification in the Javadoc
comments, generates instrumented .java files with extra code to check
the contracts in the Javadoc comments and compiles the instrumented
.java files with the javac compiler.

This process produces .class files instrumented with extra bytecodes to
check the contracts at runtime. Unless -Zruntime_handler NONE is
specified, jcontract.zip must be accessible at runtime to the classes
compiled with dbc_javac .

Options
The dbc_javac command accepts the same options as the javac com-
mand. In addition, it accesses some additional options of the form “-Z ...”:

-Z@(pre|post|invariant|concurrency|throws|assert|ver-
bose) (on|off)

Controls whether the specific contract type is instrumented.

Overrides the Instrumentation.InstrumentXXXCondi-
tion preference in the preferences file.
53

dbc_javac

54

M
an

P
ag

es
Example: -Z@pre off , if compiling with this option the resulting
.class files will not check the @pre contracts.

-Zdefault_concurrency (concurrent|guarded|sequential)

Sets the default concurrency contract for methods without an
explicit "@concurrency" contract.

Overrides the Instrumentation.DefaultConcurrency
preference in the preferences file. Note that the default value in
that file is concurrent, the default mode for Java methods.

-Zstatistics

Shows instrumentation statistics.

-Ztimings

Shows timing information.

-Zverbose

Shows the steps being taken. Also enables -Zstatistics and
-Ztimings .

-Zlog (on|off)

Sets logging mode to on or off . Default is on .

Overrides the Instrumentation.WriteLog preference in the
preferences file.

-Zlog_file (path|stdout|stderr)

Specifies the file to write the login info to.

Example: -Zlog_file stdout will write logging info to the
command console.

Overrides the Instrumentation.LogFile preference in the
preferences file.

dbc_javac

M
an

P
ages
The default value in that file is jcontract.log .

-Zpreferences_file path

Specifies the preferences file to use. If this option is not set,
dbc_javac searches for a preferences file in the following loca-
tions (in the order listed):

1. The location specified by the DBC_PREFERENCES environment
variable.

2. The “jcontract.preferences” file in your home directory.

3. The “jcontract.preferences” files in the Jcontract installation direc-
tory.

The first preference file found will be used.

-Zruntime_handler (class_name|NONE)

Specifies the Runtime Handler that will be associated with the
compiled classes. Overrides the Instrumentation.Runtime-
Handler preference in the preferences file. The default value in
that file is jcontract.MonitorRuntimeHandler . For more
information about Runtime Handlers see “Runtime Handlers” on
page 48.

If the NONE option is chosen, then no runtime handler will be
used. In this case, you may use dbc_javac to instrument the code
and the contracts will be enforced at runtime by throwing a Runt-
imeException whenever a contract is violated. This technique is
useful for distributing code built with Design by Contract comment
enforcement to those that do not have Jcontract.

Example: Classes compiled with the -Zruntime_handle
UserDefinedRuntimeHandler option will use an instance of
the class UserDefinedRuntimeHandler as Runtime Handler

-Zjava_compiler {compiler_command}
55

dbc_javac

56

M
an

P
ag

es
Uses {compiler_command} to compile the original and instru-
mented classes.

Example 1: -Zjava_compiler jikes .
Example 2: -Zjava_compiler c:\jdk1.2.2\bin\javac
The default value for this flag is javac . Note that only javac is
fully supported. If you have problems using another compiler,
contact jcontract@parasoft.com.

See Also
“dbc_preferences” on page 57

“Jcontract Preferences” on page 41

“Jcontract’s Monitors” on page 34

“Runtime Handlers” on page 48.

dbc_preferences

M
an

P
ages
dbc_preferences

Name
dbc_preferences - command line editor for "jcontract.preferences"

Synopsis
dbc_preferences [options] [preferences_file]

Description
Command line interface to edit the contents of the "jcontract.preferences"
file. See “Jcontract Preferences” on page 41 for a list of the available pref-
erences and their default values.

If "preferences_file" is omitted, dbc_preferences searches for a prefer-
ences file in the following locations (in the order listed):

1. The location specified by the DBC_PREFERENCES environment
variable.

2. The “jcontract.preferences” file in your home directory.

3. The “jcontract.preferences” files in the Jcontract installation direc-
tory.

The first preference file found will be used.

Options
If the command is invoked without options, the Jcontract Preferences GUI
interface to the Jcontract preferences file will be started.

-reset

Resets all preference values to their default values.
57

dbc_preferences

58

M
an

P
ag

es
-show

Prints the contents of the preferences file.

-set preference=value

Changes the preference value.

Example: $ dbc_preference -set Intrumentation.DefaultConcur-
rency=sequential

See Also
“Jcontract Preferences” on page 41

“dbc_javac” on page 53.

Using dbc_javac with Ant

A
ppendix
Appendix

Using dbc_javac with Ant
To use dbc_javac (instead of javac) with Apache's Jakarta Ant build
tool.

1. Modify the CLASSPATH environment variable to include 'jcon-
tract.jar' and 'antlr.jar'. These files are in
<jcontract_installation_dir>/bin.

2. Modify your Ant project's xml file to include the following property
inside the project:

<property name="build.compiler" value="com.para-
soft.dbc.AntDbcJavac"/>

A simple yet complete build file using dbc_javac instead of
javac follows:

<project name="SampleProject" default="compile" basedir=".">
<!-- set this build to use dbc_javac instead of javac -->
<property name="build.compiler" value="com.parasoft.dbc.Ant-
DbcJavac"/>
<target name="compile">
<!-- Create the time stamp -->
<tstamp/>
<!-- Compile the java code -->
<exec dir ="${basedir}" executable="${JCONTACT_HOME}/
bin/dbc_javac.exe">
<arg line= "(Path to the users .java files)" />
</exec>
</target>
</project>

3. Ensure that 'ant.jar' is in your CLASSPATH environment variable.
59

Using dbc_javac with Ant

60

A
pp

en
di

x

Index

Index
Index

Index

Symbols
@assert 18
@concurrency 16
@exception 17
@invariant 15
@post 15
@pre 15
@throws 17
@verbose 18

A
ant 59
assertion 18

C
concurrency 16, 26
contacting ParaSoft 9
customizing Jcontract 41, 48

D
dbc_java command 53
dbc_preferences 57
Design by Contract

coding conventions 23
contract inheritance 22
contract semantics 21
contract syntax 19
introduction 11
specification 14
tags 14

E
editor, specifying 47
environment, setting 4
exception 17

I
instrumentation preferences 43
invariant 16

L
license 3, 7
LicenseServer 4
log file 38

M
man pages

dbc_java 53
dbc_preferences 57

monitors 34
GUI 34
preferences 46
TEXT 37

P
ParaSoft, contacting 9
post-condition 15
pre-condition 15
preferences 41

editor 47
instrumentation 43
monitor 46

Q
Quality Consulting 9
61

Index

In
de

x

R
runtime handlers 48

built-in 48
customized 51
multiple 50
overriding 50

runtime, omitting 51

T
technical support 9
throws 17

V
verbose 18
62

	PARASOFT END USER LICENSE AGREEMENT
	Jcontract User’s Guide Table of Contents
	Introduction
	Design by Contract
	Jcontract Basics
	Customizing Jcontract
	Man Pages
	Appendix
	Index

	Introduction
	Welcome
	Window Installation and Setup
	UNIX Installation and Setup
	Contacting ParaSoft

	Design by Contract
	About Design by Contract
	The Design by Contract Specification Language

	Jcontract Basics
	Using Jcontract
	Using Jcontract: A Simple Example
	Jcontract’s Monitors
	The Log File

	Customizing Jcontract
	Jcontract Preferences
	Runtime Handlers

	Man Pages
	dbc_javac
	dbc_preferences

	Appendix
	Using dbc_javac with Ant

	Index
	Index

