
ÿ ParaSoft Corporation, 1992

User’s Guide
Version 4.1

ParaSoft Corporation
2031 S. Myrtle Ave.
Monrovia, CA 91016
Phone: (888) 305-0041
Fax: (626) 305-9048
E-mail: info@parasoft.com
URL: www.parasoft.com

PARASOFT END USER
LICENSE AGREEMENT
REDISTRIBUTION NOT PERMITTED
This Agreement has 3 parts. Part I applies if you have not purchased a license to
the accompanying software (the "SOFTWARE"). Part II applies if you have pur-
chased a license to the SOFTWARE. Part III applies to all license grants. If you
initially acquired a copy of the SOFTWARE without purchasing a license and you
wish to purchase a license, contact ParaSoft Corporation ("PARASOFT"):

(626) 305-0041

(888) 305-0041 (Toll-Free)

(626) 305-9048 (Fax)

info@parasoft.com

http://www.parasoft.com

PART I -- TERMS APPLICABLE WHEN LICENSE FEES NOT (YET)
PAID GRANT.

DISCLAIMER OF WARRANTY.
Free of charge SOFTWARE is provided on an "AS IS" basis, without warranty of
any kind, including without limitation the warranties of merchantability, fitness for a
particular purpose and non-infringement. The entire risk as to the quality and per-
formance of the SOFTWARE is borne by you. Should the SOFTWARE prove
defective, you and not PARASOFT assume the entire cost of any service and
repair. This disclaimer of warranty constitutes an essential part of the agreement.
SOME JURISDICTIONS DO NOT ALLOW EXCLUSIONS OF AN IMPLIED WAR-
RANTY, SO THIS DISCLAIMER MAY NOT APPLY TO YOU AND YOU MAY
HAVE OTHER LEGAL RIGHTS THAT VARY BY JURISDICTION.

PART II -- TERMS APPLICABLE WHEN LICENSE FEES PAID

GRANT OF LICENSE.
PARASOFT hereby grants you, and you accept, a limited license to use the
enclosed electronic media, user manuals, and any related materials (collectively
called the SOFTWARE in this AGREEMENT). You may install the SOFTWARE in
only one location on a single disk or in one location on the temporary or perma-
nent replacement of this disk. If you wish to install the SOFTWARE in multiple
locations, you must either license an additional copy of the SOFTWARE from
PARASOFT or request a multi-user license from PARASOFT. You may not trans-
fer or sub-license, either temporarily or permanently, your right to use the SOFT-
WARE under this AGREEMENT without the prior written consent of PARASOFT.

LIMITED WARRANTY.
PARASOFT warrants for a period of thirty (30) days from the date of purchase,
that under normal use, the material of the electronic media will not prove defec-
tive. If, during the thirty (30) day period, the software media shall prove defective,
you may return them to PARASOFT for a replacement without charge.

THIS IS A LIMITED WARRANTY AND IT IS THE ONLY WARRANTYMADE BY
PARASOFT. PARASOFT MAKES NO OTHER EXPRESS WARRANTY AND NO
WARRANTY OF NONINFRINGEMENT OF THIRD PARTIES' RIGHTS. THE
DURATION OF IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION,
WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR A PARTICU-
LAR PURPOSE, IS LIMITED TO THE ABOVE LIMITED WARRANTY PERIOD;
SOME JURISDICTIONS DO NOT ALLOW LIMITATIONS ON HOW LONG AN
IMPLIED WARRANTY LASTS, SO LIMITATIONS MAY NOT APPLY TO YOU.
NO PARASOFT DEALER, AGENT, OR EMPLOYEE IS AUTHORIZED TO MAKE
ANY MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.

If any modifications are made to the SOFTWARE by you during the warranty
period; if the media is subjected to accident, abuse, or improper use; or if you vio-
late the terms of this Agreement, then this warranty shall immediately be termi-
nated. This warranty shall not apply if the SOFTWARE is used on or in
conjunction with hardware or software other than the unmodified version of hard-
ware and software with which the SOFTWARE was designed to be used as
described in the Documentation. THIS WARRANTY GIVES YOU SPECIFIC
LEGAL RIGHTS, AND YOU MAY HAVE OTHER LEGAL RIGHTS THAT VARY
BY JURISDICTION.

YOUR ORIGINAL ELECTRONIC MEDIA/ARCHIVAL COPIES.
The electronic media enclosed contain an original PARASOFT label. Use the orig-
inal electronic media to make "back-up" or "archival" copies for the purpose of
running the SOFTWARE program. You should not use the original electronic
media in your terminal except to create the archival copy. After recording the
archival copies, place the original electronic media in a safe place. Other than
these archival copies, you agree that no other copies of the SOFTWARE will be
made.

TERM.
This AGREEMENT is effective from the day you install the SOFTWARE and con-
tinues until you return the original SOFTWARE to PARASOFT, in which case you
must also certify in writing that you have destroyed any archival copies you may
have recorded on any memory system or magnetic, electronic, or optical media
and likewise any copies of the written materials.

CUSTOMER REGISTRATION.
PARASOFT may from time to time revise or update the SOFTWARE. These revi-
sions will be made generally available at PARASOFT's discretion. Revisions or

notification of revisions can only be provided to you if you have registered with a
PARASOFT representative or on the ParaSoft Web site. PARASOFT's customer
services are available only to registered users.

PART III -- TERMS APPLICABLE TO ALL LICENSE GRANTS

SCOPE OF GRANT.

DERIVED PRODUCTS.
Products developed from the use of the SOFTWARE remain your property. No
royalty fees or runtime licenses are required on said products.

PARASOFT'S RIGHTS.
You acknowledge that the SOFTWARE is the sole and exclusive property of
PARASOFT. By accepting this agreement you do not become the owner of the
SOFTWARE, but you do have the right to use the SOFTWARE in accordance with
this AGREEMENT. You agree to use your best efforts and all reasonable steps to
protect the SOFTWARE from use, reproduction, or distribution, except as autho-
rized by this AGREEMENT. You agree not to disassemble, de-compile or other-
wise reverse engineer the SOFTWARE.

SUITABILITY.
PARASOFT has worked hard to make this a quality product, however PARASOFT
makes no warranties as to the suitability, accuracy, or operational characteristics
of this SOFTWARE. The SOFTWARE is sold on an "as-is" basis.

EXCLUSIONS.
PARASOFT shall have no obligation to support SOFTWARE that is not the then
current release.

TERMINATION OF AGREEMENT.
If any of the terms and conditions of this AGREEMENT are broken, this AGREE-
MENT will terminate automatically. Upon termination, you must return the soft-
ware to PARASOFT or destroy all copies of the SOFTWARE and Documentation.
At that time you must also certify, in writing, that you have not retained any copies
of the SOFTWARE.

LIMITATION OF LIABILITY.
You agree that PARASOFT's liability for any damages to you or to any other party
shall not exceed the license fee paid for the SOFTWARE.

PARASOFT WILL NOT BE RESPONSIBLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OF
THE SOFTWARE ARISING OUT OF ANY BREACH OF THE WARRANTY,
EVEN IF PARASOFT HAS BEEN ADVISED OF SUCH DAMAGES. THIS PROD-
UCT IS SOLD "AS-IS".

SOME STATES DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABIL-
ITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIM-
ITATION OR EXCLUSION MAY NOT APPLY TO YOU. YOU MAY ALSO HAVE
OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

ENTIRE AGREEMENT.
This Agreement represents the complete agreement concerning this license and
may be amended only by a writing executed by both parties. THE ACCEPTANCE
OF ANY PURCHASE ORDER PLACED BY YOU IS EXPRESSLY MADE CONDI-
TIONAL ON YOUR ASSENT TO THE TERMS SET FORTH HEREIN, AND NOT
THOSE IN YOUR PURCHASE ORDER. If any provision of this Agreement is held
to be unenforceable, such provision shall be reformed only to the extent neces-
sary to make it enforceable. This Agreement shall be governed by California law
(except for conflict of law provisions).

All brand and product names are trademarks or registered trademarks of their
respective holders.

Copyright 1993-2001

ParaSoft Corporation

2031 South Myrtle Avenue

Monrovia, CA 91016

Printed in the U.S.A, July 30, 2001

Jtest User’s Guide Table of
Contents

Introduction
Introduction ..1
Windows Installation and Setup ...2
UNIX Installation and Setup ...6
Contacting ParaSoft ...12

Testing With Jtest
Quick Start Guide...15
Testing a Single Class ...21
Testing A Class - Two Simple Examples ...23
Understanding the Errors Found Panel..32
Exploring and Customizing Class Test Results..................................37
Testing a Set of Classes ..40
Testing a Set of Classes - Example ...43
Understanding the Results Panel...45
Exploring and Customizing Project Test Results53
Loading One of a Project's Classes in the Class Testing UI56
Editing Class Test Parameters from the Project Testing UI58
Running Jtest in Batch Mode ...60
Testing a Large Project ..68

Static Analysis
About Static Analysis ...69
Performing Static Analysis ...71
Viewing Class and Project Metrics ...73
Tracking Metrics Over Time ...76
Customizing Static Analysis ...79
Creating Your Own Static Analysis Rules ..83
Static Analysis Suppressions ...84

Dynamic Analysis
About Dynamic Analysis .. 85
Performing Dynamic Analysis .. 86
Customizing Dynamic Analysis .. 88
Dynamic Analysis Suppressions.. 89
Testing Classes That Reference External Resources 93
Using Custom Stubs .. 98
Setting an Object to a Certain State ..106

White-Box Testing
About White-Box Testing ... 108
Performing White-Box Testing ... 110
Customizing White-Box Testing... 112

Black-Box Testing
About Black-Box Testing.. 113
Performing Black-Box Testing ... 115
Adding Method Inputs ..119
Adding Test Classes .. 125
Specifying Imports ... 132

Design by Contract
Using Design by Contract With Jtest ... 133
About Design by Contract ..137
The Design by Contract Specification Language............................... 141

Regression Testing
About Regression Testing..152
Performing Regression Testing ... 153

IDE Integration
Integrating VisualAge and Jtest ... 154
Using Jtest Within VisualAge ...155
Integrating JBuilder and Jtest .. 160
Using Jtest Within JBuilder .. 161

Test-Related Tasks
Saving and Restoring Tests Parameters..162
Viewing Test History ..163
Viewing Coverage Information ...166
Viewing Context-Sensitive Help ...168
Viewing, Editing, or Compiling a Source ..169
Viewing and Validating Test Cases..171
Viewing a Report of Results ...177

Customizing Your Test
Customizing Test Parameters ..180
Sharing Project Test Parameters ...181
Customizing Reporting of Violations ..184
Customizing System Settings ..185

Jtest UI Help
Jtest UI Overview ...186
Trees ..187
Cursors...188

Class Testing UI
Class Testing UI ...189
Class Testing UI Menu Bar ..190
Class Testing UI Tool Bar ..195
Class Name Panel ...200
Test Progress Panel...201
Errors Found Panel ..203

Project Testing UI
Project Testing UI...204

Project Testing UI Menu Bar.. 206
Project Testing UI Tool Bar.. 212
Controls Panel ...218
Project Testing UI Results Panel ...221

Test Parameters Windows
Global Test Parameters ... 222
Global Test Parameters - Static Analysis... 224
Global Test Parameters - Dynamic Analysis......................................228
Global Test Parameters - Common Parameters................................ 235
Class Test Parameters .. 240
Class Test Parameters - Static Analysis ..242
Class Test Parameters - Dynamic Analysis 243
Class Test Parameters - Common Parameters251
Project Test Parameters .. 253
Project Test Parameters - Static Analysis.. 255
Project Test Parameters - Dynamic Analysis..................................... 256
Project Test Parameters - Common Parameters, Search Parameters,

Classes in Project ... 260

Tools
Find Classes UI.. 264

Reference
Jtest Tutorials... 268
Jtest FAQs ...269
Fixing Errors Found ... 270
Built-in Static Analysis Rules ...277

Index
Index .. 623

Introduction

1

Introduction

IntroductionIntroduction
Welcome to Jtest, a Java unit testing tool that automatically tests any
Java class or component without requiring you to write a single test case,
harness, or stub.

The development community endorses practices such as unit testing,
coding standard enforcement, and Design by Contract. When imple-
mented, these techniques prevent software errors, increase code stability,
and automate the testing techniques that are a fundamental part of any
Extreme Programming process. Until now, these practices were too
labor-intensive and costly to implement. Jtest fully automates these prac-
tices, so even the most time-stricken developers can fit these procedures
into their schedules.

Jtest automates black-box (functionality) testing, white-box (construction)
testing, and regression testing. In addition, it automatically enforces over
240 industry-respected coding standards, lets you tailor standards for a
specific project or group, and enables you to create and enforce custom-
ized coding standards.

By testing at the unit, or class, level, Jtest helps you prevent problems,
catch existing problems as early as possible, achieve the fullest possible
coverage of the methods, and uncover problems that other types of test-
ing are unable to detect. When you use Jtest to test each class as soon
as you compile it, you will improve software reliability while you reduce
development time, effort, and cost.

Windows Installation and Setup

2

In
tr

od
uc

tio
n

Windows Installation and
Setup

Requirements
• Windows NT Service Pack 6 or Windows 2000

• JDK 1.2 or higher

Installation
To install Jtest:

1. Run the setup executable that you downloaded from the ParaSoft
Web site or that is on your CD.

2. Follow the installation program’s onscreen directions. The instal-
lation program will automatically install Jtest on your system.

Startup
To launch Jtest, double-click the Jtest desktop icon.

A Jtest license must be installed before you can begin using Jtest.

Installing a License
To install a machine-locked Jtest license on your machine:

1. Launch Jtest as described above. The Class Testing UI and the
License window will open.

Windows Installation and Setup

Introduction
2. Call 1-888-305-0041 to get your license.

3. In the License window, enter your expiration date and password.

4. Click Set to set and save your license.

To install a network license and have ParaSoft’s LicenseServer manage
license access across your local area network:

1. Launch Jtest as described above. The Class Testing UI and the
License window will open.
3

Windows Installation and Setup

4

In
tr

od
uc

tio
n

2. In the License window, check the Use License Server option.
The License window will then change.

3. Enter your LicenseServer host in the License Server Host field.

Windows Installation and Setup

Introduction
4. Enter your LicenseServer port in the License Server Port field
(the default port is 2002).

5. Click Set to set and save your LicenseServer information.

6. Call 1-888-305-0041 to get your license.

7. Add your license to the LicenseServer as described in the
LicenseServer documentation.
5

UNIX Installation and Setup

6

In
tr

od
uc

tio
n

UNIX Installation and Setup

Glossary
<jtest-home>: The Jtest installation directory (the directory where Jtest is
installed).

<arch>: The platform on which Jtest will be run. For example, solaris,
linux, etc..

<compression-scheme>: The compression scheme used to create the
Jtest installation archive. ".Z (compressed)" is standard. ".gz (gzipped)" is
faster and smaller, but not common.

Prerequisites
• JDK 1.3.1

• One of the following platforms:

• Solaris 7 or 8. All relevant patches from Sun that will
allow the machine to run the interpreter from JDK 1.3.1
must be installed.

• RedHat Linux 6.2 or 7.1 with one of the following kernels:
2.2.14-5.0, 2.4.2-2.

Installing Jtest
1. Copy the jtest.<arch>.tar.<compression-scheme> to the directory

where you would like to install Jtest.

2. Extract the archive. During extraction, a directory named 'jtest'
will be created with the program files necessary to run the pro-
gram.

• For .gz files, enter:
gzip -dc jtest.<arch>.tar.gz | tar xvf -

• For .Z files, enter:
uncompress -c jtest.<arch>.tar.Z | tar xvf -

UNIX Installation and Setup

Introduction
• Remember to substitute your specific architecture name
(for example, solaris, linux, etc.) for <arch>.

Setting the Environment
After installing Jtest, you must set up your environment before you can
run Jtest. To set the environment:

1. Use the provided shell script to set up your environment or set up
the environment by hand.

• To use the script:

• For bash or sh shells: Run the 'jtvars.sh' script in
<jtest-home>. For example:
$ cd <jtest-home>
$. jtvars.sh

• For csh, tcsh, or ksh shells: Source the 'jtvars'
script in <jtest-home>. For example:
$ cd <jtest-home>
$ source jtvars

• To determine which shell you are using, enter:
$ echo $SHELL

• To set up the environment by hand:
The script sets up a couple of environment variables
needed to run Jtest. It adds to the PATH environment
variable the '<jtest-home>/bin' directory. Additionally, it
adds to the LD_LIBRARY_PATH environment variable
the '<jtest-home>/lib' directory.

2. Add Sun Microsystems’ javac compiler to your path (if it is not
already there).
Jtest requires the javac compiler for "Design by Contract" and
black-box testing. If you do not have "javac" on your shell's path,
set the PARASOFT_JDK_HOME environment variable to the
location of Sun Microsystem's JDK on your machine.

• bash or sh shell example:
$ PARASOFT_JDK_HOME=/usr/java/jdk1.3.1
$ export PARASOFT_JDK_HOME
7

UNIX Installation and Setup

8

In
tr

od
uc

tio
n

• tcsh, csh or ksh shell example:
$ setenv PARASOFT_JDK_HOME=/usr/java/jdk1.3.1

• Note: If you add the 'bin' directory of the JDK from Sun to
your environment, you do not need to set
PARASOFT_JDK_HOME.

3. Make your changes to LD_LIBRARY_PATH, PATH and
PARASOFT_JDK_HOME permanent.
To make the changes environment variables, edit your shell's
login script. Add the definition of the PARASOFT_JDK_HOME
environment variable to your login script only if you don't have
"javac" from Sun on your PATH.
If you are confused about this step, then it is best to ask a sysad-
min for help. Until the sysadmin responds, use the scripts pro-
vided in the <jtest-home> directory.

Starting Jtest
Once the environment has been set, Jtest is started by running the jtest-

gui command.

A Jtest license must be installed before you can begin using Jtest.

Installing a License
To install a machine-locked Jtest license on your machine:

1. Launch Jtest as described above. The Class Testing UI and the
License window will open.

UNIX Installation and Setup

Introduction
2. Call 1-888-305-0041 to get your license.

3. In the License window, enter your expiration date and password.

4. Click Set to set and save your license.

To install a network license and have ParaSoft’s LicenseServer manage
license access across your local area network:

1. Launch Jtest as described above. The Class Testing UI and the
License window will open.
9

UNIX Installation and Setup

10

In
tr

od
uc

tio
n

2. In the License window, check the Use License Server option.
The License window will then change.

3. Enter your LicenseServer host in the License Server Host field.

UNIX Installation and Setup

Introduction
4. Enter your LicenseServer port in the License Server Port field
(the default port is 2002).

5. Click Set to set and save your LicenseServer information.

6. Call 1-888-305-0041 to get your license.

7. Add your license to the LicenseServer as described in the
LicenseServer documentation.

If Jtest Cannot Locate Your JDK
If Jtest ever opens a dialog box that asks you to set
PARASOFT_JDK_HOME, it is indicating that it could not find the 'javac'
compiler required for black-box testing and "Design by Contract".

There are two ways to solve this:

• Set the variable to the installation directory of the JDK.

• sh and bash shell example:
$ export PARASOFT_JDK_HOME=/usr/java/jdk1.3.1

• tcsh, csh, and ksh shell example:
$ setenv PARASOFT_JDK_HOME=/usr/java/jdk1.3.1

• Add the 'bin' directory of the JDK to the PATH.

• sh and bash shell example:
$ export PATH=$PATH\:/usr/java/jdk1.3.1/bin

• tcsh, csh, and ksh shell example:
$ set path=($path /usr/java/jdk1.3.1/bin)
$ rehash
11

Contacting ParaSoft

12

In
tr

od
uc

tio
n

Contacting ParaSoft
ParaSoft is committed to providing you with the best possible product
support for Jtest. If you have any trouble installing or using Jtest, please
follow the procedure below in contacting our Quality Consulting depart-
ment.

• Check the manual.

• Be prepared to recreate your problem.

• Know your Jtest version. (You can find it in Help> About .)

Jtest experts are available online to answer your questions. To receive
live online support, choose Help> Support to open the Jtest support
page, then follow the link to “Live Online Jtest Experts.”

Contact Information
• USA Headquarters

Tel: (888) 305-0041

Fax: (626) 305-9048

Email: jtest@parasoft.com

Web Site: http://www.parasoft.com

• ParaSoft France

Tel: +33 (0) 1 64 89 26 00

Fax: +33 (0) 1 64 89 26 10

Email: jtest@parasoft-fr.com

• ParaSoft Germany

Tel: +49 (0) 78 05 95 69 60

Fax: +49 (0) 78 05 95 69 19

Email: quality@parasoft-de.com

mailto:jtest@parasoft-fr.com
mailto:jtest@parasoft.com
mailto:quality@parasoft-de.com

Contacting ParaSoft

Introduction
• ParaSoft UK

Tel: +44 (020) 8263 2827

Fax: +44 (020) 8263 2701

Email: quality@parasoft-uk.com
13

mailto:quality@parasoft-uk.com

Contacting ParaSoft

14

In
tr

od
uc

tio
n

Quick Start Guide

T
esting
Testing With Jtest

Quick Start Guide
Jtest fully automates white-box testing, black-box testing, regression test-
ing, and static analysis. The only user intervention required to perform
these tests on a class or set of classes is telling Jtest what class or set of
classes to test, clicking the Start button, and looking at the test results.

Requirements

General Requirements
You must satisfy all of the following requirements in order to use the mini-
mum Jtest functionality:

• The '.class' files for the classes you want to test must be avail-
able. A '.class' file is a compiled Java source. Without a '.class'
file, Jtest will not be able to perform any tests.

• The '.class' files must be in a directory hierarchy that reflects the
structure of the package, regardless of whether they are in jar
files, zip files, or in the file system.

• The classes referenced by the tested '.class' files must be avail-
able to Jtest. This is done by adding their location to the CLASS-
PATH.

• If the '.class' files are in directories, '.zip' files, or '.jar' files, the
'.class' files must be accessible by Jtest.

To use full Jtest functionality (Static Analysis, Source Browsing, Design by
Contract, etc.) the '.java' source files must be available to Jtest during
testing.

Black-Box Testing/Design by Contract
Requirements

JDK Requirement
15

Quick Start Guide

16

T
es

tin
g

In order for Jtest to perform black-box (functionality) testing and use
Design by Contract information, a valid path to your Java compiler must
be present in Jtest’s Global Test parameters

Jtest automatically determines the path to your JDK by looking at the fol-
lowing variables in the order listed:

1. The PARASOFT_JDK_HOME variable.

2. The javac PATH environment variable.

3. JAVA_HOME, JDK_HOME, JAVAHOME, ...

The first valid variable found is used.

To see what JDK Jtest has detected on your system, click the Global but-
ton in the current Jtest UI, then read the value listed in the Common
Parameters> Path to JDK directory branch of the Global Test Parame-
ters window that opens.

You can configure Jtest to use a different JDK permanently or temporarily.

To change the JDK permanently:

• Change the PARASOFT_JDK_HOME environment variable in
the method appropriate for your operating system.

To change the JDK temporarily:

1. Temporarily reset the PARASOFT_JDK_HOME variable at the
command line in the method appropriate for your operating sys-
tem.

2. Start Jtest from the command line as described in “Running Jtest
in Batch Mode” on page 60.

Contract Requirement
In order for Jtest to automate black-box testing, code must contain Design
by Contract-format contracts. For information on adding Design by Con-
tract-format contracts to your code, see “Using Design by Contract With
Jtest” on page 133 and “The Design by Contract Specification Language”
on page 141.

General Testing Procedure

Quick Start Guide

T
esting
To test your class(es) with Jtest, perform the following steps:

1. Open the appropriate UI for your test. The Class Testing UI is
used to test a single class; the Project Testing UI is used to test a
set of classes.

• The Class Testing UI opens by default when Jtest is
launched.

• The Project Testing UI can be opened by clicking the
Class Testing UI’s Project button.

2. If a class or set of classes is already loaded into the UI you are
using, click the New button to clear the previous test.

3. Use the Browse button to indicate what class or set of classes
you want to test.

4. Test the class or project for the first time by clicking the Start but-
ton.

The first time you test a class, Jtest will:

• Perform static analysis (if the class’s .java source file is
available).

• Create and execute white-box test cases that check your
code’s construction.

• Create and execute black-box test cases that verify your
code’s functionality (if your code contains Design by Con-
tract-format contracts).

5. Review the class test results or project test results, then correct
errors found, modify the contracts, or suppress reporting of errors
you do not want reported in future test runs.

6. Rerun the test when a class is modified (i.e., perform regression
testing). To do this:

a. Choose File> Open in the UI that you used for the origi-
nal test, then choose the appropriate .ctp or .ptp file from
the file chooser.

b. Click Start .
17

Quick Start Guide

18

T
es

tin
g

When the test is run this time (and all additional times)
Jtest will:

• Perform static analysis.

• Create and execute white-box test cases that
check your class’s construction.

• Create and execute black-box test cases that
verify your class’s functionality (if your code con-
tains Design by Contract-format contracts).

• Perform regression testing by comparing the cur-
rent test case outcomes with those obtained dur-
ing the initial test run.

Adding User-Defined Stubs and Test
Cases
Jtest also allows you to enter your own stubs and test cases.

Stubs can be added as Stub Classes; for information on adding stubs,
see “Using Custom Stubs” on page 98.

Test cases can be added as method inputs or as JUnit-format Test
Classes. To add and execute user-defined test cases, perform these addi-
tional steps:

1. Open the View Test Cases window to view the automatic inputs
that Jtest generated during previous test runs.

• In the Class Testing UI, open the View Test Cases win-
dow by clicking View.

• In the Project Testing UI right-click the [Class Name]
node in the Results panel, then choose View Test Cases
from the shortcut menu.

2. Design additional test cases.

3. Add the user-defined test cases using Test Classes or method
inputs.

• For information on adding Test Classes, see “Adding Test
Classes” on page 125.

Quick Start Guide

T
esting
• For information on adding method inputs, see “Adding
Method Inputs” on page 119.

4. Rerun the test by clicking the Start button.

When the test is run, Jtest will perform all the tests it performed in
previous test runs, plus it will execute the user-defined test cases
and determine the output for the user-defined test cases.

5. Specify the correct outcomes for the user-defined test cases, as
well as for automatically-generated test cases, by performing the
following tasks for each class and test case:

a. View the test case input and outcomes in the View Test
Cases window.

b. Validate correct outcomes or set the correct value for
incorrect outcomes by right-clicking the appropriate out-
come node and selecting the appropriate command from
the shortcut menu.

c. (optional) Specify additional inputs to check.

6. When the class is modified, rerun the test by restoring test
parameters and clicking the Start button.

When you rerun the test, Jtest will check for specification and
regression testing errors; it does this by comparing validated out-
comes with their specified values, and comparing nonvalidated
outcomes with their previous values. Jtest will also continue to
test for uncaught runtime exceptions and static analysis errors.

Setting Your CLASSPATH
If during testing, Jtest finds ClassNotFoundExceptions or NoClassDef-
FoundErrors, or if it reports that it could not find the package on "imports",
the CLASSPATH is not set properly. If this occurs, you need to set the
system CLASSPATH variable to include every class referenced (recur-
sively) by the tested class prior to testing. Check that the CLASSPATH
includes the parent directory of the directory hierarchy. For example, if
you are testing com.company.MyClass and Jtest reports that it could not
find a package referenced by MyClass, it is probably because the 'com'
directory is not on the CLASSPATH.
19

tstcases.htm
tstcases.htm

Quick Start Guide

20

T
es

tin
g

You can override the CLASSPATH environment variable in the Global
Test Parameters, the Class Test Parameters, or the Project Test Parame-
ters.

Testing a Single Class

T
esting
Testing a Single Class
To test a single class:

1. Indicate what class to test by performing one of the following
steps:

• Browse for the class by...

a. Clicking the Browse button in the Class Testing
UI's Class Name panel.

b. Locating and selecting the .class file you want to
test in the file viewer.

c. Clicking Open .

• Enter the fully qualified name of the class to test (without
the .class extension) in the Class Name field.

Note: We recommended that you use the Class Testing
UI’s Browse button to select the class you want to test.
When a class is selected using the Browse button, the
working directory is set to the root directory of the class's
package.

• Use the Find Classes UI to find available classes, then
double-click the name of the appropriate test in the lower
panel of the Find Classes UI. This will set up a test for the
selected class in the Class Testing UI.

2. Start the test by clicking the Start tool bar button.

• If you only want to perform static analysis or a specific
type of static analysis, right-click the Start button and
choose the menu item that describes the type of test that
you want to perform.

• If you only want to perform dynamic analysis or a specific
type of dynamic analysis, right-click the Start button and
choose the menu item that describes the type of test that
you want to perform.

Unless you tell it to do otherwise, Jtest automatically performs all steps
required for:
21

Testing a Single Class

22

T
es

tin
g

• Static analysis

• White-box testing

• Black-box testing (if Design by Contract-format contract informa-
tion is included in the class under test or test case outcomes have
been validated)

• Regression testing (on all test runs after the first)

If you want to configure Jtest to perform only static analysis or only
dynamic analysis, modify your testing parameters as described in “Cus-
tomizing Test Parameters” on page 180.

For details on specific types of tests performed, see the following topics:

• “About Static Analysis” on page 69

• “About Dynamic Analysis” on page 85

• “About White-Box Testing” on page 108

• “About Black-Box Testing” on page 113

• “About Regression Testing” on page 152

Results
Results are displayed in the Errors Found Panel. To learn more about this
panel's branches and available options, see “Understanding the Errors
Found Panel” on page 32 and “Exploring and Customizing Class Test
Results” on page 37.

Testing A Class - Two Simple Examples

T
esting
Testing A Class - Two
Simple Examples
The following examples demonstrates how to perform fully automatic test-
ing on two classes: one without Design by Contract comments and one
with these comments.

Example 1: Testing a Class Without
Design by Contract Comments
This example demonstrates how Jtest tests a single class file that does
not contain Design by Contract comments.

1. Go to Jtest’s Class Testing UI. (This UI opens by default when
you launch Jtest).

2. If a class is already loaded into the Class Testing UI (i.e., if you
see a class name in the Class Name field), click the New button
to clear the previous test.

3. Browse to Simple.class (in <jtest_install_dir>/examples/eval)
using the Browse button in the Class Name panel.

4. Click the Start button in the tool bar.

Jtest will perform static analysis, then automatically create and execute
white-box test cases designed to test the class’s construction. A dialog
box will open to notify you when testing is complete. Information on test
progress will be displayed in the Test Progress panel. Errors found will be
reported in the Errors Found panel.

Static Analysis Violations
The following coding standard violations will be reported in the Static
Analysis Violations branch of the Errors Found panel.
23

Testing A Class - Two Simple Examples

24

T
es

tin
g

To see more information about a violation, expand the violation’s branch.
For example, expand the violation of the PB.TLS rule.

This violation reveals that the developer inadvertently wrote case10
instead of case 10 . If the class is not fixed, it will give incorrect results
when it is passed the value 10 . To view the source code of the class (with
the line containing the error highlighted), double-click the node containing
the error's file/line information.

Testing A Class - Two Simple Examples

T
esting
Uncaught Runtime Exceptions
Now let’s look at the uncaught runtime exception that Jtest’s white-box
test cases found. The Errors Found panel will list the following uncaught
runtime exception under the Uncaught Runtime Exceptions branch.

This error message reveals that there is some input for which the class
will throw an uncaught runtime exception at runtime. This could cause the
application running this class to crash.
25

Testing A Class - Two Simple Examples

26

T
es

tin
g

To see a stack trace like the one the Java virtual machine would give if
this uncaught runtime exception were thrown, expand this branch.

To see an example usage of this class that would lead to the reported
uncaught runtime exception, expand the Test Case Input branch.

This error message reveals that the startsWith method is implemented
incorrectly. The method should return false for the argument "" and "0"
instead of throwing a runtime exception. If the error is not fixed, any appli-
cation using this class will eventually crash or give incorrect results.

To view the source code of the class (with the problematic line of the stack
trace highlighted), double-click the node containing the exception's
file/line information.

Testing A Class - Two Simple Examples

T
esting
To see a sample of the test cases that Jtest automatically created, click
the View button to open the View Test Cases window. In the View Test
Cases window, Control-right-click the Automatic Test Cases node, then
choose Expand Children from the shortcut menu.

Regression Testing
Jtest doesn't display any regression errors on the first run through a class
because it is impossible to detect a regression error the first time a class
is tested. Regression testing checks that class outcomes don't change, so
it always needs a first run for reference.

To see how regression testing works, introduce an error into Simple.java
and run it again.
27

Testing A Class - Two Simple Examples

28

T
es

tin
g

1. Copy Simple_re.java into Simple.java (both classes are located in
<jtest_install_dir>/examples/eval).

2. Recompile Simple.java.

3. Retest Simple.class.

Now, along with the other errors, Jtest reports the following regression
errors in the Errors Found panel:

Expand the error messages to see the inputs for which these regression
errors occur. The first error tells us that the code has changed and that
the method "add" is now returning 3 instead of 0 for the input 0, 0. The
second error reveals that the method "add" is now returning 17 instead of
14 for the input 7,7.

Example 2: Testing a Class With
Design by Contract Comments
This example demonstrates how Jtest tests a single class file that con-
tains Design by Contract-format specification information.

1. Go to Jtest’s Class Testing UI. (This UI opens by default when
you launch Jtest).

Testing A Class - Two Simple Examples

T
esting
2. If a class is already loaded into the Class Testing UI (i.e., if you
see a class name in the Class Name field), click the New button
to clear the previous test.

3. Browse to Example.class (in <jtest_install_dir>/examples/eval)
using the Browse button in the Class Name panel.

4. Click the Start button in the tool bar.

Jtest will perform both static and dynamic on the class. Because the
code’s specification is incorporated into the code using Design by Con-
tract comment tags, Jtest can fully automate black-box (functionality) test-
ing as well as white-box (construction) testing. Jtest will automatically
create and execute black-box test cases that verify the functionality
described in the class’s postcondition contract. It will also create and exe-
cute white-box test cases that check how the class handles a wide range
of inputs.

A dialog box will open to notify you when testing is complete. Information
on test progress will be displayed in the Test Progress panel. This test
uncovers one Design by Contract violation, one uncaught runtime excep-
tion, and one static analysis violation.

Design by Contract Violations
The following Design by Contact violation will be reported in the Design
by Contract Violations branch of the Errors Found panel.

This violation indicates that one of the class’s methods did not function as
described in the specification. To see more information about this viola-
tion, expand the violation’s branch.
29

Testing A Class - Two Simple Examples

30

T
es

tin
g

To open the source code of the class in an editor, right-click the Source
button, then choose Edit Source from the shortcut menu.

The source file reveals that the code’s @post contract (postcondition)
requires the method to return the value of a+b . However, as Jtest
revealed, it does not function as specified: the method actually returns the
value of a-b . If this were your own class, you would now fix the problem,
recompile the class, then retest it to check if your modifications fixed the
problem.

To see a sample of the test cases that Jtest automatically created to test
this class’s functionality, click the View button to open the View Test
Cases window. In the View Test Cases window, Control-right-click the
Automatic Test Cases node, then choose Expand Children from the
shortcut menu.

Testing A Class - Two Simple Examples

T
esting
Uncaught Runtime Exceptions
Next, go to the uncaught runtime exception found (located in the
Uncaught Runtime Exceptions branch of the Errors Found panel) and
expand its branches.

This error message shows that a NegativeArraySizeException occurs
when a negative index is used as an index to an array. This is an
expected exception. If this were your code, you would want to document
this exception in your code by adding the following Design by Contract
Javadoc comment above the method:

/** @exception java.lang.NegativeArraySizeException */

By adding this comment, you make the code easier to maintain. Someone
looking at the code later on will immediately know that the method is
throwing an exception because the code is supposed to throw an excep-
tion, not because the code has a bug. In addition, you tell Jtest to sup-
press future occurrences of this exception.
31

Understanding the Errors Found Panel

32

T
es

tin
g

Understanding the Errors
Found Panel
All class test results are displayed in the Class Testing UI’s Errors Found
panel. The contents of this panel are described below, and in context-sen-
sitive help. If commands are available by right-clicking a particular node, a
right-click icon will open when you place your cursor over that node.

The Class Testing UI also provides you with a variety of ways to gain
additional information about the test results and to customize what results
are reported the next time that this test is run. For more information about
these options, see “Exploring and Customizing Class Test Results” on
page 37.

All error/violation messages are marked with a bug icon.

The tree displayed in this panel contains the following information:

• Static Analysis Violations: Displays the number of violations
that Jtest found while performing static analysis. This branch con-
tains the following information:

Static
Analysis
Violations

Uncaught
Runtime
Exceptions

Specification
& Regression
Errors

Design by
Contract
Violations

Understanding the Errors Found Panel

T
esting
• Rule: Name of rule violated. (Rule ID is displayed in
parentheses).
Marked with a wizard hat icon.

• Violation: Jtest rule violation message. To suppress this
message or view the associated rule description,
right-click this node then choose the appropriate com-
mand from the shortcut menu.
Marked with a bug icon.

• File/line info: File/line number where violation occurred.
To view or edit the source code, right-click this node then
choose the appropriate command from the shortcut
menu.

• Design by Contract Violations: Displays the number of Design
by Contract violations that Jtest found while performing dynamic
analysis. Design by Contract violations are organized according
to the nature of the violation. This branch contains the following
violation categories:

• @pre violations: Contains information about violations
that occur when a method is called incorrectly.

• @post violations: Contains information about violations
that occur when a method does not return the expected
value.

• @invariant violations: Contains information about viola-
tions that occur when an @invariant contact condition is
not met.

• @assert violations: Contains information about viola-
tions that occur when an @assert contact condition is not
met.

file/line info

violation

rule
33

dbc2.htm
dbc2.htm

Understanding the Errors Found Panel

34

T
es

tin
g

• Uncaught Runtime Exceptions: Displays the number of
uncaught runtime exceptions that Jtest found while performing
dynamic analysis. Each uncaught runtime exception is followed
by a full stack trace, as well as an example input leading to this
exception. This branch contains the following information:

• Exception: Exception found.
Marked with a bug icon.

• Stack trace information: A stack trace like the one that
the Java virtual machine would give if a reported
uncaught runtime exception were thrown. To view or edit
the source code, right-click this node then choose the
appropriate command from the shortcut menu. (If the file
and line number information is missing, recompile the
class with debug information).

• Input that defines the test case: For automatic test
cases, this is the calling sequence; for user defined test
cases, this is the input for each argument.
If input from a stub caused the exception, stub informa-
tion will be displayed here. Empty boxes indicate auto-
matically generated stubs. Black boxes indicate
user-defined stubs. To see the stack trace where a stub
invocation occurred, expand the stub’s branch. For more
information on stubs, see “Testing Classes That Refer-
ence External Resources” on page 93 and “Using Cus-
tom Stubs” on page 98.
Marked with an arrow icon.

violation

input

stack trace

Understanding the Errors Found Panel

T
esting
• Specification and Regression Errors: Displays the specifica-
tion and regression errors that Jtest found while performing
dynamic analysis. The errors are determined by comparing the
test case outcomes of this run with those of previous runs or
those specified by the user. (To view the reference outcomes,
open the Class Test Parameters window and browse to Dynamic
Analysis> Test Case Evaluation> Specification and Regres-
sion Test Cases). This branch contains the following information:

• Error: Specification and regression error found.
Marked with a bug icon.

• Input that defines the test case: For automatic test
cases, this is the calling sequence; for user defined test
cases, this is the input for each argument.
If input from a stub caused the error, stub information will
be displayed here. Empty boxes indicate automatically
generated stubs. Black boxes indicate user-defined
stubs. To see the stack trace where a stub invocation
occurred, expand the stub’s branch. For more informa-
tion on stubs, see “Testing Classes That Reference
External Resources” on page 93 and “Using Custom
Stubs” on page 98.
Marked with an arrow icon.

input

stack trace

exception

stub
35

Understanding the Errors Found Panel

36

T
es

tin
g

input

error

Exploring and Customizing Class Test Results

T
esting
Exploring and Customizing
Class Test Results
The Class Testing UI provides you with a variety of ways to explore test
results and to customize what results are reported the next time the test is
run. Some actions that you might want to perform when viewing results
include:

• View/evaluate test cases: To view and/or evaluate the automati-
cally-generated and user-defined test cases used to test this
class, click the View tool bar button.

• View the source responsible for a rule violation or exception:
To view the source of the error, with the problematic line high-
lighted, double-click the file/line information for the error in the
Errors Found panel.

• Edit your class: To open your class in a text editor, right-click the
Source button, then choose Edit Source from the shortcut
menu.

• View a description of a violated rule: To view a description of a
violated static analysis rule, along with an example of that rule
and a suggested repair, right-click a static analysis error message
that has a wizard hat or bug icon, then choose View Rule
Description from the shortcut menu.

• View the stack trace of an uncaught runtime exception: To
view a stack trace like the one that the Java virtual machine
would give if a reported uncaught runtime exception were thrown
open the branch containing the uncaught runtime exception.

• View the calling sequence of an uncaught runtime excep-
tion: To view an example usage of the class that leads to the
reported uncaught runtime exception, open any uncaught runtime
exception’s Test Case Input branch.

• View the error-causing input: To view the error-causing input,
open any specification or regression testing error or uncaught
runtime exception error’s Test Case Input branch.
37

Exploring and Customizing Class Test Results

38

T
es

tin
g

• View an example test case: To view an example Java program
that executes the input for a test case, right-click the Test Case
Input node, then choose View Example Test Case from the
shortcut menu.
If an exception has been reported for this input, the exception will
be thrown when you run this program.
Sometimes (for example, while testing an abstract class) the
input that Jtest finds doesn’t correspond to a compilable Java
program.
If the input includes stubs, the generated .java program will
include only the stub text.

• View a report: To view a report file, click Report .

• View metrics: To view class metrics, click Metrics .

• Gauge coverage: There are two ways to gauge test coverage:

• Review the coverage data displayed in the Test Progress
panel.

• Display and review the report file.

The report file contains, among other information, the
annotated source code for the tested class. This may be
used to determine what lines Jtest tested and what lines
it did not test.
A method is designated “covered” if Jtest automatically
tests any part of the constructor. Jtest also reports branch
coverage. For example, if a piece of code has an if state-
ment, there are two branches; if one branch is covered
(the true path), Jtest reports 50% coverage of that
branch.

• Modify test case evaluation: If a reported uncaught runtime
exception is actually the correct behavior of the class, or if you
want Jtest to ignore the outcome of an input while checking for
specification and regression errors, right-click the error message
with the bug icon, then choose the appropriate command from
the shortcut menu.

• To indicate that a reported error is not an error, choose
Not an Error .

metrics.htm

Exploring and Customizing Class Test Results

T
esting
• To tell Jtest to ignore the outcome for this input, choose
Ignore this Outcome . If you choose this option, the out-
come will not be used for comparisons when searching
for specification or regression errors. Also, no uncaught
runtime exceptions will be reported for this test case
input.

• To have Jtest ignore all outcomes in a class’s Uncaught
Runtime Exceptions or Specification and Regression
Errors node, or to indicate that all errors contained in a
class’s Uncaught Runtime Exceptions or Specifica-
tion and Regression Errors node are not actual errors,
right-click the appropriate node and choose Set All to:
Not an Error or Set All to: Ignore this Outcome .

• Suppress messages: To suppress the reporting of a single, spe-
cific exception or static analysis violation, right-click the message
(with the bug icon) related to the error/violation that you do not
want reported in future test runs, then choose Suppress from the
shortcut menu. This automatically adds the suppression to the
appropriate Suppressions Table (for dynamic analysis messages)
or Suppressions List (for static analysis messages).
39

Testing a Set of Classes

40

T
es

tin
g

Testing a Set of Classes
In Jtest's Project Testing UI, you can automatically test all (or some) of the
classes contained in any directory, jar file, or zip file with a single click.
Jtest automatically searches the specified directory, jar file, or zip file, and
tests all of the classes that it finds.

It is possible to perform all testing-related activities in the Project UI. The
Project Testing UI contains all results for all classes tested, and allows
you to access the same features that are available in the Class Testing
UI. If you want to test an entire project, then focus on results on a
class-by-class basis, you can test the project in the Project Testing UI,
then open the class(es) that you want to focus on in the Class Testing UI.

By default, the Project Testing UI performs dynamic analysis only on pub-
lic classes; this setting can be changed in the Search Parameters>
Dynamic Analysis branch of the Project Test Parameters tree.

Also by default, Jtest will not test a class that it has previously tested
unless that class has been modified since the previous test. Jtest deter-
mines whether or not a class has changed by checking that both the
.class file and the .java file contents have not changed. Timestamps are
not considered. To force Jtest to test all classes on every test, disable the
Skip Classes Already Tested node in the Search Parameters branch of
the Project Test Parameters tree.

To test a set of classes:

1. Open the Project Testing UI by clicking the Project button in the
Class Testing UI tool bar, or by choosing Window> Project Test-
ing UI in the Class Testing UI menu bar.

2. In the Search In field of the Project Testing UI, specify what direc-
tory, zip file, .jar file, or set of files you want Jtest to test.

• To browse for a directory, jar file, or zip file that you want
Jtest to start searching and testing, click the Browse but-
ton. To select several files at once, CTRL-click or
SHIFT-click to select the files that you want to test.

If the parameter is a directory, Jtest will recursively traverse the
path's subdirectories, zip files, and jar files, searching for and
testing any classes it finds.

Testing a Set of Classes

T
esting
If the parameter is a jar or zip file, Jtest will open the file and
search it for classes in which to find errors.

3. (Optional) If you want to restrict the classes that Jtest tests, do
one of the following:

• Use the Filter-in field to tell Jtest to find and test only
classes that match the given expression. Use regular
expressions to indicate what types of files to include.

For example, if you want Jtest to look only for classes in
the util package, enter the following parameter in this
field

util.*

When this field is left empty, all classes found will be
tested.
For more information about entering regular expressions
in this field, see “Controls Panel” on page 218.

• Use the Skip List to indicate specific classes that you
want Jtest to skip. The Skip List is accessible by clicking
the Skip List node in the Search Parameters branch of
the Project Test Parameters panel. Clicking this node
opens a dialog box that lets you enter the names of spe-
cific classes in your project that you do not want tested.

• Use the Test Only List to indicate specific classes that
you want Jtest to test. The Test Only List is accessible by
clicking the Test Only List node in the Search Parame-
ters branch of the Project Test Parameters panel. Click-
ing this node opens a dialog box that lets you enter the
names of specific classes in your project that you want
tested.

4. Start the test by clicking the Start tool bar button.

• If you only want to perform static analysis or a specific
type of static analysis, right-click the Start button and
choose the menu item that describes the type of test that
you want to perform.

• If you only want to perform dynamic analysis or a specific
type of dynamic analysis, right-click the Start button and
41

Testing a Set of Classes

42

T
es

tin
g

choose the menu item that describes the type of test that
you want to perform.

Unless you tell it to do otherwise, Jtest automatically performs all steps
required for:

• Static analysis

• White-box testing

• Black-box testing (if Design by Contract-format contract informa-
tion is included in the classes under test or test case outcomes
have been validated)

• Regression testing (on all test runs after the first)

If you want to configure Jtest to perform only static analysis or only
dynamic analysis, modify your testing parameters as described in “Cus-
tomizing Test Parameters” on page 180.

To have Jtest stop finding and testing classes, click the Stop button.

To have Jtest temporarily pause (or resume) finding and testing classes,
click the Pause button. If you pause testing, Jtest will finish testing the
current class before pausing.

• “About Static Analysis” on page 69

• “About Dynamic Analysis” on page 85

• “About White-Box Testing” on page 108

• “About Black-Box Testing” on page 113

• “About Regression Testing” on page 152

Results
Results are displayed in the Project Testing UI's Results panel. To learn
more about this panel's branches and available options, see “Understand-
ing the Results Panel” on page 45 and “Exploring and Customizing
Project Test Results” on page 53.

Testing a Set of Classes - Example

T
esting
Testing a Set of Classes -
Example
The following example demonstrates the completely automatic mode of
testing a set of classes.

1. Open Jtest.

2. Click the Project button in the Class Testing UI tool bar. The
Project Testing UI will open.

3. Click the Browse button in the Project Controls panel, locate the
Jtest white-box testing examples directory
(<jtest_install_dir>/examples/eval/project) in the file chooser that
opens, then click Open .

4. Click the Start button in the Project UI tool bar.

Jtest will prompt you to save your test parameters, then start finding and
testing classes.
43

Testing a Set of Classes - Example

44

T
es

tin
g

Results are displayed in the Project Testing UI's Results panel. To learn
more about this panel's branches and available options, see “Understand-
ing the Results Panel” on page 45 and “Exploring and Customizing
Project Test Results” on page 53.

Related Topics
“Jtest Tutorials” on page 268

Understanding the Results Panel

T
esting
Understanding the Results
Panel
All results from a project test are displayed in the Project Testing UI’s
Results panel after the test is completed. You can load results from previ-
ous tests into this panel by clicking the Results button.

The contents of this panel are described below, and in context-sensitive
help. If commands are available by right-clicking a particular node, a
right-click icon will open when you place your cursor over that node.

The Project Testing UI also provides you with a variety of ways to gain
additional information about the tests performed and to customize what
results are reported the next time that this test is run. For more informa-
tion about these options, see “Exploring and Customizing Project Test
Results” on page 53.

The Results panel contains two windows: the Number of Errors Found
Window and the Results for All Classes Window.

Number of Errors Found Window
This window displays the distribution of the errors found. The tree in this
window contains a node for every type of error that Jtest detects, along
with the number of that type of error found in the project test.

This window lets you determine what results are displayed in the Results
For All Classes window. To make the lower results window display only a
certain type of result (such as All Classes With Errors, Uncaught Runtime
Exceptions, or java.lang.NullPointer Exceptions) perform the following
steps:

1. In the Number of Errors Found window, right-click the node that
describes the type of results you want to view. A shortcut menu
will open.

Note: If you do not see a node representing the type of result that
you want to view, expand the All Classes With Errors tree
branches.
45

Understanding the Results Panel

46

T
es

tin
g

2. Choose Show Results for this category from the shortcut
menu.

The node that describes the types of results displayed in the lower
Results window will be highlighted in blue.

Results for All Classes Window
This window lists the results for the current project test. The results are
organized into a tree. Each tree branch corresponds to the results for one
class. The block next to each class name indicates class properties as fol-
lows:

• Red: private class

• Orange: protected class

• Green: public class

• Blue: package-private class

To view results for a class, expand the branches that correspond to that
class.

Understanding the Results Panel

T
esting
Each class has two main sub-branches:

• Test Progress: Contains information about test status and cover-
age.

• Errors Found: Contains information about errors found.

Test Progress
The Test Progress branch contains the following information:

• Static Analysis: Displays the progress of static analysis tests.
While static analysis is being performed, a percentage indicating
test progress is displayed to the right of this node. When a test is
complete, the word “done” will appear to the right of this node

The Number of Rules Analyzed node displays the number of
static analysis rules analyzed.

progress

errors
47

Understanding the Results Panel

48

T
es

tin
g

• Dynamic Analysis: Displays the progress of dynamic analysis
tests. While dynamic analysis is being performed, a percentage
indicating test progress is displayed to the right of this node.
When a test is complete, the word “done” will appear to the right
of this node.

Dynamic coverage is shown only for classes on which Jtest has
performed dynamic analysis. By default, dynamic analysis is only
performed on the public classes; static analysis is performed on
all classes found (public and non-public).

The Number of Test Cases Executed node displays the total
number of test cases executed. These test cases are divided into
two categories: automatic and user-defined. The Automatic
node displays the number of automatically-generated test cases
executed. The User Defined node displays the number of
user-defined test cases executed.

The Number of Outcome Comparisons node displays the num-
ber of outcomes compared during black-box and regression test-
ing.

The Total Coverage node displays the cumulative coverage that
Jtest achieved.

Jtest performs data coverage for the generated input categories;
this means that the parts of the class that have been covered are
thoroughly tested with respect to those inputs. The coverage
reported is relative to the classes that have been accessed for
the paths Jtest has tried. If some part of the class is not covered,
it means that Jtest has not yet found a path leading to those
statements or no path leads to those statements. In class testing
mode, Jtest usually covers approximately 50% of a class's code.
Sometimes Jtest will be able to test 100% of the class, and some-
times it will test less than 50% of the class.

The Total Coverage branch’s Multi-condition branch node dis-

Understanding the Results Panel

T
esting
plays coverage achieved on branches. A branch is a path of exe-
cution through the statements. Selection statements, such as
“switch” and “if” have one or more branches per statement.
Branch coverage is a measure of what percentage of branches
were covered given the total number of branches in the code.

The Total Coverage branch’s Method node displays coverage
achieved on methods. Method coverage is a measure of what
percentage of methods were covered given the total number of
methods in the code.

The Total Coverage branch’s Constructor node displays cover-
age achieved on constructors. Constructor coverage is a mea-
sure of what percentage of constructors were covered given the
total number of constructors in the code.

Errors Found
The Errors Found branch is organized like the Errors Found tree in the
Class Testing UI Errors Found panel. It contains the following information:

Note: All error/violation messages are marked with a bug icon.

• Static Analysis Violations: Displays the number of violations
that Jtest found while performing static analysis. This branch con-
tains the following information:

• Rule: Name of rule violated. (Rule ID is displayed in
parentheses).
Marked with a wizard hat icon.

• Violation: Jtest rule violation message. To suppress this
message or view the associated rule description,
right-click this node then choose the appropriate com-
mand from the shortcut menu.
Marked with a bug icon.

• File/line info: File/line number where violation occurred.
To view or edit the source code, right-click this node then
choose the appropriate command from the shortcut
menu.
49

Understanding the Results Panel

50

T
es

tin
g

• Design by Contract Violations: Displays the number of Design
by Contract violations that Jtest found while performing dynamic
analysis. Design by Contract violations are organized according
to the nature of the violation. This branch contains the following
violation categories:

• @pre violations: Contains information about violations
that occur when a method is called incorrectly.

• @post violations: Contains information about violations
that occur when a method does not return the expected
value.

• @invariant violations: Contains information about viola-
tions that occur when an @invariant contact condition is
not met.

• @assert violations: Contains information about viola-
tions that occur when an @assert contact condition is not
met.

• Uncaught Runtime Exceptions: Displays the number of
uncaught runtime exceptions that Jtest found while performing
dynamic analysis. Each uncaught runtime exception is followed

file/line info

violation

rule

violation

input

stack trace

dbc2.htm
dbc2.htm

Understanding the Results Panel

T
esting
by a full stack trace, as well as an example input leading to this
exception. This branch contains the following information:

• Exception: Exception found.
Marked with a bug icon.

• Stack trace information: A stack trace like the one that
the Java virtual machine would give if a reported
uncaught runtime exception were thrown. To view or edit
the source code, right-click this node then choose the
appropriate command from the shortcut menu. (If the file
and line number information is missing, recompile the
class with debug information).

• Input that defines the test case: For automatic test
cases, this is the calling sequence; for user defined test
cases, this is the input for each argument.
If input from a stub caused the exception, stub informa-
tion will be displayed here. Empty boxes indicate auto-
matically generated stubs. Black boxes indicate
user-defined stubs. To see the stack trace where a stub
invocation occurred, expand the stub’s branch. For more
information on stubs, see “Testing Classes That Refer-
ence External Resources” on page 93 and “Using Cus-
tom Stubs” on page 98.
Marked with an arrow icon.

• Specification and Regression Errors: Displays the specifica-
tion and regression errors that Jtest found while performing
dynamic analysis. The errors are determined by comparing the
test case outcomes of this run with those of previous runs or

input

stack trace

exception

stub
51

Understanding the Results Panel

52

T
es

tin
g

those specified by the user. (To view the reference outcomes,
open the Class Test Parameters window and browse to Dynamic
Analysis> Test Case Evaluation> Specification and Regres-
sion Test Cases). This branch contains the following information:

• Error: Specification and regression error found.
Marked with a bug icon.

• Input that defines the test case: For automatic test
cases, this is the calling sequence; for user defined test
cases, this is the input for each argument.
If input from a stub caused the error, stub information will
be displayed here. Empty boxes indicate automatically
generated stubs. Black boxes indicate user-defined
stubs. To see the stack trace where a stub invocation
occurred, expand the stub’s branch. For more informa-
tion on stubs, see “Testing Classes That Reference
External Resources” on page 93 and “Using Custom
Stubs” on page 98.
Marked with an arrow icon.

input

error

Exploring and Customizing Project Test Results

T
esting
Exploring and Customizing
Project Test Results
The Project Testing UI provides you with a variety of ways to explore test
results, as well as to customize what results are reported the next time
this test is run. Most options are accessed via shortcut menus in the lower
Results window. Some actions that you might want to perform when view-
ing results include:

• View/evaluate test cases: To view and/or evaluate the automati-
cally-generated and user-defined test cases used to test this
class, right-click either the [Class Name] node, or the [Class
Name]> Test Progress> Dynamic Analysis> Number of Test
Cases Executed node, then choose View Test Cases from the
shortcut menu.

• View the source responsible for a rule violation or exception:
To view the source of the error, with the problematic line high-
lighted, double-click the file/line information for any error con-
tained within the Errors Found branch.

• View a description of a violated rule: To view a description of a
violated static analysis rule, along with an example of that rule
and a suggested repair, right-click a static analysis error message
with a wizard or bug icon, then choose View Rule Description
from the shortcut menu.

• View the stack trace of an uncaught runtime exception: To
view a stack trace like the one that the Java virtual machine
would give if a reported uncaught runtime exception were thrown,
open the uncaught runtime exception’s branch.

• View the calling sequence of an uncaught runtime excep-
tion: To view an example usage of the class that leads to the
reported uncaught runtime exception, open the uncaught runtime
exception’s Test Case Input branch.

• View error-causing input: To view the error-causing input, open
any specification or regression testing error or uncaught runtime
exception error’s Test Case Input branch.
53

Exploring and Customizing Project Test Results

54

T
es

tin
g

• View an example test case: To view an example Java program
that executes the input for a test case, right-click the Test Case
Input node, then choose View Example Test Case from the
shortcut menu.

If an exception has been reported for this input, the exception will
be thrown when you run this program.

Sometimes (for example, while testing an abstract class) the
input that Jtest finds doesn’t correspond to a compilable Java
program.

If the input includes Stubs, the generated .java program will
include only the stub text.

• View a report: To view a report file, click the Report button in the
Project Testing UI tool bar.

• View metrics: To view project and average class metrics, click
Metrics . To view a specific class’s metrics, right-click that class’s
node in the Results panel, then choose View Class Metrics .

• Gauge coverage: To review coverage, open the [Class Name]>
Test Progress> Dynamic Analysis> Total Coverage node. A
method is designated “covered” if Jtest automatically tests any
part of the constructor. Jtest also reports branch coverage. For
example, if a piece of code has an “if” statement, there are two
branches; if one branch is covered (the true path), Jtest reports
50% coverage of that branch.

• Modify test case evaluation: If a reported dynamic analysis
error is actually the correct behavior of the class, or if you want
Jtest to ignore the outcome of an input while checking for specifi-
cation and regression errors, right-click the error message with
the bug icon, then choose the desired command from the short-
cut menu.

• To indicate that a reported error is not an error, choose
Not an Error .

• To tell Jtest to ignore the outcome for this input, choose
Ignore this Outcome . If you choose this option, the out-

metrics.htm

Exploring and Customizing Project Test Results

T
esting
come will not be used for comparisons when searching
for specification or regression errors. Also, no uncaught
runtime exceptions will be reported for this test case
input.

To have Jtest ignore all outcomes in a class’s Uncaught Runt-
ime Exceptions or Specification and Regression Errors node,
or to indicate that all errors contained in a class’s Uncaught
Runtime Exceptions or Specification and Regression Errors
node are not actual errors, right-click the appropriate node and
choose Set All to: Not an Error or Set All to: Ignore this Out-
come .

• Suppress messages: To suppress the reporting of a single, spe-
cific exception or static analysis violation, right-click the error
message that you do not want reported in future test runs, then
choose Suppress from the shortcut menu. This automatically
adds the suppression to the appropriate Suppressions Table (for
dynamic analysis messages) or Suppressions List (for static anal-
ysis messages).

• Remove a class's results from the Results panel and Results
folder: To remove the results of a class from both the Results
panel and the Results Folder (which stores project test results),
right-click the [Class Name] node, then choose Delete from the
shortcut menu.

• Edit Class Test Parameters: To modify a specific class’s Class
Test Parameters, right-click the [Class Name] node, then choose
Edit Class Test Parameters from the shortcut menu.

• Load in Class Testing UI: To focus on the errors for a single
class, view the class in the Class Testing UI by right-clicking the
[Class Name] node, then choosing Load in Class Testing UI
from the shortcut menu.
55

Loading One of a Project's Classes in the Class Testing UI

56

T
es

tin
g

Loading One of a Project's
Classes in the Class Testing
UI
There are three ways to open one of a project's classes in the Class Test-
ing UI:

Method 1

Before or After a Project Test
1. In the Project Testing UI, click Project to open the Project Test

Parameters. The Project Test Parameters window will open.

2. In the Project Test Parameters window, open the Classes in
Project branch.

3. Right-click the node that corresponds to the class that you want
to open in the Class Testing UI. A shortcut menu will open.

4. Choose Load Class in Class Testing UI from the shortcut menu.
The class and its test parameters will then be loaded in the Class
Testing UI.

Method 2

After a Project Test Including the Class You Want
to Open

1. If the Project Testing UI's Results panel does not contain test
results, open the results.

2. In the lower Results panel, right-click the node whose name cor-
responds to the class that you want to open in the Class Testing
UI. A shortcut menu will open.

Loading One of a Project's Classes in the Class Testing UI

T
esting
3. Choose Load in Class Testing UI from the shortcut menu. The
class and its test parameters will be loaded in the Class Testing
UI.

Method 3 (In the Class Testing UI)
• In the Class Testing UI, choose File> Open and browse to the

“ctp” class test parameters file associated with the class that you
want to open. The class and its test parameters will be loaded in
the Class Testing UI.
57

Editing Class Test Parameters from the Project Testing UI

58

T
es

tin
g

Editing Class Test
Parameters from the Project
Testing UI
If you are testing a project and want to add user-defined test cases or
change class-specific test parameters, you must edit the appropriate
class’s Class Test Parameters.

There are two ways to edit Class Test Parameters from the Project Test-
ing UI:

Method 1

Before or After a Project Test
1. In the Project Testing UI, click Project to open the Project Test

Parameters. The Project Test Parameters window will open.

2. In the Project Test Parameters window, open the Classes in
Project branch.

3. Right-click the node that corresponds to the class whose parame-
ters you want to modify. A shortcut menu will open.

4. Choose Edit Class Test Parameters from the shortcut menu.
The Class Test Parameters window will open.

5. Modify parameters in the Class Test Parameters window.

Method 2

After a Project Test Including the Class Whose
Parameters You Want to Modify

1. If the Project Testing UI's Results panel does not contain test
results, open the results.

Editing Class Test Parameters from the Project Testing UI

T
esting
2. In the lower Results panel, right-click the node whose name cor-
responds to the class whose parameters you want to modify. A
shortcut menu will open.

3. Choose Edit Class Test Parameters from the shortcut menu.
The Class Test Parameters window will open.

4. Modify parameters in the Class Test Parameters window.

Saving Your Changes
If you start a new test or exit the Project Testing UI after changing class
test parameters through the Project Testing UI, Jtest will automatically ask
you if you want to save the changes that you made. If you would like to
save your modified class test parameters before that, perform the follow-
ing steps:

1. In the lower Results panel, right-click the node whose name cor-
responds to the class whose parameters you want to save. A
shortcut menu will open.

2. Choose Save Current Changes from the shortcut menu.

Jtest will them save that class’s parameters in <jtest_install_dir>/u/<user-
name>/jtest.properties.
59

Running Jtest in Batch Mode

60

T
es

tin
g

Running Jtest in Batch
Mode
You can run an existing test from the command line using existing .ctp or
.ptp test parameter files, or you can test a class or project for the first time
and have Jtest create all necessary parameter files.

Windows
To run Jtest in batch mode on a Windows system:

1. Set up command line Jtest.

a. Change directories to the Jtest installation directory.

b. Run the jtvars.bat program by entering the following
command at the prompt:

jtvars.bat

2. Run the test from the command line by entering your command at
the prompt. For tips on creating commands, see “Available Com-
mand Line Options” and “Example Commands” below.

After the test is complete, you can view the report that was generated,
or-- if you tested a project-- you can view the results within the Jtest UI. To
view results within the UI, launch Jtest, then open the .ptp file for the
project that you tested in batch mode. Click the Results button to display
the results. After the results are loaded in the Results panel, you can also
generate additional types of reports by right-clicking the Report button
and selecting the type of report that you want to see.

Running Jtest in Batch Mode

T
esting
UNIX
To run Jtest in batch mode on a UNIX system:

• Run the test from the command line by entering your command at
the prompt. For tips on creating commands, see “Available Com-
mand Line Options” and “Example Commands” below.

After the test is complete, you can view the report that was generated,
or-- if you tested a project-- you can view the results within the Jtest UI. To
view results within the UI, launch Jtest, then open the .ptp file for the
project that you tested in batch mode. Click the Results button to display
the results. After the results are loaded in the Results panel, you can also
generate additional types of reports by right-clicking the Report button
and selecting the type of report that you want to see.

Available Command Line Options
Available command line options for jtestgui include:

Command Meaning

-help Print out list of available options.

-nogui Run jtestgui without the UI.
jtestgui -nogui Simple.ctp

-nolog Do not generate log messages to
stdout.

-nologo Do not show logo message.

-filter_in <regexp> Set Project Test Parameter’s Filter-in
field value.
To test only the examples/eval direc-
tory use:
jtestgui -filter_in exam-
ples\eval\ -test examples.ptp
61

Running Jtest in Batch Mode

62

T
es

tin
g

-run_only <what> Run specific types of tests only.
Options for <what> include:

• static : Runs static tests.

• static_builtin : Runs all
built-in static analysis rules.

• static_user : Runs all
user-defined rules.

• static_<XXX> : Runs only
rules in the XXXcategory; for
example, use static_UC to
run only “Unused Code”
rules.

• dynamic : Runs dynamic tests

• dynamic_auto : Runs auto-
matic test cases

• dynamic_user : Runs
user-defined test cases.

Use -run_only help to see a list of
all options for <what> .

-ctp <file>.ctp Load class test parameters file
<file>.ctp.

-ptp <file>.ptp Load project test parameters file
<file>.ptp.

Running Jtest in Batch Mode

T
esting
-ctp_new <file>.ctp Create and load class test parameters
in the file <file>.ctp. If file <file>.ctp
already exists, it will be overwritten by
this new file.
Use the following options when creat-
ing a new .ctp file from the command
line:

• -class_name <name> : Sets
the class test parameters’
“Class Name” parameter.
Indicates which class you
want to test.

• -cp : Sets the class test
parameters’ -cp parameter.
Should specify the fully-quali-
fied name of the path.

• -classpath : Sets the class
test parameters’ -classpath
parameter.

• -sourcepath : Sets the class
test parameters’ -sourcepath
parameter.
63

Running Jtest in Batch Mode

64

T
es

tin
g

-ptp_new <file>.ptp Create and load project test parame-
ters in the file <file>.ptp. If file
<file>.ptp already exists, it will be
overwritten by this new file.
Use the following options when creat-
ing a new .ptp file from the command
line:

• -search_in <dir|jar|zip> :
Sets the project test parame-
ters’ “Search In” parameter.
Indicates which set of classes
you want to test.

• -filter_in <dir|jar|zip> :
Sets the project test parame-
ters’ “Filter In” parameter.
Indicates which particular
classes you want to test.

• -cp : Sets the project test
parameters’ -cp parameter.
Should specify the fully-quali-
fied name of the path.

• -classpath : Sets the project
test parameters’ -classpath
parameter.

• -sourcepath : Sets the
project test parameters’
-sourcepath parameter.

-gtp <filename> Use Global Test Parameters in
<filename>.
If <filename> doesn’t exist, Jtest cre-
ates one with default values.
jtestgui -gtp newProjects.gtp

Running Jtest in Batch Mode

T
esting
To see all available command-line options, enter

jtestgui -help

-report[_ascii|_html]
<filename|std-
out|stderr>

Generate report in <filename>.

Needs to be used with -test .
jtestgui -report report.txt
Note: If you don’t specify ascii or
html , Jtest uses the format specified
in your Global Test Parameters.

-summary_report[ascii|
html] <filename|std-
out|stderr>

Generate summary report in <file-

name>.
Needs to be used with -test
jtestgui -summary_report
report.txt -test Simple.ctp

-detail_report[ascii|h
tml] <filename|std-
out|stderr>

Generate detail report in <filename>

needs to be used with -test .
jtestgui -detail_report
report.txt -test Simple.ctp

-retest Force retesting of all classes-- even
classes tested in a previous run
Note: This option is similar to the
Skip classes already tested option
in the Project Test Parameters. It
applies to .ptp files and is used for all
tests run during that jtestgui invoca-
tion.
jtestgui -retest

-silent Only generate output if errors are
found. Project reports only contain

-ruledir Overwrites the Global Test Parame-
ters’ rules directory parameter (speci-
fies the location of your user-defined
rules). Used only in silent mode.
jtestgui -nogui -ruledir
<directory name> -ptp test.ptp
65

Running Jtest in Batch Mode

66

T
es

tin
g

at the prompt.

Note: If you are on a Windows system, you must set the environment for
command line Jtest before you enter this command.

Example Commands
• To run the previously tested MyTest test whose test parameters

are saved in c:\progra~1\parasoft\jtest\tests\MyTest.ptp, then
generate a summary report (summary.rpt) in the current working
directory, enter the following command at the prompt:

jtestgui -summary_report summary.rpt -ptp c:\pro-
gra~1\parasoft\jtest\tests\MyTest.ptp

• To perform the above test in “silent mode” (without displaying the
Jtest UI), you enter the following command at the prompt:

jtestgui -nogui -summary_report summary.rpt -ptp
c:\progra~1\parasoft\jtest\tests\MyTest.ptp

• To test a single class, use the -ctp flag instead of the -ptp flag,
then enter the path to the .ctp file instead of the path to the .ptp
file. For example, to run the previously tested MyTest class
whose test parameters are saved in /usr/users/car-
son/jtest/tests/MyClass.ctp, then generate a summary report
(summary2.rpt) in the current working directory, enter the follow-
ing command at the prompt:

jtestgui -summary_report summary2.rpt -ctp
/usr/users/carson/jtest/tests/MyClass.ctp

• To test a class that has never been tested and that has class
dependencies, use the -ctp_new, -class_name, -cp, -classpath,
and -sourcepath tags. For example, to create a .ctp file for a class
named Foo.class in C:\Jtest, enter the following command at the
prompt:

Running Jtest in Batch Mode

T
esting
jtestgui -ctp_new <name of ctp file> -class_name <path
to Foo.class> -cp C:\Jtest -sourcepath < path to
source code if not in same dir as Foo.class>

When this command is executed, Jtest will open with these
parameters set.

• To test a project that has never been tested before, you can use
the -ptp_new flag in conjunction with the -search_in flag to spec-
ify the directory, jar, or zip that you want to test. In addition, if only
certain classes should be tested in the project, the -filter_in flag
can be used to indicate what classes you want to test and the -cp,
-classpath, and -sourcepath flags can be used to set paths to
dependencies. For example, to set up a .ptp file for Foo.jar where
only some classes are tested, enter the following command at the
prompt:

jtestgui -ptp_new < name of ptp file > -search_in <
path the Foo.jar > -filter_in < regular expression
specifying the files to be tested > -cp < full path to
dependencies > -sourcepath < path to source code>

Note: Jtest is unable to find source code that is located within a
jar file. For this example, the -sourcepath would point to the
source code of the project that has been unjarred.
67

Testing a Large Project

68

T
es

tin
g

Testing a Large Project
If you are testing a large project (over 1000 classes), we recommend that
you test in batch mode, and that you perform several smaller tests rather
than one large one.

Each test should test a package or a tree of packages.

To break the test run into smaller tests, use the Project Testing UI’s Fil-
ter-in field to define your smaller tests. For example, you could define
three tests using com.tech.util.*, com.tech.tool1.*, and com.tech.tool2.*,
then save these tests as util.ptp, tool1.ptp, and tool2.ptp.

To run these tests, you would invoke jtestgui one time for each small
test that you want to run. For example, assuming that you want to run the
tests referenced in the previous paragraph, you could use the following 3
commands:

jtestgui -nogui -ptp util.ptp -summary_report util.rep
jtestgui -nogui -ptp tool1.ptp -summary_report tool1.rep
jtestgui -nogui -ptp tool2.ptp -summary_report tool2.rep

command.htm

About Static Analysis

T
esting
Static AnalysisAbout Static Analysis
During static analysis, Jtest analyzes source code to expose violations of
coding standards, language specific “rules” that help you prevent errors.

Jtest enforces the following types of coding standards:

• Traditional coding standards: Traditional coding standards are
rules that apply to constructs within the class under test. A tradi-
tional coding standard might test whether or not a file’s source
code contains a construct that has a high probability of resulting
in an error. For example, one traditional coding standard checks
that you use “equals” instead of “==” when comparing strings
(writing “==” when you should have used “equals” causes the pro-
gram to check if two strings are identical, rather than check if two
strings have the same value).

• Global coding standards: Global coding standards are rules
that ensure that projects use fields, methods, and classes wisely.
A global coding standard might check that a project does not con-
tain logical flaws and unclear code such as unused or
overly-accessible fields, methods, and classes; such problems
increase the probability of an error being introduced into the
code, and may also make the code less object-oriented.

• Metrics: Metrics are measures of the size and complexity of
code. When Jtest performs static analysis, it also measures your
class’s and (if applicable) project’s metrics; it reports all metrics in
the Metrics window, and reports a static analysis violation for any
class metric that is outside of the bounds that have been set for
that metric.

• Custom coding standards: Custom coding standards are rules
specially tailored to your own or your group’s unique coding style.
For information on creating custom coding standards, refer to
“Creating Your Own Static Analysis Rules” on page 83.

Static analysis is performed automatically when you test a class or
project.
69

About Static Analysis

70

T
es

tin
g

When enforcing all static analysis rules except for Global Static Analysis
rules, Jtest statically analyzes the classes by parsing the .java source and
applying a set of rules to it, then alerting you to any rule violations found.

When enforcing global static analysis rules, Jtest scans all of the project’s
.class files to collect global usage information, uses this information to
check if each class violates any rules in Jtest’s Global Static Analysis cat-
egory, then alerts you to any violations in the classes under test. Because
Jtest uses .class files (rather than .java files) to check this particular cate-
gory of rules, you can perform global static analysis even when .java files
are not available.

Note: Global static analysis can only be performed while testing a project.

Related Topics
“Performing Static Analysis” on page 71

“Creating Your Own Static Analysis Rules” on page 83

“Viewing Class and Project Metrics” on page 73

“Tracking Metrics Over Time” on page 76

“Customizing Static Analysis” on page 79

Performing Static Analysis

T
esting
Performing Static Analysis
Jtest performs static analysis, along with all other appropriate types of
testing, each time that you test a class or set of classes. Traditional static
analysis (checking static analysis rules that are not in the Global Static
Analysis category) can only be performed on classes whose .java source
files are available. Global static analysis can be performed as long as
.class files are available.

To perform static analysis:

1. Open the appropriate UI for your test. The Class Testing UI is
used to test a single class; the Project Testing UI is used to test a
set of classes.

• The Class Testing UI opens by default when Jtest is
launched.

• The Project Testing UI can be opened by clicking the
Class Testing UI’s Project button.

2. If a class or set of classes is already loaded into the UI you are
using, click the New button to clear the previous test.

3. Use the Browse button to indicate what class or set of classes
you want to test.

4. Test the class or project by clicking the Start button.

• If you only want to perform static analysis, right-click the
Start button, then choose Static Analysis from the short-
cut menu.

• If you only want to enforce a particular set of rules,
right-click the Start button, then choose Dynamic Analy-
sis> <type of rules you want enforced> from the short-
cut menu.

Jtest will then run all requested tests.

Uncaught runtime exceptions found will be reported in the Static Analy-
sis Violations branch of the Errors Found Panel (if you tested a single
class) or the Results Panel (if you tested a project).
71

Performing Static Analysis

72

T
es

tin
g

A description of each rule, as well as an example violation and suggested
repair, appears in the Rules section of the Reference Guide. You can also
see a description of a rule by right-clicking the rule’s violation message
(the line with the bug icon), then choosing View Rule Description from
the shortcut menu.

Related Topics
“About Static Analysis” on page 69

“Creating Your Own Static Analysis Rules” on page 83

“Viewing Class and Project Metrics” on page 73

“Tracking Metrics Over Time” on page 76

“Customizing Static Analysis” on page 79

“Jtest Tutorials” on page 268

Viewing Class and Project Metrics

T
esting
Viewing Class and Project
Metrics
Jtest automatically measures metrics when it performs static analysis. If
any of your metrics are out of the suggested or customized “legal”
bounds, Jtest will report a static analysis violation for each out-of-bound
metric.

Jtest also offers a summary of all class and project metrics. You can view
this summary by clicking the Metrics tool bar button. The Class Testing
UI’s metrics window will contain metrics for the class; the Project Testing
UI’s metrics window will contain both project metrics (metrics about
aspects of the project) and class metrics averages (the average class
metrics of all of the tested classes).

Metrics for a Class
73

Viewing Class and Project Metrics

74

T
es

tin
g

To view class metrics for a class tested as part of a project, right-click that
class’s node in the Project Testing UI’s Results panel, then choose View
Class Metrics from the shortcut menu.

To print your metrics, control-right-click the unused area of the Metrics
window, then choose Print from the shortcut menu.

To view a full description of a project or class metric, right-click the metric
that you want to learn more about, then choose View Rule Description
from the shortcut menu that opens.

Jtest can also graph how your project metrics change over time. For infor-
mation on graphing metrics, see “Tracking Metrics Over Time” on
page 76.

Metrics for a Project

Viewing Class and Project Metrics

T
esting
Related Topics
“About Static Analysis” on page 69

“Performing Static Analysis” on page 71

“Creating Your Own Static Analysis Rules” on page 83

“Tracking Metrics Over Time” on page 76

“Customizing Static Analysis” on page 79
75

Tracking Metrics Over Time

76

T
es

tin
g

Tracking Metrics Over Time
Jtest saves your project metrics for each test and can graph how each
metric changes over time. You can graph the following metrics:

• Number of bytes: Total number of bytes of all class files in the
project.

• Number of classes: Total number of classes in the project.

• Number of Java source files: Total number of Java source files
in the project.

• Number of lines: Total number of lines in the project’s classes.

• Number of packages: Total number of packages in the project.

• Number of package-private classes: Total number of pack-
age-private classes in the project.

• Number of private classes: Total number of private classes in
the project.

• Number of protected classes: Total number of “protected”
classes in the project.

• Number of public classes: Total number of “public” classes in
the project.

To track metric information for a specific project:

1. Open the Test History window by clicking the History button in
the Project Testing UI.

2. Right-click the History for Test node, then choose Draw Metrics
Graph> <Desired Type of Graph> from the shortcut menu.

Tracking Metrics Over Time

T
esting
Jtest will then create a graph that displays the specified metrics. The
graph’s X axis contains date information and it’s Y axis contain count
information. For example, the Number of Lines Graph contains dates on
the X axis and the numbers of lines on the Y axis.
77

Tracking Metrics Over Time

78

T
es

tin
g

Related Topics
“About Static Analysis” on page 69

“Creating Your Own Static Analysis Rules” on page 83

“Viewing Class and Project Metrics” on page 73

“Tracking Metrics Over Time” on page 76

“Customizing Static Analysis” on page 79

Customizing Static Analysis

T
esting
Customizing Static Analysis
You can customize Jtest’s static analysis feature by:

• Enabling/disabling specific rules.

• Enabling/disabling rule categories

• Customizing built-in rules.

You can also use the RuleWizard feature to create custom coding stan-
dards; for more information on this feature, see “Creating Your Own Static
Analysis Rules” on page 83.

Enabling/Disabling Specific Rules
One way to control what rules are enforced is to enable/disable individual
rules. If you do this, be aware that Jtest looks for violations of a rule only if
the rule is enabled and its severity level is enabled.

1. View which rules are currently enabled/disabled.

a. Open the Global Test Parameters window by clicking the
Global button.

b. In the Global Test Parameters window, go to Static Anal-
ysis> Rules .

c. Open the Built-in Rules node or User Defined Rules
node.

d. Open the node for the category of rules that you want to
view.

2. Enable/disable rules by right-clicking the appropriate rule and
choosing the appropriate command (either Enable or Disable)
from the shortcut menu.

Enabling/Disabling Rule Categories
Each rule has two categories:
79

Customizing Static Analysis

80

T
es

tin
g

• The descriptive category that describes the type of rule (for
example, Servlets, Design by Contract, Initialization, User
Defined Rules, etc.)

• The severity category that describes the severity of a violation of
the rule (violations of coding standards that are most likely to
cause an error are level 1; violations of coding standards that are
least likely to cause an error are level 5). By default, Jtest reports
violations of all coding standards with a severity level of 1, 2, or 3.
A rule’s severity is indicated by the final character in each rule
code, as indicated in the Global Test Parameters window’s Static
Analysis> Rules> Built-in Rules node. For example, PB.SBC
has a severity level of 1, and OOP.IIN has a severity level of 5.

To enable/disable all rules in a certain descriptive category:

1. Open the Global Test Parameters window by clicking Global .

2. Right-click the Static Analysis> Rules>
<name_of_rule_category > node. A shortcut menu will open.

3. Choose Enable All or Disable All from the shortcut menu.

To enable/disable rule all rules in a certain severity categories:

1. Open the Global Test Parameters window by clicking Global .

2. Open the Severity Levels Enabled node (beneath Static Analy-
sis> Rules).

3. Enable/disable categories by right-clicking a category whose sta-
tus you want to change and choosing Enable or Disable from the
shortcut menu.

You can also enable/disable severity categories at the class and project
level. You might want to do this, for example, if you generally want to
enforce only the most severe rules, but you want to enforce all rules for a
specific class. To enable/disable rules at the class or project level, set the
Severity flags in Class Test Parameters - Static Analysis (if you are test-
ing a single class) or Project Test Parameters - Static Analysis (if you are
testing a set of classes).

Customizing Static Analysis

T
esting
Customizing Rules
You can customize three types of rules:

1. Rules saved in <Jtest_install_dir>/brules.

2. Naming conventions.

3. Class metrics rules.

Customizing Rules with RuleWizard
You can customize any rule available in <Jtest_install_dir/brules> with
RuleWizard.

To access RuleWizard, right-click the Rules button in either Jtest UI, then
choose Launch RuleWizard from the shortcut menu.

The RuleWizard UI will then open. The RuleWizard User’s Guide (acces-
sible by choosing Help> View in the RuleWizard UI) contains information
on how to create, enforce, and enable/disable custom rules.

You can also edit Naming Convention rules and Metrics rule from the
Jtest Global Test Parameters tree.

Customizing Naming Conventions
To edit what naming convention is enforced:

1. Locate the rule that you want to modify in the Global Test param-
eters tree.

2. Right-click the rule, then choose Edit Regular Expression from
the shortcut menu.

3. Modify the regular expression in the dialog box that opens.

4. Click OK to save your changes.

If you want the naming convention to apply only to certain modifiers (e.g.,
public, protected, package, private):

1. Locate the rule that you want to modify in the Global Test param-
eters tree.

2. Right-click the rule, then choose Edit Optional Modifier from the
shortcut menu.
81

Customizing Static Analysis

82

T
es

tin
g

3. Enter the appropriate modifiers in the dialog box that opens (If
you are entering multiple modifiers, use a space character to sep-
arate the modifiers’ names).

4. Click OK to save your changes.

Customizing Class Metrics
To edit the upper and lower thresholds for a class metric:

1. Locate the metric rule that you want to modify in the Global Test
parameters tree.

2. Right-click the rule, then choose Modify Upper Threshold or
Modify Lower Threshold from the shortcut menu.

3. Modify the threshold in the dialog box that opens.

4. Click OK to save your changes.

Related Topics
“About Static Analysis” on page 69

“Performing Static Analysis” on page 71

“Creating Your Own Static Analysis Rules” on page 83

“Viewing Class and Project Metrics” on page 73

Creating Your Own Static Analysis Rules

83

T
esting

Creating Your Own Static
Analysis Rules
You can easily create your own static analysis rules using Jtest’s
RuleWizard feature. With RuleWizard, you create custom rules by graphi-
cally expressing the pattern that you want Jtest to look for when it parses
code during static analysis. Rules are created by selecting a main "node,"
then adding additional elements in a flow-chart-like representation until it
fully expresses the pattern that constitutes a violation of the rule. Rules
are built by pointing and clicking to add graphical representations of rule
elements, then using dialog boxes to make any necessary modifications.
No knowledge of the parser is required to write or modify a rule.

To access RuleWizard, right-click the Rules button, then choose Launch
RuleWizard from the shortcut menu that opens.

The RuleWizard UI will then open. The RuleWizard User’s Guide (acces-
sible by choosing Help> View in the RuleWizard UI) contains information
on how to create, enforce, and enable/disable custom rules.

Related Topics
“About Static Analysis” on page 69

“Performing Static Analysis” on page 71

“Customizing Static Analysis” on page 79

“Viewing Class and Project Metrics” on page 73

Static Analysis Suppressions

84

T
es

tin
g

Static Analysis
Suppressions
You can suppress the reporting of rule violation messages by adding a
suppression from the Errors Found panel or Results panel.

However, because the rule violation messages will change from class to
class, the best way to “suppress” the reporting of warning messages from
particular rules or sets of rules is by turning rules (or rule categories) on
and off in the manner described in “Customizing Static Analysis” on
page 79.

To suppress a particular warning message that appears in the Errors
Found panel or Results panel, right-click the message that you want sup-
press, and choose Suppress from the shortcut menu. This action will add
that specific warning message to the Static Analysis Suppressions list (in
the Class Test Parameters’ Static Analysis> Suppressed Messages
branch.

Related Topics
“Dynamic Analysis Suppressions” on page 89

“Customizing Static Analysis” on page 79

About Dynamic Analysis

85

T
esting

Dynamic AnalysisAbout Dynamic Analysis
Dynamic analysis involves testing a class with actual inputs. To perform
dynamic analysis, Jtest automatically generates, executes and evaluates
test cases, and-- where applicable-- executes and evaluates user-defined
test cases.

Jtest uses dynamic analysis to perform white-box testing, black-box test-
ing, and regression testing. If your code contains Design by Contract
comments, Jtest will use this contract information during dynamic analy-
sis.

Related Topics
“Performing Dynamic Analysis” on page 86

“Customizing Dynamic Analysis” on page 88

“Testing Classes That Reference External Resources” on page 93

“Using Custom Stubs” on page 98

“Setting an Object to a Certain State” on page 106

Performing Dynamic Analysis

86

T
es

tin
g

Performing Dynamic
Analysis
Jtest performs dynamic analysis and static analysis each time that you
test a class or set of classes.

To perform dynamic analysis:

1. Open the appropriate UI for your test. The Class Testing UI is
used to test a single class; the Project Testing UI is used to test a
set of classes.

• The Class Testing UI opens by default when Jtest is
launched.

• The Project Testing UI can be opened by clicking the
Class Testing UI’s Project button.

2. If a class or set of classes is already loaded into the UI you are
using, click the New button to clear the previous test.

3. Use the Browse button to indicate what class or set of classes
you want to test.

4. Test the class or project by clicking the Start button.

• If you only want to perform dynamic analysis, right-click
the Start button, then choose Dynamic Analysis from
the shortcut menu.

Jtest will then run all requested tests.

Errors found will be reported in the Errors Found Panel (if you tested a
single class) or the Results Panel (if you tested a project).

Important: Because Jtest’s dynamic analysis tests at the class level,
Jtest will only perform dynamic analysis on classes whose .class files are
available.

Related Topics
“About Dynamic Analysis” on page 85

“Customizing Dynamic Analysis” on page 88

Performing Dynamic Analysis

T
esting
“Testing Classes That Reference External Resources” on page 93

“Using Custom Stubs” on page 98

“Setting an Object to a Certain State” on page 106

“Jtest Tutorials” on page 268
87

Customizing Dynamic Analysis

88

T
es

tin
g

Customizing Dynamic
Analysis
Dynamic analysis can be customized by suppressing dynamic analysis
error messages, and by modifying Class, Project, and Global Test Param-
eters.

• The parameters under Test Case Generation control the genera-
tion of both the automatic test cases (the ones that Jtest gener-
ates automatically) and the user-defined test cases.

• The parameters under Test Case Execution control the execu-
tion of all the test cases.

• The parameters under Test Case Evaluation control the evalua-
tion of all the test cases. Note that the evaluation is performed on
both the automatic and user-defined test cases. For example, if
Perform Automatic Regression Testing is selected, automatic
regression testing is performed for both the automatic and the
user-defined test cases.

Related Topics
“About Dynamic Analysis” on page 85

“Performing Dynamic Analysis” on page 86

“Testing Classes That Reference External Resources” on page 93

“Using Custom Stubs” on page 98

“Setting an Object to a Certain State” on page 106

Dynamic Analysis Suppressions

T
esting
Dynamic Analysis
Suppressions
In general, the best way to prevent Jtest from reporting exceptions that
are not relevant to the class under test is to document the class’s permis-
sible inputs and/or expected exceptions using Design by Contract tags.
This way, the class’s implicit contracts are documented in the code itself.
For information about using these tags to suppress exceptions, see “Cus-
tomizing White-Box Testing” on page 112

Another preferred way to stop Jtest from displaying certain uncaught runt-
ime exceptions, specification errors, and regression errors is to right-click
the appropriate message in the Errors Found panel of the Class Testing
UI or in the Results panel of the Project Testing UI, then choose one of the
following commands from the shortcut menu:

• Not an Error: Choose this command to indicate that a reported
problem is not an error, but rather is the class’s correct behavior
(for that input).

• Ignore: Choose this command to tell Jtest to ignore the problem
reported for this input. If this is selected, the outcome will not be
used for comparisons when searching for specification or regres-
sion errors. Also, no uncaught runtime exceptions will be reported
for this input.

You can also suppress the reporting of uncaught runtime exceptions in
two ways:

• Adding a suppression from the Errors Found panel or Results
panel.

• Adding a suppression directly to the Dynamic Analysis Suppres-
sions Table.

To suppress a particular exception that appears in the Errors Found panel
or Results panel, right-click the exception that you want suppress, and
choose Suppress from the shortcut menu. This action will add that spe-
cific exception to the Dynamic Analysis Suppressions Table.

You can enable or disable checking for certain types of exceptions in the
Pre-filtering Suppressions Categories node (located under Dynamic
89

Dynamic Analysis Suppressions

90

T
es

tin
g

Analysis> Test Case Execution) of the Global, Project, or Class Test
Parameters.

The Dynamic Analysis Suppressions Table lets you create new suppres-
sion categories for uncaught runtime exceptions. You can use this option
to suppress the reporting of exceptions by class, method, and exception
type.

Opening the Suppressions Table
To reach the Suppressions Table, double-click the Suppressions Table
node in the Dynamic Analysis branch of the Global Test Parameters
tree.

Adding a Suppression to the Dynamic
Analysis Suppressions Table

1. Right-click any area of the table. A shortcut menu will open.

2. Choose Add New Suppression from the shortcut menu. An
empty table entry will open.

3. In the empty table entry, enter the exception, the method that
throws it, or the class that declares the method that you want to
suppress.

Important: Make sure that you type all values exactly as they appear in
the Jtest UI.

Dynamic Analysis Suppressions

T
esting
Suppressing Specific Exceptions by Class,
Method, and Exception Type
To suppress specific exceptions by class, method, and exception type,
enter the information in the appropriate fields. For example, to suppress
the ArrayIndexOutOfBoundsException from the 'setSize' method of
java.util.Vector, use:

Suppressing Exceptions by Class
To suppress exceptions by class, enter the classname in the Class field
by double clicking that field and then entering the fully qualified class-
name.

Use the '*' (asterisk) symbol to match any letter. For example, to suppress
all exceptions from the class java.util.Vector, use:

java.util.Vecto r | * | *

Suppressing Exceptions by Method
To suppress exceptions by method, enter the method name in the
Method field by double-clicking that field then entering the method name.
To suppress exceptions from a single method belonging to a set of over-
loaded methods, specify the method by including its signature enclosed in
parentheses. Method signatures should follow the JNI specification from
the JDK (minus the return type). For example, to suppress exceptions
from the following method

(int n, String s, int []ia)

use the following as the method signature:
91

Dynamic Analysis Suppressions

92

T
es

tin
g

(ILJava/lang/String;[I)

Suppressing Exceptions by Exception Type
To suppress exceptions by exception type, enter the exception type in the
Exception field by double clicking that field and then entering the excep-
tion type.

Use the '*' (asterisk) symbol to match any letter. For example, to suppress
all NullPointerExceptions use:

Removing a Suppression
1. Right-click the table entry. A shortcut menu will open.

2. Choose Delete from the shortcut menu.

Note: To delete a list of suppressions, right-click drag from the first sup-
pression to the final one, then release the mouse button. A shortcut menu
will open. Choose Delete from the shortcut menu.

Viewing the Results
Suppressions in this list are applied when the results are displayed.
Results are displayed after you click the Start button, generate the report
file, or view results in the Results UI.

Related Topics
“Customizing White-Box Testing” on page 112

“Static Analysis Suppressions” on page 84

Testing Classes That Reference External Resources

T
esting
Testing Classes That
Reference External
Resources
Jtest’s multiple stub options let you automatically and precisely test
classes that reference external resources.

Stubs are basically replacements for references to external methods. For
example, you could use stubs to specify that when the method
“stream.readInt()” is invoked, Jtest should use the value 3 instead of actu-
ally invoking the readInt method.

Stubs are mainly used:

• To isolate a class and test it independently of other classes, or

• To test a class before the external classes it uses are available.

If you are using automatically-generated test cases to test classes that
reference external resources, you can:

• Have Jtest automatically generate stubs,

• Enter your own stubs, or

• Have Jtest call the actual external method.

Jtest does not automatically generate stubs for user-defined test cases. If
you are using user-defined test cases to test classes that reference exter-
nal resources, you can:

• Enter your own stubs, or

• Have Jtest call the actual external method.

When you perform regression testing on classes that reference external
resources, Jtest will automatically use the stub types (if any) that were
used during the previous test run(s).
93

Testing Classes That Reference External Resources

94

T
es

tin
g

Defining Which Classes are
“External”
You can indicate which classes are external by defining the “Tested Set”.

The Tested Set is the set of classes and methods included in the current
test. Any class outside of the Tested Set is considered external. When a
class or method in the Tested Set references a class or method that is
inside that Tested Set, the actual class or method is accessed. When a
class or method in the Tested Set references a class or method that is
outside that Tested Set, stubs are called.

The class under test and its inner classes are always included in the
Tested Set. When Jtest creates a new project, its default Tested Set is
comprised of all of the classes in the package and subpackages of each
class under test.

The Tested Set will also include additional classes that match the prefixes
specified in the Tested Set list.

To open the dialog box that lets you specify what other classes are
included in the Tested Set, open the appropriate parameters window,
then:

1. Open Dynamic Analysis> Test Case Execution> Stubs.

2. Double-click the Tested Set Includes node.

3. To add a class name prefix, enter or browse to it, then click Add .
To remove a class name prefix, select it, then click Delete . You
can use a specific class name prefix as well as any of the follow-
ing tokens:

• $PACKAGE: This token is replaced by the name of the
package under test.

• $PARENT: This token is replaced by the parent parame-
ter value.

• <unnamed>: This token refers to the unnamed package.

4. Click OK to close the Tested Set dialog box.

Testing Classes That Reference External Resources

T
esting
Using Your Own Stubs
When you configure Jtest to use your own stubs, you have complete con-
trol over what values or exceptions an external method returns to the
class under test-- without having to have the actual external method com-
pleted and/or available. You can enter your own stubs for both automati-
cally-generated and user-defined test cases.

If a stub is not defined for an external method or if no options in the appro-
priate test parameter’s Dynamic Analysis> Test Case Execution>
Stubs> Options for Automatic Test Cases/ Options for User Defined
Test Cases options are enabled, Jtest will call the actual external method.

For more information about entering your own stubs, see “Using Custom
Stubs” on page 98.

Automatically-Generated Stubs
When performing white-box testing on classes that reference external
resources (such as external files, databases, Enterprise Java Beans
(EJB) and CORBA), Jtest automatically generates stubs for the resources
and executes the stubs to get input for the call to the external resources;
like Jtest’s other automatically-generated inputs, these inputs are
designed to provide maximum coverage of the class. When designing
these inputs, Jtest assumes that a call to an external resource can return
any input compatible with its return type.

These inputs are created as white-box stubs, and these stubs are used
for both white-box testing and regression testing. When these stubs are
used for white-box testing, Jtest executes the stubs and reports errors if
any uncaught runtime exceptions occur from the stubs’ input. When these
stubs are used for regression testing, Jtest executes the stubs and
reports errors if class modifications cause previously tested input to pro-
duce output other than the known or previous value.

You can view the stubs that Jtest automatically generated and executed
in the Automatic Test Cases> Method Name> Test Case> Test Case
Input branch of the View Test Cases tree. Automatically-generated stubs
will be marked with a small, empty box. Each stub branch displays the
method invoked as well as the value or exceptions returned by the stub.
95

Testing Classes That Reference External Resources

96

T
es

tin
g

Expand the stub’s branch to see the stack trace where the invocation
occurred.

If the stub’s values resulted in an error, the above information will also be
displayed in the Errors Found Panel (if you are testing a class) or the
Results panel (if you are testing a project).

Currently, Jtest can generate inputs for the following external resources:

• java.io

• java.net

• java.sql

In addition, Jtest offers preliminary support for CORBA and Enterprise
Java Beans (see below for details).

Note: This support for classes that reference external resources is prelim-
inary and we welcome any suggestions you have on improving it.

CORBA
When you perform white-box testing on classes that call CORBA objects,
Jtest automatically generates and executes white-box stubs for the
Object Request Broker and for other CORBA objects referenced by the
class under test. For example, if a client or CORBA class references
another CORBA object, Jtest will assume that method calls to the other
CORBA object can return any value compatible with its return type, gen-
erate and execute white-box stubs that contain appropriate input, and
report any uncaught runtime exceptions that result from this input.

When you test a set of classes using the Project UI, Jtest skips automati-
cally generated classes such as helper classes, client stub classes,
server skeletons, etc..

Testing Classes That Reference External Resources

T
esting
Enterprise Java Beans
When you perform white-box testing on EJB classes, Jtest assumes that
the beans referenced by the bean under test can return any value that is
compatible with the return type for that method. This tests that the EJB
bean class will behave correctly regardless of the other bean or beans’
behavior or return values.

Before you test any business method in the EJB class, Jtest will invoke
the bean initialization routines and provide a dummy container context.
Previous Jtest versions called the class’s constructor and invoked the
business methods. If you prefer to have Jtest test business methods
using this older technique, set the following environment value:

For Windows: set JTEST_OPT_SKIP_CREATE=ON

For UNIX: setenv JTEST_OPT_SKIP_CREATE ON

If you are using the Weblogic server, Jtest skips the classes that the EJB
vendor generated automatically. If you are using a different server and
would like this feature, please contact ParaSoft technical support.

Related Topics
“About Dynamic Analysis” on page 85

“Performing Dynamic Analysis” on page 86

“Customizing Dynamic Analysis” on page 88

“Using Custom Stubs” on page 98

“Setting an Object to a Certain State” on page 106
97

contact.htm

Using Custom Stubs

98

T
es

tin
g

Using Custom Stubs
Stubs are basically replacements for references to external methods. For
example, you could use stubs to specify that when the method
"stream.readInt()" is invoked, Jtest should use the value “3” instead of
actually invoking the readInt method.

Stubs are mainly used:

• To isolate a class and test it independently of other classes, or

• To test a class before the external classes it uses are available.

You can enter your own stubs for both automatic and user-defined test
cases. When you configure Jtest to use your own stubs, you have com-
plete control over what values or exceptions an external method returns
to the class under test-- without having to have the actual external method
completed and/or available.

There are 5 basic steps involved in creating and using user defined stubs:

1. Create the custom stub.

2. Enable the custom stub.

3. Indicate the stub’s location.

4. Test the class in the normal manner.

5. View the stubs.

Creating a Custom Stub

Standard Procedure
The first step in using user defined stubs is creating a Stubs Class. If you
create a Stubs Class named “(name_of_class_under_test_Stubs)” and
save it in the same directory as the class under test, you will not have to
indicate the stub’s location. You can use a class with a different name or
location as long as you indicate the stub’s location (as described in Indi-
cating the Stub’s Location below).

The main way to specify stubs is to create a Stubs Class: a class that con-
tains one or more “stubs()” methods which define what (if any) return val-

Using Custom Stubs

T
esting

.

ues or exceptions should be used for a certain input. Stubs Classes
extend “jtest.Stubs”. For information about jtest.Stubs, see the Jtest API
javadoc (you can access this documentation by choosing Help> Jtest
API).

Each Stubs Class should implement a method of the form:

public static Object stubs (
Method method // external method being invoked
, Object _this // "this" if instance method
, Object[] args // arguments to the method

// invocation
, Method caller_method // method calling "method"
, boolean executing_automatic // true if executing

//automatic Test Case
);

Important: Only the first parameter is required; all others are optional.
For example, you could define a “stubs() method” of the form “Object
stubs (Method method)”.

Whenever the class under test invokes a method “method” external to the
class, Jtest will call the “stubs()” method. The "stubs()" method should
declare what (if any) return values or exceptions should be returned for
certain inputs. Use the following table to determine what type of return
values or exceptions should be used for each possible stub type:

If you want the
external method to
return this . . .

Have the “stubs()” method return this . . .

no stub NO_STUBS_GENERATED

void VOID

a value The value. If the value is a primitive type, it should
be wrapped in an Object. For example, if “stubs()”
decides that a given external call should return the
integer 3, “stubs()” should return “new Integer (3)”
99

Using Custom Stubs

100

T
es

tin
g

Important: The “stubs()” method can only return an Object. To specify a
return value of a primitive type, you need to wrap that type in an Object.
For example, if you wanted to specify that the method

int userMethod()

returned 3, you should have the "stubs ()" method return

return new Integer (3)

To define stubs for constructor invocations, define a “stubs()” method
whose first parameter is a constructor (instead of a method).

If some “stubs()” method is not defined, no stubs will be used for those
members (method or constructor).

Stub Objects
Stub objects are very useful when writing user defined stubs. A stub
object is similar to any other object, with the following differences:

• The stub object can be an instance of an interface. For example,
the following creates an instance of "Enumeration":

Enumeration enum = makeStubObject (Enumera-
tion.class);

• Any method invocation or field reference is a stub even if no stub
has been defined for it. If no stub has been defined, Jtest will use
a default stub returning the default initialization value for the
method return type or field type (for example, "null" for Object,
"0.0d" for double,etc.).

You need to use stub objects if you want to test classes that use inter-
faces for which an implementation has not yet been written. They can be
used whenever an object of the interface class needs to be created.

an exception The exception that you want the stub to throw. For
example, you could use something like:

throw new IllegalArgumentException
(“time is:” + time);

Using Custom Stubs

T
esting
Stub objects can also be used whenever you want to create an object of a
given type without having to call a specific constructor. For example,
instead of using "new java.io.FileInputStream ("what to put here?)", you
could use: "(FileInputStream) JT.makeStubObject (java.io.FileInput-
Stream.class)"; this creates a FileInputStream object.

Defining Stubs in Test Classes
If you are using a Test Class, you can define specific stubs for each test
method by defining a "stubs()" methods within the Test Class. For exam-
ple, to specify the stubs for a test case defined by a "testXYZ" method,
define a method of the form:

Object stubsXYZ (Method method, ...);

in that Test Class.

If a Test Class does not define a "stubs ()" method, or if it does not return
any stubs, Jtest will apply the Class and Project Test Parameters "stubs()"
methods.

For more information on Test Classes, see “Adding Test Classes” on
page 125.

Defining Stubs at the Project Level
If more than one of the classes in your project uses the same "stubs ()"
method, you should create a project-level Stubs Class that contains the
return values for that method. Project-level stubs should be created like
class-level stubs. The only differences between project-level stubs and
class-level stubs are:

• Class-level stubs contain stubs specific to a class, whereas
project-level stubs contain stubs that can be shared by multiple
classes.

• You indicate the location of class-level stubs in the Class Test
Parameters Dynamic Analysis> Test Case Execution> Stubs>
Stubs Class branch, but you indicate the location of project-level
stubs in the Project Test Parameters Dynamic Analysis> Test
Case Execution> Stubs> Stubs Class branch.
101

Using Custom Stubs

102

T
es

tin
g

When Jtest tests a class in the project, it will first apply the Stubs Class
indicated in the Class Test parameters. If no stub is generated at the class
level, Jtest will apply the Stubs Class indicated at the project level.

Enabling User Defined Stubs
Jtest will not use your user defined stubs unless it is configured to do so.
By default, user defined stubs are enabled for user defined test cases, but
disabled for automatically-generated test cases.

You can enable user defined stubs at the global, project, or class level. To
do so, open the appropriate parameters window, then:

1. Open Dynamic Analysis> Test Case Execution> Stubs.

2. Open either Options for Automatic Test Cases or Options for
User Defined Test Cases .

3. Enable the Use User Defined Stubs option.

Indicating the Stub’s Location
By default, when Jtest detects that the class under test references an
external method, it searches for and uses Stubs Classes that are:

• In the same directory as the class under test, and

• Named <name_of_class_under_test>Stubs (for example, fooSt-
ubs.class).

If you do not change the default setting (Class Test Parameters’ Dynamic
Analysis> Test Case Execution> Stubs> Stubs Class value set to
“$DEFAULT”), your Stubs Classes are named correctly, and your Stubs
Classes are located in the same directory as the class under test, you do
not need to indicate the stub’s location.

If you need to indicate the Stubs Class location for a specific class,
right-click the Class Test Parameters’ Dynamic Analysis> Test Case
Execution> Stubs> Stubs Class node, choose Edit , then enter the loca-
tion of the Stubs Class.

If you want to indicate the Stubs Class’s location at the project level,
right-click the Project Test Parameters’ Dynamic Analysis> Test Case

Using Custom Stubs

T
esting
Execution> Stubs> Stubs Class node, choose Edit , then enter the loca-
tion of the Stubs Class.

Important: If you specify a Stubs Class at the project level, Jtest will first
apply the Stubs Class indicated in the Class Test parameters. If no stub is
generated at the class level, Jtest will apply the Stubs Class indicated at
the project level. Jtest will not automatically search for Stubs Classes at
the project level.

If you specified your stub via a Test Class, you do not need to indicate the
location of a Stubs Class.

Running the Test
If you have performed the above steps, Jtest will automatically use your
stubs when you test the class or project in the normal manner.

Viewing the Stubs
After you test a class using a user defined stub, you can view the stubs in
the User Defined Test Cases> Method Name> Test Case> Test Case
Input branch of the View Test Cases tree. User defined stubs will be
marked with a small black box. Each stub branch displays the method
invoked as well as the value or exceptions returned by the stub. Expand
the stub’s branch to see the stack trace where the invocation occurred.
103

Using Custom Stubs

104

T
es

tin
g

If the stub’s values resulted in an error, the above information will also be
displayed in the Errors Found Panel (if you are testing a class) or the
Results panel (if you are testing a project).

Summary
If you want Jtest to use user defined stubs:

1. Create a Stubs Class whose "stubs ()" methods indicate what (if
any) values or exceptions you want the stub to return.

2. Enable user defined stubs in the appropriate test parameters win-
dow.

3. If your Stubs Class is not named
(name_of_class_under_test)Stubs and is not in the same direc-
tory as the class under test (or, if your Stubs Class should be
applied at the project level), indicate the stub’s location.

4. Test the class as normal.

Related Topics
“About Dynamic Analysis” on page 85.

Using Custom Stubs

T
esting
“Performing Dynamic Analysis” on page 86.

“Customizing Dynamic Analysis” on page 88.

“Testing Classes That Reference External Resources” on page 93.

“Setting an Object to a Certain State” on page 106.
105

Setting an Object to a Certain State

106

T
es

tin
g

Setting an Object to a
Certain State
In some cases, you may want to set up an initial state prior to testing a
class. For example, suppose that a class is used as a global object con-
taining static member variables accessible by any other project within the
application. When Jtest tests an object that uses this static member vari-
able, a NullPointer Exception will result because the variable has not
been set. This problem can be solved by giving Jtest static initialization
code.

About Static Initialization Code
All initialization code will be executed before any test case is executed,
and can be used to setup and initialize the class if needed.

You can add static initialization code at the global, project, or class level.
Initialization code set in the Global Test Parameters will be executed for
all classes that Jtest tests. Initialization code set in the Project Test
Parameters will be executed for all classes in the project. Initialization
code set in the Class Test Parameters will be executed only for the class
whose parameters you are editing.

Initialization code is executed in the following order:

1. Static Global Initialization code

2. Static Project Initialization code

3. Static Class Initialization code

For an example that uses initialization code, see <jtest_install_dir>/exam-
ples/dynamic/common/ClassInit.

Note: Initialization code can only be used to invoke static methods.

Adding Static Initialization Code
To add static initialization code:

Setting an Object to a Certain State

T
esting
1. Open the Test Parameters window for the level at which you want
to add initialization code.

• To add Global Initialization code, click Global (in either
UI).

• To add Project Initialization code, click Project (in the
Project Testing UI).

• To add Class Initialization code, click Class (in the Class
Testing UI).

2. In the Test Parameters window, open Dynamic Analysis> Test
Case Generation> Common .

3. Double-click the Static Global Initialization , Static Project Ini-
tialization , or Static Class Initialization node. A Static Initializa-
tion window will open.

4. Enter the initialization code in the Static Initialization window, or
import the code by choosing Options> Import .

5. To save the modification, choose Options> Save .

6. To exit the Static Initialization window, choose Options> Quit .

Related Topics
“About Dynamic Analysis” on page 85

“Performing Dynamic Analysis” on page 86

“Customizing Dynamic Analysis” on page 88

“Testing Classes That Reference External Resources” on page 93

“Using Custom Stubs” on page 98
107

About White-Box Testing

108

T
es

tin
g

White-Box TestingAbout White-Box Testing
White-box testing checks that the class is structurally sound. It doesn't
test that the class behaves according to the specification, but instead
ensures that the class doesn't crash and that it behaves correctly when
passed unexpected input. White-box testing involves looking at the class
code and trying to find out if there are any possible class usages that will
make the class crash (in Java this is equivalent to throwing an uncaught
runtime exception).

Jtest uses unique technology to completely automate the white-box test-
ing process. Jtest examines the internal structure of each class under
test, automatically designs and executes test cases designed to fully test
the class’s construction, then determines whether each test case’s inputs
would produce an uncaught runtime exception. For each uncaught runt-
ime exception that is detected, Jtest reports an error and provides the
stack trace as well as the calling sequence that led to the problem. \

Jtest can perform white-box testing on any Java class or component,
including classes that reference external resources (such as external
files, databases, Enterprise JavaBeansTM [EJB] and CORBA). If you are
performing white-box testing on classes that reference external
resources, Jtest will automatically generate the necessary stubs, or give
you the option of calling the actual external method or entering your own
stubs. For classes using CORBA, Jtest provides stubs for the Object
Request Broker and other objects referenced by the class. For classes
using EJB, Jtest invokes bean initialization routines and provides a simu-
lated container context, then performs white-box testing to make sure that
the bean class will always behave correctly.

If you find that certain exceptions reported are not relevant to the project
at hand, you can easily tailor Jtest’s error reports to your needs. If you
document valid exceptions in the code using a special @exception com-
ment tag, Jtest will suppress any occurrence of that particular exception.
If you use the @pre comment tag to document the permissible range for
valid method inputs, Jtest will suppress errors found for inputs that fall
outside of that range. You can also suppress exceptions using shortcut
menus or the suppression panel.

About White-Box Testing

T
esting
Related Topics
“Performing White-Box Testing” on page 110

“Customizing White-Box Testing” on page 112
109

Performing White-Box Testing

110

T
es

tin
g

Performing White-Box
Testing
Jtest performs white-box testing, along with all other appropriate types of
testing, each time that you test a class or set of classes.

To perform white-box testing:

1. Open the appropriate UI for your test. The Class Testing UI is
used to test a single class; the Project Testing UI is used to test a
set of classes.

• The Class Testing UI opens by default when Jtest is
launched.

• The Project Testing UI can be opened by clicking the
Class Testing UI’s Project button.

2. If a class or set of classes is already loaded into the UI you are
using, click the New button to clear the previous test.

3. Use the Browse button to indicate what class or set of classes
you want to test.

4. Test the class or project by clicking the Start button.

• If you only want to perform dynamic analysis, right-click
the Start button, then choose Dynamic Analysis from
the shortcut menu.

• If you only want to execute automatically-generated test
cases, right-click the Start button, then choose Dynamic
Analysis> Automatic from the shortcut menu.

Jtest will then run all requested tests.

Uncaught runtime exceptions found will be reported in the Uncaught
Runtime Exceptions branch of the Errors Found Panel (if you tested a
single class) or the Results Panel (if you tested a project).

Suppressed Exceptions
The following types of exceptions are suppressed by default:

Performing White-Box Testing

T
esting
• Exceptions in Throws Clause

• DirectIllegalArgumentExceptions

• Explicitly Thrown Exceptions

• Exceptions Caught By Empty Catch

• Direct NullPointerExceptions

You can enable the reporting of any of these exception types by modifying
settings in any parameter tree’s Dynamic Analysis> Test Case Execu-
tion> Pre-Filtering Categories branch.

All exceptions found-- including suppressed exceptions-- are displayed in
the View Test Cases window. To see the reason why one of the excep-
tions listed here was suppressed, right-click that exception’s node (the
node with the lightning bolt icon) in the View Test Cases window, then
choose Why Suppressed? from the shortcut menu.

For information on determining what types of exceptions you want sup-
pressed, see “Customizing White-Box Testing” on page 112 and
“Dynamic Analysis Suppressions” on page 89.

Related Topics
“About White-Box Testing” on page 108

“Customizing White-Box Testing” on page 112

“Jtest Tutorials” on page 268
111

Customizing White-Box Testing

112

T
es

tin
g

Customizing White-Box
Testing
You use two Design by Contract tags to customize Jtest so that it auto-
matically suppresses uncaught runtime exceptions that you do not expect
to occur or that you are not concerned with.

To have Jtest suppress errors for inputs that you do not expect to occur,
use the @pre tag to specify what inputs are permissible. If you use the
@pre tag to indicate valid method inputs, then use Jcontract to check
Design by Contract contracts at runtime, you will automatically be alerted
to instances where the system passes this method these unexpected
inputs.

To have Jtest suppress expected exceptions, use the @exception tag to
specify what exceptions you want Jtest to ignore.

For details on using these two tags, see “About Design by Contract” on
page 137 and “The Design by Contract Specification Language” on
page 141.

Related Topics
“About White-Box Testing” on page 108

“Performing White-Box Testing” on page 110

“Dynamic Analysis Suppressions” on page 89

“Using Design by Contract With Jtest” on page 133

“The Design by Contract Specification Language” on page 141

“Testing A Class - Two Simple Examples” on page 23

About Black-Box Testing

T
esting
Black-Box TestingAbout Black-Box Testing
Black-box (functionality) testing checks a class’s functionality by deter-
mining whether or not the class’s public interface performs according to
specification. This type of testing is performed without paying attention to
implementation details.

If your class contains Design by Contract-format specification information,
Jtest completely automates the black-box testing process. If not, Jtest
makes the black-box testing process significantly easier and more effec-
tive than it would be if you were creating test cases by hand.

Jtest reads specification information built into the class with the DbC lan-
guage, then automatically develops test cases based on this specifica-
tion. Jtest designs its black-box test cases as follows:

• If the code has postconditions, Jtest creates test cases that verify
whether the code satisfies those conditions.

• If the code has assertions, Jtest creates test cases that try to
make the assertions fail.

• If the code has invariant conditions (conditions that apply to all of
a class’s methods), Jtest creates test cases that try to make the
invariant conditions fail.

• If the code has preconditions, Jtest tries to find inputs that force
all of the paths in the preconditions.

• If the method under test calls other methods that have specified
preconditions, Jtest determines if the method under test can pass
non-permissible values to the other methods.

Jtest also helps you create black-box test cases if you do not use Design
by Contract. You can use Jtest’s automatically-generated set of test cases
as the foundation for your black-box test suite, then extend it by adding
your own test cases.

Test cases can be added in a variety of ways; for example, test cases can
be introduced by adding:

• Method inputs directly to a tree node representing each method
argument.
113

About Black-Box Testing

114

T
es

tin
g

• Constants and methods to global or local repositories, then add-
ing them to any method argument.

• JUnit-format Test Classes for test cases that are too complex or
difficult to be added as method inputs.

If a class references external resources, you can enter your own stubs or
have Jtest call the actual external method.

When the test is run, Jtest uses any available stubs, automatically exe-
cutes the inputs, and displays the outcomes for those inputs in a simple
tree representation. You can then view the outcomes and verify them with
the click of a button. Jtest automatically notifies you when specification
and regression testing errors occur on subsequent tests of this class.

Related Topics
“Performing Black-Box Testing” on page 115

“Adding Method Inputs” on page 119

“Adding Test Classes” on page 125

“Specifying Imports” on page 132

Performing Black-Box Testing

T
esting
Performing Black-Box
Testing
Jtest performs black-box testing, along with all other appropriate types of
testing, each time that you test a class or set of classes.

Jtest will automatically create and execute test cases that verify code
functionality when specification information is incorporated into the code
using the Design by Contract language. For information on adding Design
by Contract-format contracts to your code, see “Using Design by Contract
With Jtest” on page 133. and “The Design by Contract Specification Lan-
guage” on page 141..

Jtest will also check functionality using any test cases you have added as
well as any automatically-generated test cases whose outputs you have
validated.

Important: In order to perform black-box testing, Jtest needs to know the
location of your JDK. Jtest determines this location automatically. For
information on changing the JDK used, see “JDK Requirement” on
page 15.
115

Performing Black-Box Testing

116

T
es

tin
g

To perform black-box testing:

1. Open the appropriate UI for your test. The Class Testing UI is
used to test a single class; the Project Testing UI is used to test a
set of classes.

• The Class Testing UI opens by default when Jtest is
launched.

• The Project Testing UI can be opened by clicking the
Class Testing UI’s Project button.

2. If a class or set of classes is already loaded into the UI you are
using, click the New button to clear the previous test.

3. Use the Browse button to indicate what class or set of classes
you want to test.

4. (Optional) Add test cases by adding method inputs and/or Test
Classes.

• For information on adding method inputs, see “Adding
Method Inputs” on page 119..

• For information on adding Test Classes, see “Adding Test
Classes” on page 125..

5. Test the class or project by clicking the Start button.

• If you only want to perform dynamic analysis, right-click
the Start button, then choose Dynamic Analysis from
the shortcut menu.

• If you only want to execute automatically-generated test
cases, right-click the Start button, then choose Dynamic
Analysis> Automatic from the shortcut menu.

• If you only want to execute user-defined test cases,
right-click the Start button, then choose Dynamic Analy-
sis> User Defined from the shortcut menu.

Jtest will then run all requested tests.

If the classes under test contain Design by Contract specification informa-
tion, any functionality problems found will be reported in the Design by
Contract Violations branch of the Errors Found Panel (if you tested a
single class) or the Results Panel (if you tested a project).

Performing Black-Box Testing

T
esting
If you added user-defined test cases, you should evaluate the outcomes
for all tested classes and specify the correct output values for test cases
that failed.

To evaluate test case outcomes for a class:

1. Review the class’s test case outcomes in the View Test Cases
window.

• To open this window from the Class Testing UI, click the
View Test Cases button.

• To open this window from the Project Testing UI's Results
panel, right-click the [Class Name] node, then choose
View Test Cases from the shortcut menu.

2. In the View Test Cases window, expand the test case tree so that
the inputs and outcomes for the test cases you are evaluating are
visible.

3. Indicate whether or not the outcome for each test case is correct
by right-clicking the appropriate outcome, then choosing the
appropriate option.

• Choose Mark as Correct if the listed outcome is the
expected outcome.

• Choose Mark as Incorrect if the listed outcome is not
the expected outcome.

• Choose Mark as Unknown if you don't know how the
listed outcome compares to the expected outcome.

• Choose Mark as Ignore if you want Jtest to ignore the
listed outcome.

• To choose the same option for all of a test case’s out-
comes, right-click the test case’s Outcomes leaf, then
choose the appropriate Set All to... command from the
shortcut menu.

4. If any outcome was incorrect, enter the correct value by:

a. Opening the Class Test Parameters window.
117

Performing Black-Box Testing

118

T
es

tin
g

b. Opening that test case’s branch in Dynamic Analysis>
Test Case Evaluation> Specification and Regression
Testing .

c. Right-clicking the outcome, choosing Edit from the short-
cut menu, then entering the correct value in the text field
that opens.

Now every time Jtest is run on that class, it will check whether or not the
correct outcomes are produced.

Any problems found using these test cases will be reported in the Speci-
fication and Regression Errors branch of the Errors Found Panel (if you
tested a single class) or the Results Panel (if you tested a project).

Related Topics
“About Black-Box Testing” on page 113.

“Adding Method Inputs” on page 119.

“Adding Test Classes” on page 125.

“Specifying Imports” on page 132.

“Using Design by Contract With Jtest” on page 133.

“The Design by Contract Specification Language” on page 141.

“Testing A Class - Two Simple Examples” on page 23.

“Jtest Tutorials” on page 268.

Adding Method Inputs

T
esting
Adding Method Inputs
Jtest allows you to add both primitive and complex method inputs. The
procedure for adding inputs varies depending on the type of input that you
want to add.

Important: Method inputs are added to arguments in the Class Test
Parameters window.

If you are in the Class Testing UI, you can open this window by clicking
the Class button.

If you are in the Project Testing UI, you can open this window by perform-
ing the following steps:

1. Click Project .

2. Right-click the Classes in Project> <name of class to which
you want to add inputs> branch, then choose Edit Class Test
Parameters from the shortcut menu.

Adding Primitive Inputs
There are two ways to define your own primitive inputs for methods under
test:

• Using the Method’s Class Test Parameters Tree Node

• Using the Repository

Using the Method’s Class Test Parameters Tree
Node
To add primitive inputs directly to the method’s Class Test Parameters
Tree node:

1. Open the Class Test Parameters window.

2. In the Class Test Parameters window, go to Dynamic Analysis>
Test Case Generation> User Defined> Method Inputs to view
a list of all methods in the class.
119

Adding Method Inputs

120

T
es

tin
g

3. Open the node associated with the method whose inputs you
want to define.

4. Right-click the argument that you want to define an input for, then
choose Add Input Value from the shortcut menu.

5. In the text field of the box that opens, type the input that you want
to use, then press Enter to save this value.

Using the Repository
To add a primitive inputs using the repository, you must complete two
main tasks:

1. Add constants to the inputs repository.

2. Add the appropriate repository inputs to the appropriate method
argument.

Adding Constants to an Inputs Repository
To add a constant to an Inputs Repository:

1. Open the Class Test Parameters or Global Test Parameters win-
dow.

2. In the Test Parameters window, go to Dynamic Analysis> Test
Case Generation> Common> Inputs Repository .

3. Right-click Inputs Repository , then choose Add Constant from
the shortcut menu. The Add Constant window will open.

4. In the Add Constant window, enter the type of the constant (e.g.
int) in the Type field, the name of the constant (e.g. FIVE) in the
Name field, and the value of the constant (any valid Java expres-
sion-- e.g., 5) in the Value field.

Adding Method Inputs

T
esting
5. Choose Options> Save .

6. Choose Options> Quit .

Using Repository Inputs
When you want to add repository inputs to an argument:

1. In the Class Test Parameters window, right-click the node associ-
ated with the argument that you want to add an input value to
(this node is at Dynamic Analysis> Test Case Generation>
User Defined> Method Inputs> <Method Name >). A shortcut
menu will open.

2. From the shortcut menu, choose either Add From Local Repos-
itory (if the input is in the local repository), or Add From Global
Repository (if the input is in the global repository), then choose
the desired input.

Adding Non-Primitive Inputs
There are two ways to add non-primitive (object-type) inputs to a method:

• Using a .java Class File

• Using the Repository

Using a .java Class File
121

Adding Method Inputs

122

T
es

tin
g

The objects to be used for the user-defined test cases can be defined in
any .java class. Jtest can use those inputs as long as:

• The class that is defining the input object is in the classpath.

• You import each input class using the Dynamic Analysis> Test
Case Generation> Common> Imports node of the Class Test
Parameters tree.

For an example of how to add inputs using .java class files, see
<jtest_install_dir>/examples/blackbox/inputs/README.

Using the Repository
To add a non-primitive input using the repository, you must complete two
main tasks:

1. Define a method that will instantiate and set up the desired object
input, then add it to an Inputs Repository.

2. Add the appropriate repository input to the appropriate method
argument.

Adding Methods to an Inputs Repository
To add a method to an Inputs Repository:

1. Open the Class Test Parameters or Global Test Parameters win-
dow.

2. In the Test Parameters window, go to Dynamic Analysis> Test
Case Generation> Common> Inputs Repository .

3. Right-click Inputs Repository , then choose Add Method from
the shortcut menu. The Add Method window will open.

Adding Method Inputs

T
esting
In that window, define a method that creates and returns the
desired input values.

4. Enter the method declaration (e.g. int sum()) in the Decl field.

5. (Optional) If you want to check the method, choose Save &
Check from the Options menu.

6. Choose Options> Save .

7. Choose Options> Quit .

Using Repository Inputs
When you want to add repository inputs to an argument:

1. In the Class Test Parameters window, right-click the node associ-
ated with the argument that you want to add an input value to
(this node is at Dynamic Analysis> Test Case Generation>
User Defined> Method Inputs> <Method Name >). A shortcut
menu will open.

2. From the shortcut menu, choose either Add From Local Repos-
itory (if the input is in the local repository), or Add From Global
Repository (if the input is in the global repository), then choose
the desired input.
123

Adding Method Inputs

124

T
es

tin
g

Related Topics
“About Black-Box Testing” on page 113

“Performing Black-Box Testing” on page 115

“Adding Test Classes” on page 125

“Specifying Imports” on page 132

“Jtest Tutorials” on page 268

Adding Test Classes

T
esting
Adding Test Classes
Test Classes let you add test cases that are too complex or difficult to be
added as method inputs. For example, you might want to use Test
Classes if you want to:

• Use objects as inputs for static and instance methods.

• Test a calling sequence and check the state of the object using
asserts.

• Create complicated test cases that depend upon a specific calling
sequence.

• Validate the state of an object.

A Test Class is a class that extends jtest.TestClass and is used to specify
test cases that Jtest should use to test the class. For information about
jtest.TestClass, see the Jtest API javadoc (you can access this documen-
tation by choosing Help> Jtest API). The jtest.TestClass file is in the
jtest.zip file located in <jtest_install_dir>/classes.

Test Classes give you an easy way to write complicated test cases and to
verify the state of the objects under test. You can write your own Test
Classes using any Java development environment, or you can integrate
JUnit classes into your Jtest tests.

To add Test Classes, you need to:

1. Set you environment to use Test Classes.

2. Create a Test Class (or locate a JUnit Test Class)

3. Load the Test Class (this is not necessary if you have named and
saved the Test Class in the conventional manner).

These steps are described in detail below.
125

Adding Test Classes

126

T
es

tin
g

Setting Your Environment to Use Test
Classes
In order to use the Test Classes feature, you need to add the jtest.zip file
that contains jtest.TestClass to your CLASSPATH. This zip file is located
in <jtest_install_dir>/classes/jtest.zip

You can have Jtest automatically set your CLASSPATH by opening a
command prompt, changing directories to the Jtest installation directory,
then entering the appropriate command(s):

• If you are using Windows, enter:
$ jtvars.bat

• If you are using a bash or sh shell, run the jtvars.sh script in
the Jtest installation directory. For example,
$ cd <jtest-home>
$. jtvars.sh

• If you are using a csh, tcsh, or ksh shell. source the jtvars
script in the Jtest installation directory. For example,
$ cd <jtest-home>
$ source jtvars

• To determine which shell you are using, enter
$echo $SHELL

Creating Test Classes
Test Classes should specify test cases by using a public static void
method for each test case. The correct behavior of the class should be
specified using “assert (String message, boolean condition)” statements.

For example:

public class TestVector extends jtest.TestClass
{

public static void testSize ()
{

Vector vector = new Vector ();
vector.addElement(“name”);
assert ("should be 1", vector.size () == 1);

Adding Test Classes

T
esting
}

Jtest will consider methods within the class that are not static public meth-
ods to be helper methods. These methods can be called to do initializa-
tion for the test case.

A Test Class can contain any number of test cases.

For examples of Test Classes, see <jtest_install_dir>/exam-
ples/dynamic/testclasses.

Naming Conventions
It is convenient to name Test Classes so that the word “Test” appends the
class name. For example, if you want to create a Test Class for the class
called “foo”, you should name your Test Class “fooTest”. You should also
save this Test Class in the same package as the class under test. If you
follow both of these recommendations and have set your CLASSPATH as
described above, Jtest will automatically locate the Test Class when you
start a test.

For example, if you test the java.util.Vector class, Jtest will automatically
search on the CLASSPATH for a java.util.VectorTest class. If it finds this
class, it will use it as the Test Class for the java.util.Vector class.

You may also use a different name and/or save the class in a package
other than the one that contains the class under test; the only requirement
is that the class is on your CLASSPATH. However, if you use a different
name or package, you need to manually indicate that Jtest should use
this Test Class (as described below in Loading Test Classes).

Defining Stubs within a Test Class
When you are using a Test Class, you can define stubs for each test
method by defining a "stubs()" methods within the Test Class. For exam-
ple, to specify the stubs for a test case defined by a "testXYZ" method,
define a method of the form:

Object stubsXYZ (Method method, ...);

in that Test Class.
127

Adding Test Classes

128

T
es

tin
g

If a Test Class does not define a stubs method, or if it does not return any
stubs, Jtest will apply the Class and Project Test Parameters "stubs()"
methods.

For more information on User-Defined Stubs, see “Using Custom Stubs”
on page 98

Using JUnit Test Classes
If you want to use a JUnit Test Class with Jtest, you need to:

• Include the junit.jar file on your CLASSPATH.

• Manually indicate the location of your Test Class (as described in
Loading Test Classes below).

After you perform these steps, Jtest will use the JUnit Test Class when
you run your test in the normal manner.

JUnit 3.5 is supported.

Note: The Jtest Tutorial contains a lesson on using JUnit Test Classes
with Jtest. To reach this tutorial, choose Help> Tutorial in either Jtest UI.

Loading Test Classes
If you name your test <classname>Test, saved it in the same package as
the class under test, and set your CLASSPATH, Jtest will automatically
find and load it (this is described in the above section).

To manually indicate which Test Class(es) Jtest should use for the current
class:

1. Right-click the Class Test Parameter tree’s Dynamic Analysis>
Test Case Generation> User Defined> Test Classes node. A
shortcut menu will open.

2. Choose Add Test from the shortcut menu.

3. Enter the name of your Test Class in the text field.

Checking Test Classes

Adding Test Classes

T
esting
If you want to check your test class:

1. Control-click the Class Test Parameter tree’s Dynamic Analy-
sis> Test Case Generation> User Defined> Test Classes
node.

2. Choose Check from the shortcut menu.
129

Adding Test Classes

130

T
es

tin
g

Running Test Classes

Within Jtest
When Jtest performs dynamic analysis, it will execute all Test Classes
that it finds automatically and/or you load manually.

If any assertion fails, Jtest will report an error in the Specification and
Regression Errors branch of the Results panel or Errors Found panel.

If any test case throws an uncaught runtime exception, Jtest will report an
error in the Uncaught Runtime Exceptions of the Results panel or
Errors Found panel.

Note: When Jtest executes a test case within the test class, all of the Test
Class’s static variables will be initialized with default values.

Outside of Jtest
You can run a Test Class outside of the Jtest environment by entering the
following command at the command line:

java jtest.TestClass <your TestClass>

For example, if your Test Class was named fooTest, you would enter the
following command:

java jtest.TestClass fooTest

Important: In order to execute this command, you must have the jtest.zip
file in your CLASSPATH.

Testing Projects That Include Test
Classes
If you are testing a project that includes Test Classes, by default, Jtest will
not perform static or dynamic analysis on any class that it recognizes as a
Test Class.

Adding Test Classes

T
esting
Testing a Test Class
By default, Jtest does not perform static or dynamic analysis on any class
that it recognizes as a Test Class. If you want Jtest to test a Test Class,
open the class’s Class Test Parameters window, then enable the Com-
mon Parameters> Test the Test Class itself option.

Related Topics
“About Black-Box Testing” on page 113

“Performing Black-Box Testing” on page 115

“Adding Method Inputs” on page 119

“Specifying Imports” on page 132

“Jtest Tutorials” on page 268
131

Specifying Imports

132

T
es

tin
g

Specifying Imports
To specify import statements shared by all of the code used in the test
specification:

1. In the Class Test Parameters window, open Dynamic Analysis>
Test Case Generation> Common .

2. Double-click the Imports node. The Imports window will open.

3. Enter the import statement in the Imports window.

Example:
import java.util.Vector;

import java.awt*;

4. (Optional) If you want to check the method, choose Options>
Save & Check .

5. Choose Options> Save .

6. Choose Options> Quit .

Related Topics
“About Black-Box Testing” on page 113

“Performing Black-Box Testing” on page 115

“Adding Method Inputs” on page 119

“Adding Test Classes” on page 125

“Specifying Imports” on page 132

Using Design by Contract With Jtest

T
esting
Design by ContractUsing Design by Contract
With Jtest

Benefits of Using DbC With Jtest
You do not need to use Design by Contract (DbC) in order to use Jtest.
You can, however, increase Jtest’s functionality if you use DbC; there are
several main advantages to using DbC with Jtest:

• Jtest will automatically create black-box test cases that verify the
functionality described in your DbC contracts (i.e., Jtest will find
inputs that violate the preconditions, postconditions, class invari-
ant contracts, and assert clauses included in the contract).

• Jtest will automatically suppress errors for inputs that violate the
preconditions of the methods under test.

• Jtest will automatically suppress expected uncaught runtime
exceptions that are documented using the @exception Javadoc
tag.

Jtest and Jcontract
Jtest contains all necessary elements to understand DbC comments and
create test cases that check whether the specifications detailed in those
comments are indeed implemented. It uses the DbC information to check
that the unit in and of itself is implemented correctly.

Jcontract is a new Java development tool that checks DbC contracts at
runtime; it is run independently of Jtest, but the two tools are complemen-
tary. After you have used Jtest to thoroughly test a class or component at
the unit level, instrument it with Jcontract, integrate it into your sys-
tem/application, then Jcontract will automatically check whether its con-
tracts are violated at runtime. Jcontract is particularly useful for
determining whether an application misuses specific classes or compo-
nents.
133

Using Design by Contract With Jtest

134

T
es

tin
g

Creating DbC Comments
See for a general description of DbC, see “About Design by Contract” on
page 137.

See “The Design by Contract Specification Language” on page 141 for
information on how to add DbC comments to your code.

Jtest’s Design by Contract Static Analysis rules help you create
well-formed DbC contracts. These rules are not enabled by default. To
enable them, perform the following steps:

1. Open the Global Test Parameters window by clicking Global .

2. Right-click the Static Analysis> Rules> Built-in Rules> Design
by Contract node. A shortcut menu will open.

3. Choose Enable All from the shortcut menu.

Using Design by Contract With Jtest

T
esting
Using DbC Information in Tests
Jtest will use DbC information in its tests as long as the class under test’s
DbC contracts have been instrumented (by default, they are instrumented
as the class is loaded). Just run the test in the normal manner, then Jtest
reads specification information built into the class with the DbC language,
and automatically develops test cases based on this specification. Jtest
designs its black-box test cases as follows:

• If the code has postconditions, Jtest creates test cases that verify
whether the code satisfies those conditions.

• If the code has assertions, Jtest creates test cases that try to
make the assertions fail.

• If the code has invariant conditions (conditions that apply to all of
a class’s methods), Jtest creates test cases that try to make the
invariant conditions fail.

• If the code has preconditions, Jtest tries to find inputs that force
all of the paths in the preconditions.

• If the method under test calls other methods that have specified
preconditions, Jtest determines if the method under test can pass
non-permissible values to the other methods.

If Jtest finds inputs that violate preconditions, postconditions, class invari-
ant conditions, and assert clauses, it will report them in the Design by
Contract Violations branch of the Errors Found Panel (if you tested a
single class) or the Results Panel (if you tested a project).

Jtest also uses the DbC information to automatically suppress exceptions
that are not relevant to the project at hand. If you document valid excep-
tions in the code using the @exception comment tag, Jtest will suppress
any occurrence of that particular exception. If you use the @pre comment
tag to document the permissible range for valid method inputs, Jtest will
suppress errors found for inputs that fall outside of that range.

Example Files
Example DbC files are contained in the <jtest_installation_dir>/exam-
ples/dynamic/dbc directory.
135

Using Design by Contract With Jtest

136

T
es

tin
g

Instrumentation Options
If you use DbC comments, Jtest will by default instrument the comments
when it loads the class or project under test. You can control whether or
not Jtest instruments DbC comments with the Automatically Instrument
Design by Contract Comments option in all test parameters’ Dynamic
Analysis> Test Case Execution branch.

Related Topics
“About Design by Contract” on page 137

“The Design by Contract Specification Language” on page 141

“Performing Black-Box Testing” on page 115

“Customizing White-Box Testing” on page 112

“Testing A Class - Two Simple Examples” on page 23

“Using Design by Contract With Jtest” on page 133

About Design by Contract

T
esting
About Design by Contract
Design by Contract is a structured way of writing comments to define
what code should do. The contract requires components of the code
(such as classes or methods) to follow certain specifications as they inter-
act with each other. The interactions between these components must ful-
fill a set of predetermined mutual obligations.

Design by Contract originated in Eiffel. Eiffel classes are components that
cooperate through the use of the contract, which defines the obligations
and benefits for each class. DbC is not yet commonly a part of program-
ming languages such as C, C++, and Java, but ideally it should be. After
all, any piece of code in any language has implicit contracts attached to it.
The simplest example of an implicit contract is a method to which you are
not supposed to pass null . If this contract is not met, a NullPointer-
Exception will occur. Another example is a component whose specifica-
tion states that it only returns positive values. If it occasionally returns
negative values and the consumer of this component is expecting the
functionality described in the specification (only positive values returned),
this contract violation could lead to a critical problem in the application.

Tools like Jtest and Jcontract bring Design by Contract to Java by helping
you specify the contracts in comments and check whether or not the con-
tract has been fulfilled.

Example
This is an example of a class with Design by Contract comments.

public class ShoppingCart
{

/**
* @pre item != null
* @post $result > 0
*/

public float add (Item item) {
_items.addElement (item);
_totalCost += item.getPrice ();
137

About Design by Contract

138

T
es

tin
g

return _totalCost;
}
private float _totalCost = 0;
private Vector _items = new Vector ();

}

The contract specifies:

1. A precondition ("@pre item != null") which specifies that the item
to be added to the shopping cart shouldn't be "null".

2. A postcondition ("@post $result > 0") which specifies that the
value returned by the method should always be greater than 0.

Preconditions and postconditions can be thought of as sophisticated
assertions. Preconditions are conditions that the client of the method
needs to satisfy in order for the method to work properly. Postconditions
are conditions that the implementor of the class guarantees will always be
satisfied.

Benefits
Benefits of using DbC include:

• The code’s assumptions are clearly documented (for example,
you assume that item should not be null). Design concepts are
placed directly in the code itself.

• The code’s contracts can be checked for consistency because
they are explicit.

• The code is much easier to reuse.

• The specification will never be lost.

• When you see the specification while writing the code, you are
more likely to implement the specification correctly.

• When you see the specification while modifying code, you are
much less likely to introduce errors.

Once you start using Jtest and Jcontract, the benefits of using DbC also
include:

About Design by Contract

T
esting
• Black-box test cases are created automatically. If you currently
create your black-box test cases manually, this means fewer
resources spent creating test cases and more resources you can
dedicate to more complex tasks, such as design and coding. If
you do not currently perform black-box testing, this will translate
to more reliable software/components.

• Black-box test cases are automatically updated as the code’s
specification changes.

• Class/component misuse is automatically detected.

• The class implementation can assume that input arguments sat-
isfy the preconditions, so the implementation can be simpler and
more efficient.

• The class client is guaranteed that the results will satisfy the post-
conditions.

For More Information
For more information about DbC see:

• Interactive Software Engineering, "Building Bug-Free O-O Soft-
ware: An Introduction to Design by ContractTM."
http://www.eiffel.com/doc/manuals/technology/contract/page.html

• Eldridge, G. "Java and `Design by Contract.'”
http://www.elj.com/eiffel/feature/dbc/java/ge/

• Kolawa, A., "Automating the Development Process." Software
Development, July 2000. http://www.sdmagazine.com

• Meyer, B. Object-Oriented Software Construction. Prentice Hall,
2000.

Note: “Design by Contract” is a trademark of Interactive Software Engi-
neering.

Related Topics
“Using Design by Contract With Jtest” on page 133

“The Design by Contract Specification Language” on page 141
139

About Design by Contract

140

T
es

tin
g

“Performing Black-Box Testing” on page 115

“Customizing White-Box Testing” on page 112

“Testing A Class - Two Simple Examples” on page 23

The Design by Contract Specification Language

T
esting
The Design by Contract
Specification Language
This document describes the syntax and semantics for the Design by
Contract (DbC) specification supported by Jtest and Jcontract.

The Design by Contract contracts are expressed with Java code embed-
ded in Javadoc comments in the .java source file.

This document is divided into the following sections:

• “Tags Used for Design by Contract” on page 141

• “Contract Syntax” on page 146

• “Contract Semantics” on page 148

• “Contract Inheritance” on page 149

• “Coding Conventions” on page 150

Tags Used for Design by Contract
The reserved Javadoc tags for DbC are:

• @invariant: Specifies class invariant condition.

• @pre: Specifies method precondition.

• @post: Specifies method postcondition.

• @concurrency: Specifies the method concurrency.

Other tags supported by Jtest and Jcontract include:

• @throws/@exception: Used to document exceptions.

• @assert: Used to add assertions in the method bodies.

• @verbose: Used to add verbose statements to the method bod-
ies. (Not currently used by Jtest)

The following subsections describe each DbC tag in detail.
141

The Design by Contract Specification Language

142

T
es

tin
g

@pre

Description
Pre-conditions check that the client calls the method correctly.

Point of execution
Right before calling the method.

Scope
Can access anything accessible from the method scope except local vari-
ables. For example, it can access method arguments, and methods/fields
of the class.

@post

Description
Post-conditions check whether the method works correctly.

Sometimes when a post-condition fails it means that the method was not
actually supposed to accept the arguments that were passed to it. The fix
in this case is to strengthen the precondition.

Point of execution
Right after the method returns successfully. Note that if the method
throws an exception the @post contract is not executed.

Scope
Same as @pre, plus it can access "$result" and "$pre (type, expression)".

Accessibility
Same as @pre.

@invariant

Description

The Design by Contract Specification Language

T
esting
Class invariants are contracts that the objects of the class should always
satisfy.

Point of execution
Same as @pre/@post: invariant checked before checking the precondi-
tion and after checking the postcondition.

Done for every non-static, non-private method entry and exit and for every
non-private constructor exit.

If a constructor throws an exception, its @invariant contract is not exe-
cuted.

Not done for "finalize ()".

When inner class methods are executed, the invariants of the outer
classes are not checked.

Scope
Class scope, can access anything a method in the class can access,
except local variables.

Accessibility
Same as @pre/@post.

@concurrency

Description
The @concurrency tag specifies how the method can be called by multi-
ple threads. Its possible values are:

• Concurrent: The method can be called simultaneously by differ-
ent threads (i.e., the method is multi-thread safe). Note that this is
the default mode for Java methods.

• Guarded: The method can be called simultaneously by different
threads, but only one will execute it in turn, while the other
threads will wait for the executing one to finish. In other words, it
specifies that the method is synchronized. Jcontract will only
143

The Design by Contract Specification Language

144

T
es

tin
g

report a compile-time error if a method is declared as “guarded”
but is not declared as “synchronized”.

• Sequential: The method can only by executed by one thread at
once and it is not declared synchronized. It is thus the responsi-
bility of the callers to ensure that no simultaneous calls to that
method occur. For methods with this concurrency contract, Jcon-
tract will generate code to check if they are being executed by
more than one thread at once. An error will be reported at runtime
if the contract is violated.

Point of execution
Right before calling the method.

@throws/@exception
These are the standard @throws and @exception tags found in Javadoc;
they are used to document that the method throws a given exception.
@throws and @exception are synonymous. In this entry, we use
@throws to represent both tags.

The syntax for the @throws tag is:

ThrowsContract
: @throws ExceptionName Text

Example:

/** @throws NegativeArraySizeException if size is negative */

When a method throws an exception, the Jcontract Runtime Handler will
call 'documentedExceptionThrown (Throwable t)' if that exception is docu-
mented with a @throws tag.

Note that the Runtime Monitors provided with Jcontract don't take any
action when 'documentedExceptionThrown' is called. You can neverthe-
less take a specific action by defining a user defined Runtime Handler.

Jtest suppresses exceptions that are documented with the @throws tag
as long as the the classes were instrumented with the instrument
@throws condition preference set to “true”.

The Design by Contract Specification Language

T
esting
@assert

Syntax
The syntax for the @assert tag is:

AssertStmt
: @assert BooleanExpression
| @assert '(' BooleanExpression ')'
| @assert '(' BooleanExpression , MessageExpression ')'

The MessageExpression can be of any type.

For example:

/** @assert valu e > 0 */
/** @assert (value > 0) */
/** @assert (value > 0, "value should be positive */
/** @assert (value > 0, value) */

The @assert tags should appear in Javadoc comments inside the method
bodies. If the classes are compiled with 'dbc_javac' and the Instru-
ment.InstrumentAssertConditions preference is true/enabled, then the
@assert boolean expression will be evaluated. If the expression evalu-
ates to false, then one or more of the following actions take place:

• An error message is reported in Jtest’s Design by Contract>
@assert Results panel/Errors Found panel branch or in the Jcon-
tract Monitor.

• A runtime exception (jcontract.AssertException) is thrown.

• The program exits by invoking System.exit (1).

See “Contract Semantics” on page 148 for more information about how to
select the actions that take place. The default action is to report an error
and continue program execution.

@verbose
The syntax for the @verbose tag is:

VerboseStmt
: @verbose MessageExpression
145

The Design by Contract Specification Language

146

T
es

tin
g

| @verbose '(' MessageExpression ')'

For example:

/** @verbose "process starts" */
/** @verbose ("process ends") */
/** @verbose 26.7 */

The @verbose tags should appear in Javadoc comments inside the
method bodies. If the classes are compiled with 'dbc_javac' and the
Instrument.InstrumentVerboseConditions preferences is true/enabled,
then the classes are instrumented with the verbose expression.

By default, all verbose statements are inactive; once they are activated,
they print the MessageExpression to System.out.

The @verbose statements can be separately activated for each class.The
@verbose statements for a class are active if the system property jcon-
tract.verbose.CLASSNAME is set to the value ON (where CLASSNAME
is the name of the class without the package part). For example, to acti-
vate the verbose statements in class pkg.DataDictionary on Windows
use:

$ java -Djcontract.verbose.DataDictionary=ON ...

Note that the MessageExpression in a verbose statement is not evaluated
if the verbose statement is inactive.

Contract Syntax
The general syntax for a contract is:

DbcContract:
DbcTag DbcCode

| @concurrency { concurrent | guarded | sequential }

where

DbcTag:
@invariant

| @pre
| @post

The Design by Contract Specification Language

T
esting
DbcCode:
BooleanExpression

| '(' BooleanExpression ')'
| '(' BooleanExpression ',' MessageExpression ')'
| CodeBlock
| $none

MessageExpression:
Expression

Any Java code can be used in the DbcCode with the following restriction:
the code should not have side effects (i.e., it should not have assignments
or invocation of methods with side-effects).

The following extensions to Java (DbC keywords) are allowed in the con-
tract code:

• $result: Used in a @post contract, evaluates to the return value of
the method.

• $pre: Used in a @post contract to refer to the value of an expres-
sion at @pre-time. The syntax to use it is:
$pre (ExpressionType, Expression).
Note: The full "$pre (...)" expression should not extend over mul-
tiple lines.

• $assert: Can be used in DbcCode CodeBlocks to specify the con-
tract conditions.
The syntax to use it is:
$assert (BooleanExpression)
or
$assert (BooleanExpression , MessageExpression)

• $none: Used to specify there is no contract.

Notes
• The @pre, @post and @concurrent tags apply to the method that

follows in the source file.

• The MessageExpression is optional and will be used to identify
the contract in the error messages or contract violation excep-
tions thrown. The MessageExpression can be of any type. If it is a
147

The Design by Contract Specification Language

148

T
es

tin
g

reference type it will be converted to a String using the "toString
()" method. If it is of primitive type it will first be wrapped into an
object.

• There can be multiple conditions of the same kind for a given
method. If there are multiple conditions, all conditions are
checked. The conditions are ANDed together into one virtual con-
dition. For example it is equivalent (and encouraged for clarity) to
have multiple @pre conditions instead of a single big @pre con-
dition.

Examples

/**
* @pre {
* for (int i = 0; i < array.length; i++)
* $assert (array [i] != null, "array elements

are non-null");
* }
*/

public void set (int[] array) {...}

/** @post $result == ($pre (int, arg) + 1) */

public int inc (arg) {...}

/** @invariant size () >= 0 */

class Stack {...}

/**
* @concurrency sequential
* @pre (value > 0, "value positive:" + value)
*/

void update (int value) {...}

Contract Semantics
The contracts are specified in comments and will not have any effect if
compiling or executing in a non DbC enhanced environment.

The Design by Contract Specification Language

T
esting
In a DbC-enhanced environment, the contracts are executed/checked
when methods of a class with DbC contracts are invoked.

A contract fails if any of these conditions occur:

• The "BooleanExpression" evaluates to "false."

• An "$assert (BooleanExpression)" is called in a "CodeBlock" with
an argument that evaluates to "false."

• The method is called in a way that violates its @concurrency con-
tract.

If a contract fails, the Runtime Handler for the class is notified of the con-
tract violation. Jcontract provides several Runtime Handlers; the default
one uses a GUI Monitor that shows program progress and contract viola-
tions. You can also write your own Runtime Handlers.

With the Monitor Runtime Handlers provided by Jcontract, program exe-
cution continues as if nothing has happened when a contract is violated.
For example, if a @pre contract is violated, the method will still be exe-
cuted.

This option makes the DbC-enabled and non DbC-enabled versions of
the program work in exactly the same way. The only difference is that in
the DbC-enabled version, the contract violations are reported to the cur-
rent Jcontract Monitor.

Note: Contract evaluation is not nested; when a contract calls another
method, the contracts in the other method are not executed.

Contract Inheritance
Contracts are inherited. If the derived class or overriding method doesn't
define a contract, it inherits that of the super class or interface. Note that a
contract of $none implies that the super contract is applied.

If an overriding method does define a contract then it can only:

• Weaken the precondition: Because it should at least accept the
same input as the parent, but it can also accept more.

• Strengthen the postcondition: Because it should at least do as
much as the parent one, but it can also do more.
149

The Design by Contract Specification Language

150

T
es

tin
g

To enforce this:

• When checking the @pre condition, the precondition contract is
assumed to succeed if any of the @pre conditions of the chain of
overridden methods succeeds (i.e., the preconditions are ORed).

• When checking the @post condition, the postcondition contract is
assumed to succeed if all the @post conditions of the chain of
overridden methods succeed (i.e., the postconditions are
ANDed).

Note: If there are multiple @pre conditions for a given method, the pre-
conditions are ANDed together into one virtual @pre condition and then
ORed with the virtual @pre conditions for the other methods in the chain
of overridden methods.

For @invariant conditions, the same logic as for @post applies.

@concurrency contracts are also inherited. If the overriding method
doesn't have an @concurrency contract, it inherits that of the parent. If it
has an inheritance contract, it can only weaken it (as it does for @pre
conditions). For example, if the parent has a “sequential” @concurrency,
the overriding method can have a “guarded” or “concurrent” @concur-
rency.

Coding Conventions
When using Design by Contract in Java, the following coding conventions
are recommended:

• Place all the @invariant conditions in the class Javadoc comment
with the Javadoc comment appearing immediately before the
class definition.

• Javadoc comments with the @invariant tag should appear before
the class definition.

• All public and protected methods should have a contract. All
package-private and private methods should also have a con-
tract.

• If a method has a DbC tag, it should have a complete contract.
This means that if you have both a precondition and a postcondi-

The Design by Contract Specification Language

T
esting
tion, you should use "DbcTag $none" to specify that a method
doesn't have any condition for that tag.

• No public class field should participate in an @invariant clause.
Because any client can modify such a field arbitrarily, there is no
way for the class to ensure any invariant on it.

• The code contracts should only access members visible from the
interface. For example, the code in a method’s @pre condition
should only access members that are accessible from any client
that could use the method. In other words, the contract of a public
method should only use public members from the method's class.

Note: Jcontract does not currently enforce these conventions.

Related Topics
“Using Design by Contract With Jtest” on page 133

“About Design by Contract” on page 137

“Performing Black-Box Testing” on page 115

“Customizing White-Box Testing” on page 112

“Testing A Class - Two Simple Examples” on page 23
151

About Regression Testing

152

T
es

tin
g

Regression TestingAbout Regression Testing
Regression testing checks that class behavior doesn't change. Regres-
sion testing gives you the peace of mind of knowing that the class doesn't
break when the code is modified.

Jtest provides automatic regression testing. Even if you don't specify what
the correct outcomes are, Jtest remembers the outcomes from previous
test runs, compares outcomes every time the class is tested, and reports
an error for any outcome that changes.

Related Topics
“Performing Regression Testing” on page 153

Performing Regression Testing

153

T
esting

Performing Regression
Testing
Jtest performs regression testing, along with all other appropriate types of
testing, each time that you test a class or set of classes that has already
been tested at least once.

To perform regression testing:

1. Open the appropriate UI for your test. The Class Testing UI is
used to test a single class; the Project Testing UI is used to test a
set of files.

• The Class Testing UI opens by default when Jtest is
launched.

• The Project Testing UI can be opened by clicking the
Class Testing UI’s Project Button.

2. Restore previously saved test parameters by doing one of the fol-
lowing:

• Choosing File> Open , then selecting the appropriate .ctp
(for class test parameters) or .ptp (for project test param-
eters) file in the file chooser.

• (For recently accessed tests) Choosing File> Open
Recent> [File Name] .

3. Run the test by clicking the Start button.

Regression errors found will be reported in the Specification and
Regression Errors branch of the Errors Found Panel (if you tested a sin-
gle class) or the Results Panel (if you tested a project).

Related Topics
“About Regression Testing” on page 152

“Jtest Tutorials” on page 268

Integrating VisualAge and Jtest

154

T
es

tin
g

IDE Integration

Integrating VisualAge and
Jtest
Jtest integrates into IBM’s VisualAge 3.5, 3.5.3, and 4.0.

After you integrate Jtest into VisualAge, you will be able to test your files
with Jtest from within the VisualAge IDE.

To integrate Jtest into VisualAge:

1. If you have not already done so, install both Jtest and VisualAge.

2. If you have not already done so, start Jtest and close VisualAge.

3. Choose Tools> IDE Integration> IBM VisualAge> <visualage
version_number> in either of Jtest’s UIs.

Jtest will then open a dialog box that displays the VisualAge installation
directory it detected. If this is not the correct directory, change the direc-
tory by entering the correct directory or by browsing to it.

Next, Jtest will place the correct files in the VisualAge IDE’s Tools direc-
tory, and you will be ready to use Jtest within VisualAge.

For details on using Jtest within VisualAge, see “Using Jtest Within Visu-
alAge” on page 155.

Using Jtest Within VisualAge

T
esting
Using Jtest Within
VisualAge
After you have integrated Jtest into VisualAge as described in “Integrating
VisualAge and Jtest” on page 154, you can use Jtest within the VisualAge
IDE to perform any of the following actions:

• Test a single class within a project.

• Test a package.

• Test a project.

• Test a class that uses a class in another project.

• Edit your source code.

• Import Test Classes or Stub Classes.

• Remove exported files.

Testing a Single Class Within a
Project

1. In the VisualAge IDE, right-click the class that you want to test,
then choose Tools> Jtest> Test Class from the shortcut menu.
This will export the Project that contains the class and load the
class in Jtest’s Class Testing UI. The VAJ log window will indicate
that it is exporting into Jtest. After the export is complete, the log
window will indicate that you must export the class under test’s
dependencies before you start testing in Jtest.

2. To start testing, click Start in Jtest’s Class Testing UI.

Testing a Package
1. In the VisualAge IDE, right-click the package that you want to

test, then choose Tools> Jtest> Test Package from the shortcut
menu. This will export the project the class is contained within
and load the package path in Jtest’s Project Testing UI. The VAJ
155

Using Jtest Within VisualAge

156

T
es

tin
g

log window will indicate that it is exporting into Jtest. After the
export is complete, the log window will indicate that you must
export the package under test’s dependencies before you start
testing in Jtest.

2. To start testing, click Start in Jtest’s Project Testing UI.

Testing a Project
1. In the VisualAge IDE, right-click the project that you want to test,

then choose Tools> Jtest> Test Project from the shortcut menu.
This will export the project and load the project path in Jtest’s
Project Testing UI. After the export is complete, the log window
will indicate that you must export the project under test’s depen-
dencies before you start testing in Jtest.

2. To start testing, click Start in Jtest’s Project Testing UI.

Testing a Class that Uses a Class in
Another Project
To test a class that uses a class in another project, you need to export the
dependencies into Jtest. You can export a single class, a package, or a
project.

To export a single class needed for testing:

• Right-click the class in the VisualAge IDE, then choose Tools>
Jtest> Export Class from the shortcut menu.

To export a package needed for testing:

• Right-click the package in the VisualAge IDE, then choose
Tools> Jtest> Export Package from the shortcut menu.

To export a project needed for testing:

• Right-click the project in the VisualAge IDE, then choose Tools>
Jtest> Export Project from the shortcut menu.

When you export a class, package, or project into Jtest, it will be automat-
ically be added to the Jtest classpath. All classes, packages, and projects

Using Jtest Within VisualAge

T
esting
that you have tested or exported into Jtest will be placed in the following
path:
<jtest_installation_directory>/u/<your_user_name>/
tmp/va/export/<path to class >
157

Using Jtest Within VisualAge

158

T
es

tin
g

Editing Your Source Code
Whenever you choose to edit your source code from Jtest, Jtest will auto-
matically open the appropriate file in the VisualAge IDE.

When you start a test in Jtest, the package or project being tested is
re-exported to capture any changes made when you edited your code
within VisualAge.

Importing Test Classes and Stub
Classes
To use Test Classes and Stub Classes, you must first import them into
your workspace. To do this, choose Workspace> Tools> Jtest> Import
Jtest classes from the VisualAge menu bar. This will create a project
titled “Jtest classes” and import Jtest classes (Jtest API) in VisualAge’s
workspace.

Removing Exported Files
After you are done testing, if you want to remove the files that Jtest
exported to your file system, choose Workspace> Tools> Jtest> Clean
Export Directory from the VisualAge menu bar

Additional Notes on Jtest/VisualAge
Integration

• Only files currently in the workspace can be exported.

• When Jtest is started, the project that is being tested (or the
project that contains the class or package being tested) is auto-
matically exported to the File System. All the classes must be in
the workspace. Classes that are in the repository but not in the
workspace will not be exported.

• If a class that you want to test depends on a class or package in
another project, you need to perform one of the following steps to
export that class, package, or project into Jtest:

Using Jtest Within VisualAge

T
esting
• Right-click the class, then choose Tools> Jtest> Export
Class .

• Right-click the package, then choose Tools> Jtest>
Export Package .

• Right-click the project, then choose Tools> Jtest>
Export Project .

• If you change a tested class, package, or project while Jtest is
open, you don’t need to restart Jtest. When you click Jtest’s Start
button, the entire project is re-exported and all of the changes in
that current project will be captured.

• Jtest behaves as follows to improve testing speed:

• When you right-click a package or project then choose
Tools> Jtest> Test Project/Package , Jtest asks you
whether you would like to re-export the project/package.
If you modified your code since you chose Test
Project/Package (and want to test the modified code,
choose Yes. Otherwise, choose No.

• Jtest will not collect global static analysis information
before you test in the Class Testing UI. This information
will still be collected when you test a set of files in the
Project Testing UI.
159

Integrating JBuilder and Jtest

160

T
es

tin
g

Integrating JBuilder and
Jtest
Jtest integrates into Inprise’s JBuilder 4 and 5.

After you integrate Jtest into JBuilder, you will be able to test your files
with Jtest from within the JBuilder IDE.

To integrate Jtest into JBuilder:

1. If you have not already done so, install both Jtest and JBuilder.

2. If you have not already done so, start Jtest and close JBuilder.

3. Choose Tools> IDE Integration> Inprise JBuilder>
<jbuilder_version_number> in either of Jtest’s UIs.

Jtest will then open a dialog box that displays the JBuilder installation
directory it detected. If this is not the correct directory, change the direc-
tory by entering the correct directory or by browsing to it.

Next, Jtest will place the correct files in the JBuilder IDE’s Tools directory,
and you will be ready to use Jtest within JBuilder.

For details on using Jtest within JBuilder, see “Using Jtest Within
JBuilder” on page 161.

Using Jtest Within JBuilder

161

T
esting

Using Jtest Within JBuilder
After you have integrated Jtest into JBuilder as described in “Integrating
JBuilder and Jtest” on page 160, you can use Jtest within the JBuilder
IDE to test a single class or a project.

Note: When you use Jtest from within JBuilder, results are saved in
<jtest_install_dir>/u/<username>/JB.

Testing a Single Class Within a
Project

1. In the JBuilder IDE, ensure that the class that you want to test is
active.

2. Choose Tools> Jtest> Test Active Class . This will load the
active JBuilder class in Jtest’s Class Testing UI.

3. To start testing, click Start in Jtest’s Class Testing UI.

Testing a Project
1. In the JBuilder IDE, ensure that the class that you want to test is

active.

2. Choose Tools> Jtest> Test Active Project . This will load the
active JBuilder project in Jtest’s Project Testing UI.

3. To start testing, click Start in Jtest’s Project Testing UI.

Editing Source Code in JBuilder
If you have integrated JBuilder into Jtest and you choose to edit your
source code from Jtest, Jtest will open up the source code in JBuilder. If
you choose to edit the source code related to a specific error message
(for example, by right-clicking a static analysis violation message with a
specific line reference, then choosing Edit Source), the referenced line of
source code will be highlighted in JBuilder.

Saving and Restoring Tests Parameters

162

T
es

tin
g

Test-Related TasksSaving and Restoring Tests
Parameters

Saving Parameters
If you save test parameters, you will be able to instantly restore the pre-
cise testing circumstances that you used for a previous test. This lets you
accurately repeat a test to see if modifications caused class behavior to
change and/or introduced errors (i.e., it lets you perform regression test-
ing).

Whenever Jtest tests a class, it automatically saves the class test param-
eters in the file whose name is shown in the status bar. Whenever Jtest
tests a set of classes, it automatically saves project test parameters for
the project as a whole, as well as class test parameters for each class
contained in the project.

You can also save parameters under a different name by choosing Save
As from the File menu in the appropriate UI. (Use the Project Testing UI
to save project test parameters, and the Class Testing UI to save class
test parameters).

Restoring Test Parameters
To restore parameters from a previous test (for example, to perform
regression testing), simply choose File> Open from the appropriate UI
(Use the Class Testing UI to restore class test parameters; use the
Project Testing UI to restore project test parameters). In the file chooser
that opens, select the .ctp (for class test parameters) or .ptp (for project
test parameters) file that you want to restore, then Jtest will open the
specified test parameters.

You can also open recent parameters by choosing File> Open Recent>
[File Name] .

Viewing Test History

T
esting
Viewing Test History
To view a record of all previous Project Test runs (including test start and
end time, as well as a brief summary of test results) for the current project
test, click the History button in the Project Testing UI tool bar.

To view the same type of data for every previous Project Test run,
right-click the History button in the Project Testing UI tool bar, and
choose Global History from the shortcut menu.

Both history windows have identical functionality.

• To remove a record from the test history, right-click the appropri-
ate record, then choose Delete from the shortcut menu.

• To delete all history entries, right-click the History node and
choose Delete All Entries from the shortcut menu.

• To view a log of a test run, right-click the node that identifies that
test run, then choose View Log from the shortcut menu.

• To view a summary report of a test run, right-click the node that
identifies that test run, then choose View Summary Report from
the shortcut menu.
163

Viewing Test History

164

T
es

tin
g

• To view metrics for a test run, right-click the node that identifies
that test run, then choose View Project Metrics from the shortcut
menu. For information on creating graphs that track how metrics
vary as the project progresses, see “Tracking Metrics Over Time”
on page 76.

Viewing Test History

T
esting
165

Viewing Coverage Information

166

T
es

tin
g

Viewing Coverage
Information
You can view coverage information in three areas:

• The Class Testing UI’s Test Progress panel (see “Test Progress
Panel” on page 201).

• The Project Testing UI Results panel’s [Class Name]> Test
Progress> Dynamic Analysis> Total Coverage branch. (see
“Test Progress” on page 47).

• A single class report (see “Single Class Report” on page 177).

A method is designated “covered” if Jtest automatically tests any part of
the constructor.

Jtest performs data coverage for the generated input categories; this
means that the parts of the class that have been covered are thoroughly
tested with respect to those inputs.

The coverage reported is relative to the classes that have been accessed
for the paths Jtest has tried. If some part of the class is not covered, it
means that Jtest has not yet found a path leading to those statements or
no path leads to those statements.

In class testing mode, Jtest usually covers approximately 50% of a class's
code. Sometimes Jtest will be able to test 100% of the class, and some-
times it will test less than 50% of the class.

Generating Coverage Information For
Every Class the Original Class
Accesses
To have Jtest generate coverage information for every class that the orig-
inal class accesses, choose Preferences> Configuration Options>
Report file> Show All Classes Accessed . The next report opened will

Viewing Coverage Information

T
esting
include coverage information for all classes accessed by the original class
under test.

Determining What Lines Were Not
Covered
To determine what lines were not covered, view the single class test
report file. Any lines that have a “>” in front of them were not tested.
167

Viewing Context-Sensitive Help

168

T
es

tin
g

Viewing Context-Sensitive
Help
Jtest has context-sensitive help topics associated with almost every
option, command, and UI component.

To view context-sensitive help topics:

1. Enable context-sensitive help by clicking the Context Help but-
ton in either UI's tool bar, or by choosing Help> Activate Context
Help .

2. Move your cursor over the item that you want to learn more
about. If a context-sensitive help topic is available for this ele-
ment, that topic will then open.

Viewing, Editing, or Compiling a Source

T
esting
Viewing, Editing, or
Compiling a Source

Viewing the Source of a Violation
You can view the source of a violation, with the problematic line high-
lighted, by double-clicking the file/line information for the error in the
Errors Found panel (in the Class Testing UI) or in the Errors Found branch
of the lower Results panel (in the Project Testing UI). Another way to view
the source is to right-click that same error message and choose View
Source from the shortcut menu.

Editing the Source of a Violation
You can also edit the source of a violation from within Jtest. To edit the
source of a violation, right-click the file/line information for the violation
message in the Errors Found panel (in Class Testing UI) or in the Errors
Found branch of the lower Results panel (in Project Testing UI), and
choose Edit Source from the shortcut menu. The source will then open in
Notepad (Windows) or vi (UNIX). (To use a different editor, choose Pref-
erences> Configuration Options> Editor , and enter your preferred edi-
tor in the dialog box that opens).

Viewing, Editing, and Compiling Any
Source
In addition, you can view, edit, and compile the source of any class under
test (whether or not it contains a violation) via the Class Testing UI. Before
you perform any of these actions, you must first open the class in the
Class Testing UI. When your class is open in the Class Testing UI, you
can perform any of the following actions:

• View class source in Jtest's Source Viewer: Click Source .
169

Viewing, Editing, or Compiling a Source

170

T
es

tin
g

• Edit class source in source editor: Right-click the Source but-
ton, then choose Edit Class Source . Notepad (Windows) or vi
(UNIX) is used as the default editor. To use a different editor,
choose Preferences> Configuration Options> Editor , then
enter your preferred editor in the dialog box that opens.

• Compile the current class: Right-click the Source button, then
choose Compile Class .

Viewing and Validating Test Cases

T
esting
Viewing and Validating Test
Cases
In the View Test Cases window, you can view and validate the test cases
that Jtest used for Dynamic Analysis.

To open this window from the Class Testing UI, click the View Test Cases
button.

To open this window from the Project Testing UI’s Results panel,
right-click the [Class Name] node, then choose View Test Cases from
the shortcut menu.

About the View Test Cases Window
The View Test Cases window contains the following nodes:

Test cases for [classname]

Contains the test cases that Jtest generated and executed in this
171

Viewing and Validating Test Cases

172

T
es

tin
g

class’s most recent test.

Automatic Test Cases

Contains the test cases that Jtest generated automatically. Only the
test cases that do something new (e.g., increase coverage, throw a
new exception, etc.) are shown.

[method name]

Contains test cases for this method.

Test Case

Contains all of the information for a test case.

Test Case Input

Contains input that defines the test case.

The input for automatic test cases is the calling sequence.

The input for user defined test cases is the input for each argument.

If stubs were used, they will be listed here. Empty boxes indicate
automatically generated stubs. Black boxes indicate user-defined
stubs. For more information on stubs, see “Testing Classes That Ref-
erence External Resources” on page 93 and “Using Custom Stubs”
on page 98.

Outcomes

Contains outcomes for this test case. Verify if the outcomes are cor-
rect or incorrect according to the class specification and set their state
using the shortcut menus.

When the outcome is an object, Jtest automatically chooses the
toString method to show its state.

If a method named jtestInspector is defined for the object’s class,
Jtest will only use the return value of this method to show the object
state.

Viewing and Validating Test Cases

T
esting
If no toString or jtestInspector methods are defined, Jtest will heuristi-
cally choose some public instance methods for that object to show its
state.

If the method under test is a static method, Jtest will heuristically
choose public static methods to show the class state. If the methods
Jtest chose are not enough, declare a static method called sjtestIn-
spector for the class. Jtest will use the return value of this method to
show the object class.

[n]= number of outcomes for this test case.

Exception

Indicates whether an exception occurred, and, if so, what type of
exception occurred.

If an exception was suppressed, you can see the reason for the sup-
pression by right-clicking the exception message node and choosing
Why Suppressed? from the shortcut menu.

User Defined Test Cases

Contains test cases generated from user-defined input.

Method Inputs

Contains test cases generated from method inputs.

[method name]

Contains test cases for this method.

Test Case

Contains all of the information for a test case.

Test Case Input

Contains input that defines the test case.

The input for automatic test cases is the calling sequence.
173

Viewing and Validating Test Cases

174

T
es

tin
g

The input for user defined test cases is the input for each argument.

If stubs were used, they will be listed here. Empty boxes indicate
automatically generated stubs. Black boxes indicate user-defined
stubs. To see the stack trace where a stub invocation occurred,
expand the stub’s branch. For more information on stubs, see “Test-
ing Classes That Reference External Resources” on page 93 and
“Using Custom Stubs” on page 98.

Outcomes

Contains outcomes for this test case. Verify if the outcomes are cor-
rect or incorrect according to the class specification and set their state
using the shortcut menus.

When the outcome is an object, Jtest automatically chooses the
toString method to show its state.

If a method named jtestInspector is defined for the object’s class,
Jtest will only use the return value of this method to show the object
state.

If no toString or jtestInspector methods are defined, Jtest will heuristi-
cally choose some public instance methods for that object to show its
state.

If the method under test is a static method, Jtest will heuristically
choose public static methods to show the class state. If the methods
Jtest chose are not enough, declare a static method called sjtestIn-
spector for the class. Jtest will use the return value of this method to
show the object class.

[n]= number of outcomes for this test case.

Exception

Indicates whether an exception occurred, and, if so, what type of
exception occurred. When an exception occurs, stack trace informa-
tion can be displayed by opening this node.

Viewing and Validating Test Cases

T
esting
If an exception was suppressed, you can see the reason for the sup-
pression by right-clicking the exception message node and choosing
Why Suppressed? from the shortcut menu.

Test Classes

Contains the number of test cases added from test classes.

If you change specification and regression test cases and want to restore
the set used during the actual tests, right-click the Specification and
Regression Test Cases node, then choose the Reload option from the
shortcut menu. Jtest will then reload the original test cases.

The color of the arrow to the left of a leaf has the following meaning:

• green: The outcome is correct, or has been validated as correct
by the user.

• red: The outcome is incorrect (or has been validated as incorrect
by the user), or an uncaught runtime exception was detected.

• gray: The outcome status is unknown, and no uncaught runtime
exceptions were detected.

• no arrow: The user has specified to ignore this outcome.

If the Perform Automatic Regression Testing flag is selected, Jtest will
assume that gray outcomes are correct and will report an error if the out-
come changes.

In this window, the outcome is marked as incorrect if it is different than the
one in the Specification and Regression Test Cases branch of the
Errors Found panel (in the Class Testing UI) or Results panel (in the
Project Testing UI). When more than one test case outcome differs, only
one of them is marked as an error and only that one is reported as an
error in the Errors Found panel or Results panel.

Validating Outcomes
Indicate whether or not the outcome for each test case is correct by
right-clicking the appropriate outcome node, then choosing Mark as Cor-
175

testclas.htm

Viewing and Validating Test Cases

176

T
es

tin
g

rect (if the listed outcome is the expected outcome), Mark as Incorrect (if
the listed outcome is not the expected outcome), Mark as Unknown (if
you don't know how the listed outcome compares to the expected out-
come), or Mark as Ignore (if you want Jtest to ignore the listed outcome)
from the shortcut menu.

To ignore an entire test, right-click the appropriate Test Case node, and
choose Ignore this Test Case from the shortcut menu. To tell Jtest to
stop ignoring a test case you previously told it to ignore, right-click the
appropriate Test Case node, and choose Do Not Ignore this Test Case
from the shortcut menu.

To evaluate all of a test case’s outcomes with one click, right-click the
appropriate Outcomes leaf, then choose the appropriate Set All to...
command from the shortcut menu.

To remove an entire test case, right-click the appropriate Test Case node,
then choose Delete from the shortcut menu.

To remove the entire set of test cases, right-click the Specification and
Regression Test Cases node, then choose Delete All from the shortcut
menu.

To indicate the correct outcome for a test case:

1. Open the Class Test Parameters window.

2. Open that test case’s branch in Dynamic Analysis> Test Case
Evaluation> Specification and Regression Testing .

3. Right-click the outcome, choose Edit from the shortcut menu,
then enter the correct value in the text field that opens.

Viewing a Report of Results

T
esting
Viewing a Report of Results
Jtest generates the following types of reports:

• Single Class Report

• Project Report

• Detailed Project Report

• Summary Project Report

These reports all use the standard JNI 1.1 specification to identify meth-
ods.

By default, the reports are formatted in text (ASCII) format. If you would
like Jtest to generate HTML reports (e.g., if you want to post the report on
your development intranet), choose Preferences> Configuration
Options> Report Format> HTML .

Single Class Report
After performing a test on a single class, Jtest will generate a Single
Class Report of the testing session.

This report contains, among other information, the annotated source code
for the tested class. This may be used to determine what lines Jtest
tested and what lines it did not test. Lines of code that were not tested are
marked with a “>” at the beginning of the line; absence of the “>” indicates
that a line was tested.

To access the Single Class Report, click the Report button in the Class
Testing UI tool bar.

By default, Jtest does not show the source of every accessed class
unless you tell it to do so. Use the Preferences> Configuration
Options> Report File> Show All Classes Accessed option to tell Jtest
to display the annotated source of each class accessed by the class
under test. Also, Jtest does not, by default, show the test cases used for
the test. Use the Preferences> Configuration Options> Report File>
Show Test Cases option to tell Jtest to include test case information in
this report.
177

Viewing a Report of Results

178

T
es

tin
g

If you would like a Single Class Report for a class included in a project
test, open the class in the Class Testing UI, then click the Report button.

Summary Project Report
This is the least detailed of the three available project reports. This report
contains the test name and a one line report of each error available in the
Results panel; if there are no errors, this report contains only the test
name.

To access the Summary Project Report, right-click the Report button in
the Project Testing UI tool bar, then choose View Summary Report from
the shortcut menu; you can also obtain this report by using
-summary_report in the command line.

All project reports contain only information on the classes and errors that
were available in the Results panel when the Report button was clicked.
To limit the classes and errors contained in your report, display only the
desired classes and errors in the Results panel before you click the
Report button.

Project Report
This report is more detailed than the Summary Project Report, but less
detailed than the Detailed Project Report. This report contains project test
parameters as well as all essential details about each error available in
the Results panel.

To access the Project Report, click the Report button in the Project Test-
ing UI tool bar, or use -report at the command line.

All project reports contain only information on the classes and errors that
were available in the Results panel when the Report button was clicked.
To limit the classes and errors contained in your report, display only the
desired classes and errors in the Results panel before you click the
Report button.

open_cla.htm

Viewing a Report of Results

T
esting
Detailed Project Report
This is the most detailed of the three available project reports. This report
contains project test parameters, class test parameters, and all results
information available in the Results panel.

To access the Detailed Project Report, right-click the Report button in the
Project Testing UI tool bar, then choose View Detail Report from the
shortcut menu; you can also obtain this report by using
-detail_report in the command line.

All project reports contain only information on the classes and errors that
were available in the Results panel when the Report button was clicked.
To limit the classes and errors contained in your report, display only the
desired classes and errors in the Results panel before you click the
Report button.
179

Customizing Test Parameters

180

T
es

tin
g

Customizing Your TestCustomizing Test
Parameters
The testing done by Jtest is highly customizable. Test parameters can be
customized at three levels:

• Global Test Parameters (apply to all tests)

• Project Test Parameters (apply to a specific project, or set of
classes)

• Class Test Parameters (apply to a specific class)

For details on each of these types of parameters, see the appropriate top-
ics.

In general, you modify parameter values by right-clicking and choosing
available options from the shortcut menus that open, by double-clicking a
node and entering values in a dialog box that appears, or by select-
ing/clearing the radio button to the left of a node.

Parameters that Appear at Multiple
Levels
When setting parameters, be aware that several parameters appear at
more than one level. For example the parameter Static Analysis>
Rules> Severity Levels appears in all parameters (Global, Project and
Class).

When testing a class, Jtest uses the value in the Class Test Parameters.
If a value is set to Inherit , the value of the current parent parameter is
used. In this case, the actual value that will be used is shown in the icon
or in parentheses.

When creating a new test, the value in the parent parameter is used. For
example, when creating a Project test, the value of the flag in the Global
Test Parameters is used as the initial value. In such instances (where the
child parameter inherits a value from a parent parameter) the parameter
value is designated as Inherit .

Sharing Project Test Parameters

T
esting
Sharing Project Test
Parameters
You can have multiple members of your team run identical tests or sub-
sets of a test by sharing test parameters. Parameters can be shared by
anyone running Jtest, whether they are on the same machine or a differ-
ent machine. For example, if you create a project and add some test
cases to some of your classes, any other team member who shares your
project parameters can edit any of your project’s classes, then run the
exact same tests that you ran.

The following steps explain how to share project test parameters; they are
best understood when you are looking at the example project contained in
dv_mcjt.zip:

1. In the Project Testing UI, create a .ptp file (e.g., all.ptp) in source
control that contains the project test parameters.

a. In the Project Testing UI’s Search In field, enter the loca-
tion of the classes that you want to test. For example,
enter

$HOME/dv/mcjt .

b. Use the Project Test Parameters’ Common Parame-
ters> Directories> Class Test Parameters Root node
to specify a class test parameters root that falls under
source control.

For example, to tell Jtest to put each .ctp file in the same
place as the associated .java file, open the Project Test
Parameters window, go to Common Parameters>
Directories , then enter

$HOME/dv/mcjt

in the Class Test Parameters Root node.

c. Specify any other Project Test parameters that may be
needed (e.g., parameters in Common Parameters>
java/javac-like Parameters , or in Common Parame-
ters> Source Path).
181

dv_mcjt.zip

Sharing Project Test Parameters

182

T
es

tin
g

d. Use File> Save As to save the project test parameters in
a location under source control. For example, save the
project as all.ptp in the $HOME/dv/mcjt directory

2. Create specific .ptp files to test subprojects within the full project.

a. Each developer in the group should open the .ptp file for
the full project, modify the Filter in field’s parameter so
that Jtest only tests the classes he or she is responsible
for, then save the modified project as a different .ptp file.

For example, to break frog.ptp into frog_yellow.ptp and
frog_green.ptp:

• Copy frog.ptp to frog_yellow.ptp.

• Modify the value in the Filter In field to ani-
mals.amphibians.frog.yellow

• Copy frog.ptp to frog_green.ptp.

• Modify the value in the Filter In field to ani-
mals.amphibians.frog.green.

b. Each developer should work with the .ptp and .ctp files
for the classes he or she is responsible for.

Note that the first time Jtest creates each class, it automatically
creates a .ctp file for it. This .ctp file will be located in the same
location as the corresponding .java file. For example, if you have
a class at

animals/mammals/human/Human.java

Jtest will create a .ctp file at

animals/mammals/human/Human.ctp

The .ctp files in the project that you want to share should also be
placed under source control. The person responsible for a given
.java file should be responsible for the corresponding .ctp file.

You only need to modify the .ctp file when you change some of
the class test parameters (e.g. if you add test cases, change out-
come values, or suppress static analysis error messages). In
those cases, you need to check the .ctp file in and out of source
control.

Sharing Project Test Parameters

T
esting
3. To run all tests after the build, open the .ptp file associated with
the full project test, then run the test by clicking the Start button.
Jtest will then test all of the classes in the project using the .ctp
files that all developers collaborated on.
183

Customizing Reporting of Violations

184

T
es

tin
g

Customizing Reporting of
Violations
To customize Jtest so that it only reports the errors relevant to your
project, you can suppress the reporting of any static analysis warning
messages and uncaught runtime exception messages that you do not
want displayed.

Related Topics
“Static Analysis Suppressions” on page 84

“Dynamic Analysis Suppressions” on page 89

“Customizing White-Box Testing” on page 112

Customizing System Settings

185

T
esting

Customizing System
Settings
Use commands found in the Preferences menu of the Class Testing UI or
Project Testing UI menu bar to customize Jtest system settings.

For more information about available menu items, see “Class Testing UI
Menu Bar” on page 190 and “Project Testing UI Menu Bar” on page 206.

Jtest UI Overview

186

Jt
es

tU
I

Jtest UI HelpJtest UI Overview
Jtest has two available UIs:

• Class Testing UI: Area to test a single class or view results of a
single class tested as part of a project test.

• Project Testing UI: Area to test a set of classes (from a directory,
zip file, or jar file). When this UI is open, it tales control of the
Class Testing UI.

By default, Jtest opens the Class Testing UI the first time that you start
Jtest, then opens the last UI that you were working with all subsequent
times you start Jtest.

To determine which UI appears when Jtest is started, choose Prefer-
ences> UI Preferences> Starting UI <Desired UI> . To configure Jtest to
automatically open whichever UI you were working with the last time that
you closed Jtest, choose Last UI Visible instead of <Desired UI> .

Trees

187

JtestU
I

Trees
The following features are common to all of Jtest’s trees:

• Shortcut menus for the nodes: Many of Jtest’s tree nodes con-
tain shortcut menus that allow you to perform various actions
related to that node. If a tree node has an associated shortcut
menu, a right-click icon will appear when your cursor is placed
over that node. To access a node’s shortcut menu, right-click the
node. To access context-sensitive help for a certain shortcut
menu option, enable context-sensitive help, then position your
cursor over the shortcut menu option that you want to learn more
about.

• Shortcut menus for the trees: All of Jtest’s trees have an extra
shortcut menu that you can access by clicking the right mouse
button while pressing the Control key.
This extra shortcut menu contains the following commands:

• Find: Finds strings in the tree.

• Print: Prints the tree.

• Expand Children: Completely expands the tree to reveal
all children.

• Collapse Children: Collapses all children in the tree.

• Check: Checks the node contents (if the node allows that
operation) and/or displays any error messages associ-
ated with the node.

Cursors

188

Jt
es

tU
I

Cursors
Jtest uses two special cursors to alert you to “hidden” options and/or infor-
mation:

• The help cursor:

After context-sensitive help has been enabled, this cursor indi-
cates that there is a context-sensitive help topic available for the
item that the cursor is positioned over.

• The right-click cursor:

This cursor indicates that a shortcut menu is associated with the
item that the cursor is positioned over. The shortcut menu can be
accessed by right-clicking the item.

Class Testing UI

189

JtestU
I

Class Testing UIClass Testing UI
The Class Testing UI allows you to perform and configure tests of single
classes, as well as focus on the results of a class tested as part of a
project test. This UI consists of the following components:

• Class Testing UI Menu Bar

• Class Testing UI Tool Bar

• Class Name Panel

• Test Progress Panel

• Errors Found Panel

For information on testing a class in the Class Testing UI, see “Testing a
Single Class” on page 21.

Class Testing UI Menu Bar

190

Jt
es

tU
I

Class Testing UI Menu Bar

File
Commands in this menu control basic test functionality.

• New: Starts a new session by clearing any existing setup values
or settings.

• Open: Opens an existing test specification saved as a .ctp file.

• Open Recent: Opens parameters of a recent test. Contains a list
of the most recently opened classes; choose a file name from this
list to open the associated parameters file. The Clear List com-
mand clears all items from this list.

• Save: Saves the current class test parameters in the test param-
eters file shown in the status bar.

• Save As: Saves the current class test parameters in the test
parameters file that you specify.

• Close UI: Closes the Class Testing UI. If the Project Testing UI is
not open, choosing this command will also close Jtest.

• Exit: Closes Jtest.

Test
Commands in this menu start and stop tests.

• Start: Starts testing the class whose name appears in the Class
Name field.

• Stop: Stops the current test.

View
Commands in this menu display information related to the current test.

• Report: Contains the following report-related commands:

Class Testing UI Menu Bar

JtestU
I

• View Report: Displays the Single Class Report of the
current test.

• Print ASCII Report: Sends the Single Class Report
directly to the printer.

• Test Cases: Opens the View Test Cases window (displays test
cases that Jtest used for Dynamic Analysis).

• Metrics: Displays class metrics.

• Class Test Parameters: Lets you view and edit the Class Test
Parameters (parameters used for the current class test).

• Global Test Parameters: Lets you view and edit the Global Test
Parameters (parameters used for all Jtest tests).

• Source: Contains the following commands that let you view, find,
and compile source files:

• View Class Source: Displays the source of the current
class in Jtest's source viewer.

• Edit Class Source: Displays the source of the current
class in the integrated source editor.

• Locate .java file: Displays the path to the .java file cur-
rently under test.

• Locate .class file: Displays the path to the .class file cur-
rently under test.

• Compile Class: Compiles the source of the current
class.

Preferences
Commands in the menu let you customize Jtest system settings.

• Configuration Options: Contains the following non-UI-related
configuration options:

• Editor: Opens a dialog box that lets you determine what
editor is invoked when you view report files and edit your
source. If the editor command includes white-space,
enclose the command in quotation marks. To represent
191

metrics.htm

Class Testing UI Menu Bar

192

Jt
es

tU
I

the file parameter and the line number parameter, use
the special tokens $FILE and $LINE in the lower text
field.

• Tips: Contains the following options that configure con-
text-sensitive tips:

• Reactivate All: Reactivates all context-sensitive
tips.

• Deactivate All: Turns off all content-sensitive
tips.

• Report Format: Contains options which let you deter-
mine whether Jtest’s reports are formatted in HTML or in
ASCII (text) format.

• Report File: Contains the following options that custom-
ize report file characteristics:

• Show All Classes Accessed: Determines
whether or not Jtest’s single class reports anno-
tate all sources for each class accessed during
testing.

• Show Test Cases: Determines whether or not
Jtest includes test case information in single
class reports.

• UI Preferences: Contains the following UI-related configuration
options.

• Starting UI: Determines whether the Class Testing UI or
the Project Testing UI opens by default when Jtest is
started. Choose Last UI Visible to have Jtest open the
UI that was active the last time that you closed Jtest.

• Look and Feel: Changes the look and feel of Jtest's UIs.

• Title Bar Background Color: Determines the title bar's
background color.

• Notion of Working: Determines how the notion of work-
ing is represented.

Class Testing UI Menu Bar

JtestU
I

• Context Help Font: Determines the size and type of the
font used to display context-sensitive help text.

Tools
Commands in this menu access Jtest's tools.

• Find Classes: Starts the Find Classes UI that finds classes
which can be tested by Jtest.

• IDE Integration: Enables you to integrate Jtest into third-party
IDEs.

• IBM VisualAge 3.5: Integrates Jtest into IBM VisualAge
3.5, 3.5.3, and 4.0. For more information on how Jtest
works with VisualAge, see “Integrating VisualAge and
Jtest” on page 154.

• Inprise JBuilder: Integrates Jtest into JBuilder 4.0 or
5.0. For more information on how Jtest works with
JBuilder, see “Integrating JBuilder and Jtest” on
page 160.

Window
The command in this menu allows you to open the Project Testing UI.

• Project Testing UI: Opens the Project Testing UI (used to test a
set of classes).

Help
Commands in this menu help you access additional information about
Jtest.

• Contents [F3]: Opens the Jtest User's Guide.

• Activate ContextHelp: Activates context-sensitive help. After
activating the help, move your cursor over the area on the UI that
you would like to learn more about. A help window will open if that
area has context-sensitive help.
193

Class Testing UI Menu Bar

194

Jt
es

tU
I

• Jtest API: Opens the Jtest API documentation.

• License: Lets you enter or view your Jtest license.

• Environment: Contains the following commands that provide
more information about the environment in which Jtest is running:

• Show CLASSPATH: Displays the CLASSPATH that Jtest
uses when it tests a class.

• Show User: Display the name of the current Jtest user.

• Show OS: Displays the operating system that Jtest is
currently running on.

• Show Java: Displays the Java version being used to run
the Jtest UIs.

• Show JTEST_USER_DIR: Displays the users directory
that Jtest is using. (For example, C:\users\user-
name\users or /users/username/users).

• Show Installation: Displays the Jtest installation direc-
tory.

• Support: Allows you to choose from the following support
options:

• Support Website: Opens the Jtest support Web site.

• Live Help: Opens a Web page from which you can
receive live online help.

• Pack Support Files: Automatically creates a zip file
which can be sent to Jtest’s Quality Consultants to help
them answer your questions.

• FAQ: Opens the Jtest FAQ page.

• Tutorial: Opens the Jtest tutorial page.

• Feedback: Displays information about how to send feedback
about Jtest to ParaSoft.

• About: Displays the Jtest version number and logo.

Class Testing UI Tool Bar

JtestU
I

ny

d to
Class Testing UI Tool Bar
The following commands are available in the Jtest Class Testing UI tool
bar.

Note: Buttons with a small downward arrow in their top right-corner have
additional commands available in a shortcut menu. To access the shortcut
menu containing additional commands, right-click the button.

Button Name Action

New Session Starts a new session by clearing a
existing setup values or settings.

Project Testing UI Opens the Project Testing UI (use
test a set of classes).
195

Class Testing UI Tool Bar

196

Jt
es

tU
I

e

the

ting

n-

run-

e

for

the

e

s

Start All Tests Starts testing the class whose nam
appears in the Class Name field.

Right-clicking this button displays
following commands in a shortcut
menu:

• Start All Tests: Starts tes
the class.

• Static Analysis: Starts ru
ning the selected type of
Static Analysis tests.

• Dynamic Testing: Starts
ning the selected type of
Dynamic Analysis tests.

Stop Stops testing the class whose nam
appears in the Class Name field.

View Report Displays the Single Class Report
the current test.

Right-clicking this button displays
following commands in a shortcut
menu:

• View Report: Displays th
Single Class Report of the
current test.

• Print ASCII Report: Send
the report directly to the
printer.

Class Testing UI Tool Bar

JtestU
I

w
for

est
the

Test
all
View Test Cases Opens the View Test Cases windo
(displays test cases that Jtest used
Dynamic Analysis).

View Class Metrics Displays class metrics.

Class Test
Parameters

Lets you view and edit the Class T
Parameters (parameters used for
current class test).

Global Test
Parameters

Lets you view and edit the Global
Parameters. (parameters used for
Jtest tests).
197

metrics.htm

Class Testing UI Tool Bar

198

Jt
es

tU
I

t’s
Glo-

the

-

sis

:
ing

Test

is-
h

s:
e
h its

ens
ture
wn

ing
Rules Displays nodes representing Jtes
built-in static analysis rules in the
bal Test Parameters window.

Right-clicking this button displays
following commands in a shortcut
menu:

• Show Built-in Rules: Dis
plays nodes representing
Jtest’s built-in static analy
rules in the Global Test
Parameters window.

• Show User-Defined Rules
Displays nodes represent
the rules you created with
RuleWizard in the Global
Parameters window.

• Show Rules Directory: D
plays the directory in whic
Jtest expects user-defined
rules to be saved.

• Reload User-Defined Rule
Prompts Jtest to check th
Rules directory and refres
list of user-defined rules.

• Launch RuleWizard: Op
RuleWizard, the Jtest fea
that lets you create your o
rules and customize exist
rules.

Class Testing UI Tool Bar

JtestU
I

ur-

the

lays

wer.

lays

r.

s
r-

ys
ur-

s

ur
t
t. A
has
View Class Source Displays the source of the class c
rently under test.

Right-clicking this button displays
following commands in a shortcut
menu:

• View Class Source: Disp
the source of the current
class in Jtest’s source vie

• Edit Class Source: Disp
the source of the current
class in your source edito

• Locate .java file: Display
the path to the .java file cu
rently under test.

• Locate .class file: Displa
the path to the .class file c
rently under test.

• Compile Class: Compile
the source of the current
class.

Context Help Enables context-sensitive help.

After clicking this button, move yo
cursor over the area on the UI tha
you would like to learn more abou
help window will open if that area
context-sensitive help.
199

Class Name Panel

200

Jt
es

tU
I

Class Name Panel
This panel lets you specify what class you want Jtest to test.

To browse for the class to you want to test, click the Browse button, then
use the file chooser to select the .class file that you want to test.

To enter a class directly, enter the fully qualified name of the class to test
(without the .class extension) in the Class Name field.

Note: We recommend that you select the class to be tested using the
Browse button. When you select a class using the Browse button, the
working directory is set to the root directory of the class's package.

Test Progress Panel

JtestU
I

Test Progress Panel
The Test Progress panel is minimized by default. To view the information
that it contains, you need to maximize it by clicking the Maximize button.

This panel displays the following test progress and coverage information:

• Static Analysis: Displays the progress of static analysis tests.
While static analysis is being performed, a percentage indicating
test progress is displayed to the right of this node. When a test is
complete, the word “done” will appear to the right of this node

The Number of Rules Analyzed node displays the number of
static analysis rules analyzed.

• Dynamic Analysis: Displays the progress of dynamic analysis
tests. While dynamic analysis is being performed, a percentage
indicating test progress is displayed to the right of this node.
When a test is complete, the word “done” will appear to the right
of this node.

Coverage information is shown only for classes on which Jtest
has performed dynamic analysis. By default, dynamic analysis is
only performed on the public classes; static analysis is performed
on all classes found (public and non-public).
201

Test Progress Panel

202

Jt
es

tU
I

The Number of Test Cases Executed node displays the total
number of test cases executed. These test cases are divided into
two categories: automatic and user-defined. The Automatic
node displays the number of automatically-generated test cases
executed. The User Defined node displays the number of
user-defined test cases executed.

The Number of Outcome Comparisons node displays the num-
ber of outcomes compared during black-box and regression test-
ing.

The Total Coverage node displays the cumulative coverage that
Jtest achieved. Jtest performs data coverage for the generated
input categories; this means that the parts of the class that have
been covered are thoroughly tested with respect to those inputs.
The coverage reported is relative to the classes that have been
accessed for the paths Jtest has tried. If some part of the class is
not covered, it means that Jtest has not yet found a path leading
to those statements or no path leads to those statements. In class
testing mode, Jtest usually covers approximately 50% of a class's
code. Sometimes Jtest will be able to test 100% of the class, and
sometimes it will test less than 50% of the class.

The Total Coverage branch’s Multi-condition branch node dis-
plays coverage achieved on branches. A branch is a path of exe-
cution through the statements. Selection statements, such as
“switch” and “if”, have one or more branches per statement.
Branch coverage is a measure of what percentage of branches
were covered given the total number of branches in the code.

The Total Coverage branch’s Method node displays coverage
achieved on methods. Method coverage is a measure of what
percentage of methods were covered given the total number of
methods in the code.

The Total Coverage branch’s Constructor node displays cover-
age achieved on constructors. Constructor coverage is a mea-
sure of what percentage of constructors were covered given the
total number of constructors in the code.

Errors Found Panel

203

JtestU
I

Errors Found Panel
This panel displays information about the errors that Jtest found and lets
you perform numerous actions that help you understand and customize
results.

To learn more about this panel's branches and available options, see
“Understanding the Errors Found Panel” on page 32 and “Exploring and
Customizing Class Test Results” on page 37.

Project Testing UI

204

Jt
es

tU
I

Project Testing UIProject Testing UI
The Project Testing UI tests sets of classes. This UI consists of the follow-
ing components:

• Menu Bar

• Tool Bar

• Controls Panel

• Results Panel

By default, the Class Testing UI opens when Jtest is started. To configure
Jtest so that the Project Testing UI opens when Jtest is started, choose
Preferences> UI Preferences> Starting UI> Project Testing UI .

Project Testing UI

JtestU
I

For information on testing a set of classes in the Project Testing UI, see
“Testing a Set of Classes” on page 40.
205

Project Testing UI Menu Bar

206

Jt
es

tU
I

Project Testing UI Menu Bar

File
Commands in this menu control basic test functionality.

• New: Starts a new session by clearing any existing setup values
or settings.

• Open: Opens an existing test specification saved as a .ptp file.

• Open Recent: Opens parameters of a recent test. Contains a list
of the most recently opened projects; choose a file name from the
list to open the associated parameters file. The Clear List com-
mand clears all items from this list.

• Save: Saves the current project test parameters in the test
parameters file shown in the status bar.

• Save As: Saves the current project test parameters in the test
parameters file that you specify.

• Close UI: Closes the Project Testing UI. If the Class Testing UI is
not open, choosing this command will also close Jtest.

• Exit: Closes Jtest.

Test
Commands in this menu start, stop, and pause tests.

• Start: Starts testing the project specified in the Search In field.

• Pause: Temporarily the current test. Click this button again to
resume testing.
Note: Jtest will finish testing the current class before pausing.

• Stop: Stops the current test.

Project Testing UI Menu Bar

JtestU
I

View
Commands in this menu display information related to the current test.

• Report: Contains the following report-related commands:

• View Report: Displays the Project Report (contains
project test parameters and details on all errors available
in the Results panel).

• View Detail Report: Displays the Detailed Project Report
(contains project test parameters, class test parameters,
and all information available in the Results panel).

• View Summary Report: Displays the Summary Project
Report (contains one line for each error available in the
Results panel).

• Delete All: Removes all of the results in the lower Results win-
dow.

• Metrics: Displays project and average class metrics.

• Project Test Parameters: Lets you view and edit the current
Project Test Parameters (parameters used for the current project
test).

• Global Test Parameters: Lets you view and edit the Global Test
Parameters (parameters used for all Jtest tests).

• History: Displays a record of all the runs for this Project test

Preferences
Commands in the menu let you customize Jtest system settings.

• Configuration Options: Contains the following non-UI-related
configuration options:

• Editor: Opens a dialog box that lets you determine what
editor is invoked when you view report files and edit your
source. If the editor command includes white-space,
enclose the command in quotation marks. To represent
the file parameter and the line number parameter, use
207

metrics.htm

Project Testing UI Menu Bar

208

Jt
es

tU
I

the special tokens $FILE and $LINE in the lower text
field.

• Tips: Contains the following options that configure con-
text-sensitive tips:

• Reactivate All: Reactivates all context-sensitive
tips.

• Deactivate All: Turns off all content-sensitive
tips.

• Report Format: Contains options which let you deter-
mine whether Jtest’s reports are formatted in HTML or in
ASCII (text) format.

• Report File: Contains the following options that custom-
ize report file characteristics:

• Show All Classes Accessed: Determines
whether or not Jtest’s single class reports anno-
tate all sources for each class accessed during
testing.

• Show Test Cases: Determines whether or not
Jtest includes test case information in single
class reports.

• Default Results Loading: Determines what results are
loaded when a .ptp file is opened.

• Last: Only results from the most recent test will
be loaded when a .ptp file is opened.

• All: All previous results (including results from
the most recent test run) will be loaded when a
.ptp file is opened.

• None: Prevents any results from being loaded
when a .ptp file is opened.

• Report Type: Determines whether Jtest’s reports are
formatted in HTML or in ASCII.

• UI Preferences: Contains the following UI-related configuration
options.

Project Testing UI Menu Bar

JtestU
I

• Starting UI: Determines whether the Class Testing UI or
the Project Testing UI opens by default when Jtest is
started. Choose Last UI Visible to have Jtest open the
UI that was active the last time that you closed Jtest.

• Look and Feel: Changes the look and feel of Jtest's UIs.

• Title Bar Background Color: Determines the title bar's
background color.

• Notion of Working: Determines how the notion of work-
ing is represented.

• Context Help Font: Determines the size and type of the
font used to display context-sensitive help text.

Tools
Commands in this menu access Jtest's tools.

• IDE Integration: Enables you to integrate Jtest into third-party
IDEs.

• IBM VisualAge: Integrates Jtest into IBM VisualAge 3.5,
3.5.3, and 4.0. For more information on how Jtest works
with VisualAge, see “Integrating VisualAge and Jtest” on
page 154.

• Inprise JBuilder: Integrates Jtest into JBuilder 4.0 or
5.0. For more information on how Jtest works with
JBuilder, see “Integrating JBuilder and Jtest” on
page 160

Window
• Class Testing UI: Opens the Class Testing UI (used to test a sin-

gle class or view results for a single class).

Help
209

Project Testing UI Menu Bar

210

Jt
es

tU
I

Commands in this menu help you access additional information about
Jtest.

• Contents [F3]: Opens the Jtest User's Guide.

• Activate ContextHelp: Activates context-sensitive help. After
activating the help, move your cursor over the area on the UI that
you would like to learn more about. A help window will open if that
area has context-sensitive help.

• Jtest API: Opens the Jtest API documentation.

• License: Lets you enter or view your Jtest license.

• Environment: Contains the following commands that provide
more information about the environment in which Jtest is running:

• Show CLASSPATH: Displays the CLASSPATH that Jtest
uses when it tests a class.

• Show User: Display the name of the current Jtest user.

• Show OS: Displays the operating system that Jtest is
currently running on.

• Show Java: Displays the Java version being used to run
the Jtest UIs.

• Show JTEST_USER_DIR: Displays the users directory
that Jtest is using. (For example, C:\users\user-
name\users or /users/username/users).

• Show Installation: Displays the Jtest installation direc-
tory.

• Support: Allows you to choose from the following support
options:

• Support Website: Opens the Jtest support Web site.

• Live Help: Opens a Web page from which you can
receive live online help.

• Pack Support Files: Automatically creates a zip file
which can be sent to Jtest’s Quality Consultants to help
them answer your questions.

• FAQ: Opens the Jtest FAQ page.

Project Testing UI Menu Bar

JtestU
I

• Tutorial: Opens the Jtest tutorial page.

• Feedback: Displays information about how to send feedback
about Jtest to ParaSoft.

• About: Displays the Jtest version number and logo.
211

Project Testing UI Tool Bar

212

Jt
es

tU
I

ny

to
or a
Project Testing UI Tool Bar
The following commands are available in the Project UI tool bar.

Note: Buttons with a small downward arrow in their top right-corner have
additional commands available in a shortcut menu. To access the shortcut
menu containing additional commands, right-click the button.

Button Name Action

New Session Starts a new session by clearing a
existing setup values or settings.

Class Testing UI Opens the Class Testing UI (used
test a single class or view results f
single class).

Project Testing UI Tool Bar

JtestU
I

in

the

ting

n-

run-

ly

ing

ur-
Start finding and
testing classes

Starts finding and testing classes
the area specified in the Search In
parameter.

Right-clicking this button displays
following commands in a shortcut
menu:

• Start All Tests: Starts tes
the class.

• Static Analysis: Starts ru
ning the selected type of
Static Analysis tests.

• Dynamic Testing: Starts
ning the selected type of
Dynamic Analysis tests.

Note: Jtest will not test a previous
tested class unless that class was
modified since the last test.

Stop Stops finding and testing classes.

Pause Temporarily stops finding and test
classes. Click this button again to
resume testing.

Note: Jtest will finish testing the c
rent class before pausing.
213

Project Testing UI Tool Bar

214

Jt
es

tU
I

ject

ned
is

-
the

the

e

d
ble

est
ram-

Dis-
ct
for
View Report Displays a report of the current pro
test. The report contains only the
classes and errors that are contai
in the Results panel at the time th
button is clicked.

To limit the classes and errors con
tained in your report, display only
desired classes and errors in the
Results panel before you click the
Report button.

Right-clicking this button displays
following commands in a shortcut
menu:

• View Report: Displays th
Project Report (contains
project test parameters an
details on all errors availa
in the Results panel).

• View Detail Report: Dis-
plays the Detailed Project
Report (contains project t
parameters, class test pa
eters, and all information
available in the Results
panel).

• View Summary Report:
plays the Summary Proje
Report (contains one line
each error available in the
Results panel).

Project Testing UI Tool Bar

JtestU
I

this

s

s

wer

s

ers
View All Results Displays all results. Right-clicking
button displays the following com-
mands in a shortcut menu:

• View All Results: Display
all results.

• View Results From Last
Run: Displays only result
from the last run.

Delete All Removes all of the results in the lo
Results window.

Metrics Displays project and average clas
metrics.

Project Test
Parameters

Lets you view and edit the current
Project Test Parameters (paramet
used for the current project test).
215

Project Testing UI Tool Bar

216

Jt
es

tU
I

t’s
Glo-

the

-

sis

:
ing

Test

is-
h

s:
e
h its

ens
ture
wn

ing
Rules Displays nodes representing Jtes
built-in static analysis rules in the
bal Test Parameters window.

Right-clicking this button displays
following commands in a shortcut
menu:

• Show Built-in Rules: Dis
plays nodes representing
Jtest’s built-in static analy
rules in the Global Test
Parameters window.

• Show User-Defined Rules
Displays nodes represent
the rules you created with
RuleWizard in the Global
Parameters window.

• Show Rules Directory: D
plays the directory in whic
Jtest expects user-defined
rules to be saved.

• Reload User-Defined Rule
Prompts Jtest to check th
Rules directory and refres
list of user-defined rules.

• Launch RuleWizard: Op
RuleWizard, the Jtest fea
that lets you create your o
rules and customize exist
rules.

Project Testing UI Tool Bar

JtestU
I

Test
all

r
s.

the

r-

a

ur
t
t. A
has
Global Test
Parameters

Lets you view and edit the Global
Parameters (parameters used for
Jtest tests).

Test History Displays a record of all the runs fo
this Project test, or all Project test

Right-clicking this button displays
following commands in a shortcut
menu:

• Test History: Displays a
record of all runs of the cu
rent test.

• Global History: Displays
record of all Project tests.

Context Help Enables context-sensitive help.

After clicking this button, move yo
cursor over the area on the UI tha
you would like to learn more abou
help window will open if that area
context-sensitive help.
217

Controls Panel

218

Jt
es

tU
I

Controls Panel
This panel lets you specify the fundamental parameters used during a
project test and reports basic data about a project test.

You can enter two parameters in this panel:

• Search In: Specifies where Jtest should start searching for
classes to test. The parameter can be a directory, a jar file, a zip
file, or a .class file

If the parameter is a directory, Jtest will recursively traverse the
path's subdirectories, zip files, and jar files, searching for and
testing any classes it finds.

If the parameter is a jar or zip file, Jtest will open the file and
search it for classes in which to find errors.

To browse for the directory, jar file, or zip file that you want Jtest
to start searching and testing, click the Browse button, locate
and select the desired directory, jar file, or zip file in the file
chooser, then click Open .

• Filter-in: Tells Jtest to find and test only classes that match the
given regular expression. This regular expression works like the
file-matching utility of a Unix shell.

To test only classes with the string XYZ in the class name use:

Controls Panel

JtestU
I

XYZ

To test only classes with names end with XYZ use:
*XYZ

To test only classes in the packages com.util or com.lib use:
{com.util.*,com.lib.*}

For example, if you want Jtest to look only for classes in the DB
package, use
DB.*

When this field is left empty, all classes found will be tested.

The following table describes the difference between perl's regu-
lar expressions and file matching:

FileRegex Regex

* .*

. \.

{ (?:

{?! (?!

{?= (?=

})

? .

{,} (|)

.java .\.java$
219

Controls Panel

220

Jt
es

tU
I

For a reference on Regular Expressions, see

http://www.perl.com/pub/doc/manual/html/pod/perlre.html

If you want to use regular expressions instead of File regexpres-
sions, change the jtest.properties file’s COM.para-
soft.util.Regexp.Type value to 2 instead of 1. This file is located
at:
Windows OS: <jtest install dir>/u/<user name>/jtest.properties
Unix OS: $HOME/.jtest/jtest.properties

Two test result parameters are displayed in this panel:

• Classes Tested: Displays the number of classes tested by Jtest.

• Errors Found: Displays the number of errors found by Jtest.

.{java,html} .\.(java|html)
$

Project Testing UI Results Panel

221

JtestU
I

Project Testing UI Results
Panel
This panel displays information about the errors that Jtest found during a
project test. It also lets you perform numerous actions that help you
understand and customize results.

To learn more about this panel's branches and available options, see
“Understanding the Results Panel” on page 45 and “Exploring and Cus-
tomizing Project Test Results” on page 53.

Global Test Parameters

222

Jt
es

tU
I

Test Parameters WindowsGlobal Test Parameters
This window lets you view and edit the Global Test Parameters used
throughout Jtest. To open this window, click the Global button in either
the Class Testing UI or Project Testing UI.

Descriptions of Global Test Parameters tree branches are divided into
three categories:

• Global Test Parameters - Static Analysis

• Global Test Parameters - Dynamic Analysis

• Global Test Parameters - Common Parameters

CLASSPATH Requirements
You must satisfy all of the following requirements in order to use the mini-
mum Jtest functionality:

• The '.class' files for the classes you want to test must be avail-
able. A '.class' file is a compiled Java source. Without a '.class'
file, Jtest will not be able to perform any tests.

• The '.class' files must be in a directory hierarchy that reflects the
structure of the package, regardless of whether they are in jar
files, zip files, or in the file system.

• The classes referenced by the tested '.class' files must be avail-
able to Jtest. This is done by adding their location to the CLASS-
PATH.

• If the '.class' files are in directories, '.zip' files, or '.jar' files, the
'.class' files must be accessible by Jtest.

If during testing, Jtest finds ClassNotFoundExceptions or NoClassDef-
FoundErrors, or if it reports that it could not find the package on "imports",
the CLASSPATH is not set properly. If this occurs, you need to set the
system CLASSPATH variable to include every class referenced (recur-
sively) by the tested class prior to testing. Check that the CLASSPATH
includes the parent directory of the directory hierarchy. For example, if
you are testing com.company.MyClass and Jtest reports that it could not

Global Test Parameters

JtestU
I

find a package referenced by MyClass, it is probably because the 'com'
directory is not on the CLASSPATH.

You can override the CLASSPATH environment variable in the Global
Test Parameters, the Class Test Parameters, or the Project Test Parame-
ters.
223

Global Test Parameters - Static Analysis

224

Jt
es

tU
I

Global Test Parameters -
Static Analysis
Static Analysis

Contains parameters that control static analysis.

Perform Static Analysis

Flag that controls whether or not static analysis is performed when a
class is tested.

Note: This flag appears in all parameter levels.

Rules

Contains rules that can be applied when Jtest performs static analy-
sis.

Severity Levels Enabled

Contains severity level flags. Each rule has a severity level associ-
ated with it. A rule is enforced only if both the rule and its severity
level are enabled. This branch controls which severity levels are
enabled.

To enable all severity level, right-click this node, then choose Enable
All from the shortcut menu.

To view the number of active rules, right-click this node, then choose
Show Number Active Rules from the shortcut menu.

Level 1-5

Flags that control whether or not the rules of a particular severity level
are applied.

Built-in Rules

Contains built-in rules shipped with Jtest. A specific rule can be

Global Test Parameters - Static Analysis

JtestU
I

enabled or disabled using the flag associated with that rule. A rule is
enforced only if both the rule and its severity level are enabled.

Possible Bugs

Contains rules that check for possible bugs in the code (i.e., the code
compiles, but the programmer made some typos while entering the
code).

Object-Oriented Programming

Contains rules that enforce good Object-Oriented Programming prac-
tices.

Unused Code

Contains rules that check for unused code.

Initialization

Contains rules that enforce the explicit initialization of the variables.

Coding Standards

Contains rules that enforce good programming practices.

Naming Conventions

Contains rules that enforce common naming conventions.

Javadoc Comments

Contains rules related to Javadoc comments.

Portability

Contains rules related to portability.

Optimization

Contains rules that check for non-optimal constructs.

Garbage Collection
225

Global Test Parameters - Static Analysis

226

Jt
es

tU
I

Contains rules related to garbage collection.

Threads and Synchronization

Contains rules related to threads and synchronization.

Enterprise JavaBeans

Contains rules related to Enterprise JavaBeans (EJB).

Class Metrics

Contains rules that measure class and method metrics. Lets you
modify upper and lower thresholds for each metric (for information on
modifying thresholds, see “Customizing Class Metrics” on page 82.

Project Metrics

Contains rules that measure project and average class metrics.

Miscellaneous

Contains miscellaneous rules.

Design by Contract

Contains rules that enforce proper Design by Contract contract for-
mation.

Internationalization

Contains rules that facilitate code internationalization.

Security

Contains rules related to security.

Servlets

Contains rules related to servlets.

Global Static Analysis

Contains rules that perform global static analysis.

Global Test Parameters - Static Analysis

JtestU
I

Note: These rules are only checked when you test a project in the
Project Testing UI.

User Defined Rules

Contains user defined rules that were created in RuleWizard. Specific
rules can be enabled or disabled using the flag associated with each
particular rule (listed by category). A rule is enforced only if both the
rule and its severity level are enabled.
227

Global Test Parameters - Dynamic Analysis

228

Jt
es

tU
I

Global Test Parameters -
Dynamic Analysis
Dynamic Analysis

Contains parameters that control dynamic analysis.

Perform Dynamic Analysis

Flag that controls whether or not dynamic analysis is performed every
time a class is tested.

Note: This flag appears in all parameter levels.

Test Case Generation

Contains parameters that control test case generation.

Automatic

Contains parameters that control the generation of automatic test
cases.

Test calling sequences up to length

By default, Jtest tests each method by calling it independently and
generating arguments to it. That is, Jtest basically tries calling
sequences of length 1.

This option can be used to tell Jtest to try calling sequences longer
than 1. If a calling sequence of length N is specified, Jtest will first try
all calling sequences of length 1, then all calling sequences of length
2, and so on.

Note: Jtest will attempt to show errors with the shortest calling
sequences that can cause the errors. Most errors should have a call-
ing sequences of length 1 or 2.

Test Methods

Global Test Parameters - Dynamic Analysis

JtestU
I

Contains flags that control which methods can be called directly in the
calling sequence generated by Jtest

Jtest will only directly call the methods whose accessibility is selected
here.

Note that the methods that are not called directly are still tested indi-
rectly, through calls to the methods that are called directly.

public

Flag that controls if Jtest tests all of the class’s public methods.

protected

Flag that controls if Jtest tests all of the class’s protected methods.

package-private of package-private classes

Flag that controls if Jtest tests all package-private methods in pack-
age-private classes.

A package-private method is a method without any accessibility qual-
ifier (e.g., public, protected, or private). package-private methods are
only accessible by classes within the same package as the method.

A package-private class is a class without the “public” accessibility
qualifier. package-private classes are only accessible by other
classes within the same package as the method.

package-private of public classes

Flag that controls if Jtest tests all package-private methods in public
classes.

A package-private method is a method without any accessibility qual-
ifier (e.g., public, protected, or private). package-private classes are
only accessible by classes within the same package as the method.

private

Flag that controls if private methods are called directly.
229

Global Test Parameters - Dynamic Analysis

230

Jt
es

tU
I

Common

Contains parameters shared by both automatic and user-defined test
case generation.

Static Global Initialization

The code associated with this node (as well as the code associated
with the Static Project Initialization and Static Class Initialization
nodes) is executed before any test case is executed, and can be
used to setup and initialize the class if needed. You can invoke only
static methods from these initialization nodes. See “Setting an Object
to a Certain State” on page 106 for more information.

Inputs Repository

Stores input values that can later be added to a method argument
node.

Note: This feature is deprecated. For more information about defining
inputs for test cases, see “Adding Method Inputs” on page 119.

Test Case Execution

Contains parameters that control test case execution.

Execute Automatic

Flag that controls whether or not automatic test cases are executed
every time a class is tested.

Note: This flag appears in all parameter levels.

Execute User Defined

Flag that controls whether or not user-defined test cases are exe-
cuted every time a class is tested.

Note: This flag appears in all parameter levels.

Stubs

Global Test Parameters - Dynamic Analysis

JtestU
I

Contains stub-related options.

For more information on stubs, see “Testing Classes That Reference
External Resources” on page 93 and “Using Custom Stubs” on
page 98.

Options for Automatic Test Cases

Contains options that let you control what type of stubs are used while
running the automatically-generated test cases. You can choose Use
Automatic Stubs , Use User Defined Stubs , or neither. Jtest will call
the actual external method if neither of these stub types are selected,
or if Use User Defined Stubs is selected, but no stubs are defined
for a particular method reference.

Use Automatic Stubs (white-box stubs)

If selected, Jtest will automatically generate stubs for external
resources while running the automatically-generated test cases. For
more information on Automatic Stubs, see “Testing Classes That Ref-
erence External Resources” on page 93.

Use User Defined Stubs

If selected, Jtest will use user-defined stubs when the class under test
references external resources. For more information on User Defined
Stubs, see “Testing Classes That Reference External Resources” on
page 93 and “Using Custom Stubs” on page 98.

Options for User Defined Test Cases

Contains options that let you control what type of stubs are used while
running the user defined test cases. You can choose Use User
Defined Stubs , or you can leave this option unselected. Jtest will call
the actual method if this option is not selected, or if this option is
selected, but no user defined stubs are defined for a particular
method reference.

Use User Defined Stubs

If selected, Jtest will use user-defined stubs when the class under test
references external resources. For more information on User Defined
231

Global Test Parameters - Dynamic Analysis

232

Jt
es

tU
I

Stubs, see “Testing Classes That Reference External Resources” on
page 93 and “Using Custom Stubs” on page 98.

Note: This flag appears in all parameter levels.

“Tested Set” Includes

Defines the “Tested Set”: the set of classes and methods included in
the current test. When a class or method in the Tested Set references
a class or method that is inside that Tested Set, the actual class or
method is accessed. When a class or method in the Tested Set refer-
ences a class or method that is outside that Tested Set, stubs are
called.

For more information about Tested Set, see “Defining Which Classes
are “External”” on page 94.

Pre-filtering Suppression Categories

Contains suppression categories that can be applied when the test
cases are executed.

Exceptions in Throws Clause

If selected, Jtest will not report exceptions occurring in methods that
are declared with the exception's type in the throws clause of the
method.

Note: This flag appears in all parameter levels.

Direct IllegalArgumentExceptions

If selected, Jtest will not report IllegalArgumentExceptions that are
thrown directly by a throw statement.

Note: This flag appears in all parameter levels.

Explicitly Thrown Exceptions

If selected, Jtest will not report exceptions that are explicitly thrown by
user code with a throw statement.

Global Test Parameters - Dynamic Analysis

JtestU
I

Note: This flag appears in all parameter levels.

Exceptions Caught By Empty Catch

If selected, Jtest will not report exceptions caught by an empty catch
block.

Note: This flag appears in all parameter levels.

Direct NullPointerExceptions

If selected, Jtest will not report exceptions that can occur because a
null object is passed to a method which subsequently dereferences
the object, thus causing the NullPointerException.

Note: This flag appears in all parameter levels.

Automatically Instrument “Design by Contract” Comments

Determines whether or not Jtest automatically instruments Design by
Contract comments as classes are loaded into Jtest.

If you want Jtest to use the information in a class’s “Design by Con-
tract” javadoc comments (e.g., to automatically create test cases that
verify functionality, or to use these comments to suppress certain
exceptions), it is necessary to instrument these comments.

If you never use Design by Contract comments, you can prevent Jtest
from instrumenting classes by disabling this option.

Note: This flag appears in all parameter levels.

Test Case Evaluation

Contains parameters that control test case evaluation.

Report Uncaught Runtime Exceptions

Flag that controls whether or not Jtest reports uncaught runtime
exceptions that occur in the tested class.

Note: This flag appears in all parameter levels.
233

Global Test Parameters - Dynamic Analysis

234

Jt
es

tU
I

Perform Automatic Regression Testing

Flag that controls whether or not Jtest performs Automatic Regres-
sion Testing for the tested class.

Note: This flag appears in all parameter levels.

Suppressions Table

Double-clicking this leaf invokes the dynamic analysis Suppression
Table which lets you suppress dynamic analysis violations.

Global Test Parameters - Common Parameters

JtestU
I

Global Test Parameters -
Common Parameters
Common Parameters

Contains parameters shared by both static and dynamic analysis.

Directories

Contains parameters related to directories.

Working Directory

Determines the directory that is used as the current working directory
when testing a class.

This directory will be used as "." on the CLASSPATH.

This parameter appears in most parameter levels (Global, Project,
and Class). When testing a class, Jtest uses the value in the Class
Test Parameters. If this parameter is not set, the value of the current
parent parameter is used.

The following tokens are treated specially:

• $PARENT: This token is replaced by the parent parame-
ter value.

• $PARAMS_DIR: This token is replaced by the directory
that includes the parameters directory.

• $INSTALL_DIR: This token is replaced by the Jtest instal-
lation directory.

• $NAME: This token is replaced by the value of the envi-
ronment variable NAME.

The actual value that will be used is shown in parentheses.

Results

Determines where the test results will be stored.
235

Global Test Parameters - Common Parameters

236

Jt
es

tU
I

The following tokens are treated specially:

• $DEFAULT: In project tests, this token is replaced by a
path relative to the location of the project test parameters
(.ptp) file. This token only applies to project tests.

• $PARENT: This token is replaced by the parent parame-
ter value.

• $PARAMS_DIR: This token is replaced by the directory
that includes the parameters directory.

• $INSTALL_DIR: This token is replaced by the Jtest instal-
lation directory.

• $NAME: This token is replaced by the value of the envi-
ronment variable NAME.

The actual value that will be used is shown in parentheses.

javac/javac-like Parameters

Contains parameters equivalent to parameters used in java or javac.

-classpath

Overrides the CLASSPATH environment variable with the list of
entries specified here (an entry is a directory, zip file, or jar file).

This option is equivalent to the java interpreter's -classpath flag.

This parameter appears in most parameter levels (Global, Project,
and Class). When testing a class, Jtest uses the value in the Class
Test Parameters. If this parameter is not set, the value of the current
parent parameter is used.

The following tokens are treated specially:

• $PARENT: This token is replaced by the parent parame-
ter value.

• $PARAMS_DIR: This token is replaced by the directory
that includes the parameters directory.

Global Test Parameters - Common Parameters

JtestU
I

• $INSTALL_DIR: This token is replaced by the Jtest instal-
lation directory.

• $NAME: This token is replaced by the value of the envi-
ronment variable NAME.

The actual value that will be used is shown in parentheses.

-cp

Prepends the CLASSPATH environment variable with the list of
entries specified here (an entry is a directory, zip file, or jar file).

This option is equivalent to the JRE’s -cp flag.

The token $PARENT receives special treatment and is replaced by
the parent parameter value.

This parameter appears in most parameter levels (Global, Project,
and Class). When testing a class, Jtest uses the value in the Class
Test Parameters. If this parameter is not set, the value of the current
parent parameter is used.

The following tokens are treated specially:

• $PARENT: This token is replaced by the parent parame-
ter value.

• $PARAMS_DIR: This token is replaced by the directory
that includes the parameters directory.

• $INSTALL_DIR: This token is replaced by the Jtest instal-
lation directory.

• $NAME: This token is replaced by the value of the envi-
ronment variable NAME.

The actual value that will be used is shown in parentheses.

System Properties

Defines system properties. This parameter is equivalent to the -D flag
of the Java interpreter and is used to define properties for the class
237

Global Test Parameters - Common Parameters

238

Jt
es

tU
I

being tested.

System properties are defined by naming the property and assigning
a value to the property. Use a space to separate properties if multiple
properties are defined.

Example: property.one=On PROPERTY_TWO=d:/temp

This parameter appears in most parameter levels (Global, Project,
and Class). When testing a class, Jtest uses the value in the Class
Test Parameters. If this parameter is not set, the value of the current
parent parameter is used.

The following tokens are treated specially:

• $PARENT: This token is replaced by the parent parame-
ter value.

• $PARAMS_DIR: This token is replaced by the directory
that includes the parameters directory.

• $INSTALL_DIR: This token is replaced by the Jtest instal-
lation directory.

• $NAME: This token is replaced by the value of the envi-
ronment variable NAME.

The actual value that will be used is shown in parentheses.

-Xbootclasspath

Overrides location of bootstrap class files.

If Class is a Test Class

Determines how Jtest behaves when the class under test is a Test
Class.

Run the tests defined in the Class

If selected, Jtest runs the tests defined in the Test Class and Jtest will
not test the Test Class itself (Jtest will not perform static analysis on
the class or create test cases for it). If you select this option, you can-

Global Test Parameters - Common Parameters

JtestU
I

not select the Test the Test Class itself option.

Test the Test Class itself

If selected, Jtest tests the Test Class as it would test any other class.
Jtest will test perform static analysis on the class and create test
cases for it). If you select this option, you cannot select the Run the
tests defined in the Class option.

Source Path

Determines where Jtest looks for the source of a class.

Path to JDK Directory

Specifies the path to the JDK installation directory. Jtest only uses this
JDK installation to compile classes; it runs classes with the JRE that
is shipped with Jtest.
239

Class Test Parameters

240

Jt
es

tU
I

Class Test Parameters
This window lets you view and edit parameters that are specific to a cer-
tain class.

In the Class Testing UI, you can open this window by clicking the Class
button.

You can also open this window from the Project Testing UI Right-click the
Result panel node whose name corresponds to the class whose parame-
ters you want to modify, then choose Edit Class Test Parameters from
the shortcut menu.

Descriptions of Class Test Parameters tree branches are divided into
three categories:

• Class Test Parameters - Static Analysis

• Class Test Parameters - Dynamic Analysis

• Class Test Parameters - Common Parameters

CLASSPATH Requirements
You must satisfy all of the following requirements in order to use the mini-
mum Jtest functionality:

• The '.class' files for the classes you want to test must be avail-
able. A '.class' file is a compiled Java source. Without a '.class'
file, Jtest will not be able to perform any tests.

• The '.class' files must be in a directory hierarchy that reflects the
structure of the package, regardless of whether they are in jar
files, zip files, or in the file system.

• The classes referenced by the tested '.class' files must be avail-
able to Jtest. This is done by adding their location to the CLASS-
PATH.

• If the '.class' files are in directories, '.zip' files, or '.jar' files, the
'.class' files must be accessible by Jtest.

If during testing, Jtest finds ClassNotFoundExceptions or NoClassDef-
FoundErrors, or if it reports that it could not find the package on "imports",

Class Test Parameters

JtestU
I

the CLASSPATH is not set properly. If this occurs, you need to set the
system CLASSPATH variable to include every class referenced (recur-
sively) by the tested class prior to testing. Check that the CLASSPATH
includes the parent directory of the directory hierarchy. For example, if
you are testing com.company.MyClass and Jtest reports that it could not
find a package referenced by MyClass, it is probably because the 'com'
directory is not on the CLASSPATH.

You can override the CLASSPATH environment variable in the Global
Test Parameters, the Class Test Parameters, or the Project Test Parame-
ters.
241

Class Test Parameters - Static Analysis

242

Jt
es

tU
I

Class Test Parameters -
Static Analysis
Static Analysis

See description in Global Test Parameters.

Perform Static Analysis

See description in Global Test Parameters.

Rules

See description in Global Test Parameters.

Severity Levels

See description in Global Test Parameters.

Level 1-5

See description in Global Test Parameters.

Suppressed Messages

Contains the list of specific static analysis messages that have been
suppressed for this class.

Class Test Parameters - Dynamic Analysis

JtestU
I

Class Test Parameters -
Dynamic Analysis
Dynamic Analysis

See description in Global Test Parameters.

Perform Dynamic Analysis

See description in Global Test Parameters.

Test Case Generation

See description in Global Test Parameters.

Automatic

See description in Global Test Parameters.

Test calling sequences up to length

See description in Global Test Parameters.

Test Methods

See description in Global Test Parameters.

public

Flag that controls if public methods are called directly.

protected

Flag that controls if protected methods are called directly.

package-private

Flag that controls if package-private methods are called directly.

private

Flag that controls if private methods are called directly.
243

Class Test Parameters - Dynamic Analysis

244

Jt
es

tU
I

Restricted Inputs

By default, Jtest will try to generate any input for the methods of the
class. Use these nodes to restrict the inputs that Jtest will generate.

"THIS" object

Specifies what value Jtest will use by default when testing instance
methods of the given class. Right-clicking this node displays a short-
cut menu that allows you to set restricted inputs, add inputs from local
repository, or add inputs from the global repository. This shortcut
menu contains the following options:

• Set Restricted Input: Lets you add a valid Java expres-
sion as a simple input value. If you reference classes that
are not in the same package as the tested class, make
sure to add import statements for these classes. For
information about adding imports, see “Specifying
Imports” on page 132.

• Add From Local Repository: Contains menu items
associated with the values available in the local reposito-
ries.
Choose an input's menu item to add that input to the
node.
You can add inputs to the local repository in Class Test
Parameters> Dynamic Analysis> Test Case Genera-
tion> Common> Inputs Repository .

• Add From Global Repository: Contains menu items
associated with the values available in the global reposi-
tory.
Choose a menu item to add the input to the node.
You can add inputs to the global repository in Global
Test Parameters> Dynamic Analysis> Test Case Gen-
eration> Common> Inputs Repository .

User Defined

Contains parameters that control the generation of the user defined
test cases. [n]= number of test cases defined.

Class Test Parameters - Dynamic Analysis

JtestU
I

Method Inputs

Contains nodes that can be used to specify the set of inputs with
which you want Jtest to test the class. [n]= number of test cases.

[Method name]

Use these nodes to specify the inputs to be used for the named
method. [n]= number of test cases for this method.

[Argument name]

Use the associated shortcut menu to add valid Java expressions as
input values to this argument. [n]= number of inputs for this argument.

Shortcut menu commands available include:

• Add Input Value: Lets you add a simple input value.

• Add From Local Repository: Contains menu items
associated with the values available in the local reposito-
ries.

Choose an input's menu item to add that input to the
node.

You can add inputs to the local repository in Class Test
Parameters> Dynamic Analysis> Test Case Genera-
tion> Common> Inputs Repository .

• Add From Global Repository: Contains menu items
associated with the values available in the global reposi-
tory.

Choose an input menu item to add the input to the node.

You can add inputs to the global repository in Global
Test Parameters> Dynamic Analysis> Test Case Gen-
eration> Common> Inputs Repository .

• Delete All Inputs: Removes all existing inputs.

Test Classes

Test classes let you add test cases that are too complex or difficult to
be added as method inputs. A test class is a class that extends
245

Class Test Parameters - Dynamic Analysis

246

Jt
es

tU
I

jtest.TestClass and is used to specify test cases that Jtest should use
to test the class. You can write your own test class, or use your JUnit
classes. For information on adding Test Classes, see “Adding Test
Classes” on page 125.

[n]= Total number of test cases defined by all of the test classes.

Common

Contains parameters shared by both automatic and user-defined test
case generation.

Imports

Contains imports shared by all the code used in the specification. See
“Specifying Imports” on page 132 for more information.

Static Class Initialization

See description in Global Test Parameters.

Inputs Repository

See description in Global Test Parameters

Test Case Execution

See description in Global Test Parameters.

Execute Automatic

See description in Global Test Parameters.

Execute User Defined

See description in Global Test Parameters.

Stubs

See description in Global Test Parameters.

Options for Automatic Test Cases

See description in Global Test Parameters.

Class Test Parameters - Dynamic Analysis

JtestU
I

Use Automatic Stubs (white-box stubs)

See description in Global Test Parameters.

Use User Defined Stubs

See description in Global Test Parameters.

Options for User Defined Test Cases

See description in Global Test Parameters.

Use User Defined Stubs

See description in Global Test Parameters.

“Tested Set” Includes

See description in Global Test Parameters.

Stubs Class

Indicates what stub class to use while testing this class. If you use the
token $DEFAULT, Jtest will automatically search for and use a class
named (class_under_test_name)Stubs that extends jtest.Stubs. To
enter the specific location of the appropriate stubs class, right-click
this option, choose Edit from the shortcut menu, then enter the path
to the stubs class.

For more information on stubs, see “Testing Classes That Reference
External Resources” on page 93 and “Using Custom Stubs” on
page 98.

Pre-filtering Suppression Categories

See description in Global Test Parameters.

Exceptions in Throws Clause

See description in Global Test Parameters.

DirectIllegalArgumentExceptions

See description in Global Test Parameters.
247

Class Test Parameters - Dynamic Analysis

248

Jt
es

tU
I

Explicitly Thrown Exceptions

See description in Global Test Parameters.

Exceptions Caught By Empty Catch

See description in Global Test Parameters.

DirectNullPointerExceptions

See description in Global Test Parameters.

Automatically Instrument “Design by Contract” Comments

See description in Global Test Parameters.

Test Case Evaluation

Contains parameters that control test case evaluation. For more infor-
mation about test case evaluation, see “Viewing and Validating Test
Cases” on page 171.

Report Uncaught Runtime Exceptions

See description in Global Test Parameters.

Perform Automatic Regression Testing

See description in Global Test Parameters.

Specification and Regression Test Cases

These test cases are used as reference test cases when Jtest per-
forms regression and black-box testing. When tests are run, the out-
comes for the run are compared with these outcomes. If a
discrepancy exists, an error is reported.

Jtest automatically adds the automatic test cases that increase cover-
age to this list. All user-defined test cases are added.

Shortcut menus let you specify whether outcomes are correct or
incorrect.

Class Test Parameters - Dynamic Analysis

JtestU
I

If you change specification and regression test cases and want to
restore the set used during the actual tests, right-click the Specifica-
tion and Regression Test Cases node, then choose the Reload
option from the shortcut menu. Jtest will then reload the original test
cases.

[method name]

Contains test cases for this method.

Test Cases

Contains all the information for a test case.

Test Case Input

Input that defines the test case.

The input for automatic test cases is the calling sequence.

Outcomes

Outcomes for this test case. Verify if the outcomes are correct or
incorrect according to the class specification and set their state using
the shortcut menus.

When the outcome is an object, Jtest automatically chooses the
toString method to show its state.

If a method named jtestInspector is defined for the object’s class,
Jtest will only use the return value of this method to show the object
state.

If no toString or jtestInspector methods are defined, Jtest will heuristi-
cally choose some public instance methods for that object to show its
state.

If the method under test is a static method, Jtest will heuristically
choose public static methods to show the class state. If the methods
Jtest chose are not enough, declare a static method called sjtestIn-
spector for the class. Jtest will use the return value of this method to
249

Class Test Parameters - Dynamic Analysis

250

Jt
es

tU
I

show the object class.

[n]= number of outcomes for this test case.

Exceptions

Indicates whether an exception occurred, and, if so, what type of
exception occurred.

Class Test Parameters - Common Parameters

JtestU
I

Class Test Parameters -
Common Parameters
Common Parameters

See description in Global Test Parameters.

Directories

See description in Global Test Parameters.

Working Directory

See description in Global Test Parameters.

Results

See description in Global Test Parameters.

javac/javac-like Parameters

See description in Global Test Parameters.

-classpath

See description in Global Test Parameters.

-cp

See description in Global Test Parameters.

System Properties

See description in Global Test Parameters.

-Xbootclasspath

See description in Global Test Parameters.

If Class is a Test Class

See description in Global Test Parameters.
251

Class Test Parameters - Common Parameters

252

Jt
es

tU
I

Run the tests defined in the Class

See description in Global Test Parameters.

Test the Test Class itself

See description in Global Test Parameters.

Source Path

See description in Global Test Parameters

Project Test Parameters

JtestU
I

Project Test Parameters
This window lets you view and edit parameters that apply to the current
project test. To open this window, click the Project button in the Project
Testing UI tool bar.

Descriptions of Project Test Parameters tree branches are divided into
three categories:

• Project Test Parameters - Static Analysis

• Project Test Parameters - Dynamic Analysis

• Project Test Parameters - Common Parameters, Search Parame-
ters, Classes in Project

CLASSPATH Requirements
You must satisfy all of the following requirements in order to use the mini-
mum Jtest functionality:

• The '.class' files for the classes you want to test must be avail-
able. A '.class' file is a compiled Java source. Without a '.class'
file, Jtest will not be able to perform any tests.

• The '.class' files must be in a directory hierarchy that reflects the
structure of the package, regardless of whether they are in jar
files, zip files, or in the file system.

• The classes referenced by the tested '.class' files must be avail-
able to Jtest. This is done by adding their location to the CLASS-
PATH.

• If the '.class' files are in directories, '.zip' files, or '.jar' files, the
'.class' files must be accessible by Jtest.

If during testing, Jtest finds ClassNotFoundExceptions or NoClassDef-
FoundErrors, or if it reports that it could not find the package on "imports",
the CLASSPATH is not set properly. If this occurs, you need to set the
system CLASSPATH variable to include every class referenced (recur-
sively) by the tested class prior to testing. Check that the CLASSPATH
includes the parent directory of the directory hierarchy. For example, if
you are testing com.company.MyClass and Jtest reports that it could not
253

Project Test Parameters

254

Jt
es

tU
I

find a package referenced by MyClass, it is probably because the 'com'
directory is not on the CLASSPATH.

You can override the CLASSPATH environment variable in the Global
Test Parameters, the Class Test Parameters, or the Project Test Parame-
ters.

Project Test Parameters - Static Analysis

255

JtestU
I

Project Test Parameters -
Static Analysis
Static Analysis

See description in Global Test Parameters.

Perform Static Analysis

See description in Global Test Parameters.

Rules

See description in Global Test Parameters.

Severity Levels Enabled

See description in Global Test Parameters.

Level 1-5

See description in Global Test Parameters.

Project Test Parameters - Dynamic Analysis

256

Jt
es

tU
I

Project Test Parameters -
Dynamic Analysis
Dynamic Analysis

See description in Global Test Parameters.

Perform Dynamic Analysis

See description in Global Test Parameters.

Test Case Generation

See description in Global Test Parameters.

Automatic

See description in Global Test Parameters.

Test calling sequences up to length

See description in Global Test Parameters.

Test Methods

See description in Global Test Parameters.

public

See description in Global Test Parameters.

protected

See description in Global Test Parameters.

package-private of package-private classes

See description in Global Test Parameters.

package-private of public classes

See description in Global Test Parameters.

Project Test Parameters - Dynamic Analysis

JtestU
I

private

See description in Global Test Parameters.

Common

See description in Global Test Parameters.

Static Project Initialization

See description in Global Test Parameters.

Test Case Execution

See description in Global Test Parameters.

Execute Automatic

See description in Global Test Parameters.

Execute User-Defined

See description in Global Test Parameters.

Stubs

See description in Global Test Parameters.

Options for Automatic Test Cases

See description in Global Test Parameters.

Use Automatic Stubs (white-box stubs)

See description in Global Test Parameters.

Use User Defined Stubs

See description in Global Test Parameters.

Options for User Defined Test Cases

See description in Global Test Parameters.

Use User Defined Stubs
257

Project Test Parameters - Dynamic Analysis

258

Jt
es

tU
I

See description in Global Test Parameters.

“Tested Set” Includes

See description in Global Test Parameters.

Stubs Class

Indicates what stub class to use while testing classes in this project.
To enter the specific location of the appropriate stubs class, right-click
this option, choose Edit from the shortcut menu, then enter the path
to the stubs class.

For more information on stubs, see “Testing Classes That Reference
External Resources” on page 93 and “Using Custom Stubs” on
page 98.

Pre-filtering Suppression Categories

See description in Global Test Parameters.

Exceptions in Throws Clause

See description in Global Test Parameters.

DirectIllegalArgumentExceptions

See description in Global Test Parameters.

Explicitly Thrown Exceptions

See description in Global Test Parameters.

Exceptions Caught By Empty Catch

See description in Global Test Parameters.

DirectNullPointerExceptions

See description in Global Test Parameters.

Test Case Evaluation

See description in Global Test Parameters.

Project Test Parameters - Dynamic Analysis

JtestU
I

Report Uncaught Runtime Exceptions

See description in Global Test Parameters.

Perform Automatic Regression Testing

See description in Global Test Parameters.

Specification and Regression Test Cases

The test cases for each class should be accessed through the
Classes in Project branch of this tree.
259

Project Test Parameters - Common Parameters, Search Parameters, Classes in Project

260

Jt
es

tU
I

Project Test Parameters -
Common Parameters,
Search Parameters, Classes
in Project
Common Parameters

See description in Global Test Parameters.

Directories

See description in Global Test Parameters.

Working directory

See description in Global Test Parameters.

Results

See description in Global Test Parameters.

Class Test Parameters Root

When you test a project, the Project Testing UI automatically creates
the class test parameters for the individual classes found. This
parameter determines what directory the class test parameter (.ctp)
files are stored in.

The string $DEFAULT receives special treatment; it is replaced by a
path relative to the location of the project test parameters (.ptp) file.

This parameter appears in most parameter levels.

javac/javac-like Parameters

See description in Global Test Parameters.

-classpath

Project Test Parameters - Common Parameters, Search Parameters, Classes in Project

JtestU
I

See description in Global Test Parameters.

-cp

See description in Global Test Parameters.

System Properties

See description in Global Test Parameters.

-Xbootclasspath

See description in Global Test Parameters.

If Class is a Test Class

See description in Global Test Parameters.

Run the tests defined in the Class

See description in Global Test Parameters.

Test the Test Class itself

See description in Global Test Parameters.

Search Parameters

Contains parameters that control how Jtest searches for classes.

Skip classes already tested

If selected, Jtest will not retest a class if results for that class already
exist and the class didn't change since the previous results were cal-
culated. Jtest determines whether or not a class has changed by
checking that both the .class file and the .java file contents have not
changed. Timestamps are not considered.

Skip List

Opens a dialog box which lets you enter the names of specific
classes that you do not want tested.

Test Only List
261

Project Test Parameters - Common Parameters, Search Parameters, Classes in Project

262

Jt
es

tU
I

Opens a dialog box which lets you enter the names of the specific
classes that you want tested.

Static Analysis

Contains parameters that control how Jtest searches for classes for
static analysis.

Skip if .java file not found

If selected, Jtest will only perform static analysis on classes for which
it finds a .java file.

Dynamic Analysis

Contains parameters that control how Jtest searches for classes for
dynamic analysis.

Test public classes only

If selected, Jtest will perform dynamic analysis only on public classes.

Note that the non-public classes will be tested indirectly when called
from the public classes.

Timeout

Specifies the maximum amount of time that Jtest will spend testing
any one class in the project.

Classes in Project

Contains a list of all classes in the project. Also allows you to suspend
and resume the finder's search for classes, and delete all individual
class test parameters.

• To suspend the finder from searching for all classes in
the project, right-click this node and choose Suspend
Finder from the shortcut menu.

• To prompt the finder to resume finding classes in this
project, right-click this node and choose Resume Finder
from the shortcut menu.

Project Test Parameters - Common Parameters, Search Parameters, Classes in Project

JtestU
I

• To delete all individual Class Test Parameters, right-click
this node and choose Delete All Individual Class Test
Parameters from the shortcut menu.

[Class Name]

Allows you to edit and reset the named class's Class Test Parame-
ters, and open the named class in the Class Testing UI.

• To edit class test parameters, right-click this node and
choose Edit Class Test Parameters from the shortcut
menu.

• To reset all class test parameters to their default value,
right-click this node and choose Reset Class Test
Parameters from the shortcut menu.

• To load this class in the Class Testing UI (where you can
focus on results for this class), right-click this node and
choose Load Test in Class Testing UI from the shortcut
menu.
263

Find Classes UI

264

Jt
es

tU
I

ToolsFind Classes UI
The Find Classes UI searches for classes that can be tested by Jtest,
then allows you to easily set up a test for any found class. This UI can be
opened in the Class Testing UI by choosing Tools> Find Classes UI .
This UI cannot be accessed from the Project Testing UI.

To find classes, tell Jtest where to start looking for classes (using the
Browse button, or by entering the path in the Search In field), then click
the Start button.

The Find Classes UI has three main components:

• The tool bar.

• The Find Classes panel.

• The status bar.

Find Classes Tool Bar
The following commands are available in the Find Class UI tool bar:

Find Classes UI

JtestU
I

the
rch

en
Find Classes Panel
• Only find public classes: If checked, Jtest will only search for

public classes.

• Search In: Specifies where Jtest should start searching for
classes to test. The parameter can be a directory, a .class file, a
jar file, or a zip file.

If the parameter is a directory, Jtest will recursively traverse the
path's subdirectories, zip files, and jar files when it searches for
file to test.

Button Name Action

Find Starts finding classes. The search starts in
directory, jar, or zip file specified in the Sea
In parameter.

Stop Stops finding classes.

Pause Temporarily stops finding classes. Also
resumes searching after searching has be
paused.
265

Find Classes UI

266

Jt
es

tU
I

If the parameter is a jar or zip file, Jtest will open the file and
search it for classes in which to find errors.

To browse to the directory, jar file, or zip file that you want Jtest to
start searching, click the Browse button, locate and select the
desired directory, jar file, or zip file in the file viewer, then click
Open .

• Filter: Tells Jtest to find only classes that match the given expres-
sion. Use the * (asterisk) character to match zero or more charac-
ters.

For example, if you want Jtest to look only for classes in the DB
package, enter the following parameter in this field:

DB.*

When this field is left empty, Jtest will look for all classes.

• Classes Found: The number of classes found.

• Reset: Clears the lower panel.

The lower panel lists the classes that Jtest located.

Find Classes UI

JtestU
I

To load a class found into the Class Testing UI (for testing), double-click
the name of the class. The class will then be loaded in the Class Testing
UI, and can be tested by clicking the Start button in the Class Testing UI.

Status Bar
The status bar displays the current search path.
267

Jtest Tutorials

268

R
ef

er
en

ce

ReferenceJtest Tutorials
Jtest’s tutorials offer step-by-step guides on such topics as:

• Performing static analysis

• Performing white-box testing

• Performing black-box testing (includes automatic black-box test-
ing and adding user-defined test cases with Test Classes and
method inputs)

• Performing regression testing

• Testing a set of classes

• Using JUnit Test Classes with Jtest

These tutorials are available online at
http://www.parasoft.com/products/jtest/manuals/tutorials/html/index.htm

You can reach this page by choosing Help> Tutorial from either Jtest UI.

You can also access a RuleWizard tutorial at
http://www.parasoft.com/products/jtest/manuals/v4_0/rulewizard/demo.htm

Jtest FAQs

269

R
eference

Jtest FAQs
Jtest FAQs are available online at http://www.parasoft.com/prod-
ucts/jtest/papers/faq.htm.

Fixing Errors Found

270

R
ef

er
en

ce
Fixing Errors Found
This topic explains how and why to repair the various types of errors that
Jtest finds in your code.

Learning More About Errors Found
Before you begin to fix the errors found, you should explore them to deter-
mine what caused each error. For example, if Jtest reports an uncaught
runtime exception, you should examine the information related to that
exception to determine whether it is the result of an incorrectly behaving
method, an unexpected argument, a correctly behaving method, or a
developer-use only method. If Jtest reports a coding standard violation,
you should look at the information related to that violation to determine
whether or not it is the result of coding standard that you want to enforce
for the current project.

If you performed your test in the Project Testing UI, errors found are dis-
played in the Project Testing UI's Results panel. To learn more about this
panel's branches and available options, see “Understanding the Results
Panel” on page 45 and “Exploring and Customizing Project Test Results”
on page 53.

If you performed your test in the Class Testing UI, errors found are dis-
played in the Class Testing UI’s Errors Found panel. To learn more about
this panel's branches and available options, see “Understanding the
Errors Found Panel” on page 32 and “Exploring and Customizing Class
Test Results” on page 37.

Both panels classify errors found into four categories:

• Static Analysis Violations

• Design by Contract Violations

• Uncaught Runtime Exceptions

• Specification/Regression Errors

Static Analysis Violations

Fixing Errors Found

R
eference
During static analysis, Jtest automatically tests your code for possible
coding standard violations. Coding standard violations are reported under
the Static Analysis heading. Jtest reports the following information for
each violation found:

1. Rule violation: Jtest presents each rule violation by listing the
rule, a rule ID, and a number that indicates the severity level of
the rule. The rule can be one of 174 built in rules provided by
Jtest or a user-defined rule.

2. Suggestion: To see a suggestion of how to avoid this coding
standard violation, expand the rule violation branch.

3. Line Reference: To view a line reference of where the coding
standard violation occurred, expand the suggestion branch. If you
double click the line reference, the source viewer will open with
the line of code that produced the violation highlighted in yellow.

Design by Contract Violations
During dynamic analysis, Jtest creates test cases that verify the specifica-
tions included in each class’s DbC-format contact. Violations found are
reported under the Design by Contract Violations heading. Design by
Contract violations are organized according to the nature of the violation.
This heading contains the following violation categories:

• @pre violations: Contains information about violations
that occur when a method is called incorrectly.

• @post violations: Contains information about violations
that occur when a method does not return the expected
value.

• @invariant violations: Contains information about viola-
tions that occur when an @invariant contact condition is
not met.

• @assert violations: Contains information about viola-
tions that occur when an @assert contact condition is not
met.

Each error message includes file/line information as well as stack trace
and calling sequence information.
271

Fixing Errors Found

272

R
ef

er
en

ce
Uncaught Runtime Exceptions
During dynamic analysis, Jtest automatically creates and executes test
cases for each class’s methods; it also executes any user-defined test
cases that you have added. Exceptions found from automatic and user-
defined test cases are reported under the Uncaught Runtime Excep-
tions heading. Jtest reports the following information for each exception
found:

1. Exception Description: Jtest presents each uncaught runtime
exception by listing the method that produced the exception, fol-
lowed by a description of the exception that was thrown.

2. Stack Trace: To see the stack trace, as well as a line reference,
expand the branch that displays the exception description. If you
double click the line reference, the source viewer will open with
the line of code that produced the exception highlighted in yellow.
To see the calling sequence that produced the exception, expand
the Test Case Input branch.

3. Test Case: To view the test case that Jtest generated to find this
uncaught runtime exception, right click Test Case Input and
choose View Example Test Case from the shortcut menu.

Fixing Errors Found

R
eference
Specification/Regression Errors
Jtest performs automatic regression testing on a class after the class has
been tested at least once. Jtest will compare results from old tests with
the current test to ensure that new errors are not introduced into the code
after modification. Inconsistencies between old test runs and the current
test are reported under Specification and Regression Errors in the Errors
Found panel of the Class Testing UI.

Fixing Errors Found
This section offers suggestions on how to fix the errors that Jtest found.

Coding Standard Enforcement (Static Analysis)
Violations

Violation Needs to Be FIxed
• Description: The rule violation indicates a violation that needs to

be fixed.

• Repair: Repair the code to follow the coding standard. For a
complete explanation of a particular coding standard, see “Built-in
Static Analysis Rules” on page 277.

• Benefit of Repair: Reduced opportunity for errors to enter into
the code.

Violation Does Not Apply
• Description: The coding standard does not apply to your current

project, or your development team has decided not to enforce the
coding standard.

• Repair: Right click the node that lists the violation, then select
Disable This Rule from the shortcut menu. The rule can be
re-enabled in the Global Test Parameters.

• Benefit of Repair: Violations of this rule will not be reported in
future tests.
273

Fixing Errors Found

274

R
ef

er
en

ce
Design By Contract Violations
• Description: Design by Contract violations indicate either an

error in the code or an error in the contract.

• Repair: Determine if the problem is in the code or in the contract,
then make the appropriate modifications.

• Benefit of Repair: The code or contract has been fixed.

White-Box Testing Errors

Incorrectly Behaving Method
• Description: The method is behaving incorrectly; the method

shouldn't throw an exception for those arguments.

• Repair: Repair the method's code so that it behaves correctly.

• Benefit of Repair The code has been fixed.

Unexpected Arguments
• Description: The method is not supposed to handle those argu-

ments; an exception is thrown because the method is not expect-
ing those arguments.

• Repair: If the arguments are illegal, either add an @pre condition
to the method (this is the recommended repair), or throw an Ille-
galArgumentException.

• Benefit of Repair: The code is documented, easier to maintain,
and easier to change. The code explicitly says what arguments
the method handles and which ones it doesn't. The error mes-
sages when using illegal arguments are clarified. Encapsulation
is enforced. When the method is passed arguments that it is not
supposed to handle, it should throw an IllegalArgumentExcep-
tion. If this is not done, one of the following things will occur:

• The method throws an exception exposing internal imple-
mentation details of the method, hence, violating encap-
sulation.

Fixing Errors Found

R
eference
• The method doesn't throw an exception when passed
illegal arguments. Instead it returns a value without any
meaning or leaves the program in an inconsistent state.

Correctly Behaving Methods
• Description : The method is behaving correctly; the output of the

method is to throw an Exception.

• Repair: Either add an @exception tag to the document that the
method throws that exception (this is the recommended repair),
or specify the type of exception in the method's throws clause.

• Benefit of Repair: The code is documented (the code explicitly
says that the method can throw that kind of exception) and easier
to maintain. Someone looking at the code later on will know
whether the method is throwing an exception because the code
has a bug or because the code is supposed to throw an excep-
tion.

Developer Use Only Methods
• Description: The method is never sent those arguments.

• Repair: Do one of the following:

• Add an @pre condition to that method (this is the recom-
mended repair).

• Decrease the accessibility of the method (e.g., set it to
private).

• Throw an IllegalArgumentException.

• Benefit of Repair: Someone looking at the code later on will
know whether the program is throwing an exception because the
code is incorrect or because the code is not supposed to handle
those arguments.

Specification/Regression Errors

Modification-Related Error
275

Fixing Errors Found

276

R
ef

er
en

ce
• Description: Jtest reports a specification/regression error for
code that you recently modified.

• Repair: If the result is unexpected, fix the code to restore the
original functionality. If it is expected, change the reference value
that Jtest uses for the related test case.

• Benefit of Repair: Errors are removed or Jtest checks the test
case against the correct reference value in future test runs.

Built-in Static Analysis Rules

R
eference
Built-in Static Analysis
Rules
Jtest includes the following built-in rules. A detailed description of each
rule is provided in the pages that follow. Rules are listed in alphabetical
order.

Coding Standard Rules
CODSTA.CLS ..285
CODSTA.CRS..286
CODSTA.DCI ...287
CODSTA.DCTOR ..288
CODSTA.IMPT...289
CODSTA.IMPT2...290
CODSTA.ISACF...291
CODSTA.LONG ...293
CODSTA.MAIN ..295
CODSTA.MVOS...296
CODSTA.NCAC ...297
CODSTA.NCE..299
CODSTA.NTE ..301
CODSTA.NTX ..302
CODSTA.OGM...303
CODSTA.OVERRIDE ..304
CODSTA.PML..305
CODSTA.SMC ...306
CODSTA.UCC ...308
CODSTA.UCDC...310
CODSTA.USN..312
CODSTA.VDT ..313

Design by Contract Rules
DBC.PKGC ..314
DBC.PKGMPOST ..315
DBC.PKGMPRE...316
DBC.PPIC ..317
DBC.PRIMPOST..319
DBC.PRIMPRE ..321
DBC.PROC ..323
277

Built-in Static Analysis Rules

278

R
ef

er
en

ce
DBC.PROMPOST..325
DBC.PROMPRE .. 326
DBC.PUBC .. 327
DBC.PUBMPOST ..329
DBC.PUBMPRE... 331

EJB Rules
EJB.AMSC ...333
EJB.CDP.. 334
EJB.CNDA ...335
EJB.CNDF ...336
EJB.CRTE.. 337
EJB.FNDM ...338
EJB.IECM .. 339
EJB.IEPM... 340
EJB.LNL... 341
EJB.MNDF ...342
EJB.NFS .. 343
EJB.PCRTE ... 344
EJB.RT... 345
EJB.RTC .. 346
EJB.RTP .. 347
EJB.RUH.. 348
EJB.THISARG ...351
EJB.THISRET .. 352
EJB.THREAD... 353

Garbage Collection Rules
GC.AUTP ... 354
GC.DUD... 355
GC.FCF..356
GC.FM ... 357
GC.GCB... 358
GC.IFF ... 360
GC.NCF ... 362
GC.OSTM .. 364
GC.STV..366

Global Static Analysis Rules
GLOBAL.DPAC.. 368
GLOBAL.DPAF .. 369

Built-in Static Analysis Rules

R
eference
GLOBAL.DPAM ...370
GLOBAL.DPPC..371
GLOBAL.DPPF ..372
GLOBAL.DPPM ...373
GLOBAL.SPAC ..374
GLOBAL.SPAM..375
GLOBAL.SPPC ..376
GLOBAL.SPPM..377
GLOBAL.UPAC..378
GLOBAL.UPAF ..379
GLOBAL.UPAM ...380
GLOBAL.UPPC..381
GLOBAL.UPPF ..382
GLOBAL.UPPM ...383

Initialization Rules
INIT.CSI ...384
INIT.NFS ..386
INIT.INITLV ..387
INIT.SF...388

Internationalization Rules
INTER.CLO ..389
INTER.COS..391
INTER.DTS ..393
INTER.NCL ..395
INTER.NSL ..397
INTER.NTS ..399
INTER.SB...401
INTER.SCT ..402
INTER.SE...404
INTER.ST...406
INTER.TTS...407

Javadoc Comment Rules
JAVADOC.BT...409
JAVADOC.MAJDT ...410
JAVADOC.MJDC ...411
JAVADOC.MVJDT ...412
JAVADOC.PARAM ..413
279

Built-in Static Analysis Rules

280

R
ef

er
en

ce
Class Metrics
METRICS.CIHL.. 414
METRICS.CTNL .. 415
METRICS.NOF .. 416
METRICS.NOM ... 417
METRICS.PJDC .. 418
METRICS.NPKGF ... 419
METRICS.NPKGM... 420
METRICS.NPRIF ... 421
METRICS.NPRIM ..422
METRICS.NPROF ... 423
METRICS.NPROM .. 424
METRICS.NPUBF..425
METRICS.NPUBM... 426
METRICS.STMT .. 427
METRICS.TCC .. 428
METRICS.TNLM .. 429
METRICS.TNMC ... 430
METRICS.TNOP.. 431
METRICS.TRET .. 432

Miscellaneous Rules
MISC.AFP .. 433
MISC.ASFI ...434
MISC.CLONE... 436
MISC.CTOR... 437
MISC.EFB .. 439
MISC.ELSEBLK ... 440
MISC.FF... 441
MISC.FLV .. 442
MISC.HMF ...443
MISC.IFBLK ... 444
MISC.CLNC ... 445
MISC.MSF ...447
MISC.PCF.. 448
MISC.PIF ... 449
MISC.WHILE.. 450

Naming Convention Rules
NAMING.CVN .. 451
NAMING.GETA.. 452

Built-in Static Analysis Rules

R
eference
NAMING.GETB ..454
NAMING.IFV ..456
NAMING.IRB..458
NAMING.NCL...459
NAMING.NE...460
NAMING.NIF ..461
NAMING.NITF..462
NAMING.NLV...463
NAMING.NM ..464
NAMING.NMP..466
NAMING.NSF...467
NAMING.NSM..468
NAMING.PKG ..469
NAMING.SETA ..471
NAMING.USF...473

Object Oriented Programming Rules
OOP.AHF ...474
OOP.AHSM..475
OOP.AIC ..476
OOP.APPF...478
OOP.APROF..480
OOP.IIN..482
OOP.LEVEL ...484
OOP.LPF..486
OOP.OPM ..487

Optimization Rules
OPT.AAS..489
OPT.CEL..490
OPT.CS..491
OPT.DIC...493
OPT.DUN ...495
OPT.IF..496
OPT.IFAS...498
OPT.INSOF..500
OPT.IRB...501
OPT.LOOP...503
OPT.MAF ...505
OPT.PCTS ...506
OPT.SB ..508
281

Built-in Static Analysis Rules

282

R
ef

er
en

ce
OPT.SDIV .. 510
OPT.SMUL...511
OPT.STR ... 512
OPT.SYN ... 513
OPT.TRY ... 514
OPT.UEQ... 516
OPT.UISO.. 518
OPT.UNC... 520
OPT.USB ... 522
OPT.USC ... 524
OPT.UST ... 525
OPT.USV ... 527

Possible Bugs Rules
PB.ADE..529
PB.AECB ... 531
PB.ASI ... 532
PB.AUO ... 533
PB.CLP ..534
PB.CTOR ... 535
PB.DCF..536
PB.DCP..537
PB.DNCSS...538
PB.EQL ..540
PB.EQL2 .. 542
PB.FEB ..544
PB.FLVA .. 545
PB.IEB ... 546
PB.IMO ..547
PB.MAIN .. 548
PB.MPC ... 550
PB.MRUN .. 551
PB.NAMING... 552
PB.NDC ... 554
PB.NEA..557
PB.PDS..558
PB.SBC..559
PB.TLS... 560
PB.UEI ... 562

Project Metrics

Built-in Static Analysis Rules

R
eference
PMETRICS.NB...564
PMETRICS.NC ..565
PMETRICS.NJF ...566
PMETRICS.NL ...567
PMETRICS.NOF ..568
PMETRICS.NOM ...569
PMETRICS.NPAC..570
PMETRICS.NPKGC...571
PMETRICS.NPRIC ..572
PMETRICS.NPROC...573
PMETRICS.NPUBC ...574

Portability Rules
PORT.ENV...575
PORT.EXEC ..576
PORT.LNSP...577
PORT.NATV...579
PORT.PEER ..580

Security Rules
SECURITY.CLONE..581
SECURITY.CMP ..582
SECURITY.INNER...583
SECURITY.PKG ..585
SECURITY.SER...586
SECURITY.SER2...587

Servlet Rules
SERVLET.BINS ...588
SERVLET.DSLV ..590
SERVLET.HVR ..592
SERVLET.RRWD...594
SERVLET.SOP ..596
SERVLET.STM ..598
SERVLET.SYN ..600

Threads and Synchronization Rules
TRS.ANF..603
TRS.CSFS ...604
TRS.NSM ...606
283

Built-in Static Analysis Rules

284

R
ef

er
en

ce
TRS.NSPM .. 608
TRS.NSYN...610
TRS.RUN ... 611
TRS.THRD...612
TRS.UWNA.. 613
TRS.WAIT.. 615

Unused Code Rules
UC.AAI ... 616
UC.AUV ... 617
UC.DIL ... 618
UC.PF .. 619
UC.PM ... 620
UC.UP.. 621

CODSTA.CLS

285

R
eference

Coding Standard RulesCODSTA.CLS

Place constants on the left side of
comparisons

Description
This rule flags code that does not place constants on the left side of com-
parisons.

Example
package CODSTA;

public class CLS {
public void testMethod (int something) {

if (something == 5) {} // violation.
}

}

Repair
Place constants in left side of comparisons.

public void testMethod (int something) {
if (5 == something) {}

}

Reference
Section 2.5.2 of http://www.AmbySoft.com/javaCodingStandards.pdf

CODSTA.CRS

286

R
ef

er
en

ce

CODSTA.CRS

Place constants on the right side of
comparisons

Description
This rule flags code that does not place constants on the right side of
comparisons.

Example
package CODSTA;

public class CRS {
public void testMethod (int something) {

if (5 == something) {} // violation.
}

}

Repair
Place constants in right side of comparisons.

public void testMethod (int something) {
if (something == 5) {}

}

CODSTA.DCI

287

R
eference

CODSTA.DCI

Define constants in an “interface”

Description
This rule flags any non-private named constant that is not defined in an
“interface”.

Example
package CODSTA;

class DCI{
private int[] getArray () {

return new int [ARRAY_SIZE];
}

static final int ARRAY_SIZE = 1000;
}

Repair
class USN_fixed {

private int[] getArray () {
return new int [Constants.ARRAY_SIZE];

}
}
interface Constants {

int ARRAY_SIZE = 1000;
}

CODSTA.DCTOR

288

R
ef

er
en

ce

CODSTA.DCTOR

Define a default constructor
whenever possible

Description
This rule flags code that define a default constructor, but does not.

Default constructors allow classes of unknown types to be dynamically
loaded and instantiated at compile time (as is done when loading
unknown Applets from html pages). In Java 1.1 and higher, reflection
somewhat alleviates the need for no-argument constructors, but many
classes that dynamically instantiate other classes at runtime still depend
on their presence.

Example
package CODSTA;

public class DCTOR { // missing a default constructor.
public DCTOR(int size) { _size = size; }
private int _size;

}

Repair
Define default constructor (no argument).

Reference
http://www.infospheres.caltech.edu/resources/code_standards/recom-
mendations.html

CODSTA.IMPT

289

R
eference

CODSTA.IMPT

Minimize * form of “import”
statements

Description
This rule flags code that uses * in import statements.

We recommend that you try to “import” only necessary classes and be
precise about what you are importing. Otherwise, readers might have a
difficult time understanding its context and dependencies. Some people
even prefer not using “import” at all (thus requiring that every class refer-
ence is fully qualified); this prevents all possible ambiguity and reduces
source code changes if package names change.

Example
package CODSTA;
import java.io.*;

public class IMPT {
void method (InputStream in) {

if (in == null) return;
}

}

Reference
http://g.oswego.edu/dl/html/javaCodingStd.html

CODSTA.IMPT2

290

R
ef

er
en

ce

CODSTA.IMPT2

Use wild card symbols when
importing classes

Description
This rule flags code that does not use wild card symbols when importing
classes.

The import statement allows the use of the wild cards when indicating the
names of classes. For example, the statement import java.awt.*; brings in
all of the classes in the package java.awt at once. Actually, that's not
completely true. What really happens is that every class that you use
form the java.awt package will be brought into your code when it is com-
piled, classes that you do not use will not be.

Note: Jtest has another rule, CODSTA.IMPT, which discourages the use
of wild card symbols in import statements. Because we have two refer-
ences, which contain conflicting opinions, ParaSoft added both rules for
the users to decide.

Example
package CODSTA;
import java.io.InputStream; // violation.

public class IMPT2 {
void method (InputStream in) {

if (in == null) return;
}

}

Reference
Section 7.2 of http://www.AmbySoft.com/javaCodingStandards.pdf

CODSTA.ISACF

R
eference
CODSTA.ISACF

Avoid using an "interface" to define
constants

Description
This rule flags code where an “interface” is used to define a constant.

An interface should not be used to define constants. While it is common
practice to use a constant interface (an interface that only contains static
final fields and no methods) this should be avoided. The use of constants
is an implementation detail. Implementing a constant interface causes this
implementation detail to leak into the class's exported API. In order to
avoid this, constants should be moved to a utility class, a class which only
contains static variables and methods.

Note: Jtest’s CODSTA.DCI rule conflicts with this rule. Because we have
seen arguments for both guidelines, we have included both rules and will
allow you to decide which one to use.

Example
package CODSTA;

public interface ISACF {
int NUM = 1234; // violation

}

Repair
Place constants in a utility class instead of an "interface"

package CODSTA;

public class ISACF_CLASS {
private ISACF_CLASS() {} // Prevents instantiation
291

CODSTA.ISACF

292

R
ef

er
en

ce
static final int NUM = 1234;
}

Reference
Bloch, Joshua. Effective Java Programming Language Guide. Addison
Wesley, 2001, pp 89 - 90.

CODSTA.LONG

R
eference
CODSTA.LONG

Use ‘L’ instead of ‘l’ to express “long”
integer constants

Description
This rule flags code where a long integer constant is indicated by ‘l’
instead of by ‘L’.

Integer constants are “long” if they end in ‘L’ or ‘l’;. ‘L’ is preferred over ‘l’
because ‘l’ (lowercase ‘L’) can easily be confused with ‘1’ (the number
one).

Example
package CODSTA;

class LONG {
long getLongNumber () {

long temp = 23434l; // Is this 23434L or 234341?
return temp;

}
}

Repair
class LONG {

long getLongNumber () {
long temp = 23434L;
return temp;

}
}

Reference
293

CODSTA.LONG

294

R
ef

er
en

ce
Arnold, Ken, and Gosling, James The Java Programming Language. 2d
ed. Addison Wesley, 1997, pp.108

CODSTA.MAIN

295

R
eference

CODSTA.MAIN

The ’main()’ method must be “public”,
“static” and “void”

Description
This rule flags any ‘main()’ method that is not “public”, “static”, and “void”.

The ‘main()’ method must be “public”, “static”, and “void”, and it must
accept a single argument of type String[].

Example
package CODSTA;

public class MAIN {
static void main(String[] args) {// main method is

//not a public.
System.out.println("hello");

}
}

Repair
Use following signature for a ‘main()’ method.

public static void main(String[] args)

Reference
Arnold, Ken, and Gosling, James The Java Programming Language. 2d
ed. Addison Wesley, 1997, pp.55-56.

CODSTA.MVOS

296

R
ef

er
en

ce

CODSTA.MVOS

Do not declare multiple variables in
one statement

Description
This rule flags code where multiple variables are declared in one state-
ment. Declaring too many variables in one statement can make code con-
fusing.

Example
package CODSTA;

class MVOS {
public void foo() {

int aaa, ccc; //violation
}

}

Repair
package CODSTA;
class MVOS {

public void foo() {
int aaa;
int ccc;

}
}

CODSTA.NCAC

R
eference
CODSTA.NCAC

Never call an “abstract” method from
a constructor in an “abstract” class

Description
This rule flags code that calls an “abstract” method from a constructor in
an “abstract” class.

Calling abstract methods from an "abstract" class's constructor causes
the object's methods to be used before it is finished using its constructors.

Example
package CODSTA;

abstract class NCAC {
public NCAC () {

System.out.println("Constructor: ");
test (); // invoke abstract method from the constructor.

}
abstract public void test ();

}
class MyClass extends NCAC {

public MyClass (int size) {
super ();
System.out.println("setting size to : " +size);
_size = size;

}
public void test () {

_size++;
System.out.println("Increament : " +_size);

}
private int _size = 0;

}

Result of the above code is:
MyClass mc = new MyClass (50);
297

CODSTA.NCAC

298

R
ef

er
en

ce
Constructor:
Increment : 1 // super class's constructor called test();
setting size to : 50 // finish executing MyClass' constructor.

Reference
Warren, Nigel, and Bishop, Philip. Java in Practice. Addison-Wesley,
1999, pp.103-104.

CODSTA.NCE

R
eference
CODSTA.NCE

Never use ‘Exception’,
RuntimeException’, or ‘Throwable’ in
“catch” statement

Description
This rule flags code that tries to “catch” an ‘Exception’, ‘RuntimeExcep-
tion’, or ‘Throwable’.

‘Exception’, ‘RuntimeException’, and ‘Throwable’ are too general.

Example
package CODSTA;

public class NCE {
void method () {

try {
} catch (Exception e1) {
}
try {
} catch (RuntimeException e2) {
}
try {
} catch (RuntimeException e3) {
}

}
}

Repair
Deal with subclasses of ‘Exception’, ‘RuntimeException’, and ‘Throwable’
when handling exceptions.
299

CODSTA.NCE

300

R
ef

er
en

ce
Reference
Warren, Nigel, and Bishop, Philip. Java in Practice. Addison-Wesley,
1999, pp. 68-69.

CODSTA.NTE

301

R
eference

CODSTA.NTE

Never “throw” an ‘Error’ directly

Description
This rule flags code that “throw”s an ‘Error’ directly.

“Throwing” an ‘Error’ directly is too general.

Example
package CODSTA;

public class NTE {
void method () {

throw new LinkageError ();
}

void method2 () {
throw new Error ();

}
}

Repair
Explicitly deal with the subclasses of a superclass derived from ‘Error’ to
avoid potential bugs.

CODSTA.NTX

302

R
ef

er
en

ce

CODSTA.NTX

Never “throw” class ‘Exception’
directly

Description
This rule flags code where ‘Exception’ is being used too generally.

Example
package CODSTA;

public class NTX {
void method () throws Exception, ArithmeticException {

throw new Exception ();
}

void foo () throws Exception {
Exceptio n e = new Exception ("TEST");
throw e;

}
}

Repair
Concentrate on handling subclasses of ‘Exception.’

Reference
Warren, Nigel, and Bishop, Philip. Java in Practice. Addison-Wesley,
1999, pp. 76.

CODSTA.OGM

303

R
eference

CODSTA.OGM

Organize member variables by name

Description
This rule flags code where group members with the same name are not
ordered together.

This rule enforces various standards to improve readability.

Example
package CODSTA;

public class OGM {
void foo () {}
void bar () {}
void foo (int a) {
}

}

Repair
Move the members called “foo()” together.

CODSTA.OVERRIDE

304

R
ef

er
en

ce

CODSTA.OVERRIDE

If you override 'Object.equals()', you
should also override
'Object.hashCode()'

Description
This rule flags code where a class that overrides 'Object.equals()' does
not also override 'Object.hashCode()'.

A class that overrides 'Object.equals()' should also override 'Object.hash-
Code()'. Containers and other utilities that group or compare objects in
ways depending on equality rely on hashcodes to indicate possible equal-
ity.

Example
package CODSTA;

public class OVERRIDE { // violation, no hashCode()
public Object equals (Object o) {

// implementations
}

}

Repair
Whenever a class overrides an equals() method, it should also override
hashCode().

Reference
http://www.infospheres.caltech.edu/resources/code_standards/recom-
mendations.html

CODSTA.PML

305

R
eference

CODSTA.PML

Put the ‘main()’ method last

Description
This rule flags code where the ‘main()’ method is not last item in the class
definition.

This rule makes the program comply with various coding standards
regarding the form of class definitions.

Example
package CODSTA;

class PML {
public static void main (String args[]) {
}
void foo () {
}

}

Repair
List method ‘main()’ last within the “class” definition.

CODSTA.SMC

306

R
ef

er
en

ce
CODSTA.SMC

Avoid “switch” statements with many
“cases”

Description
This rule flags any “switch” statement with many “cases”.

“switch” statements with many “case” statements make code difficult to
follow. More importantly, switches with many cases often indicate places
where polymorphic behavior could better be used to provide different
behavior for different types. Note that although the general principle is to
avoid many cases in a switch, the actual cutoff point is arbitrary.

Example
package CODSTA;

class SMC
{

public void foo(int i) {
switch (i) { // Violation
case 1:

break;
case 2:

break;
case 3:

break;
case 4:

break;
case 5:

break;
case 6:

break;
case 7:

break;
case 8:

break;

CODSTA.SMC

R
eference
case 9:
break;

case 10:
break;

case 11:
break;

default:
break;

}
}

}

Repair
Look for cleaner ways to invoke the alternative behaviors.
307

CODSTA.UCC

308

R
ef

er
en

ce
CODSTA.UCC

Utility classes should only have
"private" constructors

Description
This rule flags any utility class that has non-”private” constructors.

A utility class only contains static methods and static variables. Because
the utility class is not designed to be instantiated, all of the constructors
should be private.

Example
package CODSTA;

public class UCC {

public static Strin g s = "UCC";

public UCC() {} // violation

public static String getUCC() {
return "UCC";

}
}

Repair
package CODSTA;

public class UCC {

public static Strin g s = "UCC";
private UCC() {}

public static String getUCC() {

CODSTA.UCC

R
eference
return "UCC";
}

}

Reference
Bloch, Joshua. Effective Java Programming Language Guide. Addison
Wesley, 2001, pp 89 - 90.
309

CODSTA.UCDC

310

R
ef

er
en

ce
CODSTA.UCDC

Utility classes should not have a
default constructor

Description
This rule flags any utility class that has a default constructors.

A utility class only contains static methods and static variables. Because
an implicit default constructor is "public" and a utility class is not designed
to be instantiated, the "public" default constructor of a utility class should
be declared "private".

Example
package CODSTA;

public class UCDC {

// violation: implicit default constructor is public

public static String UCDC = "UCDC";

public static String getUCDC() {
return "UCDC";

}
}

Repair
package CODSTA;

public class UCDC {

private UCDC() {}

public static String UCDC = "UCDC";

CODSTA.UCDC

R
eference
public static String getUCDC() {
return "UCDC";

}
}

Reference
Bloch, Joshua. Effective Java Programming Language Guide. Addison
Wesley, 2001, p. 12
311

CODSTA.USN

312

R
ef

er
en

ce

CODSTA.USN

Use symbolic names for constants

Description
This rule flags code that uses an unnamed constant.

Named constants (final static variables) make the code much easier to
understand and maintain. To avoid reporting too many spurious errors,
Jtest will not report an error for the following integer constants:

-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Jtest will only give one error per constant found in the code.

Example
package CODSTA;

class USN {
private int[] getArray () {

return new int [1000];
}

}

Repair
class USN {

private int[] getArray () {
return new int [ARRAY_SIZE];

}
private static final int ARRAY_SIZE = 1000;

}

CODSTA.VDT

313

R
eference

CODSTA.VDT

Do not declare multiple variables of
different types in one statement

Description
This rule flags any code where multiple variables of different types are
declared in a single declaration statement.

Declaring multiple variables of different types in a single declaration state-
ment can cause confusion.

Example
package CODSTA;
class VDT
{

public void foo() {
int aaa, bbb[]; // Violation
int ccc, ddd;

}
}

Repair
package CODSTA;

class VDT
{

public void foo() {
int aaa;
int bbb[];
int ccc, ddd;

}
}

DBC.PKGC

314

R
ef

er
en

ce

Design by Contract RulesDBC.PKGC

All package-private classes should
have the '@invariant' contract

Description
This rule flags any package-private class without an '@invariant' contract:
'$name'.

Example
package DBC;

class PKGC {
/**

* @pre size >= 0
* @post ($return != null && $pre (size + 1) == size + 1)
* @exception NegativeArraySizeException size < 0
*/

public int[] allocate (int size) {
return new int [size];

}
public String toString () {

return "PKGC";
}
public static void main (String[] args) {

new Strategy ().allocate (5);
}

}

Repair
Provide the ‘@invariant’ Javadoc tag.

/** @invariant toString ().equals ("PKGC") */

DBC.PKGMPOST

315

R
eference

DBC.PKGMPOST

All package-private methods should
have the '@post' contract

Description
This rule flags any package-private method that does not have an ‘@post’
contract in its Javadoc.

Example
/** @invariant toString ().equals ("Strategy") */
class PKGMPOST {

/**
* @pre size >= 0
* @exception NegativeArraySizeException size < 0
*/

int[] allocate (int size) {
return new int [size];

}
}

Repair
Provide the ‘@post’ Javadoc tag.

/**
* @pre size >= 0
* @post ($return != null && $pre (size +1) == size + 1)
* @exception NegativeArraySizeException size < 0
*/

DBC.PKGMPRE

316

R
ef

er
en

ce

DBC.PKGMPRE

All package-private methods should
have the '@pre' contract

Description
This rule flags any package-private method that does not have an ‘@pre’
contract in its Javadoc.

Example
package DBC;

/** @invariant toString ().equals ("Strategy") */
class PKGMPRE {

/**
* @post ($return != null && $pre (size + 1) == size + 1)
* @exception NegativeArraySizeException size < 0
*/

int[] allocate (int size) {
return new int [size];

}
}

Repair
Provide the ‘@pre’ condition.

/**
* @pre size >= 0
* @post ($return != null && $pre (size + 1) == size + 1)
* @exception NegativeArraySizeException size < 0
*/

DBC.PPIC

R
eference
DBC.PPIC

All "private" classes should have the
'@invariant' contract

Description
This rule flags any “private” class that does not have an ‘@invariant’ con-
tract.

Example
package DBC;

public class OrderedList {
/**

* @pre["item is not in list"] contains (item) == false
* @post["item is in list"] contains (item) == true
*/

public void insert (PRIC item) {
// ...

}
public boolean contains (PRIC item) {

//NYI:
return false;

}
}

private class PRIC {
PRIC (int value) {

_value = value;
}
int getValue () {

return _value;
}
void setNext (PRIC next) {

_next = next;
}
PRIC getNext () {
317

DBC.PPIC

318

R
ef

er
en

ce
return _next;
}
private int _value;
private PRIC _next;

}

Repair
Provide the ‘@invariant’ contract.

DBC.PRIMPOST

R
eference
DBC.PRIMPOST

All "private" methods should have the
'@post' contract

Description
This rule flags any “private” method that does not have an ‘@post’ con-
tract in its Javadoc.

Example
package DBC;
public class PRIMPOST {

/**
* @pre size () < MAX_SIZE - 1
* @post peek () == object
* @post size () == $pre (int, size ()) + 1
* @concurrency sequential
*/

public void push (Object object) {
_storage [_top++] = object;

}
/**

* @pre size () > 0
*/

public Object peek () {
return _storage [_top - 1];

}
public int size () {

return _top;
}
private boolean isEmpty () {

return _top == 0;
}

private Object _storage[] = new Object [MAX_SIZE];
private int _top;
private final static int MAX_SIZE = 100;
319

DBC.PRIMPOST

320

R
ef

er
en

ce
}

Repair
Provide the ‘@post’ contract.

/** @post $return == (size () == 0) */

DBC.PRIMPRE

R
eference
DBC.PRIMPRE

All "private" methods should have the
'@pre' contract

Description
This rule flags any “private” method that does not have an ‘@pre’ contract
in its Javadoc.

Example
package DBC;
public class PRIMPRE {

/**
* @pre size () < MAX_SIZE - 1
* @post peek () == object
* @post size () == $pre (int, size ()) + 1
* @concurrency sequential
*/

public void push (Object object) {
_storage [_top++] = object;

}
/** @pre size () > 0 */
public Object peek () {

return _storage [_top - 1];
}
public int size () {

return _top;
}
/** @post $return == (size () == 0) */
private boolean isEmpty () {

return _top == 0;
}

private Object _storage[] = new Object [MAX_SIZE];
private int _top;
private final static int MAX_SIZE = 100;

}

321

DBC.PRIMPRE

322

R
ef

er
en

ce
Repair
Provide the ‘@pre’ contract.

DBC.PROC

R
eference
DBC.PROC

All "protected" classes should have
the '@invariant' contract

Description
This rule flags any "protected" class that does not have an '@invariant'
contract.

Example
//From: "The Pragmatic Programmer", p.110.
/**

* @Date 2000/
*/

package DBC;

protected class PROC {
/**

* @pre["item is not in list"] contains (item) == false
* @post["item is in list"] contains (item) == true
*/

public void insert (Item item) {
// ...

}
public boolean contains (Item item) {

//NYI:
return false;

}
}

class Item {
Item (int value) {

_value = value;
}
int getValue () {

return _value;
}

323

DBC.PROC

324

R
ef

er
en

ce
void setNext (Item next) {
_next = next;

}
Item getNext () {

return _next;
}
private int _value;
private Item _next;

}

Repair
Provide the ‘@invariant’ contract.

/**
* @invariant["items are ordered"] {
* for (Enumeratio n e = elements; e.hasMoreElements ();) {
* Item item = (Item) e.nextElement ();
* if (item.getNext () != null)
* $assert (item.getValue () < item.getNext ().getValue

());
* }
* }
*/

DBC.PROMPOST

325

R
eference

DBC.PROMPOST

All "protected" methods should have
the '@post' contract

Description
This rule flags any "protected" class that does not have an ‘@post' con-
tract in its Javadoc.

Example
package DBC;
protected class PROMPOST {

/**
@pre length > 0

*/
protected void method (int length) {

array = new [length];
// do something.

}
private int[] array;

}

Repair
Provide the ‘@post’ contract in “protected” methods.

DBC.PROMPRE

326

R
ef

er
en

ce

DBC.PROMPRE

All "protected" methods should have
the '@pre' contract

Description
This rule flags any "protected" method that does not have an ‘@pre’ con-
tract in its Javadoc.

Example
package DBC;
public class PROMPRE {

/** @param none
@post none

*/
protected void method () {

// do something.
}

}

DBC.PUBC

R
eference
DBC.PUBC

All "public" classes should have the
'@invariant' contract

Description
This rule flags any "public" class that does not have an ‘@invariant’ con-
tract.

Example
//From: "The Pragmatic Programmer", p.110.
/**

* @author
*/

public class PUBC {
/**

* @pre["item is not in list"] contains (item) == false
* @post["item is in list"] contains (item) == true
*/

public void insert (Item item) {
// ...

}
public boolean contains (Item item) {

//NYI:
return false;

}
}

class Item {
Item (int value) {

_value = value;
}
int getValue () {

return _value;
}
void setNext (Item next) {
327

DBC.PUBC

328

R
ef

er
en

ce
_next = next;
}
Item getNext () {

return _next;
}
private int _value;
private Item _next;

}

Repair
Provide the ’@invariant’ Javadoc tag.

/**
* @invariant["items are ordered"] {
* for (Enumeratio n e = elements; e.hasMoreElements ();) {
* Item item = (Item) e.nextElement ();
* if (item.getNext () != null)
* $assert (item.getValue () < item.getNext ().getValue

());
* }
* }
*/

DBC.PUBMPOST

R
eference
DBC.PUBMPOST

All "public" methods should have the
'@post' contract

Description
This rule flags any "public" class that does not have an ‘@post contract in
its Javadoc.

Example
package DBC;
public class PUBMPOST {

/**
* @pre size () < MAX_SIZE - 1
* @post peek () == object
* @post size () == $pre (int, size ()) + 1
* @concurrency sequential
*/

public void push (Object object) {
_storage [_top++] = object;

}
/**

* @pre size () > 0
*/

public Object peek () {
return _storage [_top - 1];

}
public int size () {

return _top;
}

private Object _storage[] = new Object [MAX_SIZE];
private int _top;
private final static int MAX_SIZE = 100;

}

329

DBC.PUBMPOST

330

R
ef

er
en

ce
Repair
Provide the ‘@post’ contract.

/**
* @pre size () > 0
* @post size () == $pre (int, size ())
*/

DBC.PUBMPRE

R
eference
DBC.PUBMPRE

All "public" methods should have the
'@pre' contract

Description
This rule flags any "public" method that does not have an ‘@pre’ contract
in its Javadoc.

Example
package DBC;
public class PUBMPRE {

/**
* @post peek () == object
* @post size () == $pre (int, size ()) + 1
* @concurrency sequential
*/

public void push (Object object) {
_storage [_top++] = object;

}
/**

* @pre size () > 0
*/

public Object peek () {
return _storage [_top - 1];

}
public int size () {

return _top;
}

private Object _storage[] = new Object [MAX_SIZE];
private int _top;
private final static int MAX_SIZE = 100;

}

331

DBC.PUBMPRE

332

R
ef

er
en

ce
Repair
Provide the ‘@pre’ contract.

/**
* @pre size () < MAX_SIZE - 1
* @post peek () == object
* @post size () == $pre (int, size ()) + 1
* @concurrency sequential
*/

EJB.AMSC

333

R
eference

EJB RulesEJB.AMSC

Avoid accessing or modifying
security configuration objects

Description
This rule flags Bean classes that access or modify security configuration
objects. By following this rule, you can prevent security problems.

Reference
Sanjay Mahapatra, “Programming restrictions on EJB.” JavaWorld,
August 2000.

EJB.CDP

334

R
ef

er
en

ce

EJB.CDP

A Bean "class" should be declared as
"public"

Description
See the reference.

Reference
Enterprise JavaBeans Developer's Guide

http://web2.java.sun.com/j2ee/j2sdkee/techdocs/guides/ejb/html/Ses-
sion.fm.html

http://web2.java.sun.com/j2ee/j2sdkee/tech-
docs/guides/ejb/html/Entity.fm.html

EJB.CNDA

335

R
eference

EJB.CNDA

A Bean "class" cannot be declared as
"abstract"

Description
See the reference.

Reference
Enterprise JavaBeans Developer's Guide

http://web2.java.sun.com/j2ee/j2sdkee/techdocs/guides/ejb/html/Ses-
sion.fm.html

http://web2.java.sun.com/j2ee/j2sdkee/tech-
docs/guides/ejb/html/Entity.fm.html

EJB.CNDF

336

R
ef

er
en

ce

EJB.CNDF

Bean "class" cannot be declared as
"final"

Description
See the reference.

Reference
Enterprise JavaBeans Developer's Guide

http://web2.java.sun.com/j2ee/j2sdkee/techdocs/guides/ejb/html/Ses-
sion.fm.html

http://web2.java.sun.com/j2ee/j2sdkee/tech-
docs/guides/ejb/html/Entity.fm.html

EJB.CRTE

337

R
eference

EJB.CRTE

ejbCreate() must be “public”, and
cannot be “static” or “final”

Description
See the reference.

Reference
Enterprise JavaBeans Developer's Guide

http://web2.java.sun.com/j2ee/j2sdkee/techdocs/guides/ejb/html/Ses-
sion.fm.html

http://web2.java.sun.com/j2ee/j2sdkee/tech-
docs/guides/ejb/html/Entity.fm.html

EJB.FNDM

338

R
ef

er
en

ce

EJB.FNDM

Finder methods cannot be "final" or
"static" and they must be “public”

Description
See the reference.

Reference
Enterprise JavaBeans Developer's Guide

http://web2.java.sun.com/j2ee/j2sdkee/tech-
docs/guides/ejb/html/Entity.fm.html

EJB.IECM

339

R
eference

EJB.IECM

Bean "class" should implement one
or more ‘ejbCreate()’ methods

Description
See the reference.

Reference
Enterprise JavaBeans Developer's Guide

http://web2.java.sun.com/j2ee/j2sdkee/techdocs/guides/ejb/html/Ses-
sion.fm.html

http://web2.java.sun.com/j2ee/j2sdkee/tech-
docs/guides/ejb/html/Entity.fm.html

EJB.IEPM

340

R
ef

er
en

ce

EJB.IEPM

An EntityBean "class" should
implement one or more
‘ejbPostCreate()’ methods

Description
See the reference.

Reference
Enterprise JavaBeans Developer's Guide

http://web2.java.sun.com/j2ee/j2sdkee/tech-
docs/guides/ejb/html/Entity.fm.html

EJB.LNL

341

R
eference

EJB.LNL

Avoid loading native libraries in Bean
class

Description
This rule flags code that loads native libraries in a Bean class.

Reference
Sanjay Mahapatra, “Programming restrictions on EJB.” JavaWorld,
August 2000.

EJB.MNDF

342

R
ef

er
en

ce

EJB.MNDF

A Bean “class” must not define the
‘finalize()’ method

Description
See the reference.

Reference
Enterprise JavaBeans Developer's Guide

http://web2.java.sun.com/j2ee/j2sdkee/techdocs/guides/ejb/html/Ses-
sion.fm.html

http://web2.java.sun.com/j2ee/j2sdkee/tech-
docs/guides/ejb/html/Entity.fm.html

EJB.NFS

343

R
eference

EJB.NFS

Declare all "static" fields in the EJB
component as "final"

Description
This rule flags any non-final “static” field in a Bean class.

Declaring all "static" fields in the EJB component as "final" ensures con-
sistent runtime semantics so that EJB containers have the flexibility to dis-
tribute instances across multiple JVMs.

Reference
Sanjay Mahapatra, “Programming restrictions on EJB.” JavaWorld,
August 2000.

EJB.PCRTE

344

R
ef

er
en

ce

EJB.PCRTE

‘ejbPostCreate()’ must be “public”,
and it cannot be “static” or “final”

Description
See the reference.

Reference
Enterprise JavaBeans Developer's Guide

http://web2.java.sun.com/j2ee/j2sdkee/tech-
docs/guides/ejb/html/Entity.fm.html

EJB.RT

345

R
eference

EJB.RT

The finder methods’ “return” type
must be the primary key or a
collection of primary keys

Description
See the reference.

Reference
Enterprise JavaBeans Developer's Guide

http://web2.java.sun.com/j2ee/j2sdkee/tech-
docs/guides/ejb/html/Entity.fm.html

EJB.RTC

346

R
ef

er
en

ce

EJB.RTC

The SessionBean's ‘ejbCreate()’
methods’ “return” type must be
“void”

Description
See the reference.

Reference
Enterprise JavaBeans Developer's Guide

http://web2.java.sun.com/j2ee/j2sdkee/techdocs/guides/ejb/html/Ses-
sion.fm.html

EJB.RTP

347

R
eference

EJB.RTP

The ‘ejbPostCreate()’ method’s
“return” type must be “void”

Description
See the reference.

Reference
Enterprise JavaBeans Developer's Guide

http://web2.java.sun.com/j2ee/j2sdkee/tech-
docs/guides/ejb/html/Entity.fm.html

EJB.RUH

348

R
ef

er
en

ce
EJB.RUH

Reuse EJB homes

Description
This rule flags code that does not reuse EJB homes but should. This rule
only applies to simple applications.

EJB homes are obtained from the WebSphere Application Server through
a JNDI naming lookup. This is an expensive operation that can be mini-
mized by caching and reusing EJB Home objects.

Example
package EJB;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.rmi.*;
import javax.naming.*;

public class RUH extends HttpServlet {
public void transaction () throws ServletException {

Context ctx = null;
try {

ctx = new InitialContext (new java.util.Hashtable ());
Object homeObject = ctx.lookup ("EJB JNDI NAME");
//violation, Home interface should not be a local

// variable.
AccountHome aHome = (AccountHome)Portable

RemoteObject.narrow (
homeObject, AccountHome.class);

} catch (Exception e) {
throw new ServletException ("INIT ERROR" +e.getMessage

(), e);
} finally {

try {
if (ctx != null) ctx.close ();

} catch (Exception e) {}

EJB.RUH

R
eference
}
}

}

Repair
Cache EJB Home in Servlet init method.

import javax.servlet.*;
import javax.servlet.http.*;
import javax.naming.*;

public class rw137_correct extends HttpServlet {
private AccountHome aHome = null; // cache Home interface.
public void init (ServletConfig config) throws ServletException

{
super.init (config);
Context ctx = null;
try {

ctx = new InitialContext (new java.util.Hashtable ());
Object homeObject = ctx.lookup ("EJB JNDI NAME");
aHome = (AccountHome)javax.rmi.PortableRemoteObject.nar-

row (
homeObject, AccountHome.class);

} catch (Exception e) {
throw new ServletException ("INIT ERROR" +e.getMessage

(), e);
} finally {

try {
if (ctx != null) ctx.close ();

} catch (Exception e) {}
}

}
}

For simple applications, it might be enough to acquire the EJB home in
the servlet init() method.

More complicated applications might require cached EJB homes in many
servlet and EJBs. In these cases, you might want to create an EJB Home
Locator and Caching class.
349

EJB.RUH

350

R
ef

er
en

ce
Reference
IBM WebSphere Application Server Standard and Advanced Editions,
Harvey W. Gunther.

http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf

EJB.THISARG

351

R
eference

EJB.THISARG

Avoid passing the "this" reference as
an argument

Description
This rule flags code that passes the “this” reference as an argument.

Instead of passing the “this” reference as an argument, use getEJBObject
() available in SessionContext or EntityContext.

Reference
Sanjay Mahapatra, “Programming restrictions on EJB.” JavaWorld,
August 2000.

EJB.THISRET

352

R
ef

er
en

ce

EJB.THISRET

Avoid returning the "this" reference
as a result

Description
This rule flags code that returns the “this” reference as a result. Instead if
returning the “this” reference as a result, use getEJBObject () available in
SessionContext or EntityContext.

Reference
Sanjay Mahapatra, “Programming restrictions on EJB.” JavaWorld,
August 2000.

EJB.THREAD

353

R
eference

EJB.THREAD

Avoid starting, stopping, or managing
threads in any way

Description
This rule flags code that calls a thread method from an EJB class.

Starting, stopping, or managing threads usage restriction eliminates the
possibility of conflicts with the EJB container's responsibility of managing
locking, threading, and concurrency issues.

Reference
Sanjay Mahapatra, “Programming restrictions on EJB.” JavaWorld,
August 2000.

GC.AUTP

354

R
ef

er
en

ce

Garbage Collection RulesGC.AUTP

Avoid unnecessary temporaries when
converting primitive types to String

Description
This rule flags code where an unnecessary temporary is used when con-
verting primitive types to String.

Java provides wrapping classes for the primitive types. Those classes
provide a static method ‘toString (...)’ to convert the primitive type into
their String equivalent. Use this method instead of creating an object of
the wrapping class and then using the instance ‘toString ()’ method.

Example
package GC;

public class AUTP {
String foobar (int x) {

return new Integer (x).toString (); // Violation
}

}

Repair
class AUTP_fixed {

String foobar (int x) {
return Integer.toString (x);

}
}

GC.DUD

355

R
eference

GC.DUD

Do not use ‘Date[]’; use ‘long[]’
instead

Description
This rule flag any occurrence of ‘Date[]’.

Do not use arrays of ‘Date’ objects. Using an array of “long" is more effi-
cient than using an array of ‘Date’s .

Example
package GC;

import java.util.*;

public class DUD {
Date d[]; // Violation

}

Repair
Use an array of “long” objects instead.

GC.FCF

356

R
ef

er
en

ce

GC.FCF

Make sure that ‘finalize ()’ calls
‘super.finalize ()’

Description
This rule flags code where a ‘finalize()’ method does not call ‘super.final-
ize()’.

Example
package GC;
class FCF {

protected void finalize () throws Throwable {
}

}

Repair
Add the call to ‘super.finalize()’. If that call is not made, the finalize meth-
ods of the superclasses will not be invoked. See the reference for a
detailed explanation of why ‘super.finalize ()’ should be called even if the
base class doesn't define ‘finalize ()’.

Reference
Arnold, Ken, and Gosling, James The Java Programming Language. 2d
ed. Addison Wesley, 1997, pp.49.

GC.FM

357

R
eference

GC.FM

’finalize()’ method should not
unregister listeners

Description
This rule flags code where the ‘finalize()’ method unregisters listeners.

The 'finalize()' method only gets called when there are no more refer-
ences to the object. If the listeners are removed in the 'finalize()' method,
the object will not be removed during garbage collection.

Example
package GC;
import java.awt.Panel;
import java.awt.Button;
public class FM extends Panel {

public void finalize() {
remove (_button); // violation
super.finalize();

}
private Button _button = new Button();

}

Repair
Do not call methods that remove listeners in the ’finalize()’ method body.

GC.GCB

358

R
ef

er
en

ce
GC.GCB

Reuse objects; ’getClipBounds()’
should not be called too often

Description
This rule flags code that calls ‘getClipBounds()’ too often.

The ‘getClipBounds()’ method always returns a new rectangle. Allocating
more memory every time this method is called overworks the garbage
collector.

Note : Violations are only reported for methods with more than one ‘get-
ClipBounds()’.

Example
package GC;
import java.awt.Graphics;

public class GCB {
public void paint(Graphics g) {

int firstColLine = g.getClipBounds().x;
int lastColLine = g.getClipBounds().x + g.getClip-

Bounds().width;
}

}

Repair
package GC;

import java.awt.Graphics;
import java.awt.Rectangle;

public class GCB {
public void paint(Graphics g) {

Rectangle rec = g.getClipBounds();// instantiate a object,

GC.GCB

R
eference
rec
int firstColLine = rec.x; // reuse "rec"
int lastColLine = rec.x + rec.width; // reuse "rec"

}
}

359

GC.IFF

360

R
ef

er
en

ce
GC.IFF

Invoke ‘super.finalize()’ in the ‘finally’
blocks of ‘finalize()’ methods

Description
This rule flags code where the “finally” block of a ‘finalize()’ method does
not invoke ‘super.finalize()’.

Example
package GC;

class IFF {
public void finalize() throws Throwable {

try {
} catch (Exception e) {
} finally {
} // Violation

}
}

Repair
class BetterIFF {

public void finalize() throws Throwable {
try {
} catch (Exception e) {
} finally {

super.finalize();
}

}
}

Reference

GC.IFF

R
eference
Arnold, Ken, and Gosling, James The Java Programming Language. 2d
ed. Addison Wesley, 1997, pp. 49.
361

GC.NCF

362

R
ef

er
en

ce
GC.NCF

Never call ‘finalize()’ explicitly

Description
This rule flags code that explicitly calls ‘finalize()’.

Calling the ‘finalize()’ method explicitly insures that ‘finalize()’ is called, but
the Garbage Collector during runtime will call the ‘finalize()’ method again
when the object is collected.

Example
package GC;

class NCF {
public void finalize() throws Throwable {

super.finalize();
}

}
class Test {

void closeTest () throws Throwable {
_test.finalize(); // this may get called again by Java

//Virtual Machine
_test = null;

}
private NCF _test = new NCF();

}

Repair
Create a method to handle the release of the memory, then call this
method from a ‘finalize()’ method before calling the ‘super.finalize()’
method.

public void release() {
if (!closed) {

_test.finalize ();

GC.NCF

R
eference
closed = true;
}

}
public void finalize () throws Throwable {

release ();
super.finalize();

}

Reference
Warren, Nigel, and Bishop, Philip. Java in Practice. Addison-Wesley,
1999, pp. 110-111.
363

GC.OSTM

364

R
ef

er
en

ce
GC.OSTM

Be aware of memory leaks due to
‘ObjectStream’ usage

Description
This rule flags any case where ObjectStream usage might cause memory
leaks.

ObjectStreams are designed to handle cases where the same Object is
sent across a connection multiple times. For this reason, ObjectStream
classes keep a reference to all objects written or read until the ‘reset()’
method is called. Those objects will not be garbage collected until ‘reset()’
is called.

Example
package GC;
import java.io.*;

public class OSTM {
public void writeToStream(ObjectOutputStream os, String s)

throws IOException {
os.writeObject (s);

}
}

GC.OSTM

R
eference
Repair
Use ‘reset()’ of ObjectOutputStream or InputStream class’s method to
clear the list of Objects written to the Stream. Or, use DataStreams
instead of ObjectStreams in terms of Strings or byte arrays for optimal
performance.

package GC;
import java.io.*;

public class OSTM {
public void writeToStream(ObjectOutputStream os, String s)

throws IOException {
os.writeObject (s);
os.reset(); // prevents memory leaks.

}
}

365

GC.STV

366

R
ef

er
en

ce
GC.STV

Avoid “static” collection; it can grow
without bounds

Description
This rule flags any occurrence of “static” collection.

Static variables that can hold large number of objects (e.g., static vari-
ables of type Vector or Hashtable) are prime candidates for memory
leaks.

Example
package GC;
import java.util.Vector;

public class STV {
public static Vector vector = new Vector (5,5);

}

class VectorClass {
void method(Object o) {

STV.vector.add(o);
}

}

GC.STV

R
eference
Repair
If a static variable is necessary, set a maximum size and make sure that
Vector does not exceed the limit.

package GC;
import java.util.Vector;

public class STV {
public static void addVector(Object o) {

// checks size of the Vector before calling 'add()'.
if(vector.size() < MAX) {

vector.add(o);
}

}
void method(Object o) {

addVector(o);
}
public static Vector vector = new Vector (5,5);
public static final int MAX = 5;

}

367

GLOBAL.DPAC

368

R
ef

er
en

ce

Global Static Analysis RulesGLOBAL.DPAC

Declare package-private classes as
inaccessible as possible

Description
This rule flags any package-private class that is more accessible than is
necessary.

Making the fields/methods/classes as inaccessible as possible makes the
code much more object-oriented and it is much easier to understand code
dependencies.

Example
See examples/static/GLOBAL/too-accessible.

Repair
Change the class’s accessibility or document the reason for the excessive
accessibility.

GLOBAL.DPAF

369

R
eference

GLOBAL.DPAF

Declare package-private fields as
inaccessible as possible

Description
This rule flags any package-private field that is more accessible than is
necessary.

Using Global Static Analysis, Jtest can detect if non-”private” fields/meth-
ods/classes can be made less accessible.

Making the fields/methods/classes as inaccessible as possible makes the
code much more object-oriented and it is much easier to understand code
dependencies.

Example
See examples/static/GLOBAL/too-accessible.

Repair
Change the field’s accessibility or document the reason for the excessive
accessibility.

GLOBAL.DPAM

370

R
ef

er
en

ce

GLOBAL.DPAM

Declare package-private methods as
inaccessible as possible

Description
This rule flags any package-private method that is more accessible than
is necessary.

Using Global Static Analysis, Jtest can detect if non-”private” fields/meth-
ods/classes can be made less accessible.

Making the fields/methods/classes as inaccessible as possible makes the
code much more object-oriented and it is much easier to understand code
dependencies.

Example
See examples/static/GLOBAL/too-accessible.

Repair
Change the method’s accessibility or document the reason for the exces-
sive accessibility.

GLOBAL.DPPC

371

R
eference

GLOBAL.DPPC

Declare “public”/”protected” classes
as inaccessible as possible

Description
This rule flags any “public”/”protected” class that is more accessible than
is necessary.

Using Global Static Analysis, Jtest can detect if “public”/”protected”
fields/methods/classes can be made less accessible.

Making the fields/methods/classes as inaccessible as possible makes the
code much more object-oriented and it is much easier to understand code
dependencies.

Example
See examples/static/GLOBAL/too-accessible.

Repair
Change the class’s accessibility or document the reason for the excessive
accessibility.

GLOBAL.DPPF

372

R
ef

er
en

ce

GLOBAL.DPPF

Declare “public”/”protected” fields as
inaccessible as possible

Description
This rule flags any “public”/”protected” field that is more accessible than
necessary.

Using Global Static Analysis, Jtest can detect if non-”private” fields/meth-
ods/classes can be made less accessible.

Making the fields/methods/classes as inaccessible as possible makes the
code much more object-oriented and it is much easier to understand code
dependencies.

Example
See examples/static/GLOBAL/too-accessible.

Repair
Change the field’s accessibility or document the reason for the excessive
accessibility.

GLOBAL.DPPM

373

R
eference

GLOBAL.DPPM

Declare public/protected methods as
inaccessible as possible

Description
This rule flags any “public”/”protected” method that is more accessible
than necessary.

Using Global Static Analysis, Jtest can detect if “public”/”protected”
fields/methods/classes can be made less accessible.

Making the fields/methods/classes as inaccessible as possible makes the
code much more object-oriented and it is much easier to understand code
dependencies.

Example
See examples/static/GLOBAL/too-accessible.

Repair
Change the method’s accessibility or document the reason for the exces-
sive accessibility.

GLOBAL.SPAC

374

R
ef

er
en

ce

GLOBAL.SPAC

Non-subclassed package-private
classes should be declared "final"

Description
This rule flags non-subclassed package-private classes that are not
declared "final".

There are two advantages to declaring these classes “final”:

• It optimizes the code. The compiler knows that nobody can
extend the class or override its methods, so it can generate opti-
mized code.

• It makes the code self documented. Somebody looking at the
class will know that no other class extends this class.

Repair
Add the keyword "final" or document the reason for the class not being
final.

GLOBAL.SPAM

375

R
eference

GLOBAL.SPAM

Non-overridden package-private
methods should be declared "final"

Description
This rule flags non-overridden package-private methods that are not
declared "final".

There are two advantages to declaring these methods “final”:

• It optimizes the code. The compiler knows that nobody can over-
ride the method, so it can it can generate optimized code.

• It makes the code self documented. Somebody looking at the
method will know that no other class extends this class.

Repair
Add the keyword "final" or document the reason for the method not being
final.

GLOBAL.SPPC

376

R
ef

er
en

ce

GLOBAL.SPPC

Non-subclassed "public/protected"
classes should be declared "final"

Description
This rule flags non-subclassed “public/protected” classes that are not
declared "final".

There are two advantages to declaring these classes “final”:

• It optimizes the code. The compiler knows that nobody can
extend the class or override its methods, so it can generate opti-
mized code.

• It makes the code self documented. Somebody looking at the
class will know that no other class extends this class.

Repair
Add the keyword "final" or document the reason for the class not being
final.

GLOBAL.SPPM

377

R
eference

GLOBAL.SPPM

Non-overridden "public/protected"
methods should be declared "final"

Description
This rule flags non-overridden “public/protected” classes that are not
declared "final".

There are two advantages to declaring these methods “final”:

• It optimizes the code. The compiler knows that nobody can over-
ride the method, so it can it can generate optimized code.

• It makes the code self documented. Somebody looking at the
method will know that no other class extends this class.

Repair
Add the keyword "final" or document the reason for the method not being
final.

GLOBAL.UPAC

378

R
ef

er
en

ce

GLOBAL.UPAC

Avoid globally unused
package-private classes

Description
This rule flags any globally unused package-private class.

Using Global Static Analysis, Jtest can detect if non-”private” fields/meth-
ods/classes are not used by any class.

These unused entities usually point to either:

1. Old code that is no longer needed and which makes the class
more difficult to understand.

2. A logical flaw if the entity needs to be used, but other classes
incorrectly avoid using it.

Example
See examples/static/GLOBAL/unused.

Repair
Remove the unused field/method/class or document the reason for its
existence.

GLOBAL.UPAF

379

R
eference

GLOBAL.UPAF

Avoid globally unused
package-private fields

Description
This rule flags any unused package-private field.

Using Global Static Analysis, Jtest can detect if non-”private” fields/meth-
ods/classes are not used by any class.

These unused entities usually point to either:

1. Old code that is no longer needed and which makes the class
more difficult to understand.

2. A logical flaw if the entity needs to be used, but other classes
incorrectly avoid using it.

Example
See examples/static/GLOBAL/unused.

Repair
Remove the unused field/method/class or document the reason for its
existence.

GLOBAL.UPAM

380

R
ef

er
en

ce

GLOBAL.UPAM

Avoid globally unused
package-private methods

Description
This rule flags any globally unused package-private method.

Using Global Static Analysis, Jtest can detect if non-”private” fields/meth-
ods/classes are not used by any class.

These unused entities usually point to either:

1. Old code that is no longer needed and which makes the class
more difficult to understand.

2. A logical flaw if the entity needs to be used, but other classes
incorrectly avoid using it.

Example
See examples/static/GLOBAL/unused.

Repair
Remove the unused field/method/class or document the reason for its
existence.

GLOBAL.UPPC

381

R
eference

GLOBAL.UPPC

Avoid globally unused
“public”/”protected” classes

Description
This rule flags any globally unused “public”/”protected” class.

Using Global Static Analysis, Jtest can detect if “public”/”protected”
fields/methods/classes are not used by any class.

These unused entities usually point to either:

1. Old code that is no longer needed and which makes the class
more difficult to understand.

2. A logical flaw if the entity needs to be used, but other classes
incorrectly avoid using it.

Example
See examples/static/GLOBAL/unused.

Repair
Remove the unused field/method/class or document the reason for its
existence.

GLOBAL.UPPF

382

R
ef

er
en

ce

GLOBAL.UPPF

Avoid globally unused
public/protected fields

Description
This rule flags any globally unused “public”/”protected” field.

Using Global Static Analysis, Jtest can detect if “public”/”protected”
fields/methods/classes are not used by any class.

These unused entities usually point to either:

1. Old code that is no longer needed and which makes the class
more difficult to understand.

2. A logical flaw if the entity needs to be used, but other classes
incorrectly avoid using it.

Example
See examples/static/GLOBAL/unused.

Repair
Remove the unused field/method/class or document the reason for its
existence.

GLOBAL.UPPM

383

R
eference

GLOBAL.UPPM

Avoid globally unused
“public”/”protected” methods

Description
This rule flags any globally unused “public”/”protected” method.

Using Global Static Analysis, Jtest can detect if “public”/”protected”
fields/methods/classes are not used by any class.

These unused entities usually point to either:

1. Old code that is no longer needed and which makes the class
more difficult to understand.

2. A logical flaw if the entity needs to be used, but other classes
incorrectly avoid using it.

Example
See examples/static/GLOBAL/unused.

Repair
Remove the unused field/method/class or document the reason for its
existence.

INIT.CSI

384

R
ef

er
en

ce
Initialization RulesINIT.CSI

The constructor should explicitly
initialize all fields

Description
This rule flags any constructor that does not explicitly initialize all fields.

Example
package INIT;

class CSI {
CSI () {

this (12);
k = 0;

}

CSI (int val) {
j = val;

}

private int i = 5;
private int j;
private int k;

}

INIT.CSI

R
eference
Repair
In some cases, these errors can be corrected by initializing the appropri-
ate fields. In other cases, these fields will have been assigned values
from other uninitialized fields that must be initialized to eliminate the prob-
lem.
385

INIT.NFS

386

R
ef

er
en

ce

INIT.NFS

Avoid using non-final "static" fields
during the initialization

Description
This rule flags non-final “static” fields that are used during a field's initial-
ization.

Example
package INIT;
public class NFS {

static int max = 10;
static int count = max; // violation
int size = NFS.max; // violation

}

Repair
package INIT;
public class NFS {

static final int MAX = 10; //declare a constant.
static int max = 10;
static int count = MAX;
int size = NFS.MAX;

}

INIT.INITLV

387

R
eference

INIT.INITLV

Initialize all local variables explicitly

Description
This rule flags local variables that are not initialized in the declaration.

Example
package INIT;
public class LV {

private method (int size) {
int max; // violation
int count = size;
for (int i = 0; i < count; i++) {

// do something.
}

}
}

Repair
Initialize all local variables in declaration.

INIT.SF

388

R
ef

er
en

ce

INIT.SF

Explicitly initialize all “static” fields

Description
This rule flags any uninitialized static field in your methods.

Example
package INIT;

class SF
{

SF () {}

static private int K;
static private int L; // 'L' is not initialized

static {
K = 10;

}
}

Repair
These errors can be corrected by initializing the appropriate static field.

INTER.CLO

R
eference
Internationalization RulesINTER.CLO

A single character should not be
prefixed or followed by a logic
operator in an internationalized
environment

Description
This rule flags code where a single character is prefixed or followed by a
logic operator.

If code contains a single character prefixed or followed by a logic opera-
tor, it will not run in an internationalized environment.

Example
package INTER;
public class CLO{

public boolean cmpchar(char ch){
if ((ch >='a' && ch <='z') || (ch >='A' && ch<='Z')) //

violation
return true;

return false;
}

}

389

INTER.CLO

390

R
ef

er
en

ce
Repair
Use the Character comparison methods, which use the Unicode standard
to identify character properties. Thus replace the "if" statement above
with: ...

if (Character.isLetter(ch))
...

For more information on the Character comparison methods, see the sec-
tion 'Checking Character Properties' at
http://java.sun.com/docs/books/tutorial/i18n/text/charintro.html

Reference
http://java.sun.com/docs/books/tutorial/i18n/intro/checklist.html

INTER.COS

R
eference
INTER.COS

String concatenation will not work in
an internationalized environment

Description
This rule flags code that contains concatenated strings.

For code to be able to run in an internationalized environment, concate-
nated strings must not be used. This includes using the '.concat()' method
with strings or using '+' or '+=' operators with strings. The reason for this is
compound messages contain variable data and are difficult to translate.
For example the message : "At 12:30 P.M on Jul 3, 2053, there was a dis-
turbance in the Force."

Example
import java.util.*;
package INTER;
public class COS{

public void addstrings(){
Date current_date = new Date(System.currentTimeMillis());
String message = "A t " + current_dat e + " there was a

disturbance in the Force "; // violation
String message2 = "on planet 7";
message = message.concat(message2); // violation
System.out.println(message);

}
}

Repair
Do not use '.concat()' or "+", '+=" operations with Strings. Instead, use the
"MessageFormat" class to deal with Compound Messages as follows:
391

INTER.COS

392

R
ef

er
en

ce
Objec t [] arguments = {
new Integer(7),
new Date(System.currentTimeMillis()),

"a disturbance in the Force"
};
String message = MessageFormat.format("At (1,time) on (1, date) ,
there was
{2} on planet { 0,number,integer).", arguments);

Reference
http://java.sun.com/docs/books/tutorial/i18n/intro/checklist.html

INTER.DTS

R
eference
INTER.DTS

A Date or Time variable should not be
followed by 'toString()' in an
internationalized environment

Description
This rule flags date or time variables that are followed by ‘toString()’.

For code to be able to run in an internationalized environment, a date
variable cannot be followed by '.toString()' because date and time formats
differ with region and language.

Example
package INTER;

import java.util.*;
import java.awt.*;

public class DTS{
public void displaydate(){

Date today = new Date();
String dateOut = today.toString(); //violation
System.out.println(dateOut);
}

}

393

INTER.DTS

394

R
ef

er
en

ce
Repair
If you use the date-formatting classes, your application can display dates
and times correctly around the world. The "DateFormat" class provides
predefined formatting styles that are locale-specific and easy to use. The
following code is an example of how to use the "DateFormat" class.

Date today;
String dateOut;
DateFormat dateFormatter;
dateFormatter = DateFormat.getDateInstance(DateFormat.DEFAULT,cur-
rentLocale);

today = new Date();
dateOut = dateFormatter.format(today);
System.out.println(dateOu t + " " + currentLocale.toString());

Reference
http://java.sun.com/docs/books/tutorial/i18n/intro/checklist.html

http://java.sun.com/docs/books/tutorial/i18n/format/dateFormat.html

INTER.NCL

R
eference
INTER.NCL

Single character literals should only
be placed in constants in an
internationalized environment

Description
This rule flags single character literals in non-constants.

If code contains single character literals that are used in non-constants, it
will not run in an internationalized environment. This means single char-
acter literals can only be used when declared as "static" "final" "char".

Example
package INTER;
public class NCL{

public void Echo() {
System.out.println('c'); //violation
}

}

Repair
package Inter;
public class NCL{

public void Echo(){
System.out.println(mychar);

}
}
static final char mychar ='c';
}

395

INTER.NCL

396

R
ef

er
en

ce
Reference
http://java.sun.com/docs/books/tutorial/i18n/

INTER.NSL

R
eference
INTER.NSL

String literals should only be placed
in constants in an internationalized
environment

Description
This rule flags string literals that are not placed in constants.

If code contains single character literals that are not used in constants, it
will not run in an internationalized environment. This means string literals
can only be used when declared as "static" "final" "String".

Example
package INTER;

public class NSL{
public void Echo () {

System.out.println("hello"); //Violation
}

}

Repair
package Inter;

public class NSL{
public void Echo(){

System.out.println(string1);
}
static final String string1="hello";

}

397

INTER.NSL

398

R
ef

er
en

ce
Reference
http://java.sun.com/docs/books/tutorial/i18n/

INTER.NTS

R
eference
INTER.NTS

A number variable should not be
followed by 'toString()' in an
internationalized environment

Description
This rule flags number variables that are followed by ‘toString()’.

If code contains number variables that are followed by ‘toString()’, it will
not run in an internationalized environment because it will not be dis-
played correctly in all countries. If code displays numbers and currencies,
they must be formatted in a locale-independent manner.

Example
package INTER;
import java.awt.*;
public class NTS{

public void displaynum(){
Double amount = new Double(3.2);
String displayAmount = amount.toString(); //violation.
System.out.println(displayAmount);

}
}

399

INTER.NTS

400

R
ef

er
en

ce
Repair
Replace the preceding code with a routine that formats the number cor-
rectly. The Java programming language provides several classes that for-
mat numbers. One way to format numbers is by using predefined formats.
This can be done by using the "NumberFormat" class which allows you to
format numbers, currencies, and percentages according to Locale. The
following code is an example of formatting a Double according to Locale.

Double amount = new Double(3.2);
NumberFormat numberFormatter;
String amountOut;

numberFormatter = NumberFormat.getNumberInstance(currentLo-
cale);
amountOut = numberFormatter.format(amount);
System.out.println(amountOut + " " + currentLo-
cale.toString());

Reference
http://java.sun.com/docs/books/tutorial/i18n/intro/checklist.html

http://java.sun.com/docs/books/tutorial/i18n/format/numberFormat.html

INTER.SB

401

R
eference

INTER.SB

StringBuffer should not be used in an
internationalized environment

Description
This rule flags code that contains ‘StringBuffer’

If code contains ‘StringBuffer’, it will not run in an internationalized envi-
ronment.

Example
package INTER;
public class SB{

public void mysb(){
StringBuffer sb= new StringBuffer("hello"); // violation
sb=sb.append(" gina");

}
}

Reference
http://java.sun.com/docs/books/tutorial/i18n/intro/checklist.html

INTER.SCT

402

R
ef

er
en

ce
INTER.SCT

The 'compareTo()' method of strings
should not be used in an
internationalized environment

Description
This rule flags code that uses the ‘compareTo()’ method of strings.

If code uses the ‘compareTo()’ method of strings, it will not run in an inter-
nationalized environment. This is because it performs binary comparisons
of the Unicode characters within the two strings, which are ineffective
when sorting in most languages. String variables with 'compareTo()' can-
not be relied on to sort strings because the Unicode values of the charac-
ters in the strings do not correspond to the relative order of the characters
for most languages.

Example
package INTER;
package INTER;
public class SCT{

public boolean compstr(){
String s1= new String("hello");
String s2 = new String("bye");
if (s1.compareTo(s2) < 0) // violation

return true;
return false;
}

}

INTER.SCT

R
eference
Repair
The predefined collation rules provided by the "Collator" class should be
used instead to sort strings in a locale-independent manner. To instantiate
the "Collator" class, invoke the getInstance method. Usually, you create a
Collator for the default Locale, as in the following example:

Collator myCollator = Collator.getInstance();

You can also specify a particular Locale when you create a Collator, as
follows:

Collator myFrenchCollator = Collator.getInstance(Locale.FRENCH);

Then you invoke the Collator.compare method to perform a locale-inde-
pendent string comparison as follows:

myCollator.compare(s1,s2);

Reference
http://java.sun.com/docs/books/tutorial/i18n/intro/checklist.html

http://java.sun.com/docs/books/tutorial/i18n/text/locale.html
403

INTER.SE

404

R
ef

er
en

ce
INTER.SE

The 'equals()' method of strings
should not be used in an
internationalized environment

Description
This rule flags code that uses the ‘equals()’ method of strings.

If code uses the ‘equals()’ method of strings, it will not run in an interna-
tionalized environment because it performs binary comparisons of the
Unicode characters within the two strings, which are ineffective when
sorting in most languages.

A string variable with '.equals()' cannot be relied on to sort strings. This is
because the Unicode values of the characters in the strings do not corre-
spond to the relative order of the characters for most languages.

Example
package INTER;

public class SE{
public boolean eqstr(){

String s1= new String("hello");
String s2 = new String("bye");
if (s1.equals(s2)) // violation

return true;
return false;

}
}

INTER.SE

R
eference
Repair
The predefined collation rules provided by the "Collator" class should be
used instead to sort strings in a locale-independent manner. To instantiate
the "Collator" class, invoke the getInstance method. Usually, you create a
Collator for the default Locale, as in the following example :

Collator myCollator = Collator.getInstance();

You can also specify a particular Locale when you create a Collator, as
follows:

Collator myFrenchCollator = Collator.getInstance(Locale.FRENCH);

Then you invoke the Collator.equals method to perform a locale-indepen-
dent string comparison as follows:

boolean is_equal = myCollator.equals(s1,s2);

Reference
http://java.sun.com/docs/books/tutorial/i18n/intro/checklist.html

http://java.sun.com/docs/books/tutorial/i18n/text/locale.html
405

INTER.ST

406

R
ef

er
en

ce

INTER.ST

StringTokenizer should not be used in
an internationalized environment

Description
This rule flags code that uses 'StringTokenizer()'.

If code uses 'StringTokenizer()', it will not run in an internationalized envi-
ronment.

Example
package INTER;
public class ST{

public void myst(String str){
StringTokenizer st = new StringTokenizer(str); // violation

int i=st.countTokens();
}

}

Reference
http://java.sun.com/docs/books/tutorial/i18n/intro/checklist.html

INTER.TTS

R
eference
INTER.TTS

A Time variable should not be
followed by 'toString()' in an
Internationalized environment

Description
This rule flags code where a Time variable is followed by ‘toString()’

If code contains a Time variable followed by a ‘toString()’, it will not run in
an internationalized environment because time formats differ with region
and language.

Example
package INTER;
import java.sql.*;
import java.awt.*;
public class TTS(){

public void displaytime() {
Time t1= new Time(1000);
String timeString= t1.toString(); //violation
System.out.println(timeString);

}
}

Repair
If you use the date-formatting classes, your application can display dates
and time correctly around the world. First, you create a formatter with the

getTimeInstance method as follows:

DateFormat timeFormatter = DateFormat.getTimeInstance(
DateFormat.DEFAULT, currentLocale);
407

INTER.TTS

408

R
ef

er
en

ce
Second, you invoke the format method, which returns a String containing
the formatted date/time as follows:

Time t1 = new Time(1000):
String timeString= timeFormatter.format(t1);

Reference
http://java.sun.com/docs/books/tutorial/i18n/intro/checklist.html

http://java.sun.com/docs/books/tutorial/i18n/format/dateFormat.html

JAVADOC.BT

409

R
eference

Javadoc Comment RulesJAVADOC.BT

Bad tag in Javadoc comment

Description
This rule flags any bad tag in your code’s Javadoc comments.

A Javadoc comment may use special tags which all begin with the @
character and allow Javadoc comments to provide additional formatting
for the documentation. Check the HTML markup tags which the Javadoc
comments may contain.

Example
/**

* This is a comment
* @unsupported tag
*/

package JAVADOC;

public class BT {

}

Repair
Use only supported tags.

JAVADOC.MAJDT

410

R
ef

er
en

ce

JAVADOC.MAJDT

Missing ’@author’ Javadoc tag in a
"class" Javadoc comment

Description
This rule flags any Javadoc comment that does not have an @author tag.

Each class and interface’s Javadoc comment should have an @author
Javadoc tag.

Example
/**

* @version:
* @see:
*/

// violation, Class’s Javadoc does not have
// "@author" tag.

package JAVADOC;
public class MAJDT {

// some declaration.
}

Repair
Provide an “@author” tag in the Javadoc comment.

JAVADOC.MJDC

411

R
eference

JAVADOC.MJDC

Missing Javadoc comments

Description
This rule flags any class, method, or field that does not have a Javadoc
comment block.

Every class, interface, method, and field should have a Javadoc comment
block.

Example
package JAVADOC;

public class MJDC { // violation, no Javadoc comments for this
class.

/** @param: size
*/

public MJDC (int size) {}
}

Repair
Provide Javadoc comments for each "class", "interface", method, and
field.

JAVADOC.MVJDT

412

R
ef

er
en

ce

JAVADOC.MVJDT

Javadoc comments for classes and
interfaces should have ’@version’
Javadoc tag

Description
This rule flags any class or interface Javadoc comment that does not
have an @version Javadoc tag.

Each class and interface’s Javadoc comment should have an @version
Javadoc tag.

Example
/**

* @author:
* @see:
*/

// violation, Class’s Javadoc does not have
//"@version" tag.

package JAVADOC;
public class MVJDT {

// some declaration.
}

Repair
Provide an “@version” tag in the Javadoc comment.

JAVADOC.PARAM

413

R
eference

JAVADOC.PARAM

Method should have equal number of
'@param' Javadoc tags as parameters

Description
This rule flags any method argument that does not have a corresponding
‘@param’ Javadoc tag.

Example
package JAVADOC;
public class PARAM {

/**
*/ //violation

private void setId (String name) {
_id = name;

}
String _id;

}

Repair
Provide an @param tag for each method that has arguments.

METRICS.CIHL

414

R
ef

er
en

ce

Class MetricsMETRICS.CIHL

"class" or "Interface" inheritance
level

Description
This metric measures “class” or “interface” inheritance level.

An unnecessarily deep class hierarchy adds to complexity and can repre-
sent a poor use of the inheritance mechanism.

By default, Jtest reports an error if this metric’s value is not between 0 and
5.

Reference
Mark Schroeder. "A Practical Guide to Object-Oriented Metrics." IT Pro,
November/December, 1999.

METRICS.CTNL

415

R
eference

METRICS.CTNL

Number of lines in "class" or
"interface"

Description
This metric measures the number of lines of code in each “class” or “inter-
face”.

This metric can be used to estimate application size. A class should be
less than 1000 lines long.

By default, Jtest reports an error if this metric’s value is not between 0 and
1000.

Reference
Mark Schroeder. "A Practical Guide to Object-Oriented Metrics." IT Pro,
November/December, 1999.

METRICS.NOF

416

R
ef

er
en

ce

METRICS.NOF

Number of fields

Description
This metric measures the number of fields in each class.

The number of fields in a class indicates the amount of data that the class
must maintain in order to carry out its responsibilities.

By default, Jtest reports an error if this metric’s value is not between 0 and
10.

Reference
Mark Schroeder. "A Practical Guide to Object-Oriented Metrics." IT Pro,
November/December, 1999.

METRICS.NOM

417

R
eference

METRICS.NOM

Number of methods

Description
This metric measures the number of methods in each class.

The number of methods per class indicates the total level of functionality
implemented by a class.

By default, Jtest reports an error if this metric’s value is not between 0 and
20.

Reference
Mark Schroeder. "A Practical Guide to Object-Oriented Metrics." IT Pro,
November/December, 1999.

METRICS.PJDC

418

R
ef

er
en

ce

METRICS.PJDC

Percentage of Javadoc comments(%)

Description
This metric measures the percentage of Javadoc comments in a class or
interface.

This metric is measured using the following formula:

% javadoc = #Javadoc in a file / (#fields + #methods + 1) * 100

Note: 1 is for either the class or interface’s Javadoc comments.

Every class, interface, method, and field should have a Javadoc comment
associated with it.

By default, Jtest reports an error if this metric’s value is not between 60%
and 100%.

Reference
Mark Schroeder. "A Practical Guide to Object-Oriented Metrics." IT Pro,
November/December, 1999.

METRICS.NPKGF

419

R
eference

METRICS.NPKGF

Number of package-private fields

Description
This metric measures the number of package-private fields in each class.

The number of fields in a class indicates the amount of data that the class
must maintain in order to carry out its responsibilities.

By default, Jtest reports an error if this metric’s value is not between 0 and
10.

Reference
Mark Schroeder. "A Practical Guide to Object-Oriented Metrics." IT Pro,
November/December, 1999.

METRICS.NPKGM

420

R
ef

er
en

ce

METRICS.NPKGM

Number of package-private methods

Description
This metric measures the number of package-private methods per class.

The number of methods per class indicates the total level of functionality
implemented by a class.

By default, Jtest reports an error if this metric’s value is not between 0 and
10.

Reference
Mark Schroeder. "A Practical Guide to Object-Oriented Metrics." IT Pro,
November/December, 1999.

METRICS.NPRIF

421

R
eference

METRICS.NPRIF

Number of "private" fields

Description
This metric measures the number of “private” fields in a class.

The number of fields in a class indicates the amount of data the class
must maintain in order to carry out its responsibilities.

By default, Jtest reports an error if this metric’s value is not between 0 and
10.

Reference
Mark Schroeder. "A Practical Guide to Object-Oriented Metrics." IT Pro,
November/December, 1999.

METRICS.NPRIM

422

R
ef

er
en

ce

METRICS.NPRIM

Number of "private" methods

Description
This metric measures the number of “private” methods per class.

The number of methods per class indicates the total level of functionality
implemented by a class.

By default, Jtest reports an error if this metric’s value is not between 0 and
10.

Reference
Mark Schroeder. "A Practical Guide to Object-Oriented Metrics." IT Pro,
November/December, 1999.

METRICS.NPROF

423

R
eference

METRICS.NPROF

Number of "protected" fields

Description
This metric measures the number of “protected” fields in a class.

The number of fields in a class indicates the amount of data that the class
must maintain in order to carry out its responsibilities.

By default, Jtest reports an error if this metric’s value is not between 0 and
10.

Reference
Mark Schroeder. "A Practical Guide to Object-Oriented Metrics." IT Pro,
November/December, 1999.

METRICS.NPROM

424

R
ef

er
en

ce

METRICS.NPROM

Number of "protected" methods

Description
This metric measures the number of “protected” methods in a class.

The number of methods per class indicates the total level of functionality
implemented by a class.

By default, Jtest reports an error if this metric’s value is not between 0 and
10.

Reference
Mark Schroeder. "A Practical Guide to Object-Oriented Metrics." IT Pro,
November/December, 1999.

METRICS.NPUBF

425

R
eference

METRICS.NPUBF

Number of "public" fields

Description
This metric measures the number of “public” fields in a class.

The number of fields in a class indicates the amount of data that the class
must maintain in order to carry out its responsibilities.

By default, Jtest reports an error if this metric’s value is not between 0 and
10.

Reference
Mark Schroeder. "A Practical Guide to Object-Oriented Metrics." IT Pro,
November/December, 1999.

METRICS.NPUBM

426

R
ef

er
en

ce

METRICS.NPUBM

Number of "public" methods

Description
This metric measures the number of “public” methods per class.

The number of methods per class indicates the total level of functionality
implemented by a class.

By default, Jtest reports an error if this metric’s value is not between 0 and
10.

Reference
Mark Schroeder. "A Practical Guide to Object-Oriented Metrics." IT Pro,
November/December, 1999.

METRICS.STMT

427

R
eference

METRICS.STMT

Number of statements in a method

Description
This metric measures the number of statements in a method.

By default, Jtest reports an error if this metric;s value is not between 0
and 20.

Repair
Break the method into several methods.

METRICS.TCC

428

R
ef

er
en

ce

METRICS.TCC

Cyclomatic Complexity

Description
This metric measures each method’s cyclomatic complexity by measuring
the number of “while”, “for”, “if”, and “switch” statements in a method.

Cyclomatic complexity measures method complexity.

Studies have found that methods with cyclomatic complexity higher than
10 are more error-prone than methods with lower cyclomatic complexity.

By default, Jtest reports an error if this metric’s value is not between 0 and
10.

Note: This rule does not test abstract methods, native methods, or any
methods that are declared in the interface.

Reference
Grady, Robert B. Practical Software Metrics For Project Management and
Process Improvement. Prentice Hall P T R, 1992, pp.16 - 18.

METRICS.TNLM

429

R
eference

METRICS.TNLM

Number of lines in a method

Description
This metric measures the number of lines of code in a method.

The number of lines of code in a method estimates method length and
complexity.

By default, Jtest reports an error if this metric’s value is not between 0 and
30.

Note: This rule does not test abstract methods, native methods, or any
methods that are declared in the interface.

Reference
Mark Schroeder. "A Practical Guide to Object-Oriented Metrics." IT Pro,
November/December, 1999.

METRICS.TNMC

430

R
ef

er
en

ce

METRICS.TNMC

Number of method calls

Description
This metric measures the number of method calls to methods and system
functions within a system, class, or method.

By default, Jtest reports an error if this metric’s value is not between 0 and
20.

Note: This rule does not test abstract methods, native methods, or any
methods that are declared in the interface.

Reference
Mark Schroeder. "A Practical Guide to Object-Oriented Metrics." IT Pro,
November/December, 1999.

METRICS.TNOP

431

R
eference

METRICS.TNOP

Number of parameters

Description
This metric measures the number of parameters in a class.

A high number of parameters indicates a complex interface to calling
objects.

By default, Jtest reports an error if this metric’s value is not between 0 and
5.

Reference
Mark Schroeder. "A Practical Guide to Object-Oriented Metrics." IT Pro,
November/December, 1999.

METRICS.TRET

432

R
ef

er
en

ce

METRICS.TRET

Number of "return" statements

Description
This metric measures the number of “return” statements in a class.

Methods with multiple return points are easy to program, but they are
more difficult to debug and maintain.

By default, Jtest reports an error if this metric’s value is not between 0 and
1.

Note: This rule only checks explicit "return" statements. It does not test
abstract or native methods or any methods that are declared in the inter-
face.

MISC.AFP

433

R
eference

Miscellaneous RulesMISC.AFP

Avoid assignment to method
parameters

Description
This rule flags any assignment to method parameters.

Assignment operations on a method parameter can cause problems
when the value of the parameter is used more than once in a block.

Example
package MISC;

class AFP {
int avg (int x) {

int count = 0;
while (x++ < 10) {
count += x;
}

return count % x; // x no longer has the same value.
}

}

Repair
//create a local variable.
class AFP {

int avg (int x) {
int count = 0;
int i = x;
while (i++ < 10) {

count += i;
}
return count % i;

}
}

MISC.ASFI

434

R
ef

er
en

ce
MISC.ASFI

A class with only "abstract" methods
and "static", "final" fields should be
declared as an "interface"

Description
This rule flags classes that should be declared as “interface”s.

"abstract" classes that only contain method signatures and "static", "final"
fields should be declared as "interface" because they are effectively the
same. A "class" can extend only one "class" but it can implement multiple
interfaces.

Example
package MISC;

abstract class ASFI {
abstract void method();
final static String ID = "MISC_ASFI";

}

Repair
Replace "abstract" class to an "interface".

package MISC;

interface ASFI {
void method();
String ID = "MISC_ASFI";

}

MISC.ASFI

R
eference
Reference
Warren, Nigel, and Bishop, Philip. Java in Practice. Addison-Wesley,
1999, pp.22-23.
435

MISC.CLONE

436

R
ef

er
en

ce

MISC.CLONE

A ‘clone()’ method should invoke
‘super.clone()’ in the body

Description
This rule flags any ‘clone()’ method that does not invoke ‘super.clone()’ in
the body.

‘super.clone()’ invokes the method Object.clone, which creates an object
of the correct type. Object.clone initializes each field in the new clone
object by assigning it the value from the same field of the object being
cloned. Therefore, if ‘super.clone()’ is not called, the object might not be
initialized correctly.

Reference
Arnold, Ken, and Gosling, James The Java Programming Language. 2d
ed. Addison Wesley, 1997, pp. 77 - 82.

MISC.CTOR

R
eference
MISC.CTOR

Use care when calling non-”final”
methods from constructors

Description
This rule flags code that calls a non-”final” method from a constructor.

The purpose of the constructor is to initialize an object. It might call some
methods of its class. If it calls a non-”final” method, a derived class can
override the method, depending upon how the overridden method is
coded. This can lead to unexpected results.

Example
package MISC;
public class CTOR {

public CTOR() {
_size = readSize(); // violation, it can be overridden by

// CTOR’s derived class
}
public int readSize() {

return fis.read();
}
private FileInputStream fis = new FileInputStream ("data.out");
private int _size;

}

Repair
If a constructor needs to call a method for an initialization, make this
method final, or private. Or, if a method is the part of some package, cre-
ate a private void init() method to do all the initialization.
437

MISC.CTOR

438

R
ef

er
en

ce
Reference
Haggar, Peter. Practical Java - Programming Language Guide. Addison
Wesley, 2000, pp.238 - 240.

MISC.EFB

439

R
eference

MISC.EFB

Each “for” statement should have a
block

Description
This rule flags any “for” statement that does not have a block.

“for” statements are less error-prone when they have blocks.

Example
package MISC;

public class EFB {
int i = 3;

void method () {
for (int i = 0; i < 10; i++)

System.out.println (i * i);
System.out.println (i);

}
}

Repair
Provide a block for each “for” statement regardless of the number of
statements intended to be executed within the block.

MISC.ELSEBLK

440

R
ef

er
en

ce

MISC.ELSEBLK

"else" statements should have a
block

Description
This rule flags any “else” statement that does not have a block.

“else” statements are less error-prone when they have blocks.

Example
package MISC;

public class ELSEBLK {
public void method (boolean b) {

if (b) {
System.out.println ("inside of if");

} else
System.out.println ("inside of if"); //violation.

}
}

Repair
Provide a block for each “else” statement.

MISC.FF

441

R
eference

MISC.FF

Constant fields should be declared as
"final"

Description
This rule flags constant fields that are not declared as “final”.

Fields that are initialized in a declaration and values that do not change
throughout the class should be "final" fields.

Example
package MISC;
public class FF {

private int size = 5; // violation
private void method () {

// do something but size's value do not change.
}

}

Repair
Declare 'size' "final".

MISC.FLV

442

R
ef

er
en

ce

MISC.FLV

Constant local variables should be
declared as "final"

Description
This rule flags constant local variables that are not declared as “final”.

Local variables that are initialized in a declaration whose values do not
change throughout the block should be declared "final".

Example
package MISC;
public class FLV {

private void method () {
int size = 0; //violation

// do something but size's value do not change.
}

}

Repair
Make 'size' as a "final".

MISC.HMF

443

R
eference

MISC.HMF

Avoid hiding member fields in
member methods

Description
This rule flags code where a member fields is hidden in a member
method.

Variables declared local to a “class” method can hide instance fields of
the same name, effectively blocking access to the field.

Local variables with the same name as instance fields can make your
code difficult to read. It is good practice to make a variable’s name as
unique as possible for coding clarity

Example
package MISC;

abstract class HMF {
public int method2 () {

int i = 5; // violation
System.out.println (i);

}

private in t i = 0;
}

Repair
Give the local variable a unique name.

MISC.IFBLK

444

R
ef

er
en

ce

MISC.IFBLK

"if" statements should have a block

Description
This rule flags “if” statements that do not have a block.

"if" statements are less error-prone if they have a block.

Example
package MISC;

public class IFBLK {
public void method (boolean b) {

if (b) // violation
System.out.println ("inside of if");

if (b) {
System.out.println ("inside of if");

}
}

}

Repair
Provide a block for each "if" statements.

MISC.CLNC

R
eference
MISC.CLNC

Avoid using a constructor for
implementing 'clone()'

Description
This rule flags code that uses a constructor for implementing ‘clone()’.

Using a constructor when implementing the 'clone()' method restricts sub-
classes from reusing the 'clone()' method of the superclass.

Example
package MISC;

public class CLNC {
public Object clone() {

CLNC cl = new CLNC(); // violation
// get attributes' clone.
return cl;

}
}

Repair
Use 'super.clone()' instead of calling a constructor to implement 'clone()'.

public class CLNC {
public Object clone() {

CLNC cl = (CLNC) super.clone();
// get clone for cl's attributes.
return cl;

}
}

445

MISC.CLNC

446

R
ef

er
en

ce
Reference
Daconta, M, Monk, E, Keller, J, and Bohnenberger, K. Java Pitfalls. John
Wiley & Sons, 2000, pp.12 - 14.

MISC.MSF

447

R
eference

MISC.MSF

Avoid too many "static" fields

Description
This rule flags code that contains more than two “static” fields.

Static variables act global in non-OO languages. They make methods
more context-dependent, hide possible side-effects, sometimes present
synchronized access problems, and are the source of fragile, non-exten-
sible constructions. Also, neither static variables nor methods can be
overridden in any useful sense in subclasses.

Example
package MISC;

public class MSF {
private static int s_size;
static String s_title; // violation

static void setFields (int size, String title) {
s_size = size;
s_title = title;

}
}

Repair
Try to minimize static fields if possible.

Reference
http://g.oswego.edu/dl/html/javaCodingStd.html

MISC.PCF

448

R
ef

er
en

ce

MISC.PCF

Provide a condition in a “for” loop

Description
This rule flags any “for” loop that does not have condition.

Failing to provide a condition in a “for” loop might cause infinite loops.

Example
The following example shows a “for” statement that has an empty second
slot. This might cause infinite loops.

package MISC;

public class PCF {
void method () {

int i = 0;
int j = 0;
for (;; i++) {

j++;
break;

}
}

}

Repair
Consider providing a condition that will be tested before each new pass
through the loop.

MISC.PIF

449

R
eference

MISC.PIF

Provide an incremental segment/part
in a “for” loop or use a “while” loop

Description
This rule flags any “for” statement that does not have an incremental part.

This may be an indication that the incremental part is missing or that the
code would be clearer if a “while” statement were used instead of a “for”
statement.

Example
package MISC;

public class PIF {
void method () {

int i = 0;
for (; i < 1000;) {

if (i % 2 == 0) {
i = 2 * i + 1;

} else {
i = i/2;

}
}

}
}

Repair
Check if the third argument of the “for” statement is missing. If it is miss-
ing, either increment the counter within the “for” structure or change the
“for” statement to a “while” statement.

MISC.WHILE

450

R
ef

er
en

ce

MISC.WHILE

A "while" statement should have a
block

Description
This rule flags any “while” statement that does not have a block.

It is a good programming practice to add optional block for a "while" state-
ments.

Example
package MISC;

public class WHILE {
public void method (int count) {

while (count++ < 10) // violation
System.out.println ("inside of while");

while while (count-- > 0) {
System.out.println ("inside of while");

}
}

}

Repair
Add a block for each "while" statements.

NAMING.CVN

451

R
eference

Naming Convention RulesNAMING.CVN

Use conventional variable names

Description
This rule flags any variable that has an unconventional name format.

Use conventional variable names for one-character names.

• b for a byte

• c for a char

• d for a double

• f for a float

• i, j, and k for integers

• l for a long

• o for an Object

• s for a String

• v for an arbitrary value of some type

Example
package NAMING;

public class CVN {
void method () {

int b = 1;
int d = 1;

}
}

Repair
Use conventional variable names.

NAMING.GETA

452

R
ef

er
en

ce
NAMING.GETA

Accessor method names should start
with ’get’

Description
This rule flags any accessor method that has an unconventional name
format.

A getter method’s name should start with ’get’ unless it returns boolean. If
it returns boolean, it should be prefixed by ’is’.

Example
package NAMING;

public class GETA {
public int method() { // violation.

return _count;
}
private int _count = 0;

}

Repair
Change accessor method name to ’get<field name>’.

package NAMING;
public class GETA {

public int getCount() {
return _count;

}
private int _count = 0;

}

NAMING.GETA

R
eference
Reference
http://www.AmbySoft.com/javaCodingStandards.pdf
453

NAMING.GETB

454

R
ef

er
en

ce
NAMING.GETB

Getter methods name should start
with ’is’

Description
This rule flags any getter method that has an unconventional name for-
mat.

Names of getter methods that return “boolean” values should start with
’is’.

Example
package NAMING;
public class GETB {

public boolean method() { // violation.
return _ready;

}
private boolean _ready = false;

}

Repair
Change accessor method name to is<field name>.

package NAMING;
public class GETB {

public boolean isReady() {
return _ready;

}
private boolean _ready = false;

}

NAMING.GETB

R
eference
Reference
http://www.AmbySoft.com/javaCodingStandards.pdf
455

NAMING.IFV

456

R
ef

er
en

ce
NAMING.IFV

Use uppercase letters for “interface”
fields

Description
This rule flags any “interface” field that has an unconventional name for-
mat.

Fields in an “interface” are always “static” and “final”, so they should fol-
low the same naming convention for named constants.

Example
package NAMING;

interface IFV {
int max = 1000;

}

Repair
interface IFV {

int MAX = 1000;
}

NAMING.IFV

R
eference
Reference
Arnold, Ken, and Gosling, James The Java Programming Language. 2d
ed. Addison Wesley, 1997, pp. 91-93.
457

NAMING.IRB

458

R
ef

er
en

ce

NAMING.IRB

Use ‘is...’ for naming methods that
return a “boolean”

Description
This rule flags any function whose name begin with ‘is’ that does not
return a ‘boolean’.

Example
package NAMING;

public class IRB {
public static boolean isOK() {

return true;
}
public int isNotOK() { // Violation

return 1;
}
public int numberOK() {

return 1;
}

}

Repair
Use standard naming conventions for legibility.

NAMING.NCL

459

R
eference

NAMING.NCL

Enforce name format of classes

Description
This rule flags any class that has an unconventional name format.

Most programmers or groups of programmers develop a set of naming
rules for classes. Jtest will enforce the name format of the “class” using a
regular expression.

Example
package NAMING;

public class NCL {
}

Repair
Capitalize the first letter of the “class" name and use mixed case for the
rest of the "class" name.

Reference
http://www.AmbySoft.com/javaCodingStandards.pdf

NAMING.NE

460

R
ef

er
en

ce

NAMING.NE

Enforce name format of exceptions

Description
This rule flags any exception that has an unconventional name format.

Most programmers or groups of programmers develop a set of naming
rules for exceptions. Jtest will enforce the name format of the exception
using a regular expression.

Example
package NAMING;

public class NE extends RuntimeException {
}

Repair
Change the name of the exception to match the regular expression.

NAMING.NIF

461

R
eference

NAMING.NIF

Enforce name format of non-”static”
fields

Description
This rule flags any non-"static" field with an unconventional name format.

Most programmers or groups of programmers develop a set of naming
rules for non-"static" fields. Jtest will enforce the name format of the
non-"static" fields using a regular expression.

Example
package NAMING;

class NIF {
public int field = 0;

}

Repair
Change the name of the non-"static" field to match the regular expression.

Reference
http://www.AmbySoft.com/javaCodingStandards.pdf

NAMING.NITF

462

R
ef

er
en

ce

NAMING.NITF

Enforce name format of interfaces

Description
This rule flags any interface that has an unconventional name format.

Most programmers or groups of programmers develop a set of naming
rules for interfaces. Jtest will enforce the name format of the “interface”
using a regular expression.

Example
package NAMING;

public interface NIFT {
}

Repair
Capitalize the first letter of the "interface" name and use mixed case for
the rest of the "interface" name.

Reference
http://www.AmbySoft.com/javaCodingStandards.pdf

NAMING.NLV

463

R
eference

NAMING.NLV

Enforce name format of local
variables

Description
This rule flags any local variable that has an unconventional name format.

Most programmers or groups of programmers develop a set of naming
rules for local variables. Jtest will enforce the name format of the local
variable using a regular expression.

Example
package NAMING;

public class NLV {
void method () {

int i = 0;
i++;

}
}

Repair
Change the name of the local variable to match the regular expression.
Use complete, descriptive English words.

Reference
http://www.AmbySoft.com/javaCodingStandards.pdf

NAMING.NM

464

R
ef

er
en

ce
NAMING.NM

Enforce name format of non-”static”
methods

Description
This rule flags any non-”static” method with an unconventional name for-
mat.

Most programmers or groups of programmers develop a set of naming
rules for methods. Jtest will enforce the name format of the non-”static”
method using a regular expression.

Example
package NAMING;
public class NM {

void Method () {
}

}

Repair
Change the the non-”static” method’s name to match the regular expres-
sion.

NAMING.NM

R
eference
Reference
http://www.AmbySoft.com/javaCodingStandards.pdf
465

NAMING.NMP

466

R
ef

er
en

ce

NAMING.NMP

Enforce name format of method
parameters

Description
This rule flags any method parameter that has an unconventional name
format.

Most programmers or groups of programmers develop a set of naming
rules for method parameters. Jtest will enforce the name format of the
method parameter using a regular expression.

Example
package NAMING;

public class NMP {
void method (int i) {

if (i == 10) return;
}

}

Repair
Change the name of the method parameter to match the regular expres-
sion.

NAMING.NSF

467

R
eference

NAMING.NSF

Enforce name format of non-“final”
“static” fields

Description
This rule flags any “static” field that has an unconventional name format.

Most programmers or groups of programmers develop a set of naming
rules for “static” fields. Jtest will enforce the name format of the field using
a regular expression.

Example
package NAMING;

class NSF {
static int staticField = 0;

}

Repair
Change the name of the field to match the regular expression.

NAMING.NSM

468

R
ef

er
en

ce

NAMING.NSM

Enforce name format of "static"
methods

Description
This rule flags any "static" method that has an unconventional name for-
mat.

Most programmers or groups of programmers develop a set of naming
rules for "static" methods. Jtest will enforce the name format of the "static"
method using a regular expression.

Example
package NAMING;

class NSM {
static int staticMethod () {
}

}

Repair
Change the name of the "static" method to match the regular expression.

NAMING.PKG

R
eference
NAMING.PKG

Use lower case letters for “package"
names

Description
This rule flags any “package” name that does not use lower case letters.

Package names should begin with a lower case letter. This prevents the
possibility of mistaking a package name for a class name. In fact, pack-
age names should usually consist of only lower case letters.

Example
package NAMING; // violation

public class PKG {
}

Repair
Change upper case letters to lower case letters.

package naming;

public class PKG {
}

469

NAMING.PKG

470

R
ef

er
en

ce
Reference
Larman, G, Guthrie, R Java 2 Performance and Idiom Guide. Prentice
Hall, 1999, 248 - 249.

NAMING.SETA

R
eference
NAMING.SETA

Setter method names should start
with ’set’

Description
This rule flags any setter method that has an unconventional name for-
mat.

Setter methods’ names should start with ’set’ to follow the JavaBeans
naming conventions.

Example
package NAMING;

public class SETA {
public void method(int count) { // violation.

_count = count;
}
private int _count = 0;

}

Repair
Change accessor method name to ’set<field name>’.

package NAMING;
public class SETA {

public void setCount(int count) { // violation.
_count = count;

}
private int _count = 0;

}

471

NAMING.SETA

472

R
ef

er
en

ce
Reference
http://www.AmbySoft.com/javaCodingStandards.pdf

NAMING.USF

473

R
eference

NAMING.USF

Use only uppercase letters and
underscores when naming “final”
“static” fields

Description
This rule flags any “final” “static” field that has an unconventional name
format.

Use only uppercase letters and underscores when naming “final” "static"
fields (i.e. named constants).

Example
package NAMING;

class USF {
public static final int size = 10; // Violation

}

Repair
class USF_fixed {

public static final int SIZE = 10;
}

Reference
Java Language Specification, section 6.8.5.

OOP.AHF

474

R
ef

er
en

ce

Object Oriented Programming RulesOOP.AHF

Avoid hiding inherited instance fields

Description
This rule flags any inherited instance variable that is hidden by a member
declared in a child class.

Example
package OOP;

public class AHV {
protected lon g a = 4;

}

public class AHV_ extends AHV {
protected in t a = 5;

}

Repair
The solution will depend on the design of the program, but may be as sim-
ple as using the inherited member and removing the member declared in
the child class.

OOP.AHSM

475

R
eference

OOP.AHSM

Avoid hiding inherited “static”
member methods

Description
This rule flags any inherited “static” method that is hidden by a child class.

Example
package OOP;

public class AHSM {
static void method1 () {}

}

class AHSM_ extends AHSM {
static void method1 () {}

}

Repair
The solution will depend upon the design of the program, but might be as
simple as using the inherited method and removing the method declared
in the child class.

OOP.AIC

476

R
ef

er
en

ce
OOP.AIC

An inner “class” should only be used
if it is going to associate with and be
visible to the class that contains it

Description
This rule flags any inner class that is not “private”.

The inner classes automatically have access to their containing classes'
member fields.Therefore, problems can arise if an inner class is not a “pri-
vate” class.

Example
package OOP;

class AIC {
int getSize () {

return _size;
}
class Inner {

void setSize(int size) {
_size = size;

}
}
private int _size;

}

Repair
class AIC {

int getSize () {
return _size;

}
private class Inner {

OOP.AIC

R
eference
void setSize(int size) {
_size = size;

}
}
private int _size;

}

Reference
Warren, Nigel, and Bishop, Philip. Java in Practice . Addison-Wesley,
1999, pp. 10-11.
477

OOP.APPF

478

R
ef

er
en

ce
OOP.APPF

Avoid “public” or package-private
instance fields

Description
This rule flags any “public” or package-private instance field.

Instance fields are an implementation detail of your class. It is good prac-
tice to hide such implementation details from users of your class. Instead
of making these fields “public” or package-private, provide the user with
methods to access and/or change these fields.

Example
package OOP;

class APPF {
int a = 10; // Violation
private int c = 14;

}

Repair
Declare the field “private” and provide access methods to the field if
needed.

OOP.APPF

R
eference
Reference
Haggar, Peter. Practical Java - Programming Language Guide. Addison
Wesley, 2000, pp.170 - 173.
479

OOP.APROF

480

R
ef

er
en

ce
OOP.APROF

Avoid “protected” instance fields

Description
This rule flags any “protected” instance field.

Instance fields are an implementation detail of your class. It is good prac-
tice to hide such implementation details from users of your class. Instead,
provide the user with methods to access and/or change such fields.

Example
package OOP;

class APROF {
private int c = 14;
protected in t a = 10; // Violation

}

Repair
Declare the field “private” and provide access methods to the field if
needed.

OOP.APROF

R
eference
Reference
Haggar, Peter. Practical Java - Programming Language Guide. Addison
Wesley, 2000, pp.170 - 173.
481

OOP.IIN

482

R
ef

er
en

ce
OOP.IIN

Implement interfaces non-trivially or
“abstract”

Description
This rule flags any interface that is implemented trivially or not explicitly
declared to be “abstract”.

Use “abstract” methods in base classes rather than those with default
no-op implementations. The Java compiler will force subclass authors to
implement “abstract” methods, thereby avoiding problems that would
have occurred if they forgot to do so when they should have.

Example
package OOP;

abstract public class IIN implements B {
public void f () {

int i = 9;
i = 10;

}

public void g () {}
abstract public void h ();

}

interface B {
public void f ();
public void g ();
public void h ();

}

OOP.IIN

R
eference
Repair
The proper body for the offending method might not have been added, or
this method might have been declared unintentionally. In either case, the
method should be declared to be “abstract”.

Reference
http://g.oswego.edu/dl/html/javaCodingStd.html
483

OOP.LEVEL

484

R
ef

er
en

ce
OOP.LEVEL

Avoid more than two levels of nesting
classes

Description
This rule flags nesting that is more than two levels deep.

Nesting that is more than two levels deep can be difficult to follow.

Example
package OOP;

public class LEVEL {
class Level1 {

class Level2 {
class Level3 {

private boolean _isClosed = false;
}
private int _count = 0;

}
private int _size = 0;

}
private int _length = 0;

}

OOP.LEVEL

R
eference
Reference
Arnold, Ken, and Gosling, James The Java Programming Language. 2d
ed. Addison Wesley, 1997, pp .53.
485

OOP.LPF

486

R
ef

er
en

ce

OOP.LPF

List all “public” and package-private
methods/data first

Description
This rule flags code that does not list all “public” and package-private
methods/data first.

It is a good habit to order the methods and data in a class so that all “pub-
lic” and package wide information is presented first, followed by the “pro-
tected” and “private” information. This way, the user of your class will find
the accessible methods directly underneath the class declaration, and will
not be bothered with implementation details described by “private” and
“protected” data/methods.

Example
package OOP;

class LPF {
private int method () {

return 2;
}

int method2 () {
return 3;

}
}

Repair
Reorder the list of methods/data in your class.

OOP.OPM

R
eference
OOP.OPM

Do not ‘override’ a private method

Description
This rules flags code where a method overrides a “private” method from a
superclass.

Note that a “private” method in a super “class” is not overridden by a
method with the same name in the current “class”. This can be confusing.
Also, if the method access in the superclass is changed to non-private,
the program semantics will change because the method will then be over-
ridden.

Example
package OOP;

class OPM extends Super {
private void method () {}

}

class Super {
private void method () {}

public static void main (String[] args) {
OPM x = new OPM ();
test (x);

}

private static void (Super x) {
x.method (); // invokes "Super.method" not "OPM.method"

}
}

487

OOP.OPM

488

R
ef

er
en

ce
Repair
Use different names for the methods to clarify that they are unrelated and
to avoid possible problems if the access modifier is changed.

OPT.AAS

489

R
eference

Optimization RulesOPT.AAS

Use abbreviated assignment
operators

Description
This rule flags code that should use the abbreviated assignment operator,
but does not.

In order to write programs more rapidly, you should use the abbreviated
assignment operator because doing so causes some compilers run
faster.

Example
package OPT;
public class AAS {

void method () {
int i = 3;
String s = "fu";
i = i - 3; //should use “-=”
s = s + "bar"; //should use “+=”

}
}

Repair
Use the abbreviated assignment operators.

OPT.CEL

490

R
ef

er
en

ce

OPT.CEL

Avoid using complex expressions in
loop condition statements

Description
This rule flags any complex expression in a loop condition statement.

Unless the compiler optimizes it, the loop condition will be calculated for
each iteration over the loop. If the condition value is not going to change,
moving the complex expression out of the loop will cause the code to exe-
cute faster.

Example
package OPT;
import java.util.Vector;
class CEL
{

void method (Vector vector) {
for (int i = 0; i < vector.size (); i++) // Violation

; // ...
}

}

Repair
class CEL_fixed
{

void method (Vector vector) {
int size = vector.size ()
for (int i = 0; i < size; i++)

; // ...
}

}

OPT.CS

R
eference
OPT.CS

Close stream in “finally” blocks

Description
This rule flags code where the last “catch” block of a “try” statement does
not contain a “finally” block.

Programs using certain types of resources should release them in order
to avoid resource leaks. This can be done through a “finally” block which
is placed after the last “catch” block of a “try” statement. Regardless of the
outcome of the program, the “finally” block gets executed.

Example
import java.io.*;

package OPT;

public class CS {
public static void main (String args[]) {

CS cs = new CS ();
cs.method ();

}

public void method () {
try {

FileInputStream fis = new FileInputStream ("CS.java");
int count = 0;
while (fis.read () != -1)

count++;
System.out.println (count);
fis.close ();

} catch (FileNotFoundException e1) {
} catch (IOException e2) {
}

}
}

491

OPT.CS

492

R
ef

er
en

ce
Repair
Add a “finally” block after the last “catch”.

Reference
Haggar, Peter. Practical Java - Programming Language Guide. Addison
Wesley, 2000, pp. 77 -79.

OPT.DIC

R
eference
OPT.DIC

Define initial capacities for
‘ArrayList’, ‘HashMap’, ‘HashSet’,
’Hashtable’, ’Vector’, and
‘WeakHashMap’

Description
This rule flags any ‘ArrayList’, ‘HashMap’, ‘HashSet’, ’Hashtable’, ’Vector’,
or ‘WeakHashMap’ whose initial capacity is not defined.

Expansion of Vector capacity involves allocating a larger array and copy-
ing the contents of the old array to the new one. Eventually, the old array
object gets reclaimed by the garbage collector. Vector expansion is an
expensive operation. The default 10-element capacity of a Vector is often
not enough. Usually, you will be able to approximate the expected size; if
so, you should use this value instead of the default.

Example
package OPT;

import java.util.Vector;

public class DIC {
public void addObjects (Object[] o) {

// if length > 10, Vector needs to expand
for (int i = 0; i< o.length;i++) {

v.add(o[i]); // capacity before it can add more ele-
ments.

}
}
public Vecto r v = new Vector(); // no initialCapacity.

}

493

OPT.DIC

494

R
ef

er
en

ce
Repair
Define initial capacity when known.

public Vecto r v = new Vector(20);

References
Bulka, Dov. Java Performance and Scalability Volume 1: Server-Side Pro-
gramming Techniques. Addison Wesley, 2000. pp.55 - 57.

Ford, Neal. “Performance Tuning With Java Technology,” JavaOne 2001
Conference.

OPT.DUN

495

R
eference

OPT.DUN

Don't use the negation operator
frequently

Description
This rule flags code that uses the negation operator frequently (i.e., more
than two times).

The negation operator (!) decreases the readability of the program.

Example
package OPT;

public class DUN {
boolean method (boolean a, boolean b) {

if (!a)
return !a;

else
return !b;

}
}

Repair
Do not use the negation operator if possible.

OPT.IF

496

R
ef

er
en

ce
OPT.IF

Use conditional operator for “if (cond)
return; else return;” statements

Description
This rule flags “if(cond)-else” statements that could be replaced with
“return (cond ? x : y)”.

The conditional operator provides a single expression that yields one of
two values based on a boolean expression. The conditional operator
results in a more compact expression.

Example
package OPT;
public class IF {

public int method(boolean isDone) {
if (isDone) {

return 0;
} else {

return 10;
}

}
}

OPT.IF

R
eference
Repair
If the “if(cond)-else” statements might return a boolean constant, use
"return (cond)" instead.

package OPT;
public class IF {

public int method(boolean isDone) {
return (isDon e ? 0 : 10);

}
}

497

OPT.IFAS

498

R
ef

er
en

ce
OPT.IFAS

Use conditional assignment operator
for “if (cond) a = b; else a = c;”
statements

Description
This rule flags any “if(cond)-else” statements that could be replaced by
“var = (cond ? x : y)”.

The conditional operator provides a single expression that yields one of
two values based on a boolean expression. The conditional operator
results in a more compact expression.

Example
package OPT;
public class IFAS {

void method(boolean isTrue) {
if (isTrue) {

_value = 0;
} else {

_value = 1;
}

}
private int _value = 0;

}

Repair
package OPT;
public class IFAS {

void method(boolean isTrue) {
_value = (isTru e ? 0 : 1); // compact

// expression.
}

OPT.IFAS

R
eference
private int _value = 0;
}

499

OPT.INSOF

500

R
ef

er
en

ce

OPT.INSOF

Test "instanceof" to an interface

Description
This rule flags code that performs “instanceof” tests to a class rather than
to an interface.

Because interface-based design allows for the flexible inclusion of differ-
ent implementations, it is generally beneficial. Whenever possible, per-
form "instanceof" tests to an interface rather than a class.

Example
package OPT;

public class INSOF {
private void method (Object o) {

if (o instanceof InterfaceBase) { } // better
if (o instanceof ClassBase) { } // worse.

}
}

class ClassBase {}
interface InterfaceBase {}

Reference
Graig Larman, Rhett Guthrie. Java 2 Performance and Idiom Guide.
Prentice Hall, 2000, p.207.

OPT.IRB

R
eference
OPT.IRB

Use ‘System.arraycopy ()’ instead of
using a loop to copy an array

Description
This rule flags code where a loop is used to copy arrays.

‘System.arraycopy ()’ is much faster that using a loop to copy an array.

Example
package OPT;

public class IRB
{

void method () {
int[] array1 = new int [100];
for (int i = 0; i < array1.length; i++) {

array1 [i] = i;
}
int[] array2 = new int [100];
for (int i = 0; i < array2.length; i++) {

array2 [i] = array1 [i]; // Violation
}

}
}

Repair
package OPT;

public class IRB
{

void method () {
int[] array1 = new int [100];
for (int i = 0; i < array1.length; i++) {

array1 [i] = i;
501

OPT.IRB

502

R
ef

er
en

ce
}
int[] array2 = new int [100];
System.arraycopy(array1, 0, array2, 0, 100);

}
}

Reference
http://www.cs.cmu.edu/~jch/java/speed.html

OPT.LOOP

R
eference
OPT.LOOP

Avoid instantiating variables in the
loop body

Description
This rule flags any variable that is instantiated in the loop body.

Instantiating temporary Objects in the loop body can increase the memory
management overhead.

Example
package OPT;
import java.util.Vector;

public class LOOP {
void method (Vector v) {

for (int i=0;i < v.isEmpty();i++) {
Object o = new Object();
o = v.elementAt(i);

}
}

}

Repair
Declare a variable outside of the loop and reuse this variable.

package OPT;
import java.util.Vector;

public class LOOP {
void method (Vector v) {

Object o;
for (int i=0;i<v.isEmpty();i++) {

o = v.elementAt(i);
}

503

OPT.LOOP

504

R
ef

er
en

ce
}
}

OPT.MAF

505

R
eference

OPT.MAF

Make accessor methods for instance
fields “final”

Description
This rule flags non-”final” accessor methods for instance fields.

Accessor methods for instance fields should be made “final”. This tells the
compiler that the method cannot be overridden and thus can be inlined.

Example
package OPT;

class MAF {
public void setSize (int size) {

_size = size;
}
private int _size;

ÿ

Repair
class DAF_fixed {

final public void setSize (int size) {
_size = size;

}
private int _size;

}

Reference
Warren, Nigel. and Bishop, Philip. Java in Practice. Addison-Wesley,
1999, pp 4-5.

OPT.PCTS

506

R
ef

er
en

ce
OPT.PCTS

Use 'charAt()' instead of 'startsWith()'
for one character comparisons

Description
This rule flags code that uses ‘startsWith()’ instead of ‘charAt()’ for one
character comparisons.

Using 'startsWith()' with a one character argument works fine, but from a
performance perspective, this method is a misuse of the String API.
'startsWith()' makes quite a few computations preparing itself to compare
its prefix with another string.

Example
package OPT;
public class PCTS {

private void method(String s) {
if (s.startsWith("a")) { // violation

// ...
}

}
}

Repair
Replace 'startsWith()' with 'charAt()'.

package OPT;
public class PCTS {

private void method(String s) {
if ('a' == s.charAt(0)) {

// ...
}

}
}

OPT.PCTS

R
eference
Reference
Bulka, D. Java Performance and Scalability Volume 1: Server-Side Pro-
gramming Techniques.
507

OPT.SB

508

R
ef

er
en

ce
OPT.SB

Reserve 'StringBuffer' capacity

Description
This rule flags code that does not provide an initial capacity for ‘String-
Buffer’.

The 'StringBuffer' constructor will create a character array of a default
size, typically 16. If 'StringBuffer' exceeds its capacity, 'StringBuffer' has to
allocate a new character array with a larger capacity, copy the old con-
tents into the new array, and eventually discard the old array. In many sit-
uations, you can tell in advance how large your 'StringBuffer' is likely to
be. In that case, reserve enough capacity during construction and pre-
vent the 'StringBuffer' from ever needing expansion.

Example
package OPT;

public class RSBC {
void method () {

StringBuffer buffer = new StringBuffer(); // violation
buffer.append ("hello");

}
}

Repair
Provide initial capacity for 'StringBuffer'.

public class RSBC {
void method () {

StringBuffer buffer = new StringBuffer(MAX);
buffer.append ("hello");

}
private final int MAX = 100;

OPT.SB

R
eference
}

Reference
Bulka, D. Java Performance and Scalability Volume 1: Server-Side Pro-
gramming Techniques. Addison Wesley, pp. 30-31.
509

OPT.SDIV

510

R
ef

er
en

ce

OPT.SDIV

Use the shift operator on ’a / b’
expressions

Description
This rule flags any ‘a/b’ expression.

"/" is an expensive operation; using the shift operator is faster and more
efficient.

Example
package OPT;
public class SDIV {

public static final int NUM = 16;
public void calculate(int a) {

int div = a / 4; // should be replaced by "a >> 2".
int div2 = a/ 8; // should be replaced by "a >> 3".
int temp = a / 3;

}
}

Repair
package OPT;
public class SDIV {

public static final int NUM = 16;
public void calculate(int a) {

int div = a >> 2;
int div2 = 8 >> 3;
int temp = a / 3; // not possible to replace this with shift

//operator.
}

}

OPT.SMUL

511

R
eference

OPT.SMUL

Use the shift operator on ’a * b’
expressions

Description
This rule flags any ‘a*b’ expression.

"*" is an expensive operation; using the shift operator is faster and more
efficient.

Example
package OPT;

public class SMUL {
public void calculate(int a) {

int mul = a * 4; // should be replaced with "a << 2".
int mul2 = 8 * a; // should be replaced with "a << 3".
int temp = a * 3;

}
}

Repair
package OPT;
public class SMUL {

public void calculate(int a) {
int mul = a << 2;
int mul2 = a << 3;

int temp = a * 3; // not possible to replace this with
shift operator.

}
}

OPT.STR

512

R
ef

er
en

ce

OPT.STR

Use ’ ’ instead of " " for one character
string concatenation

Description
This rule flags code that uses ““ for string concatenation with one charac-
ter.

Using ‘’ instead of ““ for one character string concatenation will improve
performance.

Example
package OPT;
public class STR {

public void method(String s) {
String strin g = s + "d" // violation.
string = "abc" + "d" // violation.

}
}

Repair
Replace one character String Constant with ’ ’.

package OPT;
public class STR {

public void method(String s) {
String strin g = s + ’d’
string = "abc" + ’d’

}
}

OPT.SYN

513

R
eference

OPT.SYN

Never call a "synchronized" method
in a loop

Description
This rule flags any “synchronized” method that is invoked inside a loop.

Invoking a "synchronized" method is expensive. Thus, they should not be
invoked inside of a loop.

Example
package OPT;
import java.util.Vector;
public class SYN {

public synchronized void method (Object o) {
}
private void method () {

for (int i = 0; i < vector.size(); i++) {
method (vector.elementAt(i)); // violation

}
}
private Vector vector = new Vector (5, 5);

}

Repair
Do not invoke a "synchronized" method in the loop body.

OPT.TRY

514

R
ef

er
en

ce
OPT.TRY

Place "try/catch" blocks outside of
loops

Description
This rule flags any “try/catch” block inside a loop.

Placing “try/catch” blocks inside loops can slow down code execution.

If “try/catch” blocks are inside loops, code execution can be about 20 per-
cent slower if the JIT compiler is turned off on a JVM without a JIT.

Example
package OPT;
import java.io.FileInputStream;

public class TRY {
void method (FileInputStream fis) {

for (int i = 0; i < size; i++) {
try { // violation

_sum += fis.read();
} catch (Exception e) {}

}
}
private int _sum;

}

Repair
Place “try/catch” block outside of the loop.

void method (FileInputStream fis) {
try {

for (int i = 0; i < size; i++) {
_sum += fis.read();

OPT.TRY

R
eference
}
} catch (Exception e) {}

}

Reference
Haggar, Peter. Practical Java - Programming Language Guide. Addison
Wesley, 2000, pp.81 - 83.
515

OPT.UEQ

516

R
ef

er
en

ce
OPT.UEQ

Avoid unnecessary equality
operations with booleans

Description
This rule flags any unnecessary equality operation with booleans.

Comparing a boolean value with true is an identity operation (returns the
same boolean value). The advantages of removing this unnecessary
comparison with true are:

1. The code will perform faster (the code generated has about 5
bytecodes less).

2. The code becomes clearer.

Example
package OPT;

public class UEQ
{

boolean method (String string) {
return string.endsWith ("a") == true; // Violation

}
}

OPT.UEQ

R
eference
Repair
class UEQ_fixed
{

boolean method (String string) {
return string.endsWith ("a");

}
}

517

OPT.UISO

518

R
ef

er
en

ce
OPT.UISO

Avoid unnecessary "instanceof"
evaluations

Description
This rule flags unnecessary “instanceof” evaluations.

If the “static” type of the left-hand-side is already the same type as the
right-hand-side, then use of the "instanceof" expression is always true.

Example
package OPT;

public class UISO {
public UISO () {}

}

class Dog extends UISO {
void method (Dog dog, UISO u) {

Dog d = dog;
if (d instanceof UISO) // always true.

System.out.println("Dog is a UISO");
UISO uiso = u;
if (uiso instanceof Object) // always true.

System.out.println("uiso is an Object");
}

}

Repair
Remove the unnecessary "instanceof" evaluations:

class Dog extends UISO {
void method () {

Dog d;
System.out.println ("Dog is an UISO");

OPT.UISO

R
eference
System.out.println ("UISO is an UISO");
}

519

OPT.UNC

520

R
ef

er
en

ce
OPT.UNC

Avoid unnecessary casting

Description
This rule flags unnecessary casting.

All classes either directly or indirectly inherit from the class Object and
any subclass is implicitly the same type as its superclass. Therefore, cast
operations to superclass are not necessary.

Example
package OPT;

class UNC {
String _id = "UNC";

}
class Dog extends UNC {

void method () {
Dog dog = new Dog ();
UNC animal = (UNC)dog; // unnecessary.
Object o = (Object)dog; // unnecessary.

}
}

Repair
class Dog extends UNC {

void method () {
Dog dog = new Dog();
UNC animal = dog;
Object o = dog;

}
}

OPT.UNC

R
eference
Reference
Warren, Nigel, and Bishop, Philip. Java in Practice. Addison-Wesley,
1999, pp.22-23.
521

OPT.USB

522

R
ef

er
en

ce
OPT.USB

Use ‘StringBuffer’ instead of ‘String’
for non-constant strings

Description
This rule flags code that uses ‘String’ instead of ‘StringBuffer’ for non-con-
stant strings.

Although the += operator is provided by the ‘String’ class, it is much less
efficient than the ‘StringBuffer.append()’ function. Using ‘StringBuffer’
instead of using “+=” on ‘String’ objects will improve performance.

Example
package OPT;

class USB {
public String foobar() {

String fruit = "apples";
fruit+= ", bananas"; // Violation
return fruit;

}
}

Repair
public String betterFoobar() {

StringBuffer fruit = new StringBuffer("apples");
fruit.append(", bananas");
return fruit.toString();

}

OPT.USB

R
eference
Reference
Haggar, Peter. Practical Java - Programming Language Guide. Addison
Wesley, 2000, pp.107 - 109
523

OPT.USC

524

R
ef

er
en

ce

OPT.USC

Use ’String’ instead of ’StringBuffer’
for constant strings

Description
This rule flags code where ‘StringBuffer’ is used for a constant string.

Dynamically resizeable strings are not necessary for constant strings.

Example
package OPT;

public class USC {
String method () {

StringBuffe r s = new StringBuffer ("Hello");
String t = s + "World!";
return t;

}
}

Repair
Replace ‘StringBuffer’ with ‘String’ if it is certain that the object will not
change. This will reduce the overhead and improve performance.

OPT.UST

R
eference
OPT.UST

Use StringTokenizer instead of
'indexOf()' or 'substring()'

Description
This rule flags code that uses ‘indexOf()’ or ‘substring()’ instead of String-
Tokenizer.

String parsing is commonly performed in many applications. Using
'indexOf()' and 'substring()' to parse a String can cause a StringIndex-
OutOfBoundsException. The StringTokenizer class makes String parsing
bit easier, and is still quite efficient.

Example
package OPT;

public class UST {
void parseString(String string) {

int index = 0;
while ((index = string.indexOf(".", index)) != -1) {

System.out.println (string.substring(index,
string.length()));

}
}

}

525

OPT.UST

526

R
ef

er
en

ce
Reference
Larman, G, Guthrie, R Java 2 Performance and Idiom Guide. Prentice
Hall, 1999, 248 - 249.

OPT.USV

R
eference
OPT.USV

Use ‘stack’ variables whenever
possible

Description
This rule flags any non-stack variable that is going to be accessed fre-
quently.

When variables are accessed frequently, consider where these variables
are accessed from. Is the variable static, local, or an instance variable? It
is about two to three times slower to access “static”, instance variables
than to access stack variables.

Example
package OPT;
public class USV {

void getSum (int[] values) {
for (int i=0; i < value.length; i++) {

_sum += value[i]; // violation.
}

}
void getSum2 (int[] values) {

for (int i=0; i < value.length; i++) {
_staticSum += value[i];

}
}
private int _sum;
private static int _staticSum;

}

Repair
Use stack variables whenever possible if variables are going to be
accessed frequently.
527

OPT.USV

528

R
ef

er
en

ce
You can replace the above "getSum()" method in the following way:

void getSum (int[] values) {
int sum = _sum; // temporary stack variable.
for (int i=0 ; i < value.length; i++) {

sum += value[i];
}
_sum = sum;

}

Reference
Haggar, Peter. Practical Java - Programming Language Guide. Addison
Wesley, 2000, pp.122 - 125.

PB.ADE

R
eference
Possible Bugs RulesPB.ADE

Avoid dangling “else” statements

Description
This rule flags any dangling "else" statement.

Example
The developer that wrote the following code intended to decrement i if i
<= 5. The compiler always associates an "else" with the previous “if”
unless instructed by braces to do otherwise. In this example, the "else" is
associated with the second “if”; therefore, the decrementation takes place
“if (i >= 2)”. To force the structure to execute as originally planned, use
braces to indicate to the compiler that the "else" matches the first “if”.

package PB;

public class ADE {
void method () {

int i = 5;
if (i < 5)

if (i < 2)
i++;

else
i--;

}
}

Repair
Include the first “if” structure between braces. The compiler will know that
the second “if” structure is the only statement within the first “if” block and
the "else" matches the correct “if”.
529

PB.ADE

530

R
ef

er
en

ce
void method () {
int i = 5;
if (i < 5) {

if (i < 2)
i++;

} else
i--;

}
}

PB.AECB

531

R
eference

PB.AECB

Avoid “catch” blocks with empty
bodies

Description
This rule flags any “catch” block that has an empty body.

It is always a good idea to insert error handling code inside of each
“catch” block.

Example
package PB;
public class AECB {

public void openFile (String s) {
try {
} catch (Exception e) {

// nothing is done for this exception.
}

}
}

Repair
Add exception handling code inside of the "catch" block.

PB.ASI

532

R
ef

er
en

ce

PB.ASI

Avoid assignments within an “if”
condition

Description
This rule flags any assignment in “if” conditional statements.

Example
package PB;

public class ASI {
public int foo(boolean b) {

int ret = 0;
if ((b = true) { // Violation

ret = 3;
}
return ret;

}
}

Repair
Replace the “=” with “==” or move the variable assignment outside of the
“if”.

Reference
http://g.oswego.edu/dl/html/javaCodingStd.html

PB.AUO

533

R
eference

PB.AUO

Avoid using an object to access
“static” fields or methods

Description
This rule flags any “static” field or method that is accessed through an
object.

All “static” members should be referenced through a class name.

Example
package PB;

class AUO {
static void staticMethod () {}
void method () {}

public static void main (String[] args) {
AUO object = new AUO ();
object.staticMethod (); // Violation
object.method ();

}
}

Repair
Access “static” methods and fields through the “class”.

class AUO_fixed {
// ...

public static void main (String[] args) {
AUO object = new AUO ();
AUO.staticMethod ();
object.method ();

}
}

PB.CLP

534

R
ef

er
en

ce

PB.CLP

Don't cast primitive datatypes to
lower precision

Description
This rule flags any primitive datatype that is cast to lower precision.

By casting to lower precision, the value is truncated and will fall into a dif-
ferent range.

Example
package PB;
public class CLP {

void method () {
double d = 4.25;
int i;

i = this.square ((int) d);
}

int square (int i) {
return (i * i);

}
}

Repair
Either explicitly test the value before performing a cast or avoid it.

PB.CTOR

535

R
eference

PB.CTOR

Avoid package-private classes with
“public” constructors

Description
This rule flags any “package-private” class with a “public” constructor.

A "public" constructor of a non-"public" class does not have "public"
accessibility.Thus, the "public" modifier should be removed because it has
no effect and it is confusing.

Example
package PB;
class CTOR { // package accessible class

public CTOR () { // public constructor.
}

}

Repair
Change the constructor’s modifier to either “package” or “private”.

PB.DCF

536

R
ef

er
en

ce

PB.DCF

Do not compare floating point types

Description
This rule flags code that compares floating point types.

Comparing floating point numbers for equality can cause logic errors or
infinite loops due to unexpected results.

Example
package PB;

public class DCF {
int method (double d) {

if (d == 1) {
return 1;

} else if (d != 2) {
return 2;

} else return 3;
}

}

Repair
Use the comparison of floating point numbers sparingly.

PB.DCP

537

R
eference

PB.DCP

Do not confuse the “+” operator for
String concatenation

Description
This rule flags code where you might be confusing the “+” operator for
‘String’ concatenation.

Example
The code below shows the trap you might fall into when using “+” the
wrong way. The output of the following example is "2+9 = 29" not "2+9 =
11" as you might have expected.

package PB;

public class DCP {
public static void main (String args []) {

System.err.println (" 2 + 9 = " + 2 + 9);
}

}

Repair
Calculate the result outside the System.out.println statement and print it,
or enclose "2+9" in parentheses, i.e: "2+9 = " +(2+9)

PB.DNCSS

538

R
ef

er
en

ce
PB.DNCSS

Do not call ’setSize()’ in
’ComponentListener.
componentResized()’

Description
This rule flags code that calls ’setSize()’ inside of the ’componentRe-
sized()’ method’s body.

The “componentResized()” method gets called when the component’s
size changes. Invoking the “setSize()” method from within the “compo-
nentResized()” method can cause a non-ending sequence of resizing
events:

1. User resizes component.

2. “componentResized()” gets invoked.

3. “componentResized()” invokes “setSize()”.

4. “setSize()” posts a component resized event.

5. “componentResized()” gets invoked.

6. ...

Example
package PB;

import java.awt.*;
import java.awt.event.ComponentEvent;

public class DNCSS extends Component {
public void componentResized (ComponentEvent e) {

Dimensio n d = getSize();
setSize(d.width -10, d.height - 10);

// causes recursive calls.

PB.DNCSS

R
eference
}
}

Repair
Do not call the “setSize()” method inside of the “componentResized()”
method’s body.
539

PB.EQL

540

R
ef

er
en

ce
PB.EQL

Use ’getClass()’ in ’equals()’ method
implementation

Description
This rule flags code where an ‘equals()’ method does not use 'getClass()'
in the implementation.

Allowing only objects of the same class to be considered equal is a clean
and simple solution to implementing the 'equals()' method correctly. The
'getClass()' method returns the runtime class of an object.Therefore, 'get-
Class()' can be used to implement the 'equals()' method for the object.

Example
package PB;

public class EQL {
public boolean equals (Object o) {

super.equals(o); // violation
}

}

Repair
Use the ‘getClass()’ method before comparing two objects’ equality.

public boolean equal (Object o) {
if (getClass() != o.getClass())

return false;
// ...

}

PB.EQL

R
eference
Reference
Haggar, Peter. Practical Java - Programming Language Guide. Addison
Wesley, 2000, pp. 44 -47.
541

PB.EQL2

542

R
ef

er
en

ce
PB.EQL2

Use 'instanceof' within an 'equals()'
method implementation

Description
This rule flags code where an ‘equals()’ method does not use 'instanceof'
in the implementation

Allowing only objects of the same class to be considered equal is a clean
and simple solution to implementing the 'equals()' method correctly. The
'instanceof' operator checks if the argument is of the correct type or not.
Therefore, 'instanceof' can be used to implement the 'equals()' method for
an object.

Note: Jtest’s PB.EQL rule describes another way to implement the
'equals()' method. Because we have seen arguments for both guidelines,
we have included both rules and will allow you to decide which one to
use.

Example
package PB;

public class EQL2 {
public boolean equals (Object o) {

super.equals(o); // violation
}

}

Repair
Use 'instanceof' operator before comparing two objects' equality.

public boolean equal (Object o) {
if (!(o instanceof EQL2))

return false;

PB.EQL2

R
eference
// ...
}

Reference
Bloch, Joshua. Effective Java Programming Language Guide. Addison
Wesley, 2001, pp 25- 34.
543

PB.FEB

544

R
ef

er
en

ce

PB.FEB

Avoid “for” statements with empty
bodies

Description
This rule flags any “for” statement with an empty body.

“for” statements that are immediately followed by a closing statement (for
example, a semicolon) are usually typos.

Example
package PB;

public class FEB {
void method () {

int i;
for (i = 0; i < 10; ++i) ;

System.out.println (i);
}

}

The ‘println()’ will only be executed once when i==11.

Repair
Remove the unnecessary semicolon.

PB.FLVA

545

R
eference

PB.FLVA

Do not assign to loop control
variables in the body of a "for" loop

Description
This rule flags assignment to a loop control variable in the body of a "for"
loop.

A “for” loop control variable should only be modified in the initialization
and condition expressions of the "for" loop statement. Modifying them
inside the body of the "for" loop makes the loop condition difficult to
understand and points to a possible logical flaw in the code.

Example
package PB;

public class FLVA
{

void method1() {
for (int i = 0; i < 100; i++) { // Violation

i += 3;
}
for (int i = 0; i < 100; i++) { // Violation

i++;
}

}
}

Repair
Rewrite the code so that the “for” loop control variable doesn’t need to be
assigned within the loop body.

PB.IEB

546

R
ef

er
en

ce

PB.IEB

Avoid “if” statements with empty
bodies

Description
This rule flags any “if” statement with an empty body.

“if” statements that are immediately followed by closing statements (for
example, a semicolon) are usually typos.

Example
package PB;

public class IEB {
void method (int i) {

if (i < 0) ;
System.out.println(“negative i”);

}
}

The ‘println()’ statement will always be executed regardless of the value of
‘i’.

Repair
Remove the unnecessary semicolon.

PB.IMO

547

R
eference

PB.IMO

Make sure the intended method is
overridden

Description
This rule checks for possible typos that may have occurred when overrid-
ing methods were written.

Example
package PB;

public class IMO {
protected void finallize () // typo; should be "finalize"

throws Throwable
{

// important cleanup code
}

}

Repair
Fix the typo, or suppress the error message. If the overriding method is
spelled incorrectly, it will not be called; the method from the superclass
will be called instead.

In the example above, the “important cleanup code” will never be exe-
cuted.

PB.MAIN

548

R
ef

er
en

ce
PB.MAIN

Use the method name 'main' only for
the entry point method

Description
This rule checks whether the method name ‘main’ is used for something
other than the entry point method.

Because the method name ‘main’ has a special meaning in Java, you can
avoid confusion by not using it for purposes other than defining 'public
static void main(java.lang.String[])'.

Example
package PB;

public class AMOP {

public static void main(String[] args) {
System.out.println("This is main method");

}

public static void main() { //violation
System.out.println("This is another main method");

}
}

Repair
package PB;

public class AMOP {

public static void main(String[] args) {
System.out.println("This is main method");

}

PB.MAIN

R
eference
public static void other_main() {
System.out.println("This is another main method");

}
}

549

PB.MPC

550

R
ef

er
en

ce

PB.MPC

Avoid using method parameter names
that conflict with class member
names

Description
This rule flags any method parameter name that conflicts with a class
member name.

Example
The following example shows the use of the same names ‘i’ and ‘j’ for
parameters, an instance variable, and a method, respectively. This might
create confusion when using the variable or calling the function, and
eventually lead to a logic error.

package PB;

public class MPC {
void method (int i, int j) {}
void j () {}
private int i = 3;

}

Repair
Use different names for parameters and class members (variables and
methods) to avoid confusion.

PB.MRUN

551

R
eference

PB.MRUN

The Thread class is missing a ’run()’
method

Description
This rule flags any thread class that does not have a ‘run()’ method.

Classes that extend ‘Thread’ should always have a ‘run()’ method. If a
‘run()’ method is not implemented, this class will not run as
multi-threaded.

Example
package PB;
public class MRUN {

public MRUN () {}
// violation, no run method!

}

Repair
Provide a ‘run()’ method for this class.

PB.NAMING

552

R
ef

er
en

ce
PB.NAMING

The method name should not be
same the class name unless it is a
constructor

Description
This rule flags code where a non-constructor method has the same name
as its class.

A non-constructor method should not have the same name as its class; if
it does, it probably indicates a typo.

Example
package PB;

public class NAMING {
public NAMING () {} // constructor
public void NAMING (int size) {} // not a constructor, it's

probably a typo.
}

Repair
Verify the name of the method and change it as you intended.

PB.NAMING

R
eference
Reference
Daconta, M, Monk, E, Keller, J, and Bohnenberger, K. Java Pitfalls. John
Wiley & Sons, 2000, pp.12 - 14.
553

PB.NDC

554

R
ef

er
en

ce
PB.NDC

Never define a direct or indirect
subclass of class Error,
RuntimeException or Throwable

Description
This rule flags code that defines a direct or indirect subclass of class
Error, RuntimeException, or Throwable.

The class java.lang.Error is meant for covering abnormal Java Virtual
Machine conditions only. If you define a direct or indirect subclass of class
java.lang.Error, it is implied that the error is also an abnormal Java Virtual
Machine condition, which is not the case. Exception handling of
java.lang.Error is not checked by the Java compiler, so erroneous excep-
tion handling might not be noticed.

Exceptions in java.lang.RuntimeException and its subclasses are used
for avoidable exceptions. The Java compiler does not check the correct
handling of these exceptions, so erroneous exception handling might not
be noticed.

The class java.lang.Throwable is the super class of java.lang.Exception
and java.lang.Error. User-defined exceptions should always be defined as
subclasses of java.lang.Exception.

Example
package PB;

public class NDC_Exception extends RuntimeException { // violation

public NDC_Exception (String s) {
super(s);

}
}

PB.NDC

R
eference
Repair
package PB;

public class NDC_Exception extends Exception {

public NDC_Exception (String s) {
super(s);

}
}

555

PB.NDC

556

R
ef

er
en

ce
Reference
Daconta, M, Monk, E, Keller, J, and Bohnenberger, K. Java Pitfalls. John
Wiley & Sons, 2000, pp.12 - 14.

PB.NEA

557

R
eference

PB.NEA

Do not use embedded assignment
operator

Description
This rule flags code that uses the embedded assignment operator.

Code using embedded assignments becomes cryptic and difficult to read.

Example
package PB;

public class PB_NEA {
void method () {

int i = 2;
int j = 2;
short r = 4;
double d = 2;
double x = 3;
int k = 3;

d = (k = i + j) + r;
d -= (x = i + j) + r;
d /= (x /= i + j) + r;

}
}

Repair
Do not nest assignments; this could lead to confusion. Break the nested
assignments into multiple statements.

PB.PDS

558

R
ef

er
en

ce

PB.PDS

Provide “default:” for each “switch”
statement

Description
This rule flags any “switch” statement that does not have a “default” label.

Example
package PB;

public class PDS {
void method (int i) {

switch (i) {
case 1:

a = 10;
break;

case 2:
case 3:

a = 20;
return;

} // missing default label
}

}

Repair
Add a “default” statement.

PB.SBC

559

R
eference

PB.SBC

Avoid a “switch” statement with a bad
“case”

Description
This rule flags code where a missing “break” or “return” causes control to
flow into another case in a “switch”.

Example
package PB;
public class SBC{

void method (int i) {
switch (i) {
case 1:

a = 10;
break;

case 2:
a = 20; //missing break

default:
a = 40;
break;

}
}

}

Repair
Add the missing “break” or “return”.

PB.TLS

560

R
ef

er
en

ce
PB.TLS

Don't use text labels in "switch"
statements

Description
This rule flags any text label in a "switch" statement.

Example
The example below shows two situations where errors might occur. Omit-
ting a space between the word “case” and the value being tested prevents
the structure from performing the desired action. Also, ‘wronglabel’ will be
unused because “switch” handles only “case” labels.

package PB;

public class TLS {
static int method (int i) {

switch (i) {
case 4:
case3: // i == 3 will not go through here.

i++;
break;

case 25:
wronglabel: // unused label.

break;
}
return i;

}

public static void main (String args[]) {
int i = method (3);
System.out.println (i);

}
}

PB.TLS

R
eference
Repair
Change “case3 to “case 3”.
561

PB.UEI

562

R
ef

er
en

ce
PB.UEI

Use ‘equals()’ when comparing two
Objects

Description
This rule flags any case where “==” is used to compare two Objects.

The “==” operator is used to check if two Objects are the same instance of
an object, and the '!=' operator used on an Object checks if two Objects
are not two identical instances of an object. If you want to check if two
Objects have the same value, you should use the ‘equals()’ method.

Example
package PB;

import java.awt.*;

public class UEI {
public boolean CalculateEqual() {

boolean monthly = co.getSelectedItem() == "Monthly"; // Vio-
lation

return monthly;
}
public boolean CalculateNotEqual() {

boolean monthly = co.getSelectedItem() != "Monthly"; // Vio-
lation

return monthly;
}
private Choice co = null;

}

PB.UEI

R
eference
Repair
Change “==” to ‘equals()’ as follows:

package PB;

import java.awt.*;

public class UEI {

public boolean CalculateEqual() {
boolean monthly = co.getSelectedItem().equals("Monthly");
return monthly;

}
public boolean CalculateNotEqual() {

boolean monthly = !(co.getSelectedItem().equals("Monthly"));
return monthly;

}
private Choice co = null;

}

Reference
Bloch, Joshua. Effective Java Programming Language Guide. Addison
Wesley, 2001, pp.25 - 36.
563

PMETRICS.NB

564

R
ef

er
en

ce

Project MetricsPMETRICS.NB

Number of bytes

Description
This metric measures project size by adding the total number of bytes of
all class files in the project.

PMETRICS.NC

565

R
eference

PMETRICS.NC

Number of classes

Description
This metric measures the total number of classes in the project.

PMETRICS.NJF

566

R
ef

er
en

ce

PMETRICS.NJF

Number of Java source files

Description
This metric measures the total number of Java source files in the project.

PMETRICS.NL

567

R
eference

PMETRICS.NL

Number of lines

Description
This metric measures the total number of lines in the project’s source
files.

PMETRICS.NOF

568

R
ef

er
en

ce

PMETRICS.NOF

Number of fields

Description
This metric measures the total number of fields in a project.

PMETRICS.NOM

569

R
eference

PMETRICS.NOM

Number of methods

Description
This metric measures the total number of methods in a project.

PMETRICS.NPAC

570

R
ef

er
en

ce

PMETRICS.NPAC

Number of packages

Description
This metric measures the total number of packages in the project.

PMETRICS.NPKGC

571

R
eference

PMETRICS.NPKGC

Number of package-private classes

Description
This metric measures the total number of package-private classes in the
project.

PMETRICS.NPRIC

572

R
ef

er
en

ce

PMETRICS.NPRIC

Number of "private" classes

Description
This metric measures the total number of “private” classes in the project.

PMETRICS.NPROC

573

R
eference

PMETRICS.NPROC

Number of "protected" classes

Description
This metric measures the total number of “protected” classes in the
project.

PMETRICS.NPUBC

574

R
ef

er
en

ce

PMETRICS.NPUBC

Number of "public" classes

Description
This metric measures the total number of “public” classes in the project.

PORT.ENV

575

R
eference

Portability RulesPORT.ENV

Do not use “System.getenv()”

Description
This rule flags any occurrence of ‘System.getenv()’.

‘System.getenv()’ has been deprecated because it is not portable.

Example
package PORT;
public class ENV {

void method (String name) {
System.getenv(name);
java.lang.System.getenv(name);

}
}

Repair
Use ‘System.getProperty()’ and the corresponding ‘getTypeName()’
methods of the “boolean”, “integer”, and “long” primitive types.

Reference
Flanagan, David. Java in a Nutshell. O’Reilly, 1999, pp.190-192.

PORT.EXEC

576

R
ef

er
en

ce

PORT.EXEC

Do not use ‘Runtime.exec()’

Description
This rule flags any occurrence of ‘Runtime.exec()’.

Calling the ‘Runtime.exec()’ method to spawn a process and execute an
external command may not be portable because there is no guarantee
that the native OS command will behave consistently on different plat-
forms.

Example
package PORT;
import java.io.IOException;

public class EXEC {
public void method(String command) {

try {
Runtime.getRuntime().exec(command);

// violation, not portable
} catch (IOException io) {
}

}
}

Reference
Flanagan, David. Java in a Nutshell. O’Reilly, 1999, pp.190-192.

PORT.LNSP

R
eference
PORT.LNSP

Do not hardcode ‘\n’ or ‘\r’ as a line
separator

Description
This rule flags code where ‘\n’ or ‘\r’ is hardcoded as a line separator.

Different systems use different characters or sequences of characters as
line separators. Therefore, hardcoding ‘\n’, ‘\r’, or ‘\r\n’ damages Java
code’s portability.

Example
package PORT;

public class LNSP {
public printHeader (String name, String id) {

System.out.println(“HEADER \n” +"Name: name \n" +"ID: id
\n");

}
}

Repair
Use the ‘println()’ method of PrintStream or PrintWriter; this automatically
terminates a line with the line separator appropriate for the platform. Or,
use the value of System.getProperty(‘line.separator’)

package PORT;

public class LNSP {
public printHeader (String name, String id) {

System.out.println("HEADER ");
System.out.println("Name: " +name);
System.out.println("ID: " +id);

}

577

PORT.LNSP

578

R
ef

er
en

ce
}

Reference
Flanagan, David. Java in a Nutshell. O’Reilly, 1999, pp. 191-192.

PORT.NATV

579

R
eference

PORT.NATV

Do not use user defined "native"
methods

Description
This rule flags any occurrence of a user defined “native” method.

User defined “native” methods are not portable because all “native” meth-
ods must be ported to each platform before they become usable.

Example
package PORT;

public class NATV {
native void method (String s); // user defined native method.

}

Reference
Flanagan, David. Java in a Nutshell. O’Reilly, 1999, pp.190-192.

PORT.PEER

580

R
ef

er
en

ce

PORT.PEER

Do not use ‘java.awt.peer.*’ interfaces
directly

Description
This rule flags code that uses a ‘java.awt.peer.*’ interface directly.

The interfaces in the ‘java.awt.peer’ are documented as used by AWT
implementors only. Applications that use these interfaces directly are not
portable.

Example
package PORT;
import java.awt.peer.ComponentPeer;
interface PEER extends ComponentPeer
{

void setName(String name);
}

Repair
Do not use ‘java.awt.peer’ package directly.

Reference
Flanagan, David. Java in a Nutshell. O’Reilly, 1999, pp.190-192.

SECURITY.CLONE

581

R
eference

Security RulesSECURITY.CLONE

Make your classes uncloneable

Description
This rule flags cloneable classes.

Java's object cloning mechanism lets you make exact duplicates of
objects that have already been instantiated in a running program. This
can let an attacker manufacture new instances of classes you define,
without executing any of your constructors. If your class is not cloneable,
the attacker can define a subclass of your class and make the subclass
implement java.lang.Cloneable. This lets the attacker make new
instances of your class by copying the memory images of existing objects.
This is often an unacceptable way to make a new object.

Repair
If you want your class to be cloneable, you can protect yourself by defin-
ing a clone method and making it final. If you're relying on a non-final
clone method in one of your super classes, then override the method to
make it final or make your entire class final.

Reference
Viaga, J., McGraw,G., Mutsdoch,T, Felten, E.. “Statically Scanning Java
Code: Finding Security Vulnerabilities.” IEEE Software, September/Octo-
ber 2000.

SECURITY.CMP

582

R
ef

er
en

ce

SECURITY.CMP

Don't compare classes by name

Description
This rule flags code that compares classes by name.

When you want to compare the classes of two objects to see whether
they are the same or whether an object has a particular class, you should
be aware that there can be multiple classes with the same name in a
JVM. A better way is to compare class objects for equality directly.

Reference
Viaga, J., McGraw,G., Mutsdoch,T, Felten, E.. “Statically Scanning Java
Code: Finding Security Vulnerabilities.” IEEE Software, September/Octo-
ber 2000.

SECURITY.INNER

R
eference
SECURITY.INNER

Do not use inner classes

Description
This rule flags code that uses inner classes.

In Java, it is possible to define inner classes (classes nested inside other
classes). Some Java language books say that inner classes can only be
accessed by the outer classes that enclose them, but this is false. Java
byte code has no concept of inner classes, only regular classes. Conse-
quently, the compiler translates inner classes into ordinary classes that
happen to be accessible to any code in the same package.

An inner class can access private variables of the containing class.
Because the Java protection mechanism does not let you restrict access
to single classes, it must grant access to the entire package. Fortunately,
the only variables that are exposed in such a way are those actually used
by an inner class.

In addition, a distinction is made between variables that are read by an
inner class and those that are written. If an inner class reads a variable,
any class in the package can then read that variable. If an inner class
writes to a variable, so can any other class in the package.

Example
package SECURITY;
>
public class INNER {

class INNER_Class { // violation
}

}

Repair
Do not use an inner class unless it is private.
583

SECURITY.INNER

584

R
ef

er
en

ce
Reference
Viaga, J., McGraw,G., Mutsdoch,T, Felten, E.. “Statically Scanning Java
Code: Finding Security Vulnerabilities.” IEEE Software, September/Octo-
ber 2000.

SECURITY.PKG

585

R
eference

SECURITY.PKG

Don't depend on Package Scope

Description
This rule flags code that depends on package-level access.

Package-level access is not secure enough to provide satisfactory secu-
rity. Java packages are not closed (meaning that new elements can be
added to them, even at program runtime). As a result, an attacker can
potentially introduce a new class inside your packages and use this new
class to access the things you thought you hid.

Repair
Do not rely on package-level access. Make your class, method, field have
the least access possible.

Reference
Viaga, J., McGraw,G., Mutsdoch,T, Felten, E.. “Statically Scanning Java
Code: Finding Security Vulnerabilities.” IEEE Software, September/Octo-
ber 2000.

SECURITY.SER

586

R
ef

er
en

ce

SECURITY.SER

Make your classes Unserializable

Description
This rule flags Serializable classes.

Java's serialization mechanism lets you save entire objects to a storage
mechanism such as a disc, database, or string. The mechanism also lets
classes be restored from saved information later, perhaps from the same
application after it has stopped and restarted or from another application.
Saving an object's state in Java is serialization; restoring its state is dese-
rialization. Serialization is dangerous because it lets adversaries access
your objects' internal state. Adversaries can serialize one of your objects
into a byte array that can be read, which lets them inspect your object's
full internal state, including any fields you marked private and the internal
state of any objects your reference.

Repair
Do not make your classes Serializable if possible.

If you make your classes Serializable, make sure that any sensitive data
members are "transient."

Reference
Viaga, J., McGraw,G., Mutsdoch,T, Felten, E.. “Statically Scanning Java
Code: Finding Security Vulnerabilities.” IEEE Software, September/Octo-
ber 2000.

SECURITY.SER2

587

R
eference

SECURITY.SER2

Avoid making your interfaces
Serializable

Description
This rule flags Serializable interfaces.

Java's serialization mechanism lets you save entire objects to a storage
mechanism such as a disc, database, or string. The mechanism also lets
classes be restored from saved information later, perhaps from the same
application after it has stopped and restarted or from another application.
Saving an object's state in Java is serialization; restoring its state is dese-
rialization. Serialization is dangerous because it lets adversaries access
your objects' internal state. Adversaries can serialize one of your objects
into a byte array that can be read, which lets them inspect your object's
full internal state, including any fields you marked private and the internal
state of any objects your reference.

Repair
If possible, do not make your interfaces Serializable.

If you make your interfaces Serializable, make sure that any sensitive
data members are "transient."

Reference
Viaga, J., McGraw,G., Mutsdoch,T, Felten, E.. “Statically Scanning Java
Code: Finding Security Vulnerabilities.” IEEE Software, September/Octo-
ber 2000.

SERVLET.BINS

588

R
ef

er
en

ce
Servlet RulesSERVLET.BINS

Avoid using
java.beans.Beans.instantiate ()

Description
This rule flags code that uses java.beans.Beans.instantiate ().

This method will create a new bean instance either by retrieving a serial-
ized version of the bean from disk or by creating a new bean if the serial-
ized form does not exist. The problem, from a performance perspective, is
that each time java.beans.Beans.instantiate is called, the file system is
checked for a serialized version of the bean. Such disk activity in the criti-
cal path of your web request can be costly.To avoid this overhead, simply
use "new" to create the instance.

Example
package SERVLET;

import javax.servlet.http.*;
import java.beans.*;

public class BINS extends HttpServlet {
public void doGet (HttpServletRequest rquest)

throws ClassNotFoundException, java.io.IOException {
Beans ab = (Beans) Beans.instantiate (

this.getClass ().getClassLoader (),
"web_prmtv.Bean");

// do something...
}

}

Repair
Use new someClass () to create a new object instance.

SERVLET.BINS

R
eference
public void doGet (HttpServletRequest rquest)
throws ClassNotFoundException, java.io.IOException {

Beans ab = new Beans ();
// do something...

}

Reference
IBM WebSphere Application Server Standard and Advanced Editions,
Harvey W. Gunther.

http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
589

SERVLET.DSLV

590

R
ef

er
en

ce
SERVLET.DSLV

Reuse datasources for JDBC
connections

Description
This rule flags code that should reuse datasources for JDBC connections,
but does not.

A javax.sql.DataSource is obtained from WebSphere Application Server
through a JNDI naming lookup. Avoid the overhead of acquiring a
javax.sql.DataSource for each SQL access. This is an expensive opera-
tion that will severely impact the performance and scalability of the appli-
cation.

Example
package SERVLET;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.sql.*;
import javax.naming.Context;
import javax.naming.InitialContext;

public class DSLV extends HttpServlet {
public void doGet () throws ServletException {

DataSource ds = null; // violation
try {

java.util.Hashtable env = new java.util.Hashtable ();
env.put (Context.INITIAL_CONTEXT_FACTORY, "jndi.

CNInitialContext");
Context ctx = new InitialContext (env);
ds = (DataSource)ctx.lookup ("jdbc/SAMPLE");
ctx.close ();

} catch (Exception e) {
e.printStackTrace ();

}

SERVLET.DSLV

R
eference
}
}

Repair
The servlet should acquire the javax.sql.DataSource in the Servlet.init ()
method (or some other thread-safe method) and maintain it in a common
location for reuse.

class Better extends HttpServlet {
// caching the DataSource
private DataSource ds = null;
public void init (ServletConfig config) throws ServletException

{
super.init (config);
Context ctx = null;
try {

java.util.Hashtable env = new java.util.Hashtable ();
env.put (Context.INITIAL_CONTEXT_FACTORY,

"jndi.CNInitialContext");
ctx = new InitialContext (env);
ds = (DataSource)ctx.lookup ("jdbc/SAMPLE");
ctx.close ();

} catch (Exception e) {
e.printStackTrace ();

}
}

}

Reference
IBM WebSphere Application Server Standard and Advanced Editions,
Harvey W. Gunther.

http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
591

SERVLET.HVR

592

R
ef

er
en

ce
SERVLET.HVR

HttpSession variables should be
released when finished

Description
This rule flags HttpSession objects that are not released when they are
finished.

HttpSession objects live inside the WebSphere servlet engine until:

• The application explicitly and programmatically releases it using
the API, javax.servlet.http.HttpSession.invalidate ()

• WebSphere Application Server destroys the allocated HttpSes-
sion when it expires (by default, after 1800 seconds or 30 min-
utes). WebSphere Application can only maintain a certain number
of HttpSessions in memory. When this limit is reached, Web-
Sphere Application Server serializes and swaps the allocated
HttpSession to disk. In a high volume system, the cost of serializ-
ing many abandoned HttpSessions can be quite high.

Example
package SERVLET;
import javax.servlet.*;
import javax.servlet.http.*;

public class HVR {
// violation, no javax.servlet.http.HttpSession.invalidate() is
//called.
public void incorrectSession (HttpServletRequest request) {

HttpSession mySession = request.getSession (false);
String id = mySession.getId ();
System.out.println ("HttpSession i d = " +id);

}
}

SERVLET.HVR

R
eference
Repair
Call javax.servlet.http.HttpSession.invalidate() when finished.

public void correctSession (HttpServletRequest request) {
HttpSession mySession = request.getSession (false);
// do something.

if (mySession != null) {
mySession.invalidate ();

}
}

Reference
IBM WebSphere Application Server Standard and Advanced Editions,
Harvey W. Gunther.

http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
593

SERVLET.RRWD

594

R
ef

er
en

ce
SERVLET.RRWD

Release JDBC resources when done

Description
This rule flags JDBC resources that are not released when they are fin-
ished.

Failing to close and release JDBC connections can cause other users to
experience long waits for connections. Although a JDBC connection that
is left unclosed will be reaped and returned by WebSphere Application
Server after a timeout period, others may have to wait for this to occur.

Close JDBC statements when you are through with them. JDBC Result-
Sets can be explicitly closed as well. If not explicitly closed, ResultsSets
are released when their associated statements are closed.

Example
package SERVLET;
import java.sql.*;

public class RRWD {
void test0 () {

Connection conn = null;
Statement stmt = null;
ResultSet rs = null;
try {

conn = DriverManager.getConnection ("some url");
stmt = conn.createStatement();
rs = stmt.executeQuery ("some query");

} catch (Exception e) {}
finally {

try {
// should have rs.close () and stmt.close ()

} catch (Exception e) {}
}

}
}

SERVLET.RRWD

R
eference
Repair
Ensure that your code is structured to close and release JDBC resources
in all cases, even in exception and error conditions.

Reference
IBM WebSphere Application Server Standard and Advanced Editions,
Harvey W. Gunther.

http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
595

SERVLET.SOP

596

R
ef

er
en

ce
SERVLET.SOP

Minimize use of System.out.println or
System.err

Description
This rule flags code that uses System.out.println or System.err.

Because System.out.prinln statements and similar constructs synchronize
processing for the duration of disk I/O, they can significantly slow through-
put.

Example
package SERVLET;

import javax.servlet.*;
import javax.servlet.http.*;

public class SOP extends HttpServlet {
public void service () {

System.out.println ("starting service");
}

}

Repair
public class SOP extends HttpServlet {

private final static boolean DEBUG_ON = false;
public void service () {

// activate tracing only when absolutely needed.
if (DEBUG_ON) {

System.out.println ("starting service");
}

}
}

SERVLET.SOP

R
eference
Reference
IBM WebSphere Application Server Standard and Advanced Editions,
Harvey W. Gunther.

http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
597

SERVLET.STM

598

R
ef

er
en

ce
SERVLET.STM

Do not use 'SingleThreadModel' in
Servlet class

Description
This rule flags servlet classes that use SingleThreadModel.

SingleThreadModel is a tag interface that a servlet can implement to
transfer its re-entrancy problem to the servlet engine. As such, javax.serv-
let.SingleThreadModel is part of the J2EE specification. The WebSphere
servlet engine handles the servlet's re-entrancy problem by creating sep-
arate servlet instances for each user. Because this causes a great
amount of system overhead, SingleThreadModel should be avoided.

Example
package SERVLET;

import javax.servlet.*;
import javax.servlet.http.*;

public class STM extends HttpServlet implements SingleThreadModel {
// some code.

}

Repair
Developers typically use javax.servlet.SingleThreadModel to protect
updatable servlet instances in a multithreaded environment. A better
approach is to avoid using servlet instance variables that are updated
from the servlet's service method.

SERVLET.STM

R
eference
Reference
IBM WebSphere Application Server Standard and Advanced Editions,
Harvey W. Gunther.

http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
599

SERVLET.SYN

600

R
ef

er
en

ce
SERVLET.SYN

Minimize synchronization in Servlets

Description
This rule flags excessive synchronization in servlets.

Servlets are multi-threaded. Servlet-based applications have to recognize
and handle this. However, if large sections of code are synchronized, an
application effectively becomes single threaded, and throughput
decreases.

Example
package SERVLET;

import javax.servlet.*;
import javax.servlet.http.*;
import java.sql.*;

public class SYN extends HttpServlet {
private int numberOfRows = 0;
private javax.sql.DataSource ds = null;

public void synExample (HttpServletRequest request) {
Connection conn = null;
ResultSet rs = null;
PreparedStatement stmt = null;
int startingRows;

try {
synchronized (this) {

startingRows = numberOfRows;
String info = null;
conn = ds.getConnection ("db2admin", "db2admin");
stmt = conn.prepareStatement ("select * from

db2admin.employy");
rs = stmt.executeQuery ();
info = rs.getString ("Name");

SERVLET.SYN

R
eference
}
} catch (Exception e) {
} finally {

try { rs.close (); }
catch (Exception e) {}

}
}

}

Repair
public void synBetterExample (HttpServletRequest request) {

Connection conn = null;
ResultSet rs = null;
PreparedStatement stmt = null;
int startingRows;

// lock only necessary one.
synchronized (this) {

startingRows = numberOfRows;
}

try {
String info = null;
conn = ds.getConnection ("db2admin", "db2admin");
stmt = conn.prepareStatement ("select * from

db2admin.employy");
rs = stmt.executeQuery ();
info = rs.getString ("Name");

} catch (Exception e) {
} finally {

try { rs.close (); }
catch (Exception e) {}

}
}

601

SERVLET.SYN

602

R
ef

er
en

ce
Reference
IBM WebSphere Application Server Standard and Advanced Editions,
Harvey W. Gunther.

http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf

TRS.ANF

603

R
eference

Threads and Synchronization RulesTRS.ANF

Do not use ’notify()’; use ’notifyAll()’
instead

Description
This rule flags any occurrence of ‘notify()’.

Multiple threads may be waiting on the same object. Using ’notify()’ picks
one of the waiting threads and wakes it up. Because there is no way to
predict which thread will be awakened, you should use ‘notifyAll()’ to
wake up waiting threads.

Example
package TRS;
public class ANF {

public synchronized void notifyThread() {
notify();

}
}

Repair
Replace ’notify()’ with ’notifyAll()’

Reference
Arnold, Ken, and Gosling, James The Java Programming Language. 2d
ed. Addison Wesley, 1997, pp.188-190.

TRS.CSFS

604

R
ef

er
en

ce
TRS.CSFS

Avoid causing deadlock by calling a
"synchronized" method from a
"synchronized" method

Description
This rule flags code that calls a “synchronized” method from another “syn-
chronized” method.

There are many scenarios for creating deadlocks; most fall into the follow-
ing categories:

• A thread interdependency in which two or more threads are wait-
ing on one another

• A thread that has an indefinite wait period (such as a blocking
call) in which other threads depend on an object that this thread
has locked

• A combination of the two.

Example
package TRS;
public class CSFS {

private synchronized void method1 () {
// do something

}
synchronized void method2 () {

method1 () // violation
}

}

TRS.CSFS

R
eference
Repair
Try not to synchronize the whole method; make a synchronized block that
needs to be synchronized.

Reference
Daconta, M., Monk, E., Keller, J., Bohnenberger, K. Java Pitfalls. John
Wiley & Sons, pp. 50 - 60.
605

TRS.NSM

606

R
ef

er
en

ce
TRS.NSM

Do not use the synchronized modifier

Description
This rule flags any occurrence of the synchronized modifier.

The "synchronized" modifier is equivalent to the "synchronized" state-
ment, but use of only the statement form makes the code easier to under-
stand and debug. However, the "synchronized" modifier may make the
code slightly more efficient than the "synchronized" statement.

Example
package TRS;

class NSM {
synchronized void method () {

// ...
}

}

Repair
Use the “synchronized” statement instead of the “synchronized” modifier,
i.e.

class NSM_fixed {
void method () {

synchronized (this) {
// ...

}
}

}

TRS.NSM

R
eference
Reference
Haggar, Peter. Practical Java - Programming Language Guide. Addison
Wesley, 2000, pp.122 - 134.
607

TRS.NSPM

608

R
ef

er
en

ce
TRS.NSPM

Declare all "public" methods as
"synchronized"

Description
This rule flags any “public” method that is not declared as “synchronized”

A "public" method should be synchronized unless it has a Javadoc that
describes the assumed invocation context and/or rationale for the lack of
synchronization.

In the absence of planning out a set of concurrency control policies,
declaring methods as synchronized at least guarantees safety (though
not necessarily livens) in concurrent contexts (every Java program is con-
current to at least some minimal extent). With full synchronization of all
methods, the methods may lock up, but the object can never enter into
randomly inconsistent states (and thus engage incorrect behavior) due to
concurrency conflicts. If you are worried about efficiency problems due to
synchronization, learn enough about concurrent OO programming to plan
out more efficient and/or less deadlock-prone policies (for example, read
"Concurrent Programming in Java" by Doug Lea).

Example
package TRS;

public class NSPM {
public void method () { // violation

System.out.println("non synchronized public method");
}

}

TRS.NSPM

R
eference
Reference
http://www.infospheres.caltech.edu/resources/code_standards/recom-
mendations.html
609

TRS.NSYN

610

R
ef

er
en

ce

TRS.NSYN

A non-synchronized method should
not call 'wait()' or 'notify()'

Description
This rule flags any non-synchronized method that is calling ‘wait()’ or
‘notify()’

Method wait() or notify() is invoked from a method, which is not declared
as synchronized. It is not definitely a bug because the monitor can be
locked from another method which directly or indirectly invokes the cur-
rent method.

TRS.RUN

611

R
eference

TRS.RUN

Methods implementing
’Runnable.run()’ should be
“synchronized”

Description
This rule flags any method that implements ‘Runnable.run()’ and that is
not “synchronized”.

The method ’run()’ of a class that implements the Runnable interface
should be synchronized. Multiple threads can be started for the same
object implementing the Runnable “interface”; the method ’run()’ can be
executed concurrently.

Example
package TRS;
public class RUN implements Runnable {

public void run () { // violation, this method should be syn-
chronized.

}
}

Repair
Declare ’Runnable.run()’ method “synchronized”.

Reference
http://www.ispras.ru/~knizhnik/jlint/ReadMe.htm

TRS.THRD

612

R
ef

er
en

ce

TRS.THRD

Do not call ’Thread.resume()’,
’Thread.stop()’, or ’Thread.suspend()’

Description
This rule flags code that calls ’Thread.resume()’, ’Thread.stop()’, or
’Thread.suspend()’.

’Thread.resume()’, ’Thread.stop()’, or ’Thread.suspend()’ have been dep-
recated because they are deadlock-prone.

Example
package TRS;
public class ThreadStop extends Thread {

public void method() {
stop(); // violation.

}
}

Repair
See the reference.

Reference
See "java.lang.Thread" of API documentation.

TRS.UWNA

R
eference
TRS.UWNA

Use ’wait()’ and ’notifyAll()’ instead of
polling loops

Description
This rule flags any polling loop.

Using 'sleep()' as a polling loop is not efficient because polling loops take
up processor cycles to execute the multiple 'sleep()' calls; using 'wait()'
and 'notifyAll()' does not.

Example
package TRS;
public class UWNA {

void method (Object o) {
while (true) {

while (getStatus()) {
try {

sleep (300); // violation
} catch (Exception e) {}

}
synchronized (o) {
// process data.
}

}
}
boolean getStatus () {

return _status;
}
private boolean _status;

}

Repair
Replace "while", and ’sleep()’ with ’wait()’ and ’notifyAll()’.
613

TRS.UWNA

614

R
ef

er
en

ce
void method (Object o) {
while (true) {

synchronized (o) {
while (getStatus()) {

try {
o.wait ();

} catch (Exception e) {}
}
// process data.

}
}

}

Reference
Haggar, Peter. Practical Java - Programming Language Guide. Addison
Wesley, 2000, pp.191 - 194.

TRS.WAIT

615

R
eference

TRS.WAIT

The condition test should always be
in a loop

Description
This rule flags any condition test that is not inside a loop.

The condition test should always be in a loop. You cannot assume that a
thread being awakened indicates that the condition has been satisfied.
"if"(cond) statement should never be used for condition test; use
"while"(cond) statement.

Example
package TRS;
public class WAIT {

synchronized void method(boolean isWait) {
if(isWait) { // should be a "while" statement.

wait();
}

}
}

Repair
Replace "if(condition)" with "while(condition)" statement.

Reference
Arnold, Ken and Gosling, James. The Java Programming Language 2nd
ed. Addison Wesley, 1997, pp.188-190.

UC.AAI

616

R
ef

er
en

ce

Unused Code RulesUC.AAI

Avoid unnecessary modifiers in an
“interface”

Description
This rule flags any unnecessary modifier used in “interface” members.

Interface methods are always “public” and “abstract”. Interface fields are
always “public”, “static” and “final”. It is thus unnecessary and confusing to
add those modifiers when declaring “interface” fields or methods.

Example
package UC;

interface AAI
{

public void method (); // Violation
abstract int getSize (); // Violation
static int SIZE = 100; // Violation

}

Repair
interface AAI_fixed
{

void method ();
int getSize ();
int SIZE = 100;

}

UC.AUV

617

R
eference

UC.AUV

Avoid unused local variables

Description
This rule flags any unused local variable in your methods.

Example
package UC;

public class AUV {
void method () {

int i = 4;
}

}

Repair
An unused variable may indicate a logical flaw in the corresponding
method. In this case, the method needs to be rewritten to take the unused
variable into account.

UC.DIL

618

R
ef

er
en

ce

UC.DIL

Don't explicitly “import” the
java.lang.* “package”

Description
This rule flags any case where the java.lang.* “package” is imported.

It is not necessary to import this package because it is imported implicitly.

Example
package UC;

import java.lang.*; // Violation

public class DIL {
}

Repair
Remove the import statement for ‘import java.lang’

UC.PF

619

R
eference

UC.PF

Avoid unused “private” fields

Description
This rule flags any unused “private” field.

Example
package UC;

class PF {
private int _instanceField;
private static int _staticField;

}

Repair
An unused field may indicate a logical flaw in the corresponding class. In
this case, the class needs to be modified to take the unused field into
account.

UC.PM

620

R
ef

er
en

ce

UC.PM

Avoid unused “private” methods

Description
This rule flags any unused “private” method.

Example
package UC;

class PM {
private int unusedMethod () {}
private static int unusedStaticMethod () {}

}

Repair
An unused method may indicate a logical flaw in the corresponding class.
In this case, the class needs to be rewritten to take the unused method
into account.

UC.UP

R
eference
UC.UP

Avoid unused parameters

Description
This rule flags any unused method parameter.

Unused parameters waste stack space and cause confusion.

Example
package UC;
class UP {

int findProduct (int x, int y) { // "y" is unused
return = x * x;

}
}

Repair
Remove unused parameters or check if the problem is the result of a typo.
621

UC.UP

622

R
ef

er
en

ce

Index

Index
Index

Index

Symbols
@assert 145
@concurrency 143
@exception 144
@invariant 142
@post 142
@pre 142
@throws 144
@verbose 145

A
API 99, 125
arrow colors 175
assertion 145

B
batch mode 60
black-box testing

about 113
adding constants and methods

121
adding method inputs 119, 125
adding primitive inputs 119
adding test cases 119, 125
performing 115

buttons
Class Testing UI 195
Find Class UI 264
Project Testing UI 212

C
calling sequence

viewing in Class Testing UI 37
viewing in Project Testing UI 53

Class Name panel 200
class test 21, 268, 269

example 23
performing 21, 268, 269
results 32, 37
saving/restoring test and test pa-

rameters 162
class test parameters 240

common 251
dynamic analysis 243
editing (from project test) 58
saving (from project test) 59
static analysis 242

Class Testing UI 189
Class Name panel 200
Errors Found Panel 203
menus 190
Test Progress Panel 201
tool bar 195

class, opening in Class Testing UI
(from project test) 56

ClassNotFoundException 19, 222,
240, 253

CLASSPATH 19, 222, 236, 241, 251,
253, 260

coding standards enforced 277
command-line mode 60
compiling a source 169
concurrency 143
constants, adding 120
contacting ParaSoft 12
CORBA 95
coverage 166

viewing in Class Testing UI 38,
201

viewing in Project Testing UI 54
viewing in single class report 177

cursors 188

D
databases 95
Design by Contract 112, 115

and Jtest 133
coding conventions 150
623

Index

In
de

x

contract inheritance 149
contract semantics 148
contract syntax 146
disabling 233
enabling 233
example using 28
introduction 137
specification 141
tags 141

detailed project report 179
directory, testing. See project test
dynamic analysis

about 85
customizing 88
performing 86

E
Enterprise Java Beans 95, 97
Errors Found Panel 32, 203
errors, fixing 270
example source

viewing in Class Testing UI 38
viewing in Project Testing UI 54

exception 144
exceptions

suppressed by default 110
uncaught runtime. See white-box

testing
external resources 95, 98

F
FAQs 269
Filter-in 41
Find Classes UI 264
fixing errors 270

G
Global History 163
global static analysis 69
global test parameters 222

common 235
dynamic analysis 228, 256
static analysis 224

GUI. See UI

H
help, context sensitive 168
history for test 163

I
imports 132
initial state, setting 106
initialization code 106
input that caused error

viewing in Class Testing UI 37
viewing in Project Testing UI 53

inputs
adding 119, 125
adding constants and methods

121
adding primitive inputs 119
restricted 244

installation 2
invariant 143

J
jar file, testing. See project test
java.io, java.net, java.sql 95
JBuilder integration 160, 161
Jcontract 112, 133
JDK 11
Jtest

quick start reference 15
starting 2

jtestInspector 172, 174, 249
JUnit 125
JUnit Test Classes 128
624

Index

Index
L
license 2, 8
LicenseServer 3, 9

M
menus

Class Testing UI 190
Project Testing UI 206

method inputs
adding 122

metrics
customizing 82
graphs 76
tracking over time 76
viewing 73

N
naming conventions, customizing 81
NoClassDefFoundError 19, 222, 240,

253
NullPointer Exceptions

resolving 106
Number of Errors Found window 45

O
outcomes

validating 117, 175
viewing 171
viewing reference outcomes 35,

52

P
parameters

inheritance 180
search 261
sharing 181
test 180

ParaSoft, contacting 12
PARASOFT_JDK_HOME 11
post-condition 142
pre-condition 142
printing 187
progress

viewing in Class Testing UI 201
viewing in Project Testing UI 47

Project Controls Panel 218
project report 178
project test 40

example 43
history 163
performing 40
results 45, 53
saving/restoring test and test pa-

rameters 162
testing large projects 68

project test parameters 253
common, search, classes in

project 260
dynamic analysis 256
sharing 181
static analysis 255

Project Testing UI
menus 206
Project Controls Panel 218
Results Panel 221
tool bar 212

Q
Quality Consulting 12

R
regression testing 152

performing 153
regular expressions 218
reload 175, 249
report 177

detailed project 179
project 178
single class 177
625

Index

In
de

x

summary project 178
requirements 15
restoring test parameters 162
restricted inputs 244
results

class test 32, 37
project test 45, 53
removing from Project Testing UI

55
Results For All Classes window 46
Results Panel 45, 221
rules 277

creating your own 83
customizing metrics 82
customizing naming conventions

81
customizing with RuleWizard 81
enabling/disabling severity cate-

gories 79
enabling/disabling specific rules

79
list of built-in rules 277
viewing rule descriptions in Class

Testing UI 37
viewing rule descriptions in

Project Testing UI 53
RuleWizard 83

S
saving test parameters 162
search parameters 261
single class report 177
Skip List 41
source

compiling 169
editing 169
location, indicating 239
viewing 169

specification testing, about 113
stack trace

viewing in Class Testing UI 37, 53
starting Jtest 2
state, setting objects’ 106
static analysis 69

creating custom rules 83
customizing 79
global 69
list of built-in rules 277
suppressions 84

static initialization code 106
stub

in Test Classes 127
stubs 95

automatic (white-box) 95
user defined 98

summary project report 178
support 12
suppressions

dynamic analysis 89
from Class Testing UI 39
from Project Testing UI 55
static analysis 84
viewing reason for suppression

111, 173

T
technical support 12
test case

adding 119, 125
automatic generation 108
evaluation

modifying from Class Testing
UI 38

modifying from Project Test-
ing UI 54

reference test cases 248
restoring 175, 248
validation 171
viewing test cases 171

Test Classes 125
test history 163
Test Only List 41
test parameters 180

class 240
global 222
project 253
saving and restoring 162

Test Progress Panel 201
626

Index

Index
Tested Set 94
THIS object 244
throws 144
timeout 262
tool bar

Class Testing UI 195
Project Testing UI 212

trees 187
tutorials 268

U
UI

Class Testing UI 186, 189
configuring startup UI 186
Find Classes UI 264
Project Testing UI 186

uncaught runtime exception. See
white-box testing

V
validating outcomes 117, 171, 175
verbose 145
View Test Cases window 171
VisualAge integration 154, 155

W
white-box testing 108

performing 110
stubs 95

Z
zip file, testing. See project test.
627

	PARASOFT END USER LICENSE AGREEMENT
	Jtest User’s Guide Table of Contents
	Introduction
	Introduction
	Windows Installation and Setup
	UNIX Installation and Setup
	Contacting ParaSoft

	Testing With Jtest
	Quick Start Guide
	Testing a Single Class
	Testing A Class - Two Simple Examples
	Understanding the Errors Found Panel
	Exploring and Customizing Class Test Results
	Testing a Set of Classes
	Testing a Set of Classes - Example
	Understanding the Results Panel
	Exploring and Customizing Project Test Results
	Loading One of a Project's Classes in the Class Testing UI
	Editing Class Test Parameters from the Project Testing UI
	Running Jtest in Batch Mode
	Testing a Large Project
	Static Analysis
	About Static Analysis
	Performing Static Analysis
	Viewing Class and Project Metrics
	Tracking Metrics Over Time
	Customizing Static Analysis
	Creating Your Own Static Analysis Rules
	Static Analysis Suppressions

	Dynamic Analysis
	About Dynamic Analysis
	Performing Dynamic Analysis
	Customizing Dynamic Analysis
	Dynamic Analysis Suppressions
	Testing Classes That Reference External Resources
	Using Custom Stubs
	Setting an Object to a Certain State
	White-Box Testing
	About White-Box Testing
	Performing White-Box Testing
	Customizing White-Box Testing

	Black-Box Testing
	About Black-Box Testing
	Performing Black-Box Testing
	Adding Method Inputs
	Adding Test Classes
	Specifying Imports

	Design by Contract
	Using Design by Contract With Jtest
	About Design by Contract
	The Design by Contract Specification Language

	Regression Testing
	About Regression Testing
	Performing Regression Testing

	IDE Integration
	Integrating VisualAge and Jtest
	Using Jtest Within VisualAge
	Integrating JBuilder and Jtest
	Using Jtest Within JBuilder

	Test-Related Tasks
	Saving and Restoring Tests Parameters
	Viewing Test History
	Viewing Coverage Information
	Viewing Context-Sensitive Help
	Viewing, Editing, or Compiling a Source
	Viewing and Validating Test Cases
	Viewing a Report of Results

	Customizing Your Test
	Customizing Test Parameters
	Sharing Project Test Parameters
	Customizing Reporting of Violations
	Customizing System Settings

	Jtest UI Help
	Jtest UI Overview
	Trees
	Cursors
	Class Testing UI
	Class Testing UI
	Class Testing UI Menu Bar
	Class Testing UI Tool Bar
	Class Name Panel
	Test Progress Panel
	Errors Found Panel

	Project Testing UI
	Project Testing UI
	Project Testing UI Menu Bar
	Project Testing UI Tool Bar
	Controls Panel
	Project Testing UI Results Panel

	Test Parameters Windows
	Global Test Parameters
	Global Test Parameters - Static Analysis
	Global Test Parameters - Dynamic Analysis
	Global Test Parameters - Common Parameters
	Class Test Parameters
	Class Test Parameters - Static Analysis
	Class Test Parameters - Dynamic Analysis
	Class Test Parameters - Common Parameters
	Project Test Parameters
	Project Test Parameters - Static Analysis
	Project Test Parameters - Dynamic Analysis
	Project Test Parameters - Common Parameters, Search Parameters, Classes in Project

	Tools
	Find Classes UI

	Reference
	Jtest Tutorials
	Jtest FAQs
	Fixing Errors Found
	Built-in Static Analysis Rules
	CODSTA.CLS
	CODSTA.CRS
	CODSTA.DCI
	CODSTA.DCTOR
	CODSTA.IMPT
	CODSTA.IMPT2
	CODSTA.ISACF
	CODSTA.LONG
	CODSTA.MAIN
	CODSTA.MVOS
	CODSTA.NCAC
	CODSTA.NCE
	CODSTA.NTE
	CODSTA.NTX
	CODSTA.OGM
	CODSTA.OVERRIDE
	CODSTA.PML
	CODSTA.SMC
	CODSTA.UCC
	CODSTA.UCDC
	CODSTA.USN
	CODSTA.VDT
	DBC.PKGC
	DBC.PKGMPOST
	DBC.PKGMPRE
	DBC.PPIC
	DBC.PRIMPOST
	DBC.PRIMPRE
	DBC.PROC
	DBC.PROMPOST
	DBC.PROMPRE
	DBC.PUBC
	DBC.PUBMPOST
	DBC.PUBMPRE
	EJB.AMSC
	EJB.CDP
	EJB.CNDA
	EJB.CNDF
	EJB.CRTE
	EJB.FNDM
	EJB.IECM
	EJB.IEPM
	EJB.LNL
	EJB.MNDF
	EJB.NFS
	EJB.PCRTE
	EJB.RT
	EJB.RTC
	EJB.RTP
	EJB.RUH
	EJB.THISARG
	EJB.THISRET
	EJB.THREAD
	GC.AUTP
	GC.DUD
	GC.FCF
	GC.FM
	GC.GCB
	GC.IFF
	GC.NCF
	GC.OSTM
	GC.STV
	GLOBAL.DPAC
	GLOBAL.DPAF
	GLOBAL.DPAM
	GLOBAL.DPPC
	GLOBAL.DPPF
	GLOBAL.DPPM
	GLOBAL.SPAC
	GLOBAL.SPAM
	GLOBAL.SPPC
	GLOBAL.SPPM
	GLOBAL.UPAC
	GLOBAL.UPAF
	GLOBAL.UPAM
	GLOBAL.UPPC
	GLOBAL.UPPF
	GLOBAL.UPPM
	INIT.CSI
	INIT.NFS
	INIT.INITLV
	INIT.SF
	INTER.CLO
	INTER.COS
	INTER.DTS
	INTER.NCL
	INTER.NSL
	INTER.NTS
	INTER.SB
	INTER.SCT
	INTER.SE
	INTER.ST
	INTER.TTS
	JAVADOC.BT
	JAVADOC.MAJDT
	JAVADOC.MJDC
	JAVADOC.MVJDT
	JAVADOC.PARAM
	METRICS.CIHL
	METRICS.CTNL
	METRICS.NOF
	METRICS.NOM
	METRICS.PJDC
	METRICS.NPKGF
	METRICS.NPKGM
	METRICS.NPRIF
	METRICS.NPRIM
	METRICS.NPROF
	METRICS.NPROM
	METRICS.NPUBF
	METRICS.NPUBM
	METRICS.STMT
	METRICS.TCC
	METRICS.TNLM
	METRICS.TNMC
	METRICS.TNOP
	METRICS.TRET
	MISC.AFP
	MISC.ASFI
	MISC.CLONE
	MISC.CTOR
	MISC.EFB
	MISC.ELSEBLK
	MISC.FF
	MISC.FLV
	MISC.HMF
	MISC.IFBLK
	MISC.CLNC
	MISC.MSF
	MISC.PCF
	MISC.PIF
	MISC.WHILE
	NAMING.CVN
	NAMING.GETA
	NAMING.GETB
	NAMING.IFV
	NAMING.IRB
	NAMING.NCL
	NAMING.NE
	NAMING.NIF
	NAMING.NITF
	NAMING.NLV
	NAMING.NM
	NAMING.NMP
	NAMING.NSF
	NAMING.NSM
	NAMING.PKG
	NAMING.SETA
	NAMING.USF
	OOP.AHF
	OOP.AHSM
	OOP.AIC
	OOP.APPF
	OOP.APROF
	OOP.IIN
	OOP.LEVEL
	OOP.LPF
	OOP.OPM
	OPT.AAS
	OPT.CEL
	OPT.CS
	OPT.DIC
	OPT.DUN
	OPT.IF
	OPT.IFAS
	OPT.INSOF
	OPT.IRB
	OPT.LOOP
	OPT.MAF
	OPT.PCTS
	OPT.SB
	OPT.SDIV
	OPT.SMUL
	OPT.STR
	OPT.SYN
	OPT.TRY
	OPT.UEQ
	OPT.UISO
	OPT.UNC
	OPT.USB
	OPT.USC
	OPT.UST
	OPT.USV
	PB.ADE
	PB.AECB
	PB.ASI
	PB.AUO
	PB.CLP
	PB.CTOR
	PB.DCF
	PB.DCP
	PB.DNCSS
	PB.EQL
	PB.EQL2
	PB.FEB
	PB.FLVA
	PB.IEB
	PB.IMO
	PB.MAIN
	PB.MPC
	PB.MRUN
	PB.NAMING
	PB.NDC
	PB.NEA
	PB.PDS
	PB.SBC
	PB.TLS
	PB.UEI
	PMETRICS.NB
	PMETRICS.NC
	PMETRICS.NJF
	PMETRICS.NL
	PMETRICS.NOF
	PMETRICS.NOM
	PMETRICS.NPAC
	PMETRICS.NPKGC
	PMETRICS.NPRIC
	PMETRICS.NPROC
	PMETRICS.NPUBC
	PORT.ENV
	PORT.EXEC
	PORT.LNSP
	PORT.NATV
	PORT.PEER
	SECURITY.CLONE
	SECURITY.CMP
	SECURITY.INNER
	SECURITY.PKG
	SECURITY.SER
	SECURITY.SER2
	SERVLET.BINS
	SERVLET.DSLV
	SERVLET.HVR
	SERVLET.RRWD
	SERVLET.SOP
	SERVLET.STM
	SERVLET.SYN
	TRS.ANF
	TRS.CSFS
	TRS.NSM
	TRS.NSPM
	TRS.NSYN
	TRS.RUN
	TRS.THRD
	TRS.UWNA
	TRS.WAIT
	UC.AAI
	UC.AUV
	UC.DIL
	UC.PF
	UC.PM
	UC.UP

	Index
	Index

