
Using JavaNws to Compare C and Java TCP-Socket Performance

Chandra Krintz Rich Wolski

Department of Computer Science and Engineering Computer Science Department
University of California, San Diego University of Tennessee, Knoxville

ckrintz@cs.ucsd.edu rich@cs.utk.edu

Abstract
As research and implementation continue to facilitate high performance computing in Java, applications

can benefit from resource management and prediction tools. In this work, we present such a tool for network
round trip time and bandwidth between a user’s desktop and any machine running a web server . JavaNws
is a Java implementation and extension of a powerful subset of the Network Weather Service (NWS), a per-
formance prediction toolkit that dynamically characterizes and forecasts the performance available to an
application. However, due to the Java language implementation and functionality (portability, security, etc),
it is unclear whether a Java program is able to measure and predict the network performance experienced
by C-applications with the same accuracy as an equivalent C program. We provide a quantitative equiva-
lence study of the Java and C TCP-socket interface and show that the data collected by the JavaNws is as
predictable as, that collected by the NWS (using C).

1 Introduction

The Internet today provides access to distributed resources throughout the world via many interconnected,

non-dedicated networks. Available network performance (latency and bandwidth) fluctuates over short time-

scales, however, making it difficult for a user to make informed decisions about whether or not it is practical

to use the network (for distributed execution or download) at any given time.

Users have access to a variety of network performance monitoring tools (SNMP [2], netperf [13],

pathchar [12], the Unix ping command, etc. as well as a raft of others currently listed with [10] and [11]).

All of these tools provide an estimate of past performance conditions. A user wishing to decide between

two equivalent download sites must assume that the conditions that have been observed will persist until the

This assumes that the user’s browser is capable of supporting Java 1.1 and above
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download is complete. That is, the user uses the current conditions as a prediction of what the conditions

will be a short time into the future. However, statistical analysis of network performance data indicates that

the last value observed is rarely the best predictor of future network performance [19]. Furthermore, most of

these tools use network protocols different from those used by user applications or only determine network

utilization in terms of aggregate packet traffic at intermediate gateway nodes. It is difficult to translate these

readings into the performance a user will experience during a remote invocation or a network download.

To make an effective decision about network use, users require application level predictions of the network

performance that the application or download will experience.

To solve these problems, we have previously developed the Network Weather Service [20, 19, 17]

(NWS) at the University of Tennessee, Knoxville. The NWS is a distributed service that provides users

with measurements of current network performance and accurate predictions of short-term future perfor-

mance deliverable to an application or download. The NWS components operate with no special privileges

and use TCP/IP — a protocol commonly used in user applications and browser downloads — to measure

network availability. The measurements are treated as time series and a set of adaptive statistical forecasting

models are applied to each to make short-term predictions of available network performance.

The NWS, however, requires hard collaboration between processes. A user or administrator must install

the package on any machine that is to be monitored. In an Internet computing environment, users expect to

access all services through their web browsers. Rather than providing a pre-compiled binary for download,

we have developed an Java applet version of the NWS monitoring and forecasting facilities. When the applet

is invoked, it periodically measures the performance between the browsers into which it is loaded, and the

machine running the web server that launched it. If the applet is installed at replicated server sites, the user

can use the performance forecasts it generates to select the most effective server dynamically.

In this paper, we describe an implementation of NWS functionality for the Internet: JavaNws. We

All NWS services can run with standard user privileges so any user can install the software.

2



selected the Java [16, 6] language for its applet execution model as well as for its wide spread availability and

use as an Internet programming language. The applet execution model, in which programs are downloaded

to a user’s desktop then executed locally, enables establishment of an interactive session between the desktop

and the remote server machine. During such a session, the JavaNws measures network performance and

displays it graphically on the user’s desktop. The applet execution model also enables the user to circumvent

the need to explicitly install and maintain an NWS network monitoring process. An arbitrary user can simply

click on a link at a web server and visualize the current and future, predicted performance of the network

between the desktop and the web server. JavaNws is the first to tool to visualize NWS data dynamically and

continuously.

However, the common Java execution environment enables portability, security, and other functionality,

many times at the cost of performance. To be accepted and used in Internet computing settings, the JavaNws

must report measurements of network performance that is experienced by applications that depend on the

C language TCP-socket interface. For example, file downloads via HTTP and distributed applications are

likely to use services built using C [9, 4, 5]. With this work, we empirically compare C and Java socket

performance and show that despite any overhead imposed by the Java language design, C and Java TCP-

socket implementations perform equivalently. We use the JavaNws infrastructure to collect the data for this

evaluation.

In the next section we describe the implementation of the JavaNws. Section 3 details the experimental

methodology we used in this study. In Section 4, we analyze Java and C performance results based on long-

running performance traces. Because statistical comparison can be difficult for non-Normal data, we also

analyze the predictability of each methodology in Section 5. In the final sections we detail the our future

directions and conclude (Sections 6 and 7 respectively).
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2 JavaNws Implementation

The JavaNws is a Java implementation of the NWS network measurement and forecasting subsystems (see

[20] and [19] for a complete description of NWS functionality and forecasting techniques). The JavaNws

provides a graphical display of the performance data to allow users to visualize the network performance

(actual and predicted) between the server and their desktop in real-time. For example, a user may decide to

download a piece of software from an arbitrary site on the World Wide Web (WWW). In order to determine

if the download time is feasible, he or she can first click on a JavaNws link provided by the site to view

the current as well as future, predicted network conditions. In addition, the download site can provide

links to JavaNws at its mirrored sites allowing the user to use the predicted network performance to make

informed decisions about the download times from each site. Previous work with the NWS and Java-

based applications indicates that basing transfer decisions on NWS forecast data can dramatically improve

execution performance [3, 18].

The JavaNws consists of two parts: The applet that executes on the user’s desktop and the server program

(called the Echo Server) located at the machine from which the applet is downloaded. When a user clicks

on a JavaNws link, a Common Gateway Interface (CGI) program is executed that invokes the Echo Server

in the background and then initiates transfer of the applet to the user’s desktop for execution. A complete

description of the JavaNws design can be found in [14]. We next provide an overview of the JavaNws

functionality.

2.1 The JavaNws Applet

The JavaNws applet establishes an interactive session with the Echo Server during which a series of commu-

nication probes are conducted. With each probe, measurements are taken of round trip time and bandwidth

(additional detail is provided in Section 2.1.1). These experimental results are then used by a forecasting
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module within the applet to make predictions of the network performance that will occur at the next time

step. This module is further described in the following section. The prediction and the measurement data

are then visually displayed for the user as continuously updated graphs. Figure 1 provides a view of these

graphs.

2.1.1 JavaNws Network Performance Measurements

To measure round trip time, a two-byte packet is exchanged between the JavaNws applet and the Echo

Server during a session. To determine the extent to which the Nagle algorithm effects the transfer time,

two tests are performed; one with the Nagle effect off and one with it on. The Nagle algorithm is used by

TCP to improve network performance when many small packets are being sent. With the Nagle algorithm,

TCP waits to send many small packets at once; if no other packets are sent, TCP eventually forwards the

small packet. Round trip time with the Nagle effect is reported to the user (via the display). For the results

in this paper, we report data with and without the Nagle effect to show differences between the Java and C

versions.

To measure bandwidth, the applet times a “long” transfer (64KB by default, although JavaNws allows

the user to set the probe duration) and calculates the resulting bandwidth. This timed exchange consists of

a large packet from the applet to the Echo Server and a 2 byte packet from the Echo Server to the applet

acknowledging the completion of the probe. In our results section, both the C and Java versions measure

bandwidth with a 64KB transfer.

We will refer to the combination of the Nagle small-packet-avoidance algorithm and the delayed acknowledgement algorithm
(which avoids silly-window syndrome) together as the “Nagle algorithm” throughout this paper. Although, strictly speaking they
are separate optimizations, they both manifest themselves as potential delays in the end-to-end observed performance.
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Figure 1: A view of the round trip time (TOP) and bandwidth (BOTTOM) graphs in action. Dark points
are predicted values and light points are the actual measurements. The right-most point in each graph is the
value predicted to occur in the next (future) time step. Where there appears to be only a single point at a
given time step, the predicted value is the same as the actual measurement (it was correctly predicted).
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2.1.2 JavaNws Forecasting Module

To make predictions of near-future performance we implemented the NWS forecasters in Java. A detailed

description of the these forecasters can be found in [19]. In short, this module consists of a set of independent

forecasting algorithms [7, 1, 8], each of which produces a one-step-ahead forecast from a given time series.

At each time step, the measurement data taken by the applet is compared to the forecast produced by each

forecasting algorithm for that time step. The difference between each forecast and the measurement it is

forecasting is the forecast error. The mean square forecasting error (MSE) associated with each forecasting

algorithm is accumulated for every measurement. To make a single prediction for the next time step, the

algorithm having the smallest MSE is chosen. It is this most-accurate-up-until-now forecast that is reported

to the user as the JavaNws prediction. Note that this forecasting module keeps a separate time series for

round-trip time, Nagle-impeded round-trip-time, and bandwidth.

2.2 Validating The JavaNws

In the remainder of this paper, we validate the JavaNws by empirically comparing C and Java TCP-socket

interfaces. That is, we show that the JavaNws measurement and prediction of network performance between

the desktop and a remote server is as accurate as its C counterpart and that any overhead imposed by Java

programming language does not effect the Java TCP-socket performance. Our results in the following sec-

tions indicate that JavaNws is able to measure and predict the network performance available for download

and distributed execution by applications written using the C TCP-socket interface. We use the JavaNws

infrastructure to collect the necessary data for this study as described in the following section.
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3 Experimental Methodology

To empirically compare the C and Java TCP-socket interfaces, we extended the JavaNws to use the Java Na-

tive Interface (JNI) to invoke a native C language method each time it takes a measurement. Once a transfer

has been completed by the Java version (the Java version measurements have been taken and the socket used

in the exchange has been torn down), the applet calls a C native method that repeats the communication

protocol to collect the C version measurements . All experiments were performed at approximately 12

second intervals over a 24 hour period on weekdays between various machine pairs.

We chose pairs of machines based on the type of network interconnecting them to observe Java and

C performance under varying conditions. Data for four such links, representative of the overall set, is

included in this paper. Table 1 gives the location of machines for each pair of hosts, the predominant

network technology separating the two, and the version of Java interpreter that was used to execute JavaNws

to generate the results presented in this paper.

The locations include San Francisco (MetaExchange.com), the University of California, San Diego

(UCSD), the University of Tennessee, Knoxville (UTK), and the University of North Carolina (UNC).

UCSD, UNC, and UTK are vBNS sites. The vBNS is an experimental transcontinental ATM-OC3 net-

work sponsored by NSF that can be used for large-scale and wide-area network studies. It is characterized

by high-bandwidths and relatively high round-trip times induced by large geographic distance. The “stan-

dard” Internet connectivity we observed in this study is non-dedicated common-carrier. We also show the

types of machines and operating systems we used in Table 2 as end-to-end performance can be influenced

by the type of software and hardware at the end-points.

Graphs of the 24-hour, raw data measurements taken by the C version and the Java version for each

pair of hosts are shown in Figures 2 (bandwidth), 3 (round trip time) and 4 (round trip time with the Nagle

We also performed the measurements in the opposite order (the C version first and then the Java version) and found similar
results.
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Table 1: Locations of Machines Used in Experiments.

a-g ash (San Francisco) to
gibson (UTK) via the Internet, Java v1.1.3

c-d conundrum (UCSD) to
dsi (UTK) via the vBNS, Java v1.1.3

f-n fender (UTK)
to ncni (UNC) via the vBNS, Java v1.1.7

p-k pacers (UTK)
to kongo (UCSD) via the vBNS, Java v1.1.7

Table 2: Types of Machines Used in Experiments.

ash Sparc Ultra I, Solaris 5.6,
167Mhz processor, 256 memory

conundrum Sparc Station 5, Solaris 5.6,
110Mhz processor, 64MB memory

dsi RS6000, AIX 4.3,
332Mhz processor, 200MB memory

ncni RS6000, AIX 4.3,
332Mhz processor, 200MB memory

fender x86, Linux,
400Mhz processor, 256MB memory

gibson x86, Linux,
400Mhz processor, 512MB memory

kongo Sparc Ultra I, Solaris 5.6,
166Mhz processor, 192MB memory

pacers x86, Linux,
300Mhz processor, 512MB memory
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Figure 2: Raw 24-hour bandwidth data. Left graph for each pair (row) is the C version, the right graph is
the Java version. Each host pairs is shown.

effect). The right graph in each row is the data collected by the C version; the left collected by the Java

version.

4 Comparing Raw Java and C Performance

The performance observed during a particular network transfer is a function of the load on the network at the

time the transfer is made, the underlying network technology, the software installed at the end points, and the

machines involved in the transfer. To prevent network congestion, however, the underlying communication

protocol (TCP/IP in this case) adapts transfer rates in response to dynamically changing traffic patterns. As
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Figure 3: Raw 24-hour round trip time data. Left graph for each pair (row) is the C version, the right graph
is the Java version. Each host pairs is shown.
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Figure 4: Raw 24-hour round trip time (with the Nagle effect) data. Left graph for each pair (row) is the C
version, the right graph is the Java version. Each host pairs is shown.
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Table 3: Mean and variance values of the C and Java bandwidth data.

C Version Java Version
Host Pair Mean Variance Mean Variance
a-g 0.61 0.02 0.61 0.02
c-d 0.65 0.05 0.65 0.05
f-n 1.41 0.00 1.66 0.00
p-k 1.06 0.01 1.01 0.01

Table 4: Mean and variance values of the C and Java round-trip time data.

C Version Java Version
Host Pair Mean Varience Mean Variance
a-g 96 890 96 1007
c-d 94 102 95 2888
f-n 49 3 49 9
p-k 95 175 96 3579

such, a controlled quiescent network may cause C and Java to appear to have the same performance, but

that performance may differ when they are used to traverse networks experiencing load. Since the load is

varying quickly [15] it is difficult to compare the performance Java and C as it is impossible to test them

both under identical load conditions.

Even when the C and Java probes are run back-to-back, the network conditions may change between

experiments making a pairwise comparison ambiguous. Therefore, we resort to a comparison of statistical

characteristics generated from relatively large samples of each, and argue for equivalence (or otherwise)

based on these characteristics.

4.1 Comparison based on Moments

Tables 3 and 4 show the sample means and variances for bandwidth and round-trip time (respectively)

between four representative host pairs over 24 hours.

Clearly, if each sample is large enough to capture the underlying distributional characteristics of the
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Figure 5: Comparison of the cumulative distribution functions (CDFs) for round trip time (left) and band-
width (right) measurements for the c-d data set. The CDF of each resource is compared to the normal
distributions derived from the mean and variance of the sample.

method it represents, then C and Java are almost equivalent in terms of their first two moments. That is,

while individual examples may not be comparable, the mean performance, and the variance in performance

between C and Java are equivalent. Unfortunately, since network performance data is not well approximated

by Normal or other forms of exponential distributions, it is difficult to determine the statistical significance

of this comparison rigorously. If, for example, the distributions are heavy-tailed, it is possible that extremely

large samples must be observed before a comparison of the moments can be exposed to a rigorous statistical

test. As an example of how poorly a Normal approximates the distributions we observe, Figure 5 compares

CDFs for the observed c-d data set (latency and bandwidth) with Normal curves having the same sample

mean and variance.

4.2 Comparison based on Regression Coefficients

Moment-based comparisons assume that the time at which each sample is gathered is irrelevant since the

sample statistics are not weighted with respect to time. That is, it is possible for the means and variances

to appear to be the same, but for a pairwise comparison to reveal a difference between samples gathered at

approximately the same time. To capture this notion of time-dependent comparison, we can calculate the
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regression coefficient between samples. We pair together values from each sample based on time stamp

(two values taken nearest in time form a pair) and then calculate the linear coefficients based on least-

squares regression. Our motivation is to observe how closely the derived multiplicative constant is to for

the different traces. Table 5 shows the results. A value near indicates that, on the average, multiplying

the C value by yields an accurate prediction of the corresponding Java value.

The first column of Table 5 is for bandwidth, the second for round trip time, and the third for round

trip time with the Nagle effect. When two sets of measurements come from the same series the least square

regression value of their differences is very close to . This value also provides an estimate of the percent

difference between the average measurements (it is the coefficient that the Java value is is multiplied by to

get a corresponding C value). If the figure is less than 1.0, then the Java version reported measurements that

are less than those reported by C (higher round trip times and lower bandwidth values). For example, the

table shows that for the pair a-g (ash-gibson), the Java bandwidth measurements are 1% less on average than

the C bandwidth measurements. The round trip time without and with the Nagle effect measurements for

this pair of hosts are (on average) 7% and 13% slower, respectively, than that of the C version for this link.

The least squares regression coefficient is impacted by outliers in the data. For bandwidth, there were no

obvious outliers. For round-trip time, however, there were occasional values that deviated by two or three

orders of magnitude. We do not believe that these values are representative of C or Java effects but rather

catastrophic network failures. That is, at various points in time, either the C or the Java measurement (but

not both together) was affected by an interruption in network connectivity. In order to rectify this problem

and report a value unaffected by outliers, we removed obvious outliers (pairs of measurements where one

was 2 or 3 orders of magnitude bigger than the other) experiment sets. The number of values removed were:

a-g (2), and f-n (4). The total number of values in each trace is approximately 7200 (every 12 seconds for 24

hours) making these outliers very infrequent. A thorough investigation of the hypothesis that these outliers

result from network behavior (and not C or Java performance) is the subject of our future work.
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Table 5: Least square regression of C to Java measurement values. If the coefficients are equal to 1.0, then
the values reported by the Java version are from the same time series as the C version.

Host Pair Bandwidth Round Trip Round Trip
Time Time (Nagle)

a-g 0.99 0.93 0.87
c-d 1.01 1.00 0.96
f-n 1.18 1.00 1.00
p-k 0.95 0.99 0.98

If the least squares regression coefficient is greater than 1.0, then the Java version reported measure-

ments that, on average, were better than that of the C version. Notice that in c-d and f-n the bandwidth

measurements from the Java version are better (greater than 1.0) than the C version. This condition also

occurred for two other host pairs we examined in our study. We looked into this anomaly (since we believed

that in every case Java should be slower than C due to extra processing overhead of Java socket abstractions

and interpretation) and found that the operating system on the server end of these three pairs of machines

were all IBM RS6000’s running operating system (OS) AIX version 4.3. In addition, each receive operation

performed by the echo server on these machines occurred in blocks for 512 bytes (the maximum transfer unit

(MTU) set as the default during AIX installation). On all other host pairs, the MTU on the server machine

ranged from 1KB to 2KB. When we modified the C version to send using a buffer size of 64KB instead of

32KB, the least square bandwidth coefficients changed to 1.00 for all such pairs. This indicates that Java the

version we incorporated used a buffers size of 64KB. Only when the receive size is 512 bytes or less, is the

overhead of sending 2-32KB buffers (as opposed to 1-64KB buffer) apparent. We would like to control the

Java buffer size in order to ensure it is the same as in the C version, but Java version 1.1x does not provide a

mechanism for modifying the buffer size. We use the 64KB buffer size C version data for the predictability

tests in Section 5. It is a noteworthy point, however, that the buffer size affects predictability. For systems

such as Java 1.1x (which uses undocumented, unalterable buffer sizes) the buffer sizes used may interact

with the base OS in ways that magnify the uncertainty inherent in the underlying network dynamics.
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Table 6: Least squares regression of C to Java measurement values using a buffer size of 32KB in both C
and Java (using Java 2) versions.

Host Pair Bandwidth
k-j (Java 1.1.3) 0.92
k-j (Java 1.2.1) 1.00

Alternatively, Java 2 does provide a mechanism for setting the buffer size on sockets. We ran a series

of bandwidth experiments on a pair of hosts (k-j) for which Java 2 was available. JavaNws ran on a host

located at UCSD (k) and the server was located at UTK (j); and the vBNS was the primary Network between

them. The least squares fit between C and Java improved from 0.92 to 1.00 when we used a buffer size of

32KB on both the C and Java versions, again demonstrating the effect of buffer size on observed, end-to-end

predictability. The data (Table 6) indicates that controlling the buffer size improves the performance of the

Java to equal that of the C version. In the JavaNws implementation we have developed, we use the Java 2

socket buffer interface as available.

Another interesting insight that this data provides us with is that the Nagle algorithm and TCP “delayed

acking” strategy seems to effect the Java TCP-sockets to a greater extent than C TCP-sockets. This effect can

be seen by comparing the rightmost column with the middle column of Table 5. When the Nagle algorithm

is used, the Java measurements are not as close to the C measurements as when the Nagle algorithm is turned

off. We are not, at present, able to discern the nature of this difference although we speculate that Java and C

are managing their socket buffers differently and the result causes a slight timing difference which the TCP

optimizations magnify.

We also learned that the system-supplied data structures used to manage the buffers in the probe pro-

grams is significant. In order for the Java version to report measurements similar to those of the C version,

we had to ensure that we used byte arrays in Java to write to the socket. This data structure eliminates the

overhead of buffering and conversion so that the timings the Java version reported were much closer to those
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from the C version.

One source of error we were not able to eliminate, however, stems from the difference in clock precision

that is available to user-level programs from Java and C. Java returns a rounded long-typed millisecond value

when the time is queried and C returns a pair of long integers (one for the number of seconds since 1970 and

one containing the number of microseconds since the last measured second). Small differences between C

and Java performance may be caused by this rounding effect.

5 Comparing Java and C Predictability

Table 4 (from the previous Section) indicates that there is a larger variance in the Java version of the round

trip time data not seen in the bandwidth data. This difference may be due to the sample size (not enough

data) or it may be an indication that probe trace from the Java version is not equivalent to that from the C

version. Indeed, recent work indicates that network performance may be heavy-tailed making the problem

of determining an appropriate sample size for statistical significance difficult to solve.

Rather than tackling this often intractable problem, we note that most often performance profile data

is used to make some form of prediction. If not used for fault diagnosis, performance traces are almost

always used to anticipate future performance levels. A user, for example, may examine a recent history

of measurements to anticipate the duration a particular network transfer he or she wishes to perform. As

such, we can frame the problem of determining equivalence in terms of the degree to which one set of

measurements can be used to predict future values of the others. If the technologies are equivalent in their

predictability, the observed difference in variance can be treated as random measurement error.

Note that, again, statistical significance is an issue. As part of our engineering-based approach, how-

ever, we report how predictable in terms of observed prediction error each series is over suitably long time

periods. That is, regardless of statistical significance, the prediction error is what we observed under actual
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Figure 6: Comparison of C and Java actual (left) and predicted (right) bandwidth measurements over a
20 minute interval. The x-axis is time (20-minutes) and the y-axis is Mb/s. The data is taken from the
cross-country, c-d, 24-hour data used throughout this study.

load conditions. The consistency with which we observed it is the basis for our conclusions.

To compare performance trace predictability, we treat each probe trace as a time series and look at the

prediction error generated by the NWS forecasting system (described in Section 2 and more completely in

[19]). At each point in the trace, we make a prediction of the succeeding value. The forecasting error is

calculated as the difference between a value and the forecast that predicts it.

The advantage of this approach is that it admits the possibility of the underlying distributions changing

through time (non-stationarity) since the NWS forecasting techniques are highly adaptive. That is, we do

not treat each trace as a sample, but rather as a series, each value of which may depend on the time it is

taken. In addition, using prediction based on actual values also ”smoothes” the data by eliminating outlying

values that must be treated as random or catastrophic network events. Figure 6 shows a 20-minute snapshot

of data in this time series format of C and Java bandwidth measurements (left graph) and the NWS predicted

values (right graph) computed using C and Java measurements. The data is taken from the 24-hour c-d data.

The right graph of the figure exemplifies the smoothing effect prediction has on the data. Observation of the

predicted values indicates that the C and Java data sets are quite similar. This is less clearly observed from
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the actual measurements in the left graph.

5.1 Histograms and CDFs of Error Values

In addition to the observation of time series from forecasted values, the predictability of two samples can

be compared using a histogram of the error values. The error value is the difference between the NWS

predicted value and the actual value that it predicts for each time step. For both the C and Java versions of

each set of predicted measurements, we form a histogram of 100 bins spanning the difference between the

minimum and maximum measured values. Figures 7, 8, and 9 contain the histograms for each pair of hosts

for bandwidth (7), round trip time (8), and round trip time with the Nagle effect (9). The left graph is the C

version and the right is the Java version. Clearly, the error histograms are almost identical.

Histograms are useful for visualizing distributional data, but prone to variation due to bin size. Indeed,

the predictability for the round trip time (Figure 8 and 9) measurements are difficult to compare using this

format. This difficulty is due to the the presence of infrequently occurring values that we cannot rule out as

outliers. Many histogram “buckets” contain very few data elements with one or two buckets containing the

large portion of the data. It is difficult to determine visually the contribution that these buckets (that contain

very little data each) make to either the difference or similarity between error series.

As an alternative, we generated graphs of the data in cumulative distribution functional (CDF) form.

Figures 10, 11, and 12 contain the CDFs of the prediction errors for bandwidth and round trip time, respec-

tively, for each host pair and version. CDFs indicate the percentage of error values that are below a given

value. They enable us to compare two data sets for equivalence in terms of this percentage. For example, in

the first row of Figure 10, both the C and the Java version CDFs indicate that 55% of the error values fall

at or below zero. When the C and Java versions of the CDF graphs were overlayed, one masks the other

The histograms are, indeed, so similar that we were not able to superimpose one over the other meaningfully without the use
of color.

20



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

a-g C version

0

0.02

0.04

0.06

0.08

0.1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

a-g Java version

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

c-d C version

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

c-d Java version

0

0.1

0.2

0.3

0.4

0.5

0.6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

f-n C version

0

0.1

0.2

0.3

0.4

0.5

0.6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

f-n Java version

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

p-k C version

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

p-k Java version

Figure 7: Histograms of error values from bandwidth prediction using measurements from C (left) and Java
(right) versions. The graphs indicate that the Java version of the bandwidth data is as predictable as the C
version.

almost completely indicating the same findings as those from the histogrammed values: the two data sets

are equally predictable.

5.2 Empirically-derived Confidence Intervals

Another technique we can use to compare two data sets is to determine if the confidence interval for each

prediction matches between the two series in question. It may be that the pairs of values differ, but that they

must fall within the same range when predicted. If they do, then we conclude that the series are equivalent

based on their predictability.
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Figure 8: Histograms of error values from round trip time prediction using measurements from C (left) and
Java (right) versions. The graphs indicate that the Java version of the round trip time data is as predictable
as the C version.
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Figure 9: Histograms of error values from round trip time (with the Nagle effect) prediction using measure-
ments from C (left) and Java (right) versions. The graphs indicate that the Java version of the round trip time
data (with the Nagle effect) is as predictable as the C version.
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Figure 10: Cumulative distribution function (CDF) of the error values from bandwidth predictions using
measurements from C (left) and Java (right) versions. The graphs indicate that the Java version of the
bandwidth data is as predictable as the C version.
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Figure 11: Cumulative distribution function (CDF) of the error values from round trip time predictions using
measurements from C (left) and Java (right) versions. The graphs indicate that the Java version of the round
trip time data is as predictable as the C version.
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Figure 12: Cumulative distribution function (CDF) of the error values from round trip time (with the Nagle
effect) predictions using measurements from C (left) and Java (right) versions. The graphs indicate that the
Java version of the round trip time (with the Nagle effect) data is as predictable as the C version.
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Since it is likely that the series of forecasting errors generated for each measurement trace is non-

stationary, we are unable to supply a rigorous definition of a confidence interval. Instead, we calculate a

conditional confidence interval empirically, at each point in a measurement trace, based on the forecasting

errors associated with the values proceeding that point. That is, we define to be the forecasting

confidence interval at time within a measurement trace .

where is the forecast of the measurement value occurring at time , and is the sample mean of the

squared forecasting errors occurring before time in trace .

In this formulation, each is treated as a conditional expectation of the measurement it forecasts. The

is analogous to the conditional sample standard deviation of the forecasting error series. As such,

it resembles the formula for calculating a 95% confidence interval for a Normally distributed sample which

is for a population sample with mean and standard deviation . We

make no claims about the optimality or bias of our formulation. Rather, we note that it has proved a useful

engineering approximation for measurement series gathered by the NWS.

By establishing confidence boundaries using two standard deviations from the predicted values, we cre-

ate two new time series between which we postulate that 95% of the measurements will fall. In addition, if at

least 95% of the Java measurements are captured between the C empirically-derived confidence boundaries,

and vice versa, then Java and C are equally predictable. That is, if this is the case then it does not matter

which language was used to generate the predicted values or measurements since they are indistinguishable

within engineering tolerances (95%).

Table 7 shows the empirically derived confidence intervals for the data sets and the percent of measure-

ment values captured by each language. Indeed, the data sets are indistinguishable and one could be used to

predict the other. That is, the data sets are equivalent within common engineering thresholds and C and Java

TCP-socket implementations are equivalent. This point bears repeating. If 95% of the Java measurements

fall within the corresponding values generated for a C measurement trace, and vice versa, the series are
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Table 7: 95% Empirically-derived (E-d) confidence intervals and the percent of capture for each language.
The values in each (row,column) indicate the percentage of measurement values (generated using the lan-
guage indicated by the column header) that fall within (are ”captured”) by the 95% empirically-derived
confidence interval for the language indicated by the row header. For example, using the fifth row and sec-
ond column of data: 97% of Java measurements (column header) are captured by the 95% e-d confidence
interval for the C language (row header)

Round Trip Time Bandwidth
Pct. of C meas. Pct. of Java meas. Pct. of C meas. Pct. of Java meas.

Host Pair Language Captured Captured Captured Captured
a-g C 98 98 95 95

Java 98 98 95 95
c-d C 97 98 97 96

Java 98 98 97 97
f-n C 98 97 97 98

Java 97 98 98 97
p-k C 98 98 96 95

Java 99 99 97 94

interchangeable for the purposes of making performance predictions in an engineering setting.

6 Extending JavaNws

One limitation of the JavaNws is due to applet execution restrictions; the Java applet may only communicate

with the machine from which the applet was loaded (the source machine). This prohibits measurement of

the network between the desktop and an arbitrary machine, and between two arbitrary machines. It may be

desirable for a user to be able to gather this information from machines on which he has no logins (thereby

disallowing installation of the NWS by the user). In addition, the NWS may already be installed on many

machines of interest. We are currently extending the JavaNws to access measurements taken by either an

extant installation of the NWS (of network performance between arbitrary pairs of machines) or the JavaNws

applet (of performance between the server and the desktop) depending upon which is more convenient. The

JavaNws forecasters will continue to be used to predict future deliverable performance, regardless of which

mechanism provides measurement data.
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7 Conclusion

We have designed and implemented a Java implementation of the Network Weather Service (NWS). Ja-

vaNws is a fully functional tool that allows a user to visualize the current and future, predicted performance

of the network between the desktop and any World Wide Web site. The tool capitalizes on the transfer model

and availability of Java and is currently being used to facilitate high-performance distributed computing with

Java. To measure and predict network performance, the JavaNws applet conducts a series of experiments

between the desktop and a server program executing at the site from which the applet was downloaded.

JavaNws uses the NWS forecasting algorithms (implemented in Java) to predict the network performance

of the near-term. Bandwidth and round trip time (using TCP-sockets) measurements and forecasts are then

presented to the user in a constantly updated graphical format.

To validate that JavaNws can be used to measure and predict network performance available to any

download or application written using the Java or C TCP-socket interface, we provide a quantitative study

of the performance differences between Java and C socket implementations. We use rigorous statistical

analysis (mean/variance and least squares regression) to rule out differences between the data sets due to

population size, outlying data, and other such anomalies. We show these sample-based techniques indicate

that the data collected by the Java version is equivalent (within engineering tolerances) to that by the C

version.

We then compare the predictability of the JavaNws data to that of the equivalent C version. We compute

error values (differences between predicted and actual values) using the NWS forecasting algorithms and

analyze both the error and predicted values as time series. We then construct histograms and cumulative

distribution functions (CDFs) that indicate very little differences between the C and Java error value series.

Finally, we describe a novel and empirical extension to the statistical confidence interval technique. With

empirically-derived confidence intervals we are able to show that predictions made using Java measurements
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are indistinguishable from those made using C measurements. Our detailed analysis establishes that the C

and Java TCP-socket interface implementations are equivalent.
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