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Abstract. With the increasing uniprocessor and SMP computational power available

today, interprocessor communication has become an important factor that limits the

performance of clusters of workstations/multiprocessors. Many factors including com-

munication hardware overhead, communication software overhead, and the user envi-

ronment overhead (multithreading, multiuser) affect the performance of the

communication subsystems in such systems. A significant portion of the software com-

munication overhead belongs to a number of message copying operations. Ideally, it is

desirable to have a true zero-copy protocol where the message is moved directly from

the send buffer in its user space to the receive buffer in the destination without any

intermediate buffering. However, due to the fact that message-passing applications at

the send side do not know the final receive buffer addresses, early arrival messages

have to be buffered at a temporary area. In this paper, we show that there is a message

reception communication locality in message-passing applications. We have utilized

this communication locality and devised different message predictors at the receiver

sides of communications. In essence, these message predictors can be efficiently used

to drain the network and cache the incoming messages even if the corresponding

receive calls have not been posted yet. The performance of these predictors, in terms

of hit ratio, on some parallel applications are quite promising and suggest that predic-

tion has the potential to eliminate most of the remaining message copies. We also show

that the proposed predictors do not have sensitivity to the starting message reception

call, and that they perform better than (or at least equal to) our previously proposed

predictors.
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1.0 Introduction

With the increasing uniprocessor and symmetric multiprocessor (SMP) computational power

available today, interprocessor communication has become an important factor that limits the perfor-

mance of workstation clusters. Essentially, communication overhead is one of the most important fac-

tors affecting the performance of parallel computers. Many factors affect the performance of

communication subsystems in parallel systems. Specifically, communication hardware and its ser-

vices, communication software, and the user environment (multiprogramming, multiuser) are the

major sources of the communication overhead.

Communication software overhead currently dominates communication time in clusters of work-

stations. Even with high performance networks [8, 18] available today, there is still a gap between

what the network can offer and what the user application can see. The communication software over-

head cost comes mainly from three different sources; crossing protection boundaries several times

between the user space and the kernel space, passing several protocol layers, and involving a number

of memory copying operations.

Several researchers are working to minimize the cost of crossing protection boundaries, and using

simpler protocol layers by utilizing user-level messaging techniques such as Active Messages (AM)

[30], Fast Messages (FM) [23], Virtual Memory-Mapped Communications (VMMC-2) [14], U-Net

[31], Virtual Interface Architecture (VIA) [15], and PM [29]. A significant portion of the software

communication overhead belongs to a number of message copying operations. Ideally, message pro-

tocols should transfer messages in a single copy (this is usually called a true zero-copy). In other

words, the protocol should copy the message directly from the send buffer in its user space to the

receive buffer in the destination without any intermediate buffering. However, applications at the send

side do not know the final receive buffer addresses and, hence, the communication subsystems at the

receiving end still copy messages unnecessarily from the network interface to a system buffer, and

then from the system buffer to the user buffer when the receiving application posts the receive call.

Some researchers have tried to avoid memory copying [14, 23, 27, 6, 28]. While they have been

able to remove the memory copying between the application buffer space and the network interface at

the send side by using user-level messaging techniques, they have not been able to remove the mem-

ory copying at the receiver sides completely. They may achieve zero-copy messaging at the receiver

sides only if the receive call is already posted, a rendezvous type communication is used for large

messages, or the destination buffer address is already known by a pre-communication.

We are interested in bypassing the memory copying at the destination in the general case, syn-

chronous or asynchronous, eager or rendezvous and for sender-initiated communications as in MPI

[24]. In this paper, we argue that it is possible to address the message copying problem at the receiv-

ing side by speculation. We support our claim by showing that messages display a form of locality at

the receiving ends of communications.
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This paper, for the first time introduces the notion of message prediction for the receiving side of

message-passing systems [2, 3]. By predicting the next receive communication call, and hence the

next destination buffer address, before the receiving call is posted we will be able to copy the message

directly into the CPU cache speculatively before it is needed so that an effect of a zero-copy can be

achieved. As a matter of fact, communication operations at both the sender and the receiver sides may

be issued at the earliest possible time, while the predictive algorithms will ensure that they will be

scheduled and the data made available at the optimal place and time. We are interested in utilizing

similar predictors as in [1], but this time at the receiver sides to predict the next consumable message

and drain the network as soon as the message arrives.

The first contribution of this paper is that we show evidence that there exists message communica-

tion locality at the receiver sides of message-passing parallel applications. The second contribution of

this work is the introduction and evaluation of different message predicting techniques for the receiv-

ing side of message-passing systems.

This paper concentrates on message predictions at the destinations in message-passing systems

using MPI in isolation. This is analogous to branch prediction, and coherence activity prediction [26]

in isolation. Our tools are not ready for measuring the effectiveness of our predictors on the applica-

tion run-time yet. Our preliminary evaluation measures the accuracy of the predictors in terms of hit

ratio. The results are quite promising and suggest that prediction has the potential to eliminate most of

the remaining message copies.

In Section 2.0 of this paper, we explain the motivation behind this work and mention related

works. We elaborate on how prediction would help eliminate the message copies at the receiving side

of communications, in Section 3.0. Our experimental methodologies to gather communication traces

of our parallel applications are explained in Section 4.0. In Section 5.0, we show communication fre-

quency and unique message identifier distributions in the applications, and present evidence of mes-

sage locality at the receiver sides. In Section 6.0, we propose our message predictors and present their

performance on the applications. In section Section 7.0, we briefly discuss the integration of the pre-

dictors with the network interface. Finally, we conclude our paper in Section 8.0.

2.0 Motivation and Related Work

High performance computing is increasingly concerned with efficient communication across the

interconnect due to the availability of high-speed advanced processors. Modern networks such as

Myrinet [8] and Gigabit Ethernet [18], provide high communication bandwidth and low communica-

tion latency. However, because of high processing overhead due to communication software including

network interface control, flow control, buffer management, memory copying, polling and interrupt

handling, users cannot see much difference compared to traditional local area networks.
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Fortunately, several user-level messaging techniques have been developed to remove the operating

system kernel and protocol stack from the critical path of communications [30, 23, 14, 31, 15, 29].

This way, applications can send and receive messages without operating system intervention which

often greatly reduces the communication latency.

Data transfer mechanisms and message copying operations, control transfer mechanisms, address

translation mechanisms, protection mechanisms, and reliability issues are the key factors for the per-

formance of a user-level communication system. A significant portion of the software communication

overhead belongs to a number of message copying operations. With the traditional software messag-

ing layers, there are usually four message copying operations from the send buffer to the receive

buffer, as shown in Figure 1. These copies are namely from the send buffer to the system buffer (1),

from the system buffer to the network interface (NI) (2), and at the other end of communication from

the network interface to the system buffer (3), and from the system buffer to the receive buffer (4)

when the receive call is posted. Note that we have not considered data transfer from the network inter-

face at the sending process to the network interface at the receiving process as a separate copy. In this

paper, we are particularly interested to avoid message copying operations at the receiver sides of com-

munications.

2.1 Avoiding Extra Message Copying Operations

In the following sections, we mention a number of research work that have attempted to bypass

the system buffer copying at the send and receive sides of communications.

2.1.1 Using Programmed I/O and DMA at the Send Side

At the send side, some user-level messaging layers use programmed I/O to avoid system buffer

copying. FM uses programmed I/O while AM-II and BIP do so only for small messages. Some other

user-messaging layers use DMA. VMMC-2, U-Net, and PM use DMA to bypass the system buffer

Figure 1. Data transfers in a traditional messaging layer
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copy while AM-II and BIP do so only for large messages. In systems that use DMA, applications or a

library dynamically pins and unpins pages in the user space that contain the send and the receive buff-

ers.

2.1.2 Using Redirection Mechanisms at the Receiver Side

Contrary to the send side, bypassing the system buffer copying at the receiving side may not be

achievable. Processes at the sending side do not know the receive buffer addresses, however, they do

know the receive processes. Therefore, when a message arrives at the receiving side it has to be buff-

ered if the receive call has not been posted yet. VMMC [7] for the SHRIMP multicomputer used a

communication model that provides direct data transfer between the sender’s and receiver’s virtual

address space. However, it can achieve zero-copy transfer only if the sender knows the destination

buffer address. Therefore, the receiver exports its buffer address by scouting a message to the sender

before the actual transmission can take place. This leads to a 2-phase rendezvous protocol which adds

to the network traffic, and network latency especially for short messages.

VMMC-2 [14], uses a transfer redirection mechanism instead. It uses a default, redirectable

receive buffer for a sender who does not know the address of the receive buffer. When a message

arrives at the receiving network interface, the redirection mechanism checks to see if the receiver has

already posted its buffer address. If the receive buffer has been posted earlier than the message arrival,

the message will be directly transferred to the user buffer. Thus it achieves a zero-copy transfer. If the

buffer address is not posted, the message must be buffered in the default buffer. It will then be trans-

ferred when the receive buffer is posted. Thus, it achieves a one-copy transfer. However, if the

receiver posts its buffer address when the message arrives, part of the message is buffered at the

default buffer and the rest is transferred to the user buffer.

Fast sockets [27] has been built using active messages. It uses a mechanism at the receiver side

called receive posting to avoid the message copy in the fast socket buffer. If the message handler

knows that the data’s final memory destination is already known upon message arrival the message is

directly moved to the application user space. Otherwise, it has to be copied into the fast socket buffer.

FM 2.x [23] uses a similar approach to fast sockets, namely layer interleaving. FM collaborates

with the handler to direct the incoming messages into the destination buffer if the receive call has

already been posted.

MPI-LAPI [6] is an implementation of MPI on top of LAPI for the IBM SP machines. In the

implementation of the eager protocol, the header handler of the LAPI returns a buffer pointer to LAPI

which tells LAPI where the packets of the message must be reassembled. If a receive call has been

posted, the address of the user buffer is returned to LAPI. If the header handler does not find a match-

ing receive, it will return the address of an early arrival buffer and hence a one-copy transfer is

accomplished. Meanwhile, messages with larger sizes than the eager size are transferred using 2-

phase rendezvous protocol.
6



Some research projects have proposed solutions to multi-protocol message-passing interfaces on

clusters of multiprocessors (Clumps) using both shared-memory for intra-node communications and

message-passing for inter-node communications [28, 17]. MPICH-PM/CLUMP [28] is an MPI

library implemented on a clusters of SMPs. It uses a message-passing only model where each process

runs on a processor of an SMP node. For inter-node communications, it uses eager and rendezvous

protocols. For short messages, it achieves one-copy using eager protocol as the message is copied into

a temporary buffer if the MPI receive primitive has not been issued. For large message, it uses rendez-

vous protocol to achieve zero-copy by using a remote write operation but it needs an extra communi-

cation. For intra-node communications, it achieves a one-copy using a kernel primitive that allows to

copy messages from the sender to the receiver without the involvement of a communication buffer.

BIP-SMP [17], for intra-node communications, uses shared memory for small messages with two

memory copy, and direct copy for large messages with a kernel overhead. For inter-node communica-

tions, it works like MPI-BIP with one memory copy.

2.1.3 Re-mapping and Copy-on-Write Techniques

Other techniques to bypass extra copying are the re-mapping, and copy-on-write techniques [10,

13]. Both techniques require to switch to the supervisor mode, acquire necessary locks to virtual

memory data structure, and change virtual memory mapping at several levels for each page, and then

perform Translation Lookaside Buffer (TLB)/cache consistency actions, and finally return to the user

mode. This limits the performance of the page re-mapping, and copy-on-write techniques. A zero-

copy TCP stack is implemented in Solaris by using copy-on-write pages and re-mapping to improve

communication performance [10]. It achieves a relatively high throughput for large messages. How-

ever, it does not have a good performance for small messages. This work is also solely dedicated to

the SUN Solaris virtual memory system.

fbufs [13] is also using the re-mapping technique to avoid the penalty of copying large messages

across different layers of protocol stack. However, fbufs allows re-mapping only for a limited range of

user virtual memory.

As stated above, the user-level messaging techniques may not achieve a zero-copy communica-

tion all the time at the receiver side of communications. Meanwhile, the major problem with all page

re-mapping techniques is their poor performance for short messages which is extremely important for

parallel computing.
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2.1.4 Compiler Techniques

There are numerous works at the compiler level, such as the works in [16, 19], which is directly

related to enhancing the communication performance. These works achieve this by moving non-

blocking sends and receives as far up in the code as possible and move blocking wait as far down in

the code as possible. This way, the chances are increased that the corresponding receive has been

invoked before the message arrives at the receiver.

2.2 Prediction Techniques

Prediction techniques have been proposed in the past to predict the future accesses of sharing pat-

terns and coherence activities in distributed shared memory (DSM) by looking at their observed

behavior [26, 22, 20, 33, 11]. These techniques assume that memory accesses and coherence activities

in the near future will follow past patterns. In [11], the authors proposed hardware regular stride tech-

niques to prefetch several blocks ahead of the current data block. More elaborate hardware-based

irregular stride prefetching approaches have been proposed in [33]. Kaxiras and Goodman have

recently proposed an instruction-based approach which maintains the history of load and store

instructions in relation to cache misses and predicting their future behavior [20]. This is in contrast to

address-based techniques that keep data-access history for the predictions. In [26], the authors

devised a general pattern-based predictor, cosmos, to learn and predict the coherence activity for a

memory block in a DSM. Cosmos makes a prediction in two steps. First, it uses a cache block address

to index into a message history table to obtain the <processor and message-type> tuples of the last

few coherence messages received for that cache block. Then it uses these <processor, message-type>

tuples to index a pattern history table to obtain a <processor, message-type> tuple prediction. In [22],

the authors proposed a new class of pattern-based predictors, memory sharing predictors, to eliminate

the coherence overhead on a remote access latency by just predicting the memory request messages,

those primary messages that invoke a sequence of protocol actions. It improves prediction accuracy

over cosmos by eliminating the acknowledgments messages from the pattern tables. It also reduces

memory overhead and perturbation in the tables due to message re-ordering.

In software-controlled prefetching, the programmer or compiler decides when and what to

prefetch by analyzing the code and inserting prefetch instructions. In [25], the authors used software-

controlled prefetching, and multithreading to hide and reduce the latency in shared memory multipro-

cessors.

Recently, we proposed some heuristics to predict the destination target of subsequent communica-

tion requests at the send side of communications in message-passing systems [1]. However, to the

best of our knowledge, no prediction technique has been proposed for the receive side of communica-

tions in message-passing systems to reduce the latency of a message transfer.
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This paper reports on an innovative approach for removing message copying operations at the

receiving ends of communications for message-passing systems [2, 3]. We argue that it is possible to

address the message copying problem at the receiving sides by speculation. We introduce message

prediction techniques such that messages can be directly transferred to the cache even if the receive

calls have not been posted yet.

3.0 Using Message Predictions

In this section, we analyze the problem with the early arrival of messages at the destinations in

message-passing systems. In such systems, a number of messages arrive in arbitrary order at the des-

tinations. The consuming process or thread will consume one message at a time. If we know which

message is going to be consumed next, then we can move the message upon its arrival to near the

place that it is to be consumed (e.g. a staging cache), or we could schedule which thread to execute

next preferably at the same processor as the consuming thread to enhance the chances that the data

will be in the processor cache when it is accessed by the consumer.

For this, we identify three different issues. First, deciding which message is going to be consumed

next. This can be done by devising receive call predictors, history-based predictors that predict subse-

quent receive calls by a given process in a message-passing program, Second, deciding where and

how this message is to be moved in the cache. Third, efficient cache re-mapping and late binding

mechanisms need to be devised for when the receive call is posted.

In this work, we are addressing the first problem. That is, devising message predictors and evalu-

ating their performance. We are working on several methods to address the remaining issues. We shall

report on these issues in the future.

4.0 Experimental Methodology

In exploring the effect that different heuristics have in predicting the next receive call, we utilized

a number of parallel benchmarks, and extracted their communication traces on which we applied our

predictors. We have used some well-known parallel benchmarks form the NAS parallel benchmarks

(NPB) suite [5], and the Parallel Spectral Transform Shallow Water Model (PSTSWM) application

[32]. We used the MPI [24] implementation of the NPB suite (version 2.3), and version 6.2 of the

PSTSWM application. Specifically, we used the, block tridiagonal (BT), scalar pentadiagonal (SP),

and conjugate gradient (CG) benchmarks from NPB suite [5]. We did not use the multigrid (MG) and

lower-upper diagonal (LU) benchmarks form the NPB suite because these benchmarks use

MPI_ANY_SOURCE in some of their receive calls (MPI_Recv and MPI_Irecv). This means that the

applications may receive a particular message from different sources depending on the order of

arrival.
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We are only interested in the patterns of the point-to-point communications between pair-wise

processes in our applications. For this, we executed these applications on an IBM SP2 machine. We

wrote our own profiling code using the wrapper facility of the MPI to gather the communication

traces. We did this by inserting monitor operations in the profiling MPI library for the communication

related activities. These operations include arithmetic operations for the calculation of the desired

characteristics. Collecting communication traces does not affect the communication patterns of the

applications. Note that the applications use pure message passing for communications between differ-

ent processes (no shared-memory programming or threading) and the processes can be run on the

same or different processors of the IBM SP without any effect on the communication patterns. It is

also worth mentioning that the applications have the same communication patterns in other environ-

ments such as networks of PCs and thus our work is not bound to any specific system.

We considered different system sizes and problem sizes for our applications to evaluate the per-

formance of our prediction heuristics. Specifically, we experimented with the workstation class “W”,

and the large class “A” of the NPB suite, and the default problem size for the PSTSWM application.

The NPB results are almost the same for “W” and “A” classes. Hence, we report only for the “A”

class here. Although the results presented in this paper are for the above parallel applications, these

applications have been widely used as benchmarks representing the computations in scientific and

engineering parallel applications.

5.0 Receiver-side Locality Estimation

Our applications use blocking and non-blocking standard MPI receive primitives, namely

MPI_Recv and MPI_Irecv [24]. MPI_Irecv (buf, count, datatype, source, tag, comm, request) is a

standard non-blocking receive call. It immediately posts the call and returns. Hence, data is not avail-

able at the time of return. It needs another call to complete the call. All applications in our study use

this type of receive call. MPI_Recv (buf, count, datatype, source, tag, comm, status) is a standard

blocking receive call. When it returns, data is available at the destination buffer. The PSTSWM appli-

cation uses this type of receive call.

One of the communication characteristics of any parallel application is the frequency of commu-

nications. Figure 2 illustrates the minimum, average, and maximum number of receive communica-

tion calls in the applications under different system sizes. We ran our applications once for each

different system size and counted the number of receive calls for each process of the applications.

Hence, in Figure 2, by average, minimum, and maximum, we mean the average, minimum, and max-

imum number of receive calls taken over all processes of each application. It is clear that all processes

in the BT, SP, and CG applications have the same number of receive communication calls. While pro-

cesses in the PSTSWM application have different number of receive communication calls.
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As stated earlier, MPI_Recv and MPI_Irecv calls have a 7-tuple set consisting of source, tag,

count, datatype, buf, comm, and status or request. In order to choose precisely one of the received

messages at the network interface and transfer it to the cache, our predictors need to consider all the

details of a message envelope. That is, source, tag, count, datatype, buf, and comm (we do not con-

sider status and request as they are just a handle when the calls return). We did not rely only on the

buffer address, buf, of a receive call as many processes may send their messages to the same buffer

address of a particular destination process. Neither could we depend only on the sender, source, of a

message, or on the length, count, of a message. Therefore, we assigned a different identifier for each

unique 6-tuple found in the communication traces of the applications. Figure 3 shows the number of

unique message identifiers in our applications under different system sizes. By average, minimum,

and maximum, we mean the average, minimum, and maximum number of unique identifiers taken

over all processes of each application. It is evident that all processes in the BT, and CG applications

have the same number of unique message identifiers while processes in the SP, and PSTSWM appli-

cations have different number of unique message identifiers (except when the number of processes is

four for the SP benchmark).
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Figure 4 shows the distribution of each unique message identifier for process zero of the applica-

tions when the number of processes is 64 for CG and 49 for the other applications. We chose process

zero because this process has the largest number of unique message identifiers among all processes

and is also responsible for distributing data and verifying the results of the computation. As it is

shown in Figure 3, the message identifiers are evenly distributed in BT. However, the distribution of

the message identifiers in CG and PSTSWM are almost bimodal with two separated peaks. The SP

benchmark shows four different peaks for the message identifiers.

5.1 Communication Locality

In the context of message passing programming, many parallel algorithms are built from loops

consisting of computation and communication phases. Therefore, communication patterns may be

repetitive. This has motivated researchers to find or use the communications locality properties of par-

allel applications [1, 21, 12, 9]. Kim and Lilja [21] have shown that there is a locality in message des-

tination, message sizes, and consecutive runs of send/receive primitives in parallel algorithms. They
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have proposed and expanded the concept of memory access locality based on the Least Recently

Used, LRU, stack model to determine these localities. In earlier work [1], we have shown the commu-

nication locality of message-passing application in terms of message destination locality.

We define the terms message reception locality in conjunction with this work. By message recep-

tion locality we mean that if a certain message reception call has been used it will be re-used with

high probability by a portion of code that is “near” the place that was used earlier, and that it will be

re-used in the near future.

In the following section, we present the performance of the classical LRU, LFU, and FIFO heuris-

tics on the applications to see the existence of locality or repetitive receive calls. We use the hit ratio

to establish and compare the performance of these heuristics. As a hit ratio, we define the percentage

of times that the predicted receive call was correct out of all receive communication requests.
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5.2 The LRU, FIFO and LFU Heuristics

The Least Recently Used (LRU), First-In-First-Out (FIFO), and Least Frequently Used (LFU)

heuristics, all maintain a set of k (k is the window size) unique message identifiers. If the next mes-

sage identifier is already in the set, then a hit is recorded. Otherwise, a miss is recorded and the new

message identifier replaces one of the identifiers in the set according to which of the LRU, FIFO or

LFU strategies is adopted.

Figure 5 shows the average hit-ratios of the LRU, FIFO, and LFU heuristics on the application

benchmarks when the number of processes is 64 for CG and 49 for all other applications (taken over

all processes of the applications). The plots start at the window size of one and stops at the window

size equal to the maximum number of message identifiers for each application. It is clear that the hit-

ratios in all benchmarks approach 1 as the window size increases. The LRU and FIFO heuristics have

a zero hit-ratio on the BT, CG, and PSTSWM applications up to a certain window size. The reason is

that these applications, after their initialization phase, cycle through a number of message reception

call and then enter their ending phase (however, the SP application does not follow this). The LRU

and FIFO heuristics have a zero hit-ratio if the window size is less than the cycle length. The perfor-

mance of the FIFO algorithm is the same as the LRU for BT, and PSTSWM benchmarks, and almost
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Figure 5. Effects of the LRU, FIFO, and LFU heuristics on the applications
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the same for the SP and CG benchmarks. The LFU algorithm consistently has a better performance

than the LRU and FIFO heuristics on the BT, CG, and PSTSWM applications. It also has a better per-

formance than the LRU and FIFO heuristics on the SP benchmark for window sizes of greater than

five. It is interesting to see that a real application like PSTSWM needs window sizes of greater than

150 to achieve a good performance (hit ratios above 80%) under the LFU policy. Similar performance

results for the LRU, FIFO, and LFU heuristics on other system sizes can be found in [4].

Essentially, the LRU, FIFO and LFU heuristics do not predict exactly the next receive call but

show the probability that the next receive call might be in the set. For instance, the SP benchmark

shows nearly 60% hit ratio for a window size of five under the LRU heuristic. This means that 60% of

the time one of the five most recently issued call will be issued next. These heuristics perform better

when the window size k is sufficiently large. However, this large window adds to the hardware/soft-

ware implementation complexity as one need to move all messages in the set to the cache in the like-

lihood that one of them is going to be used next. This is prohibitive for large window sizes.

We are interested in having predictors that can predict the next receive call with a high probability.

In Section 6.0, we introduce our novel message predictors employing different heuristics and evaluate

their performance.

6.0 Message Predictors

The set of predictors proposed in this section predict the subsequent receive calls based on the

past history of communication patterns on a per process basis. We propose two sets of predictors in

this work: Single-cycle predictor, which is purely a dynamic predictor, and Tag-based predictors,

which are static/dynamic predictors. In the Single-cycle predictor, predictions are done dynamically at

the network interface without any help from the programmer or compiler. In the Tag-based predictors,

Tagging, Tag-cycle, and Tag-bettercycle, predictions are done dynamically at the network interface as

well, but they require some information to be passed from the program to the network interface. This

can be done with the help of the programmer and/or the compiler through inserting instructions such

as pre-receive (tag) in the program. The Tag-based predictors can be pure dynamic predictors if

another level of prediction is done on the tag themselves at the network interface. This way, there is

no need for the program to pass pre-connect (tag) information to the network interface. We leave this

approach for the future research. These heuristics were originally proposed in [1] to predict the desti-

nation target of subsequent communication requests at the send side of communications. However in

this paper, we have added an “initialization phase” to the Single-cycle, Tag-cycle, and Tag-bettercycle

predictors to remove the initialization patterns of communications, if any [3]. We explain this initial-

ization phase in Section 6.1.1.

It is worth mentioning that the message re-ordering effect [22] (messages from different processes

may arrive out-of-order even if messages from the same processes may arrive in-order in most net-

works) has no effect on the predictions as the predictors predict the next receive calls based on the
15



patterns of the receive calls in the program that runs on the same process and not on the arriving mes-

sages unless the order of receive calls depends on the order of message arrival. Note that in the fol-

lowing figures, by average, minimum, and maximum, we mean the average, minimum, and maximum

hit ratio taken over all processes of each application.

6.1 The Single-cycle Predictor

The Single-cycle predictor is consisted of an “initialization phase” followed by a “prediction

phase”. The “prediction phase” is based on the fact that if a group of receive calls are issued repeat-

edly in a cyclical fashion, then we can predict the next request one step ahead. Figure 6 illustrates an

example for the operation of the single-cycle predictor. The top trace represents the sequence of

requested receive calls, while the bottom trace represents the predicted sequence. The arrows with the

cross represent misses, while the ones with the circle represent hits. The “dash” in place of a predicted

request indicates that a cycle is being formed, and therefore no prediction is offered (note that this is

also added to the misses).

This predictor implements a simple cycle discovery algorithm. Starting with a cycle-head receive

call (this is the first receive call that is requested at start-up, or the receive call that causes a miss), we

log the sequence of requests until the cycle-head receive call is requested again. Note that during

cycle formation, the previously requested message destination is offered as the predicted message

destination. This stored sequence constitutes a cycle, and can be used to predict the subsequent

requests. If the predicted receive call coincides with the subsequent requested one, then we record a

hit. If the requested receive call does not coincide with the predicted one, then we record a miss and

the cycle formation stage commences with the cycle-head being the receive call that caused the miss.

6.1.1 Initialization Phase

We have added an initialization phase to the Single-cycle, Tag-cycle, and Tag-bettercycle predic-

tors proposed in [1, 2]. As stated earlier, the prediction phase of the Single-cycle predictor (and all

other predictors) starts with the first message reception call as the cycle-head. However, it is possible

that we never find this cycle-head again to establish a cycle. Thus, the predictor fails with a zero pre-

1 3 5 5 1 3 5 5 7 7 1 3 5 5 1 7 7 1 3 2 1

1 3 5 5 3 5 5 1 7 7 1 3 5 5 3 7 7 1 3 2

Request sequence

Predicted sequence
Cycle                                Cycle             Cycle           Cycle          Cycle

formation                          formation      formation     formation    formation

Figure 6. Operation of the Single-cycle predictor on the sample request sequence
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diction hit ratio. This may also happen if we skip the first receive call and start forming the cycles

with the second receive call as the cycle-head. In other words, applications may have a sequence of

receive calls at the beginning that may never come back to them and hence no cycle is formed. This is

illustrated in the example in Figure 7. It is clear that no cycle will be formed with the message cycle-

heads 1, 3, and 5. However, if we skip ahead we see that a cycle is formed with the message cycle-

head 4. This cycle consists of message calls 4, 6, 7, 8, 9, and 10. The first three message reception

calls, 1, 3, and 5, are considered the initialization pattern. The new Single-cycle predictor (along with

the Tag-cycle, and Tag-bettercycle predictors) proposed in this paper starts with the “initialization

phase”, and then after forming the first cycle switches to the “prediction phase”. It is evident that

misses are added until the first cycle is formed. Note that in the “initialization phase” of the predic-

tors, we looked for a cycle with a length of greater than 5. This was chosen arbitrarily so as not to

form a small cycle.

The performance of the Single-cycle predictor is shown in Figure 8. Its performance is consis-

tently very high (hit ratios of more than 0.9).

6.2 The Tagging Predictor

The Tagging predictor assumes a static communication environment in the sense that a particular

communication receive call in a section of code, will be the same one with a large probability. We

attach a different tag (this is different than the tag in an MPI communication call; It may be a unique

identifier or the program counter at the address of the communication call) to each of the receive calls

1  3  5  4  6  7  8  9 10  4 6 7 8

Figure 7. Message reception call sequence (from left to right)
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Figure 8. Effects of the Single-cycle predictor on the applications

N = 64 for CG, and 49 for others
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found in the applications. This can be implemented with the help of the compiler or by the program-

mer through a pre-receive (tag) operation which will be passed to the communication subsystem to

predict the next receive call before the actual receive call is issued.

To this tag and at the communication assist, we assign this receive call. A hit is recorded if in sub-

sequent encounters of the tag, the requested communication is the same as the receive call already

associated with the tag. Otherwise, a miss is recorded and the tag is assigned the newly requested

receive call. The performance of the Tag predictor is shown in Figure 9. It is evident that this predictor

does not have a good performance on the applications. It cannot predict the communication patterns

of PSTSWM at all, and has a degrading performance for all other applications when the number of

processes increases.

6.3 The Tag-cycle Predictor

The Tag predictor did not have a good performance on the applications while the Single-cycle

predictor had a very good performance. We would like to see the impact of the cycle algorithm on the

Tag predictor. Therefore, we combine the Tag algorithm with the Single-cycle algorithm and call it

the Tag-cycle predictor.

In the Tag-cycle predictor, we attach a different tag to each of the communication requests found

in the benchmarks and do a Single-cycle discovery algorithm on each tag. To this tag and at the com-

munication assist, we assign the requested receive call, to be called tagcycle-head (this is the first

receive call that is requested at this tag, or the call that causes a miss). We log the sequence of the

requests at this tag until the tagcycle-head is requested again. This stored sequence constitutes a cycle

at each tag, and can be used to predict the subsequent requests. The performance of the Tag-cycle pre-

dictor is shown in Figure 10. The Tag-cycle predictor performs well on all benchmarks. Its perfor-

mance is the same as the Single-cycle predictor on BT and PSTSWM. However, it has a better

performance on CG and a lower performance on SP.

N = 64 for CG, and 49 for others

Figure 9. Effects of the Tagging predictor on the applications
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6.4 The Tag-bettercycle Predictor

In the Tag-cycle predictor, as soon as a receive call breaks a cycle we remove the cycle and form a

new cycle. In the Tag-bettercycle predictor, we keep the last cycle associated with each tagcycle-head

encountered in the communication patterns of each process. This means that when a cycle breaks we

maintain this cycle in memory for later references. If we have not already seen the new tagcycle-head

then we form a new cycle for it, otherwise we predict the next communication call based on the mem-

ber of the cycle associated with this new tagcycle-head that we have from the past in memory.

The performance of the Tag-bettercycle predictor is shown in Figure 11. The Tag-bettercycle pre-

dictor performs well on all benchmarks. Its performance is the same as the Single-cycle and Tag-

cycle predictors on BT and PSTSWM. However, it has a better performance on the CG and a lower

performance on SP relative to the Single-cycle predictor. The Tag-bettercycle predictor has a better

performance on SP compared to the Tag-cycle predictor. We also found that the applications have

very small number of tagbettercycle-heads (at most 2) under the Tag-bettercycle predictor and differ-

ent system sizes.

Figure 10. Effects of the Tag-cycle predictor on the applications

N = 64 for CG, and 49 for others
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6.5 Message Predictors’ Comparison

Figure 12 presents a comparison of the performance of the predictors presented in this paper when

the number of processes is 64 for CG and 49 for the other benchmarks. As we have seen so far, Sin-

gle-cycle, Tag-cycle and Tag-bettercycle all perform well on the benchmarks. However, the perfor-

mance of the Single-cycle is better on the SP benchmark while Tag-cycle and Tag-bettercycle have

better performance for the CG benchmark. Similar results have been found for the other system sizes

[4].

6.5.1 Predictor’s Memory Requirements

Table 1 compares the memory requirement of the message predictors on the application bench-

marks when the number of processes is 64 for CG, and 49 for BT, SP, and PSTSWM. We have found

that the memory requirement of the predictors decrease gradually when the number of processes

decreases. The numbers in the table are the multiplication factor for the amount of storage needed to

maintain the message 6-tuple sets. It is quite clear that the memory requirements of the predictors is

low. This makes them very attractive for the implementation at the network interface. Comparatively,

predictors (Single-cycle, Tag-cycle, and Tag-bettercycle) need higher memory requirement for the

PSTSWM application. Although, the classical LRU, LFU, and FIFO heuristics need less memory

requirements, but as stated earlier, the beauty of the predictors lies on the fact that they predict with

high accuracy and transfer only one message to the cache which should dramatically reduce the cache

pollution effect, if any. This should also bring down the software cost of the implementation.

N = 64 for CG, and 49 for others
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Figure 12. Comparison of the performance of the predictors on the applications
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The storage requirement of the predictors have been found using the following formulae:

(1)

(2)

(3)

(4)

6.6 Sensitivity Analysis of the Message Predictors

In this section, we are interested in discovering the prediction sensitivity of the Single-cycle, Tag-

cycle, and Tag-bettercycle message predictors to the varying starting message reception call. That is,

what would be the difference in the predictor’s performance if we begin the predictors with the first

message reception call, second message reception call, and so on. Actually, we applied the predictors

on the benchmarks starting with each of the first 100 message reception calls. Figure 13 compares the

average hit ratios of the proposed predictors in this paper (that is with the initialization phase) over the

starting first 100 message reception calls with the predictors without the initialization phase as pro-

posed in [2]. It is clear that the revised predictors proposed in this work perform better than the previ-

ously proposed predictors in [2] for the PSTSWM application. However, they have the same average

performance on BT, SP, and CG benchmarks. Meanwhile, the average performance of the predictors,

with varying starting message reception calls, are more than 95% on the BT, CG, and PSTSWM

benchmarks, and more than 75% on the SP benchmark.

Table 1: Memory requirements (in 6-tuple sets) for the predictors when N = 64 for CG, and

N = 49 for BT, SP, and PSTSWM

BT SP CG PSTSWM

Tagging 12 12 10 7

Single-cycle 43 43 138 204

Tag-cycle 60 72 40 693

Tag-bettercycle 60 108 40 693

MemSingle cycle– Maximum cycle length=

MemTagging Maximum number of tags=

MemTag cycle– MemTagging Maximum cycle length of each tag×=

MemTag bettercycle– MemTag cycle– Maximum number of tagbettercycle-heads×=
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Figure 13. Comparison of the performance of the predictors with the initialization phase with the

predictors without the initialization phase over the starting first 100 message reception calls
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7.0 Integrating Message Predictors with the Network Interface

In this section, we briefly discuss how a message predictor can be used and integrated into the net-

work interface. Predictors would reside beside the communication assist or network interface. They

monitor the message reception call patterns of their host process and make a prediction according to

their prediction algorithms. Then, the network interface uses the predictions to move the early arrival

messages into the cache.

As stated above, the predictors would execute on the communication assist of each node of the

parallel machine, and predict the message reception calls based on the past history of communica-

tions. The Single-cycle predictor does not need any help from the compiler or programmer. However,

the Tag-based predictors (Tagging, Tag-cycle, and Tag-bettercycle) require an interface to pass some

information from the program to the network interface. With a simple help from the programmer or

compiler, this can be done through inserting pre-receive (tag) instructions in the program well above

each specific receive communication operation but evidently after the previous receive communica-

tion operation. The Tag-based predictors can be pure dynamic predictors if another level of prediction
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Figure 13. (cont’d) Comparison of the performance of the predictors with the initialization phase

with the predictors without the initialization phase over the starting first 100 message reception
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is done on the tag themselves at the network interface. This way, there is no need for the program to

pass pre-receive (tag) information to the network interface. However, the performance of these 2-level

Tag-based prediction techniques has not been evaluated yet.

8.0 Conclusion

Communication latency adversely affects the performance of networks of workstations. A signifi-

cant portion of the software communication overhead belongs to a number of message copying oper-

ations. Ideally, it is very desirable to have a true zero-copy protocol where the message is moved

directly from the send buffer in its user space to the receive buffer in the destination without any inter-

mediate buffering. However, this is not always possible as a message may arrive at the destination

where the corresponding receive call has not been issued yet. Hence, the message has to be buffered

in a temporary buffer.

In this paper, we have shown that there is a message reception communication locality in mes-

sage-passing applications. We have utilized this communication locality and devised different mes-

sage predictors for the receiver sides of communications. By predicting receive calls early, a node can

perform the necessary data placement upon message reception and move the message directly into the

cache. We presented the performance of these predictors on some parallel applications. The perfor-

mance results are quite promising and justify more work in this area. We also presented that these pre-

dictors are not sensitive to the starting message reception call and can capture the patterns of

communications for the correct prediction.

We envision these predictors to be used to drain the network and place the incoming messages in

the cache in such a way so as to increase the probability that the messages will still be in cache when

the consuming thread needs to access them.

Further issues we are presently investigating include mechanisms for in-the-cache late binding

and thread scheduling to guarantee that the consuming thread finds the message in the cache of the

processor it executes on. We shall report on these issues in the future.
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