
A framework for

high-performance matrix

multiplication based on

hierarchical abstractions,

algorithms and optimized

low-level kernels

Vinod Valsalam1 and Anthony Skjellum1,�

1 High Performance Computing Laboratory, Department of Computer Science, Mississippi
State University, MS 39762.

SUMMARY

Despite extensive research, optimal performance has not easily been available previously
for matrix multiplication (especially for large matrices) on most architectures because
of the lack of a structured approach and the limitations imposed by matrix storage
formats. A simple but e�ective framework is presented here that lays the foundation
for building high-performance matrix-multiplication codes in a structured, portable and
eÆcient manner. The resulting codes are validated on three di�erent representative RISC
and CISC architectures on which they signi�cantly outperform highly optimized libraries
such as ATLAS and other competing methodologies reported in the literature. The main
component of the proposed approach is a hierarchical storage format that eÆciently
generalizes the applicability of the memory hierarchy friendly Morton ordering to
arbitrary-sized matrices. The storage format supports polyalgorithms, which are shown
here to be essential for obtaining the best possible performance for a range of problem
sizes. Several algorithmic advances are made in this paper, including an oscillating
iterative algorithm for matrix multiplication and a variable recursion cuto� criterion
for Strassen's algorithm. The authors expose the need to standardize linear algebra
kernel interfaces, distinct from the BLAS, for writing portable high-performance code.
These kernel routines operate on small blocks that �t in the L1 cache. The performance
advantages of the proposed framework can be e�ectively delivered to new and existing
applications through the use of object-oriented or compiler-based approaches.

key words: matrix multiplication, hierarchical matrix storage, Morton order, polyalgorithms,

Strassen's algorithm, kernel interface

�Correspondence to: Anthony Skjellum, Department of Computer Science, Mississippi State University, P.O.
Box 9637, Mississippi State, MS 39762. (E-mail: tony@HPCL.CS.MsState.EDU; Phone: 662-325-8435; Fax:
662-325-8997)

1



2 V. VALSALAM AND A. SKJELLUM

1. Introduction

Multiplication of dense matrices is an operation that is extensively used in scienti�c

computing applications and often accounts for a signi�cant portion of the total execution time.

Therefore, making matrix multiplication run faster and more predictably2 can go a long way

towards improving such applications. Because of its prominent role in scienti�c computation,

considerable work has been done to improve the performance of matrix multiplication.

However, more improvements in performance are available despite widespread attention to

this basic operation and the linear algebra based thereon.

This paper illustrates ways to obtain such added performance, especially for large matrices,

through contributions in the areas of storage format, algorithms and kernels. This work also

widens the range of applicability of Strassen multiplication by improving its performance

and making the performance smoother as a function of problem size. The hierarchical

storage format that is proposed here allows such disparate matrix-multiplication algorithms as

iterative, recursive and Strassen to be uni�ed under a common high-performance framework.

It needs to be noted here that the low-level kernels (that perform block products) used in this

work were written using a semi-automated scheme that builds the kernels using C-language

macros. This approach facilitates rapid generation of kernels that are reasonably well optimized

based on certain processor features such as the number of 
oating point registers. The scheme

relies heavily on the optimizing and instruction scheduling capabilities of the compiler to

produce good kernels. Data prefetching is not used in the kernels. Nevertheless, the quality

of the kernels thus obtained, combined with the eÆcacy of the other techniques described

2Predictability here refers to having a small upper bound on the variation in performance (MFLOPS) with
respect to matrix size.



HIGH-PERFORMANCE MATRIX MULTIPLICATION 3

in this paper, is suÆcient to produce matrix-multiplication codes that are faster than widely

used high-performance libraries such as ATLAS. Because of the reasons mentioned above,

the authors are convinced that even better performance can be obtained by re�ning the kernel

generation scheme to incorporate additional optimization techniques that exploit sophisticated

processor-speci�c features, reduce L1 cache misses and perform prefetching.

1.1. Background

Early e�orts in optimizing matrix algebra on computers with hierarchical memory led to the

development of blocked computations as a means to improve data locality [1, 2, 3, 4, 5, 6, 7, 8,

9]. Matrix multiplication bene�ts signi�cantly from this technique known as blocking or tiling.

High-performance implementations of Level 3 BLAS [10, 11] such as the implementations

provided by platform vendors and ATLAS [12, 13] use blocked algorithms to obtain good

performance. Some new treatments of blocking for matrix multiplication can be found in

Emmerald [14] and ITXGEMM [15]. Many optimizing compilers now use blocking as a standard

code transformation technique to optimize certain loop nests (e.g., SGI's MIPSpro compilers

[16]).

More recently, there has been interest in alternative storage formats to address the issue of

locality. The default row/column-major order used by programming languages such as C and

FORTRAN to store matrices limit locality to a single dimension, with built-in array types.

Therefore, recursive patterns (space-�lling curves [17]) such as Morton order, that possess

locality in both dimensions have been proposed to store matrices. Frens and Wise [18] used

a recursive matrix-multiplication algorithm in conjunction with a matching recursive array

layout and demonstrated the bene�cial e�ects of the latter for large matrices that force the

system to page. Chatterjee, et. al. [19] improved on Frens and Wise's method by stopping

recursion at the level of blocks that �t in cache. Gustavson, et. al. [20, 21, 22, 23] devised

recursive blocked storage formats (and also recursive packed formats for triangular matrices)



4 V. VALSALAM AND A. SKJELLUM

and developed matching recursive dense linear algebra algorithms for BLAS operations and

LAPACK routines. Their results show that the recursive algorithms are faster than the

standard codes for large matrices. Gustavson also described non-recursive blocked (full and

packed) storage formats in [24] which are variations of the 4D array layout discussed earlier

by Chatterjee, et. al. in [25].

As is well known, optimizing code to match the processor architecture is as essential for

obtaining good performance as ensuring good locality properties for the algorithm. Evidence

for this could be found in the low-level kernels of high-performance libraries such as ESSL

[7], ATLAS [12] and Emmerald [14]. Optimal values of several platform dependent parameters

such as block sizes and loop unrolling depths must be used to maximize performance of matrix-

multiplication code on a given platform. Various factors such as the processor architecture and

the number and sizes of the di�erent levels of cache must be considered, which necessitates

hand-tuning of the code for each platform. Therefore, hand-optimized matrix-multiplication

routines, sometimes requiring assembly level coding, are usually provided by the platform

vendor as part of the native BLAS implementation or similar math library kernels.

Automatic code generation systems such as PHiPAC [26, 27] and ATLAS [12, 13, 28] seek to

provide an alternative to vendor supplied DGEMM by performing some of the platform-dependent

optimizations at install-time. The resulting code is usually competitive with vendor-supplied

code. These systems search the design space to �nd the best values for the machine-dependent

parameters on the given platform.

With the adoption, in some settings, of the C++ language for writing high-performance

scienti�c applications, there have been recent attempts at using template programming to

construct portable performance oriented linear algebra libraries. The Matrix Template Library

(MTL) [29, 30, 31] and the Parallel Mathematical Library Project (PMLP) [32, 33, 34] are

examples.



HIGH-PERFORMANCE MATRIX MULTIPLICATION 5

Strassen's algorithm for matrix multiplication [35] has attracted some attention because of

its lower arithmetic complexity. IBM Corporation evidently uses the algorithm in their ESSL

library [36, 37]. Concerns about its numerical properties [38, 39] and its apparent poor locality

and large temporary storage requirement abated the enthusiasm. Recently, research done with

the aim of addressing the locality and temporary storage issues have yielded some positive

results [39, 40, 41, 42]. Chatterjee, et. al. also explored the use of Strassen with their recursive

data layouts and obtained good performance [25, 43]. The research presented in this paper

enhances the performance characteristics of Strassen and thereby improves its usability.

1.2. Contributions

As indicated above, a large quantity of research has been devoted in diverse areas to optimize

matrix multiplication. The contributions that are o�ered in this paper present themselves as

a comprehensive strategy to enable development of high-performance matrix-multiplication

codes and are summarized below.

1. A new conceptual framework is proposed for writing high-performance polyalgorithmic

matrix-multiplication routines using advanced storage formats and optimized processor-

speci�c kernels.

2. The techniques used by the authors enable their code to outperform rigorously optimized

widely used linear algebra libraries such as ATLAS on all platforms tested and by a

signi�cant amount on most. The performance is also better than the results of the

recursive method of Wise as reported in [44] and combinations of recursive methods

and DGEMM used by others such as Chatterjee, et. al. [25]. The performance is comparable

to that of Gustavson's method [20] on two of the platforms and better on the third.

3. A hierarchical matrix storage format is devised that incorporates Morton order and

handles arbitrary-sized matrices eÆciently. This storage format, while providing the

bene�ts of improved locality of Morton ordering, can be implemented without extra



6 V. VALSALAM AND A. SKJELLUM

memory or computation on zero padding normally required by some other recursive

techniques.

4. Comparative evaluations of the performance of di�erent algorithms reveal the importance

of a polyalgorithmic3 approach to achieve the best performance for a given matrix size

and platform. Similar results have been reported in the literature for both sequential [15]

and parallel [45, 46] matrix multiplication.

5. Contrary to statements found in the literature such as by Gustavson, et. al. [20] and

Chatterjee, et. al. [25], the studies presented herein demonstrate that iterative algorithms,

when used with an eÆcient Morton order location code calculation algorithm, is highly

competitive with the recursive ones and even faster in certain cases. This fact bolsters

the need for polyalgorithmic libraries.

6. Signi�cant further performance enhancements can be achieved with the use of Strassen's

algorithm, which is shown to work well with the hierarchical storage format. The authors'

Strassen code has better performance characteristics than that reported by others in the

literature on similar machines4 (e.g., Chatterjee, et. al. [25]). The use of better low-level

kernels for block products in the Strassen code could yield even greater performance.

7. An assortment of new techniques and algorithms5 are presented here that can easily

be incorporated in the hierarchical framework to improve the performance of matrix

multiplication.

(a) The oscillating iterative algorithm that is described here has the two-miss property

that improves cache performance.

3The term polyalgorithm was introduced by Professor John Rice and refers to the choice of one suitable
algorithm from a set of candidate algorithms, all designed to solve the same problem, with the aim of obtaining
the best possible performance in a given situation. This is not to be confused with the combined, simultaneous
use of several algorithmic techniques, especially in the low-level kernel routines, for optimizing performance.
4Comparisons with some published results could not be made because those results were obtained on very
di�erent architectures such as Cray and IBM machines (e.g., Agarwal, et. al. [47] and Douglas, et. al. [40]).
5Evidently, variations of these algorithms could have been independently discovered and put to use by others.
However, the authors could not �nd them in the published literature.



HIGH-PERFORMANCE MATRIX MULTIPLICATION 7

(b) A strategy is presented for checking index bounds inside block products that

enables the recursive algorithm of Frens and Wise [18] to eliminate unnecessary

computation.

(c) A variable block size (recursion cuto� point) determination technique is introduced

for Strassen's algorithm that produces performance curves that are optimal and

have minimal 
uctuations than the results found in the literature (e.g., Chatterjee,

et. al. [25]).

8. The need for a standard kernel interface, distinct from the BLAS, is identi�ed so that

optimized kernels tuned to speci�c processors can be made available to library developers

for writing portable high-performance code. These kernel routines operate on small blocks

that �t in the L1 cache.

9. As elaborated in x6, an obvious path is shown to exist for either object-based libraries or

compiler-based approaches to deliver the high performance guaranteed by the hierarchical

formulation to new and existing applications. Thus, the performance enhancements may

be made readily available to legacy applications in many cases.

1.3. Organization of Paper

The remainder of the paper is organized as follows. The approach adopted here, leading to

the performance framework that incorporates the hierarchical storage format, algorithms and

optimized kernels is described in x2. The hierarchical storage format and its variants are

elaborately explained in x3 after discussing the drawbacks of other recursive formulations

found in the literature. Section 4 deals with the various matrix-multiplication algorithms

considered here and the authors' contributions to their enhancement. The importance of

processor-speci�c optimized kernels in building high-performance linear algebra codes and

the need for standardizing their interfaces is discussed in x5. Section 6 explains how an object-

oriented design strategy or a compiler-based approach can make the performance bene�ts



8 V. VALSALAM AND A. SKJELLUM

of the concepts presented here readily available to users of linear algebra routines. In x7,

performance results on three di�erent architectures are shown, demonstrating the advantages

of the hierarchical formulation in comparison to other competing methods and the relative

merits of various matrix-multiplication algorithms. Finally, in x8, conclusions drawn from the

present research and further, future work possibilities are discussed.

2. Approach

As is well known, CPU and memory form the two integral elements involved in performing

computations. Optimal performance can be achieved only by utilizing both the memory

hierarchy and the CPU eÆciently. An application makes eÆcient use of the memory if it has

an optimal schedule for transferring data to and from the CPU across the di�erent levels of the

hierarchy to achieve minimal wasted CPU cycles. Once the data required for computation is

brought close to the processor (cache or registers), the application must ensure that the CPU

resources are used to the fullest extent so that the computations are completed in a minimum

number of CPU cycles.

The main hypothesis behind the performance framework presented here is that the impact

of memory hierarchy and CPU on the performance of blocked linear algebra algorithms can be

separated out and dealt with orthogonally without compromising performance. The validity of

this approach is apparent from the organization of the memory hierarchy and the interaction

of the CPU with it when examined in the context of the nature of the algorithm that is used.

The CPU obtains data for processing from the L1 cache, which is the closest and the fastest

level of the memory hierarchy. This is the only direct and immediate interaction the CPU has

with the memory hierarchy. Thus, the L1 cache forms the data interface between the CPU

and the rest of the memory hierarchy. Now, consider a block-based linear algebra algorithm

in which the blocks are sized to �t in the L1 cache. The algorithm can be logically viewed as

consisting of two tiers, the top tier forming the memory hierarchy component and the bottom



HIGH-PERFORMANCE MATRIX MULTIPLICATION 9

tier forming the CPU component. The bottom tier operates on blocks that are assumed to

be resident in L1 cache, streaming data into the CPU, keeping all the execution units in the

processor as busy as possible and making maximum use of all the available processor features.

When the computation on the current set of blocks is �nished, control passes to the top tier

which selects the next set of blocks for computation. The block selection criterion strives to

optimize the overall performance of the memory hierarchy by maximizing both spatial and

temporal locality of block accesses and minimizing the potential for cache con
icts. In other

words, the memory hierarchy tier attempts to minimize the number of cache misses and page

faults. Because of the blocked nature of the computations the functions of the CPU and the

memory hierarchy tiers of the algorithm do not interfere with each other, allowing them to be

treated independently. The separation of CPU and memory concerns in this manner permits

the development of a convenient framework for writing high-performance linear algebra codes

that o�er maximum 
exibility in terms of algorithmic choice, implementation and portability

as elaborated further in x6.

The hierarchical storage format, described in detail in x3, along with the particular algorithm

that is applied on the blocks form the memory hierarchy tier of the performance framework.

Because of its two-dimensional locality, the hierarchical storage format provides algorithms

with a means to store and access matrices in memory without causing too many cache misses

or page faults. This leads to eÆcient utilization of memory if the algorithms also possess

good locality in referencing the blocks. The hierarchical storage formulation allows the use

of di�erent matrix-multiplication algorithms such as iterative, recursive and Strassen on the

blocks. The best block-algorithm can be chosen and used on a given machine for a given

problem size (polyalgorithm friendly). The CPU tier then performs the standard iterative

matrix-multiplication operation on the blocks. The code for the block-products is embodied in

what is referred to as the kernel, which is optimized for the particular processor. The kernel



10 V. VALSALAM AND A. SKJELLUM

ensures that all the resources of the processor are eÆciently utilized by optimally scheduling

operations in the block product.

The proposed approach signi�cantly improves on the current technology based on single or

multi-level blocking and kernels that is used in most commonly available high-performance

matrix-multiply implementations. The new framework presented here combines several

advantages, including the ability to choose a suitable storage format and algorithm that

provides the best performance for the given platform and problem size. The ability to use the

hierarchical storage format and its variants becomes increasingly important for large matrix

sizes because of its good locality properties (see results in x7). Portability of the code is

also enhanced by restricting the use of machine-dependent parameters to the bottom tier,

which consists of highly optimized processor-speci�c kernels. In this way, the performance and


exibility a�orded by the proposed framework enhances its utility over other approaches found

in the literature such as the ones used by ATLAS [12] and the Algorithms and Architecture

approach described by Agarwal, et. al. [7] for the POWER2 processor.

The basic ideas of the proposed framework such as the hierarchical storage format, eÆcient

algorithms and kernel design are described in the following sections. The concepts are

demonstrated by realizing high-performance matrix-multiplication codes in the C language.

Comparisons with related techniques reported in the literature are provided wherever relevant.

The matrix-multiplication codes implemented under the proposed framework outperform

rigorously optimized linear algebra libraries such as ATLAS on all platforms tested and by a

signi�cant amount on most. The performance is also better than the combinations of recursive

methods and optimized DGEMM used by others such as Chatterjee, et. al. [25] on all platforms

that were studied.



HIGH-PERFORMANCE MATRIX MULTIPLICATION 11

3. Hierarchical Matrix Storage

Algorithmic blocking [1, 2, 3, 4, 5, 6, 7, 8, 9]. is a well known technique for improving locality

that works extremely well for level 3 BLAS operations such as matrix multiplication. Blocking

can be applied to each level of the memory hierarchy to improve the locality at each level.

However, an alternative e�ective strategy is to address the poor spatial locality inherent in the

one-dimensional nature of row/column-major storage format and use an alternative format

that possesses locality in both dimensions. Recursive/nonlinear data layouts that impart two-

dimensional locality to matrices have been shown to provide signi�cant performance advantages

for matrix multiplication in [18, 19] and also by the authors in [48]. The recursive layouts are

most e�ective when multiplying large matrices that force the system to page and incur TLB

misses, but are also useful for smaller problems.

A recursive data layout based on a space-�lling curve [17] known as Morton (Z) order (see

Figure 1) is used in the proposed storage format. Other recursive orderings based on space-

�lling curves such as U, X, Gray and Hilbert orders were studied by Chatterjee, et. al. [19] along

with Z-order in the context of matrix multiplication. All these orderings were found to have

similar performance characteristics for both the standard and Strassen's algorithms for matrix

multiplication. Morton order was chosen to be used here because of its relative simplicity in

calculating location codes (addresses), compared to the other orderings. Calculation of location

codes for Morton order is more involved than that for the traditional row/column-major order.

If the full bene�ts of improved locality o�ered by Morton order are to be reaped an eÆcient

algorithm must be used for location code calculation. An algorithm described in [49] and also

discussed by the authors in [48] is used for fast incremental address computation of Morton

ordered matrices within iterative algorithms.

A drawback of using Morton order storage is that a straightforward application of the

ordering is possible only for square matrices whose sides are an integer power of two. Other

matrix sizes require special treatment. A common way of handling arbitrary-sized matrices is



12 V. VALSALAM AND A. SKJELLUM

to apply padding such that the padded matrix can be subjected to Morton ordering. Frens

and Wise [44] and Chatterjee, et. al. [19] have suggested di�erent schemes based on padding

for their recursive orderings. Both schemes have their own disadvantages from a performance

standpoint as described below. The hierarchical data layout described here is designed to

overcome these drawbacks in applying Morton ordering to arbitrary sized matrices, bringing

new opportunities for performance enhancement and practical use of the algorithms in scienti�c

codes.

3.1. Related Work and Drawbacks

The quadtree representation of recursive matrix storage used by Frens and Wise [50] allocates

extra memory to handle arbitrary sized matrices. Depending on the aspect ratio of the matrix

the extra memory allocated could be as high as 78% (see [50]), but the extra space is not

used. The authors of that work argue that the allocated, but unused memory does not a�ect

performance because it is never fetched to the faster levels of the memory hierarchy. This

works reasonably well for systems with virtual memory, but cannot be used in systems that

do not have virtual memory such as most embedded computers, or even systems such as

Sandia/DOE Cplant [51]. Frens and Wise's method requires bounds checking on the matrix

rows and columns to bypass the padded elements, which could turn out to be expensive if

continued down to the leaf nodes of the quadtree. Therefore, bounds checking is stopped at

the level of, say, 8� 8 blocks and any padded elements in the blocks are made to participate

in the overall computation after initializing them appropriately so that the net result is not

a�ected. The computation on padded elements compromises performance.

Chatterjee, et. al. [19] choose blocking factors from an architecture-dependent range and

apply enough padding to the matrix such that the blocking factor exactly divides the padded

matrix side into an integer power of two. They use the recursive algorithm proposed by

Frens and Wise with their storage format. The padded elements are initialized to zero and



HIGH-PERFORMANCE MATRIX MULTIPLICATION 13

computation performed on them blindly. Computation on the padded portions of the matrix

a�ects performance severely, especially when the padding is large, and leads to the saw-toothed

performance graphs seen in x7.2.

The recursive blocked data format and the matching recursive matrix multiplication

algorithm used by Gustavson, et. al. [20] requires padding the matrices to make them evenly

divisible by the blocking factors, but the padded elements are left out of the computation. The

recursive block row (RBR) format, which is one of the recursive block orderings that they use,

defaults to Morton ordering of blocks for matrices containing a power-of-two number of blocks.

Their multiplication algorithm generates a binary recursion tree, whereas Frens and Wise's

algorithm produces an eight-ary recursion tree. It is not apparent if the memory hierarchy

friendly two-miss characteristic of Frens and Wise's recursive algorithm can be incorporated

into Gustavson's formulation. The performance of Gustavson's method is compared with the

other methods in x7.2. From an algorithmic standpoint, the recursive blocked data format does

not easily facilitate the use of any iterative methods for computing the matrix product unless

tables are used. However, Strassen's algorithm can be used in those levels of the recursion that

yield square matrices with even sides.

The above discussion assumed that block addresses are computed dynamically from the

recursive layout pattern. An alternative is to make use of tables to store the address information

as suggested by Gustavson, et. al. [20]. This overcomes many of the drawbacks mentioned

above. However, tables require extra bookkeeping e�ort and the associated overhead may

signi�cantly a�ect performance for large matrices. Since one table entry is required for each

block, the table may grow undesirably large as the matrix size increases. For example, consider

a typical case from the results for the Pentium III con�guration discussed in x7. Assuming a

blocking factor of 406 for both dimensions a table containing 10,000 entries is required to store

6The I, J, K, blocking factors used for the PIII are 40, 32, 32 respectively for some algorithms.



14 V. VALSALAM AND A. SKJELLUM

a 4000x4000 matrix. The hierarchical storage formulation developed here avoids the use of

tables, while minimizing the computation required to calculate block addresses.

Tables can also be eliminated if the blocks are stored in row/column order. Chatterjee,

et. al. presents such a format as the 4D layout in [25]. Similar formats have appeared recently

in Gustavson's work also [24]. However, using these formats results in the loss of the good

locality properties of recursive layouts such as Morton order. In other words, the automatic

blocking provided by the recursive storage formats for every level of the memory hierarchy

[21, 18] is no longer available. For small matrices that are easily accommodated in the lower

levels of the memory hierarchy the manual blocking used in the blocked row/column storage

formats is suÆcient to a�ord performance comparable to the recursive formats as demonstrated

by Chatterjee in [25], where results comparing the 4D layout with Morton order are presented

for matrices of order up to around 1000. Gustavson does not show any performance results in

[24]. Larger matrices, which are also included in the domain of the current study because of

their dominance in large-scale computing problems, will bene�t from the automatic blocking

for the deeper levels of the memory hierarchy provided by the recursive storage formats. The

Morton ordering used in the hierarchical storage format ensures that this desirable feature is

available to provide steady, undiminished and predictable performance even for large matrices

as shown by the results in x7.

3.2. Construction

The hierarchical storage format designed here overcomes the limitations of the methods

discussed above in extending the applicability of Morton order to arbitrary-sized matrices.

The key observation that leads to the hierarchical format is the fact that any integer can be

expressed as a unique sum of powers of two. Using this fact, any matrix can be decomposed

into square power-of-two sized submatrices as explained below. The square submatrices can

then be subjected to Morton ordering individually.



HIGH-PERFORMANCE MATRIX MULTIPLICATION 15

The hierarchical storage format involves four levels as shown in Figure 2. The matrix is

comprised of submatrices at each level. The submatrices are grouped and ordered to form

bigger submatrices in the next higher level. At the lowest level, the matrix is divided into

blocks, inside which the elements are arranged in row-major order (column-major order could

also be used, instead). The blocks are all of the same size. The size of the block is determined

by cache and algorithmic considerations, as explained later. For the present discussion, it is

assumed that the blocks divide the matrix exactly.

The blocks of level-one are the elements for the level-two matrix. The level-two matrix is

decomposed into a minimum number of square submatrices that are powers of two in size. The

level-one blocks are now Morton ordered inside these square submatrices. The decomposition

is done in such a way that the smallest submatrices are on the top-left corner of the level-two

matrix. The submatrix size increases in both directions, with the largest submatrices being

found on the bottom-right corner. A di�erent decomposition that reverses the progression of

submatrix sizes inside the level-two matrix from one corner to the other is also possible.

The next two higher levels in the hierarchy helps to uniquely organize the Morton ordered

submatrices of the second level within the matrix boundaries. In the third level, the sides of the

level-two matrix are expressed as sums of powers of two. Imagine lines being drawn between

opposite sides of the matrix at each power of two. These vertical and horizontal lines split the

matrix into tiles, whose sides are powers of two. Note that these tiles need not necessarily be

square. The square submatrices from the second level �t snugly in these tiles. There is only

one arrangement of the submatrices possible inside a tile: the submatrices form either a row

or a column inside the tile.

At the fourth and topmost level, the tiles of the third level are arranged in column-major

order. This completes a unique speci�cation of the ordering of the elements of the original

matrix. The choice of using column-major order instead of row-major order for the fourth

level is arbitrary.



16 V. VALSALAM AND A. SKJELLUM

The construction of the four levels of the hierarchical storage format is demonstrated by

means of an example in Figure 2. The solid lines inside the matrix indicate submatrices in

the current level while dashed lines indicate submatrices in the lower level. The numbering

denote the ordering of the elements inside the submatrices. The matrix has 10 rows and 18

columns and is divided into blocks of size 2� 3 at the �rst level. This makes a 5� 6 level-two

matrix, which yields square submatrices as shown in the �gure | six 1� 1 submatrices form

the �rst row followed by two 2� 2 submatrices and one 4� 4 submatrix below it. Inside each

submatrix, the blocks are arranged in Morton order. For level-three, the sides of the level-two

matrix are written as sums of powers of two (5 = 1+ 4 and 6 = 2+ 4) and lines drawn across

the matrix joining opposite sides at each power of two. The lines split the matrix into four

tiles inside which the submatrices of level-two are arranged as a row (top tiles) or as a column

(bottom tiles). The fourth and �nal level of the hierarchy places the four tiles from level-three

in column-major order. The �nal ordering of matrix elements in memory is shown in Figure 3.

Blocking done at the �rst level has several advantages. First, it enables temporal locality to

make good utilization of the cache. Second, for algorithms such as recursive and Strassen it

provides a means to specify a cuto� point for recursion. Carrying recursion further down than

the cuto� point can hurt performance. Third, blocking at this level allows a processor-speci�c

multiplication kernel with custom optimizations to be used. Fourth, it reduces the overhead

of using the hierarchical storage format. The complexity of the hierarchical format imposes

a certain amount of overhead for address calculation. Blocking at level-one increases the

granularity of the ordering for the higher levels and thereby reduces the number of complicated

address calculations that are required by a signi�cant amount.

When accessing a matrix stored in the hierarchical format the di�erent levels are traversed

top-down. Each level can be implemented as a set of two loops, one for each of the two

dimensions of the matrix. The lower levels are nested within the upper levels. The loop indices

are manipulated to calculate the addresses of the matrix elements. For the Morton ordered



HIGH-PERFORMANCE MATRIX MULTIPLICATION 17

level, the fast incremental address (location code) calculation algorithm discussed in [48] is

used.

So far in this discussion it was assumed that the matrix size is evenly divisible by the block

size of the �rst level. If this is not the case, some adjustments are made for the hierarchical

storage format to be applied. Two di�erent schemes to handle odd-sized matrices are described

below.

3.3. Variant 1

An obvious way of handling matrices that are not exactly divisible by the block size is by

padding. The matrix is padded up to the next size that is evenly divisible by the block size.

The padding used here is better than the methods used by Chatterjee, et. al. and Frens and

Wise in two respects: (a) it uses little extra memory and (b) the algorithms here do not perform

computation on the padded elements and, therefore, does not adversely a�ect performance.

Let T be the block size and M , the matrix size. In the hierarchical storage format, the

ratio of the amount of padding to the matrix size will not exceed the ratio of the block size

to the matrix size (T=M). Therefore, the pad to matrix size ratio decreases with increase in

matrix size. Chatterjee's recursive array layouts require a maximum pad to matrix size ratio

equivalent to the inverse of the minimum block size (1=T ). The ratio remains a constant with

respect to the matrix size. In other words, if one side of a matrix is held constant and the

other side increased in length, the maximum amount of padding required for the hierarchical

ordering remains a constant whereas the maximum padding for Chatterjee's method would

increase proportionally to the matrix size. If Frens and Wise's quadtree representation is used,

the padding could be as high as 78% of the matrix size, as discussed in 3.1.

As mentioned earlier, both Chatterjee, et. al. and Frens and Wise perform computation

on padded elements, thereby degrading performance. The proposed method employs bounds

checking on matrix indices, thereby eliminating the need for any unnecessary computations on



18 V. VALSALAM AND A. SKJELLUM

padded elements. The hierarchical formulation allows the use of di�erent matrix-multiplication

algorithms. If the iterative algorithm is used, detecting the matrix edges to avoid touching the

padded area is straightforward and eÆcient. However, an eÆcient way for checking bounds

inside the recursive algorithm is not easily apparent, which is presumably the reason why it

was not done by Chatterjee or Frens and Wise. A low overhead bounds checking technique

for the recursive algorithm is described in x4.2, which makes this variant of the hierarchical

format viable for use with the recursive algorithm. It must be noted here that Frens and Wise

use a bounds checking algorithm in their quadtree formulation to prune empty branches of

the tree which must not be confused with the present requirement to detect matrix edges

inside the Morton ordered blocks. Strassen's algorithm is not implemented with this variant

of the hierarchical ordering because avoiding computation on the padded elements becomes

extremely complicated.

3.4. Variant 2

The second variant of the hierarchical storage format does not use any padding for odd-sized

matrices. It can be eÆciently used with any matrix multiplication algorithm including Strassen.

In this variant, the extra rows and columns at the end of the matrix are stripped o� before the

hierarchical storage format is applied. The peeled portions of the matrix are then subjected

to the hierarchical ordering separately.

Peeling splits a matrix M into four submatrices: M11, m12, m21 and m22. M11 is the main

portion of the matrix left behind when the fringe submatrices, m12, m21 and m22, are removed

by peeling. The hierarchical storage format is applied separately to each of the four submatrices

and they are stored contiguously in the orderM11,m12, m21 and m22. Since the block size used

in M11 is too big for the fringe submatrices, it is made smaller in the appropriate dimension(s)

for each of m12, m21 and m22 so that the blocks �t exactly in the submatrices. Since the fringe

submatrices represent portions of the matrix stripped o� by peeling the hierarchical storage



HIGH-PERFORMANCE MATRIX MULTIPLICATION 19

format simpli�es to a column of blocks for m12, a row of blocks for m21 and a single block for

m22.

When two matrices are multiplied, the product matrix is computed as follows:

C = AB; (1)2
64

C11 c12

c21 c22

3
75 =

2
64

A11 a12

a21 a22

3
75

2
64

B11 b12

b21 b22

3
75 ; (2)

2
64

C11 c12

c21 c22

3
75 =

2
64

A11B11 + a12b21 A11b12 + a12b22

a21B11 + a22b21 a21b12 + a22b22

3
75 (3)

The elaborate matrix-multiplication algorithms described in x4 are used only for the

computation of the main portion of the matrix product, namely A11B11. All the other

submatrix products are computed by some �x-up code using the conventional blocked

algorithm.

The two variants of the hierarchical storage format have di�erent performance impacts on

di�erent architectures. On some architectures variant 1 performs better whereas on others

variant 2 is better as seen in the performance results presented in x7.1.

4. Matrix-Multiplication Algorithms

A multiplication algorithm for matrices stored in the hierarchical format7 consists of a set

of three loops for each of the top two levels. The next level, which is composed of Morton

ordered blocks can use a variety of di�erent matrix-multiplication algorithms. It is found that

the same algorithm does not give the best performance for all platforms nor all matrix sizes

7Conversion of matrices from row/column storage to the hierarchical format is not considered in this paper.
Chatterjee, et. al. [25] have shown that such conversion costs are only about 2{5% of the total execution time
for matrix multiplication.



20 V. VALSALAM AND A. SKJELLUM

on the same platform (see x7). This necessitates the adoption of a polyalgorithmic approach

for high-performance matrix multiplication. The algorithms studied here are discussed in the

following subsections, providing details of some of the enhancements o�ered by this work.

4.1. Iterative Algorithm

It has been widely reported in the literature that a recursive algorithm should be used along

with a recursive storage format to match the algorithm with the data layout in order to obtain

maximum performance [18, 20, 25]. However, the authors' observations in this paper (x7.1)

are contradictory, showing that the traditional iterative algorithm is highly competitive with

the recursive one, and even better for certain (usually small) matrix sizes on some platforms.

One of the diÆculties of using an iterative algorithm with Morton order is the complicated

address calculation involved8. A highly eÆcient incremental location code calculation algorithm

for Morton order is used in this work to keep the overhead of address calculation to a minimum.

The algorithm, involving algebra of dilated integers, is described by the authors in [48] and

is also discussed by Schrack in [49]. If the dilation of the row index i and column index

j of the matrix are known, then the Morton order location code l can be calculated as

l = 2D(i)+D(j), where D represents the dilation operation. The algorithm can incrementally

determine the dilation of an integer using only two machine operations. In contrast, other

methods for calculating dilation require many more operations and/or table lookups, resulting

in signi�cantly larger overhead for calculating addresses. For example, dilating a 16-bit integer

using a 256-entry table requires six operations, including two loads [52]. For a 16-bit integer,

the dilation algorithm presented by Stocco and Schrack in [52] requires at least 16 operations.

The low-overhead address calculation method used here in the iterative matrix-multiplication

algorithm is an important factor that contributes to its good performance.

8Row/column major ordering has an advantage in this respect | address calculation is straightforward and
eÆcient.



HIGH-PERFORMANCE MATRIX MULTIPLICATION 21

4.2. Modi�ed Recursive Algorithm

Computation of a block product involves bringing a block of each of matrices A, B and C

closer to the processor in the memory hierarchy. It is always possible to compute the next

block product by reusing one of the three blocks and loading the other two. The two-miss

recursive algorithm of Frens and Wise [18] achieves this at all levels of recursion, thus making

good use of the memory hierarchy. Their algorithm has been modi�ed here to permit eÆcient

bounds checking within level-one blocks to avoid computation on padded matrix regions.

Frens and Wise and Chatterjee, et. al. used the algorithm without separating out

computation on padded elements inside the block products, as was mentioned in x3.1. When

the recursion tree is navigated down to the level of block products, information about the

locations of the blocks inside the original matrices is lost. This information is required to

identify and exclude padded elements from computation. From the perspective of the iterative

algorithm, the values of the iteration variables, i, j and k indices, must be known for each

block product. The block indices when multiplied by the block sizes give the indices of the

matrix elements, which permits bounds checking to be applied on the matrix elements.

The recursive algorithm multiplies square block-matrices. The number of blocks also needs

to be a power of two to enable recursion to be carried down to the level of individual blocks.

The algorithm proceeds by dividing the matrices into four equal quadrants and performing

quadrant multiplications recursively. To each of the quadrant multiplication function calls, the

three block indices that collectively identify the �rst blocks in the quadrants of A, B and C are

passed. Figure 4 shows how the block indices, i, j and k are determined for the eight quadrant

products.

4.3. Oscillating Iterative Algorithm

An oscillating iterative algorithm is shown here as a modi�cation of the regular iterative

algorithm to incorporate the two-miss feature of the recursive algorithm. It always keeps one of



22 V. VALSALAM AND A. SKJELLUM

the three blocks involved in a matrix product in cache between successive block products, thus

improving locality over the regular iterative algorithm. The fast address calculation method

used in the case of the regular iterative algorithm is used here also to keep addressing costs as

low as possible. The improved cache behavior of the oscillating iterative algorithm translates

to better performance compared to the regular iterative algorithm and enables it to beat the

recursive algorithm on certain platforms for most matrix sizes (see x7.1).

In the regular iterative algorithm the loop indices are always incremented. In other words,

when the inner loop indices reach their upper limits, they are again set to the lower limits,

from where they continue to be incremented. The oscillating iterative algorithm, on the other

hand, increments and decrements the inner loop indices alternately between the lower and

upper limits of iteration. This creates an oscillatory e�ect on the two inner loop variables. As

a result, only one of the three loop indices is allowed to vary from the calculation of one product

to the next. The functioning of the algorithm is illustrated in Figure 5. As seen from the �gure,

one of the blocks of matrices A, B or C is always reused between any two consecutive block

products, improving cache utilization.

4.4. Strassen's Algorithm

Strassen's algorithm for matrix multiplication is a divide and conquer approach and has a

recursive structure [35]. Its lower arithmetic complexity of �(nlog2 7) for the multiplication of

two n � n matrices (compared to the �(n3) complexity of traditional methods) makes it an

attractive alternative to be considered. However, the reduced arithmetic complexity comes at

the cost of increased memory usage and poor algorithmic data locality. Moreover, since the

algorithm is based on the multiplication of 2 � 2 matrices, it is not applicable to arbitrary

matrix sizes in its pure form. Making the algorithm work for matrices of a general size would

involve techniques such as padding or peeling that introduce additional overhead. Strassen's

algorithm also has been shown to have poor numerical stability for certain matrix types that



HIGH-PERFORMANCE MATRIX MULTIPLICATION 23

could limit its applicability [38, 39, 53]. Although the reference guide for the ESSL library [37]

con�rms this, according to anecdotal information that the authors received, ESSL produces

results having better accuracy when Strassen is used in place of the standard algorithm for

certain entries in the matrices.

Although Strassen published his algorithm in 1969 [35], it has since been largely ignored

by people writing high-performance matrix-multiplication codes because of its drawbacks

mentioned above. IBM Corporation, who included the algorithm in the ESSL library [36],

showed that good performance can be obtained if implemented carefully [47] and popularized

its use on their systems. Recently, there has been a renewed interest in Strassen's algorithm

and its variants, as a result of which several implementations have been developed that

strive to minimize temporary storage requirement and improve locality [40, 41, 43]. Tensor

product formulations of the algorithm have also been explored in this context for automatic

optimizations [42] and implementation on parallel and vector machines [54].

The Strassen's algorithm implemented here is based on a variant due to Winograd, which

uses fewer additions/subtractions than the original algorithm [55]. This implementation uses a

computation schedule described by Huss-Lederman, et. al. [41, 56] that minimizes the amount

of temporary storage required. Strassen recursion is stopped well before it is carried down

to the level of individual elements because of performance reasons. The block size of the

matrix at level-one of the hierarchical storage format is set to be the same as the recursion

cuto� point. The technique devised here for calculating the optimal recursion cuto� point is

discussed in detail in x4.4.1. When the recursion stops, the conventional iterative algorithm is

used to multiply the blocks, completing the computation of the �nal matrix product. When

conventional multiplication is applied to the blocks, they are further tiled to obtain the best

performance out of the cache.

The term apparent MFLOPS is used in this paper to measure the performance of

Strassen's algorithm in comparison to the standard algorithm. Because of its lower arithmetic



24 V. VALSALAM AND A. SKJELLUM

complexity, Strassen's algorithm performs fewer 
oating point operations than the conventional

algorithm. Therefore, performance based on the number of 
oating point operations per second

(MFLOPS) would not be a realistic comparison of execution speeds. To remedy this situation,

the performance of Strassen is measured in terms of apparent MFLOPS, which is de�ned as

the number of 
oating point operations of the standard algorithm divided by the execution

time of Strassen. The apparent MFLOPS of Strassen can be compared with the true MFLOPS

of the standard complexity algorithm to evaluate relative performance. Others have also used

this approach in the literature under di�erent names such as the nominal MFLOPS referred

to by Agarwal, et. al. in [47].

4.4.1. Recursion Cuto� Point for Strassen

Stopping the recursion at an early stage instead of continuing it down to the level of individual

matrix elements is imperative for obtaining good performance. The recursion cuto� criteria

found in the literature (for example, in [41]) are determined empirically for row/column-major

storage to be used with dynamic padding or peeling techniques and are not suitable for the

present case. Moreover, the heuristic procedure presented here tunes the cuto� point to matrix

size, in addition to machine characteristics. The following discussion assumes that the matrices

are square. If the matrices should not be square, the same procedure is simply repeated on all

the sides.

The need to vary the cuto� point with respect to matrix size is clear from Figure 6 which

shows the apparent MFLOPS of Strassen employing a constant cuto� point. The code was

run on an SGI R10k machine, the details of which can be found in x7. The graph shows

peaks repeating at exponential intervals. The peaks result from a sudden rise in performance

when the number of blocks becomes a power of two followed by a gradual fall in the apparent

MFLOPS as the number of blocks slowly diverge from the power of two. This peculiar behavior

of Strassen is because of its quadrant recursive nature that requires matrices to be square and



HIGH-PERFORMANCE MATRIX MULTIPLICATION 25

power of two for full applicability. When the number of blocks is a non-power of two, Strassen

is applied to the constituent power-of-two block submatrices instead of the whole matrix.

The advantage of Strassen comes from its reduced asymptotic arithmetic complexity, which is

compromised when it is applied separately to smaller individual submatrices. In order to obtain

maximum eÆciency out of Strassen, its coverage in a single invocation must be extended to

as much of the matrix as possible. This can be done by making the number of blocks a power

of two plus a remainder block, as is shown below. Since variant 2 of the hierarchical storage

format is used, Strassen can be applied to the power-of-two part and the remainder blocks can

be handled separately by conventional blocked multiplication.

A machine-dependent base block size s is �rst selected. Any integer matrix size m � s obeys

the relation s � 2d � m < s � 2d+1, where d is a nonnegative integer. Therefore, a block size

(cuto� point) c that varies between s and 2s can be obtained as c =
�
m
2d

�
. If m is not evenly

divisible by 2d the remainder part of the matrix is handled separately by variant 2 of the

hierarchical format. Strassen's algorithm can now be applied on the part of the matrix that

has power-of-two number of blocks. An optimal value for s that provides the best performance

characteristics is determined empirically.

The block size c determined using the above procedure is insuÆcient as seen from the

performance anomalies in Figure 6. Severe drops in performance occur when the block size

is a power of two (e.g., 128) or a sum of relatively high powers of two (e.g., 96 = 64 + 32),

apparently because of con
ict misses in the cache. In such cases the block sizes are decreased

by correction factors determined empirically by experimentation. The correction factors are

usually small integer numbers such as 1, 2 or 3. Performance can also be improved in some

other cases, such as when the block sizes are certain odd or even numbers, by applying similar

correction factors. The values of the correction factors are dependent on the architecture. In

this way, the optimal block size c is determined as a function of matrix size and machine

architecture. In most cases, it is possible to parameterize the above characteristics and port



26 V. VALSALAM AND A. SKJELLUM

the resulting heuristics to other architectures. The same heuristic procedure is valid on the SGI

and Alpha platforms used for collecting results in x7. However, on the Pentium III a di�erent

heuristic needs to be used to determine the correction factors.

5. Kernel Design

Using advanced storage formats to squeeze signi�cant performance out of the memory hierarchy

is only one of the aspects involved in the construction of a high-performance code. Tuning

the code to take advantage of the speci�c features available on a processor is also equally

important, if not more. Processor-speci�c code is largely encapsulated in the matrix-multiply

kernel that act on blocks of data from the bottom level of the hierarchical storage format and

are designed to exploit full processor capabilities. This approach also increases the portability

of the higher level code. Such kernel routines for multiplying �xed size blocks of data that �t in

the L1 cache are evidently used in other matrix-multiply implementations also such as ATLAS

[12]. Blocked implementations of other linear algebra operations also spawn similar low-level

kernels that operate on cache-resident blocks of matrices. Processor architecture is becoming

increasingly complex, each utilizing widely di�erent technologies that makes development of an

optimized kernel for each processor a tedious task. If a standard interface is speci�ed for such

linear algebra kernels, it would enable platform vendors and third party software developers to

supply optimized kernels, which could then be used by library developers in a portable fashion.

The BLAS DGEMM/SGEMM is evidently not the optimal building block for dense linear algebra

performance-portable programming. It is a generalized form of matrix multiplication with

options for scaling and accumulation that becomes an overhead if used as a low-level kernel.

Its fat interface is loaded with parameters that are unnecessary and wasteful for multiplying

two small matrices in a �xed storage format. Furthermore, it is designed with compromises

since it handles matrices of a wide range of sizes, which may not be optimal for the small

kernel sizes. This state-of-the-art consequently necessitates the design of further standard



HIGH-PERFORMANCE MATRIX MULTIPLICATION 27

kernel interfaces for linear algebra operations that vendors and library/application writers can

conform to in order to produce portable, performance oriented code with minimum e�ort.

Research into the design of these linear algebra kernel interfaces and the speci�c techniques

for their implementation is the subject of future work.

Although optimizing compilers often do a good job of tailoring code to speci�c processors,

better performance can often be obtained by manually performing certain optimizations.

Moreover, compilers sometimes fail to do even simple optimizations under certain conditions.

For instance, when a three-loop matrix-multiplication code written in C is optimized using the

SGI MIPSpro compiler (version 7.3) it generates blocked code with unrolled loops if the matrix

sizes are known to the compiler. However, if the matrix sizes are hidden from the compiler it

fails to perform these optimizations.

The Basic Linear Algebra Instruction Set (BLAIS) style abstractions, which are used in

the present work, provide a convenient mechanism to construct the kernels. The BLAIS, also

know as BLAS-Lite or Tiny BLAS is a language-independent speci�cation that was proposed

in the BLAS Technical Forum by the second author and colleagues, for the most basic, low-

level operations in linear algebra to write high-performance kernels with useful portability

[57, 58, 59]. The BLAIS macros represent RISC-type operations that act on �xed-size blocks

that �t in a single line of cache. These operations are exposed as a result of unrolling the

computation loops. When used with an optimizing compiler that has a good instruction

scheduler, the BLAIS style macros can be very e�ective in building high-performance matrix-

multiplication kernels.

The authors have only attempted to establish the importance of having a kernel that is

optimized to speci�c processors. Aggressive optimizations similar to those done by ATLAS

[12, 28] have not been added yet, nor is hand-tuned assembly used, as is commonly done by

vendors. Prefetching in the kernels is not yet performed. Kernel block sizes that have been

chosen are probably not optimal either. Since enhanced performance is obtained with still



28 V. VALSALAM AND A. SKJELLUM

further options for improvement in future work, the authors are convinced that the approach

has immediate value.

The totality and integration of all these ideas constitute the new major contribution of this

research. Many of these ideas are widely used in isolation without an overall structure needed

for high performance and portability, such is described next.

6. Integration of Concepts

The hierarchical storage formulation provides an e�ective and concise framework to incorporate

di�erent matrix-multiplication algorithms and also a high-performance kernel that is optimized

to particular processors. The software architecture of this matrix-multiplication framework is

illustrated in Figure 7. The top two levels of the storage format are traversed iteratively to

reach the Morton ordered submatrices, at which point the chosen multiplication algorithm can

be applied. The block-level multiplications spawned by the previous level are performed by

the optimized kernel at the lowest level of the hierarchical formulation.

The need to support di�erent algorithms, even on the same machine, is evident from the

performance results presented in x7. For example, Strassen performs poorly than standard

multiplication for small matrices, while the trend is the reverse for large matrices. Similar

behavior, although not as pronounced, is observable in the performance of the di�erent

algorithms implementing standard complexity matrix multiplication. This suggests the need

for a polyalgorithmic treatment of matrix multiplication for optimal performance, as was

pointed out by Li, et. al. for the parallel case [45] and also by Gunnels, et. al. [15, 46]. Also,

the two variations of the hierarchical format has slightly di�erent performance characteristics

on di�erent platforms, which o�ers a choice of one or the other variant to be used on a given

platform.

An object-oriented (OO) design strategy is, therefore, highly desirable to e�ectively manage

the complexity ensuing from the use of the hierarchical storage formulation and the associated



HIGH-PERFORMANCE MATRIX MULTIPLICATION 29

choices it o�ers in constructing an optimal design. The techniques can then be utilized by a

library developer and can be incorporated into object oriented linear algebra libraries such as

PMLP [33, 34] and MTL [29, 31]. The FLAME approach [60] is also a potential candidate for

the application of this technology. The OO strategy allows the intricacies of the storage format

and architecture dependent peculiarities in the code to be hidden from the user. A convenient

interface can then be made available to access the matrices stored in the hierarchical format.

Other linear algebra functions could also bene�t from the good locality properties o�ered

by Morton ordering that is used in the storage format. If all the functions required by a

user have optimal implementations in the hierarchical framework, conversion costs between

di�erent storage formats can be saved. Even if conversion needs to be performed, the costs

are minimal in many cases as shown by Chatterjee, et. al. [25] who measured the conversion

time between row/column-major order and their nonlinear layouts to be 2{5% of the total

execution time for matrix multiplication. For other operations also, the conversion costs relative

to total execution time will be low if their arithmetic complexity is high enough like that

of matrix multiplication. A library can take advantage of the low conversion costs and use

the hierarchical format internally to provide superior performance to users who want to use

traditional storage formats in the rest of their code. Existing applications calling BLAS routines

would immediately bene�t from this approach. It is interesting to note that even when such

format changes are not required some current BLAS implementations copy matrix data to

avoid cache con
icts and obtain better performance [12, 61, 62].

An alternative to the OO approach is to hide the complexity of the storage format in the

compiler and has been proposed by some researchers [50]. The compiler would then implicitly

use the hierarchical format to store matrices and generate the necessary control structures

and addressing schemes automatically. Any existing legacy user code that does not make

assumptions about the underlying storage format in using matrices can be compiled with the

modi�ed compiler to take advantage of the high-performance storage format. For example, the



30 V. VALSALAM AND A. SKJELLUM

compiler would be smart enough to transform a loop nest which performs matrix operations

into the hierarchical code structure required to eÆciently access the hierarchical storage format.

This would be similar to the transformations performed by current compilers such as SGI's

MIPSpro compilers [16] on such loop nests, converting them into blocked structures with loop

unrolling and other optimizations applied.

The work in this paper indicates that vendor-optimized BLAS is not the best answer for

developing high-performance linear algebra libraries and applications. The emphasis of vendor

optimizations must be shifted to low-level kernels, where they can really make a di�erence in

tailoring code to speci�c processors. If a standard interface is used for the kernels, the portable

upper layers can easily be implemented by a library writer resulting in better eÆciency.

7. Results

The performance results on three di�erent architectures are now presented to demonstrate

the e�ectiveness of the techniques that are discussed in this paper. All results are for double

precision 
oating point arithmetic. Costs of conversion between di�erent storage formats are

not accounted for in the performance numbers.

The systems used for experimentation include an SGI Challenge 10000, a Compaq

AlphaServer and an Intel Pentium III machine, the details of which and the experimentation

environment are provided in Table 8. Note that although the machines are multiprocessor

systems, the code is purely sequential. The Pentium III (PIII) system is a locally assembled

white box dual processor machine and uses a ASUS P2B-D motherboard with Intel 440BX

chipset9. These results are representative of the processor families covered, which includes

9Minor variations in performance could be expected for systems having the same processor, but built using
di�erent system components.



HIGH-PERFORMANCE MATRIX MULTIPLICATION 31

modern RISC and CISC processor architectures. The source code for all implementations

presented in this section is available for download from the authors' project web site [63].

7.1. Standard Complexity Algorithms

First, the performance of the various standard complexity matrix multiplication algorithms |

regular iterative, recursive and oscillating iterative | with both variants of the hierarchical

storage format are evaluated. The results on the di�erent platforms are shown in Figures 8

and 9. One algorithm-variant combination that has the least signi�cance is left out in each

graph to reduce the clutter.

Except on the Alpha, variants 1 and 2 of the storage format make a clear distinction in

performance. Variant 2 has better performance on the SGI, while variant 1 performs better

on the PIII. On the Alpha, both variants have nearly the same performance with a slight

advantage in favor of variant 1. The performance overhead associated with bounds checking

in variant 1 is almost negligible because it is carried out at the level of Morton ordered blocks,

which are usually three to four orders of magnitude fewer than matrix elements. Since variant 1

does not use any �x-up code, its code size is smaller than that of variant 2. Again, the I-cache

e�ects of this di�erence is not big enough to cause any signi�cant performance impacts on the

machines under study. The performance di�erence between the two variants that is observed

here can be mostly attributed to how well the compiler can adapt the code for each variant to

the underlying architecture.

The performance of the di�erent algorithms for a given variant of the storage format is

usually nearly the same for small and medium sized matrices. The performance di�erence

becomes more pronounced for larger matrices. As expected, only for large matrices does the

improved locality properties o�ered by the oscillating iterative and the recursive algorithms

become dominant. The recursive algorithm using variant 2 of the storage format is the overall



32 V. VALSALAM AND A. SKJELLUM

best performer on the SGI. The oscillating iterative algorithm performs best for most matrix

sizes on the Alpha and the PIII, with the recursive algorithm dominating in some cases.

The traditional iterative algorithm is often the worst performer for large matrices, although

it is highly competitive with the other algorithms for small matrices. Another characteristic

of the traditional iterative algorithm that can be seen in the graphs is the short drops in

performance it displays when the matrix size is close to large powers of two (e.g., 2048 and

4096) or sum of large powers of two (e.g., 3072 = 1024 + 2048). Note that these performance

drops are minor compared to similar e�ects seen for the vendor-supplied (SGI) BLAS and

ATLAS in the next section. After the drop, the performance starts climbing back up again as

the matrix size is increased. These performance drops are because of the linear data referencing

pattern of the iterative algorithm that causes cache con
icts for matrix sizes that are closely

related to powers of two in the above manner. The oscillating iterative algorithm mitigates

these performance dips because of the better locality o�ered by its two-miss property. The

recursive algorithm is free from such variations and possesses the smoothest graph, since its

data accesses match the Morton ordering inherent in the storage format. However, recursion

introduces some performance penalties because of function call overhead and the need to use

non-cache-optimal level-one block sizes for better recursion performance which counteract the

algorithm's locality bene�ts. The net result of these opposing e�ects could be in favor of or

against recursion depending on the characteristics of the speci�c platform and matrix size.

This explains its performance relative to the iterative algorithms being better or worse as a

function of matrix size and machine type.

The results indicate the need for polyalgorithms to ensure optimal performance for all matrix

sizes on a given platform because a single algorithm cannot provide the best performance under

all execution conditions. The results also show that variations of the hierarchical storage format

need to be supported for optimal performance across di�erent platforms. This implies the



HIGH-PERFORMANCE MATRIX MULTIPLICATION 33

need for a software environment that provides storage format independence and polyalgorithm

capabilities for the implementation of high-performance linear algebra codes.

7.2. Comparisons with Other Methods

Now the best performer on each machine is chosen from the previous section and is compared

with other matrix-multiplication strategies and implementations in Figures 10 and 11. The

results show that the hierarchical formulation beats the matrix multiply provided by highly

tuned linear algebra libraries such as ATLAS [12, 13, 28] on all platforms that were studied.

Vendor-optimized BLAS implementation of DGEMM is included in the comparisons for the SGI.

The implementations of Chatterjee's [25] and Gustavson's [20] methods, making use of native

(vendor-supplied) BLAS or ATLAS for computing the block matrix products are listed as

well10. The apparent MFLOPS of the Strassen{Winograd algorithm implemented inside the

hierarchical framework is also presented. In fact, the performance numbers of Chatterjee's

method are also in terms of apparent MFLOPS since extra computations are done on padded

elements. The version of ATLAS used here is 3.0Beta.

The superior performance resulting from the hierarchical formulation is evident from the

graphs. The standard complexity matrix multiplication based on the hierarchical framework

is signi�cantly faster than ATLAS on the SGI for matrices larger than 1500 and on the Alpha

for matrices larger than 2700. It matches performance with native BLAS on the SGI, without

the performance anomalies and 
uctuations seen for the latter. The ATLAS and native BLAS

performance curves sometimes experience sudden dips at or near power-of-two matrix sizes

(e.g., 2048 for the SGI and 4096 for the Alpha) because of cache interference e�ects. Use of

10The authors had to implement Chatterjee's and Gustavson's algorithms themselves because of the evident
absence of such implementations in the public domain. Extreme care has been taken to implement these
algorithms as precisely as described in their respective papers. The current authors make the source code for
their implementations publicly available through their project web site [63] so that the research community
has access to these codes for further study and objective comparisons.



34 V. VALSALAM AND A. SKJELLUM

the hierarchical storage format eliminates such e�ects and smoothes out the performance

curves due to its inherent recursive Morton ordering, which reduces cache con
icts. The

performance di�erence between column-major storage as used in ATLAS and the hierarchical

storage becomes more pronounced as matrix size increases. Performance of ATLAS decreases

signi�cantly in most cases with increasing matrix size, whereas the hierarchical formulation

keeps performance steady because of its better locality across all levels of the memory hierarchy

that reduces paging and TLB misses, in addition to cache misses, for large matrices. ATLAS

and native BLAS use (multi-level) blocking to enhance locality, which is sometimes good

enough to rival Morton ordered performance, as in the case of the SGI BLAS.

Since the lower arithmetic complexity of Strassen's algorithm is asymptotic in nature, the

performance bene�ts are apparent only for large enough matrices. The additional memory

requirement and the non-localized memory access pattern of Strassen, combined with the

fact that multiplying small matrices does not lead to a signi�cant savings in operation count

results in poorer performance for small matrices. The point at which Strassen{Winograd starts

to run faster than standard complexity algorithms is dependent on the machine. The Alpha

and the SGI, with their large caches (see machine descriptions in Table 8) help Strassen

to outperform the other algorithms even for reasonably small matrices. The crossover point

is delayed further on the PIII because of its small primary and secondary caches. Despite

its clear dominance over standard matrix multiplication for large matrix sizes, Strassen's

algorithm may not be suitable for certain applications because of its vulnerability to roundo�

error when small o�-diagonal elements are combined with large diagonal elements [39, 53].

Where numerically applicable, the results shown here have widened the range over which

its performance is better than the conventional algorithm. For example, using native DGEMM

as the basis for comparison, the Strassen{Winograd implementation presented here performs

much better than that reported by Chatterjee, et. al. in [25], especially in terms of minimizing

their wide performance 
uctuations. The hierarchical formulation, combined with the variable



HIGH-PERFORMANCE MATRIX MULTIPLICATION 35

recursion cuto� criterion presented in this paper contributes to the enhanced performance

characteristics of Strassen obtained here.

When the problem size exceeds the amount of main memory available, performance drops

sharply for all algorithms, as seen in the case of the Pentium III, whose 512MB of RAM

starts becoming insuÆcient for matrix sizes greater than 4500. For Strassen, the performance

starts to degrade much earlier, when the matrix size is close to 4000 because of the additional

temporary storage that the algorithm requires.

The block multiplications inside the recursive algorithms used by Chatterjee and Gustavson

are performed by calling DGEMM of native BLAS, if available, or ATLAS11. This is an important

factor limiting their full performance potential since a generalized DGEMM implementation

cannot provide good performance when called repeatedly for multiplying the small block

matrices. Some DGEMM implementations may use techniques such as data copying, which could

turn out to be detrimental to performance in this setting. The approach adopted here of

addressing processor-speci�c issues by means of a specialized kernel that is small and does not

have the overheads associated with the fat interface of DGEMM is essential for constructing an

optimal matrix-multiplication routine.

This e�ect is evidenced by the next set of graphs, Figures 12 and 13, that shows performance

of Gustavson's and Chatterjee's algorithms using the authors' low-level kernels for block

products in place of DGEMM. The replacement of calls to DGEMM with calls to the low-level

kernels results in signi�cant performance improvement for Gustavson on all platforms. On the

SGI and the Alpha performance of Gustavson now matches the algorithms implemented in

the hierarchical storage formats. However, on the PIII, a signi�cant gap still exists between

Gustavson and the authors' hierarchical code, apparently because the overhead of Gustavson's

recursive formulation has a greater impact on the PIII. Chatterjee's algorithm behaves

11
DGEMM is used for computing the block products because both Chatterjee and Gustavson mention its use in

their respective papers [20, 25].



36 V. VALSALAM AND A. SKJELLUM

di�erently than Gustavson when DGEMM is replaced with the low-level kernels | performance

worsens on the SGI and the PIII, but improves on the Alpha. This behavior can be primarily

attributed to the interaction between the blocking factors chosen by Chatterjee's algorithm

[19, 25] and the kernels. The block sizes chosen by Chatterjee lie in an architecture-dependent

range de�ned by [Tmin; Tmax] and are a function of the matrix size. On the SGI and the PIII,

block sizes chosen in this fashion are evidently less optimal for the low-level kernel, resulting

in poorer performance compared to the use of DGEMM. The e�ect is reverse on the Alpha.

The wild performance 
uctuations exhibited by Chatterjee's method is evidently because

of the extra computations on padded matrix elements. The performance of the hierarchical

formulation is also better than that reported by Wise for SGI platforms in [44] (using the

performance of vendor-supplied BLAS as the basis for comparison).

7.3. Summary of Results

To summarize, the results presented here validate the performance bene�ts associated with

the use of the proposed framework for the construction of matrix-multiplication codes. The

framework involves a hierarchical storage format, polyalgorithms and optimized processor-

speci�c kernels. In addition to enabling various algorithms to approach their full performance

potential, the hierarchical storage format minimizes performance 
uctuations and maintains

performance steady with matrix size (predictable performance) because of its good locality

properties. This storage format also allows various iterative and recursive algorithms, including

Strassen, to be implemented eÆciently as evidenced by the results. This capability to support

polyalgorithms is important because a single algorithm does not usually perform optimally

for all problem sizes and platforms, as has been demonstrated. The excessive padding used in

Chatterjee's algorithm and the extra computation performed on padded portions of the matrix

makes it sub-optimal and imparts undesirable 
uctuations to its performance graph. The

results also show that iterative algorithms can perform as well as and sometimes even better



HIGH-PERFORMANCE MATRIX MULTIPLICATION 37

than recursive algorithms if eÆcient techniques are used, such as for address calculation and

for maintaining locality. Performance of Strassen's algorithm has been improved by devising

a variable recursion cuto� point, which when used within the hierarchical storage formulation

removes performance anomalies and enhances overall performance. The need to use a kernel

that is tuned to the speci�c processor architecture is also emphasized by the results. As already

mentioned, the full performance potential of the kernels have not been achieved in the current

implementation. Therefore, there is room for further performance enhancements across the

entire spectrum of matrix sizes.

8. Conclusions and Future Work

A simple conceptual framework is presented in this paper to guide the construction of high-

performance matrix-multiplication codes. The framework makes use of a hierarchical storage

format that is designed to eÆciently handle storage of arbitrary-sized matrices in Morton order,

enhancing locality and providing opportunities for signi�cant improvements in performance.

When the storage format is combined with a well-written algorithm and an optimized kernel

tuned to speci�c processors, the proposed techniques yield matrix multiplication routines that

either surpass or match the performance of highly optimized libraries such as ATLAS and

other competing methodologies reported in the literature (e.g., Chatterjee, et. al. [25]) on all

platforms studied, which included three di�erent representative RISC and CISC architectures.

Incorporating other optimization techniques such as prefetching and ATLAS-like automatic

search of parameter space may lead to even more improvements in performance. The authors'

strategy also produces performance curves that are smooth, unlike Chatterjee's method that

has radical swings in performance. The smoothness is indicative of optimization being good

and balanced. This also improves predictability of performance with respect to matrix size.

The hierarchical storage format supports various algorithms eÆciently including variations

of iterative, recursive and Strassen. The oscillating iterative algorithm presented here improves



38 V. VALSALAM AND A. SKJELLUM

cache behavior by incorporating the optimal two-miss property for consecutive block products.

The iterative algorithms are shown to be highly competitive with the recursive algorithm and

even faster in some cases, debunking the view expressed by some researchers [20, 25] that the

storage format should match the algorithm for optimal performance. Use of Strassen with the

hierarchical format, along with the variable recursion cuto� criterion devised here have widened

the usefulness of Strassen by providing enhanced performance with minimal 
uctuations. The

results presented here also show that a single algorithm is not suitable for all matrix sizes

and machine architectures for performance reasons. A polyalgorithmic approach is, therefore,

required for obtaining the best possible performance.

An important conclusion that arises out of the current work is the need for standardizing

kernel interfaces12 so that platform vendors and independent software providers can specialize

in optimizing kernels to speci�c processors, which can then be utilized by library developers

to write portable high-performance code eÆciently. It is to be noted here that BLAS DGEMM is

not suitable for use as a kernel because of its fat interface and the overheads associated with

a generalized implementation of matrix multiply.

Source code for all the implementations presented here is available at the project web

site [63]. Gustavson's and Chatterjee's algorithms were evidently not publicly available from

their respective authors, which necessitated the independent implementation presented here

to evaluate their performance relative to other competing methods. The current authors have

strived to implement them as eÆciently as they could, paying attention to every detail by

following the description of the algorithms available in the published literature. By making

the source code for these as well as the other implemented algorithms publicly available, the

authors provide the scienti�c community with an infrastructure to facilitate further studies

and comparisons on an objective basis without having to re-implement them. Porting the code

12Note that these kernel routines are designed to operate on small blocks, often �xed-size, that �t in the L1
cache.



HIGH-PERFORMANCE MATRIX MULTIPLICATION 39

to other platforms and comparing their performance with other techniques and algorithms are

encouraged.

As part of future work, the hierarchical storage format and related techniques will be

applied to other linear algebra operations such as matrix factorizations (e.g., LU) that have

high enough complexity to bene�t from this approach. An object-oriented framework will

be designed to encapsulate the ideas presented here, including polyalgorithms and storage

format independence, in a format that can easily be used by numerical math libraries and

applications for enhanced performance. EÆcient methods for parallelizing algorithms in the

hierarchical formulation will be investigated. The design of kernel interfaces for various linear

algebra operations will also be undertaken.

ACKNOWLEDGEMENTS

The authors wish to thank Robert van de Geijn at the Department of Computer Sciences, The

University of Texas, Austin and anonymous others for their input that contributed to improvements

in the paper. Acknowledgments are also due to Yoginder Dandass at the Department of Computer

Science, Mississippi State University for valuable discussions that enabled clari�cation of certain

sections of this paper.

REFERENCES

1. Michael Wolfe. Iteration space tiling for memory hierarchies. In Proceedings of the Third SIAM Conference

on Parallel Processing for Scienti�c Computing, December 1987.

2. K. A. Gallivan, W. Jalby, U. Meier, and A. H. Sameh. Impact of hierarchical memory systems on linear

algebra algorithm design. The International Journal of Supercomputer Applications, 2(1):12{48, 1988.

3. Robert Schreiber and Jack Dongarra. Automatic blocking of nested loops. Technical Report CS-90-108,

Department of Computer Science, University of Tennessee, May 1990.

4. Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. The cache performance and optimizations of

blocked algorithms. In Proceedings of the Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS IV), April 1991.



40 V. VALSALAM AND A. SKJELLUM

5. Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In Proceedings of the ACM

SIGPLAN 1991 Conference on Programming Language Design and Implementation, June 1991.

6. D. Chen. Hierarchical blocking and data 
ow analysis for numerical linear algebra. In ACM Int. Conf.

Supercomputing, pages 12{19, 1991.

7. R.C. Agarwal, F.G. Gustavson, and M. Zubair. Exploiting functional parallelism of POWER2 to design

high-performance numerical algorithms. IBM Journal of Research and Development, 38(5):563{576,

September 1994.

8. Juan J. Navarro, Toni Juan, and Tomas Lang. MOB forms: A class of multilevel block algorithms for

dense linear algebra operations. In International Conference on Supercomputing, pages 354{363, 1994.

9. Gene Golub and Charles Van Loan. Matrix Computations, chapter 1, pages 43{46. The Johns Hopkins

University Press, Third edition, 1996.

10. Jack Dongarra, Jeremy Du Croz, Iain Du�, and Sven Hammarling. A set of level 3 basic linear algebra

subprograms. ACM Transactions on Mathematical Software, 16(1):1{17, March 1990.

11. Basic linear algebra subprograms (BLAS). http://www.netlib.org/blas/ Date of access: May 31, 2001.

12. R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical optimization of

software and the ATLAS project. Technical report, University of Tennessee, September 2000.

http://www.netlib.org/atlas/ Date of access: May 31, 2001.

13. Automatically tuned linear algebra software (ATLAS). http://netlib2.cs.utk.edu/atlas/ Date of access:

May 31, 2001.

14. D. Aberdeen and J. Baxter. Emmerald: a fast matrix-matrix multiply using Intel SIMD technology.

Concurrency: Practice and Experience. To appear. http://csl.anu.edu.au/ daa/research.html Date of

access: May 31, 2001.

15. John Gunnels, Greg Henry, and Robert van de Geijn. A family of high-performance matrix multiplication

algorithms. Technical report, Department of Computer Science, The University of Texas, Austin, 2001.

16. MIPSpro family of compilers. http://www.sgi.com/developers/devtools/languages/mipspro.html Date of

access: May 31, 2001.

17. Hans Sagan. Space Filling Curves. Springer{Verlag, 1994.

18. J. D. Frens and D. S. Wise. Auto-blocking matrix multiplication or tracking BLAS3 performance with

source code. In Proceedings of the 6th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, June 1997.

19. Siddhartha Chatterjee, Alvin Lebeck, Praveen Patnala, and Mithuna Thottethodi. Recursive array layouts

and fast parallel matrix multiplication. In Proceedings of the 11th ACM Symposium on Parallel Algorithms

and Architectures (SPAA '99), June 1999.

20. Fred Gustavson, Andr�e Henriksson, Bo K�agstr�om, and Per Ling. Recursive blocked data formats and

BLAS's for dense linear algebra algorithms. In 4th International Workshop on Applied Parallel Computing



HIGH-PERFORMANCE MATRIX MULTIPLICATION 41

in Large Scale Scienti�c and Industrial Problems (PARA '98), number 1541 in Lecture Notes in Computer

Science, pages 195{206. Springer{Verlag, June 1998.

21. Fred Gustavson. Recursion leads to automatic variable blocking for dense linear algebra algorithms. IBM

Journal of Research and Development, 41(6):737{755, November 1997.

22. B.S. Andersen, F. Gustavson, A. Karaivanov, J. Wasniewski, and P.Y. Yalamov. Lawra - linear

algebra with recursive algorithms. In Proceedings of the Conference on Parallel Processing and Applied

Mathematics, pages 63{76, September 1999.

23. F. Gustavson and I. Jonsson. Minimal-storage high-performance Cholesky factorization via blocking and

recursion. IBM Journal of Research and Development, 44(6):823{849, November 2000.

24. Fred G. Gustavson. New generalized data structures for matrices lead to a variety of high performance

algorithms. In Proceedings of the IFIP TC2/WG2.5 Working Conference on the Architecture of Scienti�c

Software, October 2000.

25. Siddhartha Chatterjee, Vibhor Jain, Alvin Lebeck, Shyam Mundhra, and Mithuna Thottethodi. Nonlinear

array layouts for hierarchical memory systems. In Proceedings of the 13th ACM International Conference

on Supercomputing (ICS '99), June 1999.

26. Je� Bilmes, Krste Asanovi�c, Chee-Whye Chin, and Jim Demmel. Optimizing matrix multiply using

PHiPAC: A portable, high-performance, ANSI C coding methodology. In Proceedings of the International

Conference on Supercomputing, July 1997.

27. Je� Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. The PHiPAC v1.0 matrix-multiply

distribution. Technical Report UCB/CSD-98-1020, CS Division, University of California at Berkeley,

October 1998.

28. R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra software (ATLAS). Technical

report, University of Tennessee, July 1997.

29. Jeremy Siek and Andrew Lumsdaine. The matrix template library: A generic programming approach to

high performance numerical linear algebra. In Proceedings of the International Symposium on Computing

in Object-Oriented Parallel Environments (ISCOPE), December 1998.

30. Jeremy Siek and Andrew Lumsdaine. The matrix template library: A unifying framework for numerical

linear algebra. In Proceedings of the 12th European Conference on Object-Oriented Programming, July

1998. Workshop on Parallel Object-Oriented Scienti�c Computing (POOSC '98).

31. The matrix template library (MTL). http://www.lsc.nd.edu/research/mtl/ Date of access: May 31, 2001.

32. L. Birov, A. Proko�ev, Y. Bartenev, A. Vargin, A. Purkayastha, Y. Dandass, V. Erzunov, E. Shanikova,

A. Skjellum, P. Bangalore, E. Shuvalov, V. Ovechkin, N. Frolova, S. Orlov, and S. Egorov. The parallel

mathematical libraries project (PMLP): Overview, design innovations and preliminary results. In Fifth

International Conference on Parallel Computing Technologies (PACT '99), number 1662 in Lecture Notes

in Computer Science, pages 186{193. Springer{Verlag, September 1999.



42 V. VALSALAM AND A. SKJELLUM

33. Lubomir Birov, Yuri Bartenev, Anatoly Vargin, Avijit Purkayastha, Anthony Skjellum, Yoginder Dandass,

and Purushotham Bangalore. The parallel mathematical libraries project (PMLP) { a next generation

scalable, sparse, object-oriented, mathematical library suite. In Proceedings of the Ninth SIAM Conference

on Parallel Processing for Scienti�c Computing, March 1999.

34. The parallel mathematical libraries project (PMLP). http://WWW.ERC.MsState.Edu/labs/hpcl/pmlp/

Date of access: May 31, 2001.

35. V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354{356, 1969.

36. IBM Corporation. Engineering and scienti�c subroutine library (ESSL).

http://www.rs6000.ibm.com/software/Apps/essl.html Date of access: May 31, 2001.

37. IBM Corporation. Engineering and scienti�c subroutine library (ESSL) for AIX: Guide and reference,

version 3 release 2. http://www.austin.ibm.com/resource/aix resource/sp books/essl/ Date of access: May

31, 2001.

38. R. Brent. Algorithms for matrix multiplication. Technical Report CS 157, Computer Science Department,

Stanford University, Palo Alto, California, U.S.A., 1970.

39. Nicholas Higham. Exploiting fast matrix multiplication within the level 3 BLAS. ACM Transactions on

Mathematical Software, 16(4):352{368, December 1990.

40. C. Douglas, M. Heroux, G. Slishman, and R. M. Smith. GEMMW: a portable level 3 BLAS Winograd

variant of Strassen's matrix-matrix multiply algorithm. Journal of Computational Physics, 110:1{10,

1994.

41. Steven Huss-Lederman, Elaine M. Jacobson, Jeremy R. Johnson, Anna Tsao, and Thomas Turnbull.

Implementation of Strassen's algorithm for matrix multiplication. In Proceedings of Supercomputing '96,

November 1996.

42. V. Paul Pauca, Xiaobai Sun, Siddhartha Chatterjee, and Alvin R. Lebeck. Architecture-eÆcient Strassen's

matrix multiplication: A case study of divide-and-conquer algorithms. In Proceedings of the International

Linear Algebra Society (ILAS) Symposium on Algorithms for Control, Signals and Image Processing,

June 1997.

43. Mithuna Thottethodi, Siddhartha Chatterjee, and Alvin R. Lebeck. Tuning Strassen's matrix

multiplication for memory eÆciency. In Proceedings of Supercomputing '98, November 1998.

44. David Wise. Ahnentafel indexing into morton-ordered arrays, or matrix locality for free. In European

Conference on Parallel Computing, Euro-Par 2000, number 1900 in Lecture Notes in Computer Science,

pages 774{784. Springer{Verlag, August 2000.

45. Jin Li, Anthony Skjellum, and Robert Falgout. A poly-algorithm for parallel dense matrix multiplication

on two-dimensional process grid topologies. Concurrency: Practice and Experience, 9(5):345{389, 1997.

46. John Gunnels, Calvin Lin, Greg Morrow, and Robert van de Geijn. A 
exible class of parallel matrix

multiplication algorithms. In Proceedings of First Merged International Parallel Processing Symposium



HIGH-PERFORMANCE MATRIX MULTIPLICATION 43

and Symposium on Parallel and Distributed Processing (IPPS/SPDP '98), pages 110{116, 1998.

47. R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar. A three-dimensional approach to

parallel matrix multiplication. IBM Journal of Research and Development, 39(5):575{582, 1995.

48. Vinod Valsalam and Anthony Skjellum. Fast integer dilation for structured problems. Technical Report

MSSU-COE-ERC-00-05, Engineering Research Center, Mississippi State University, Mississippi 39762,

U.S.A., March 2000.

49. G�unther Schrack. Finding neighbors of equal size in linear quadtrees and octrees in constant time. CVGIP:

Image Understanding, 55(3):221{230, May 1992.

50. David Wise and Jeremy Frens. Morton-order matrices deserve compilers' support. Technical Report 533,

Department of Computer Science, Indiana University, Bloomington, Indiana 47405-4101, U.S.A., November

1999.

51. Computational plant (Cplant). http://www.cs.sandia.gov/cplant/ Date of access: May 31, 2001.

52. Stocco L and Schrack G. Integer dilation and contraction for quadtrees and octrees. In Proceedings of

the IEEE Paci�c Rim Conference on Communications, Computers, and Signal Processing, May 1995.

53. Gene Golub and Charles Van Loan. Matrix Computations, chapter 2, pages 66{67. The Johns Hopkins

University Press, Third edition, 1996.

54. B. Kumar, C.-H Huang, P. Sadayappan, and R. W. Johnson. A tensor product formulation of Strassen's

matrix multiplication algorithm. Scienti�c Programming, 4(4):275{289, 1995.

55. P. Fischer and R. Probert. EÆcient procedures for using matrix algorithms. In Automata, Languages and

Programming, number 14 in Lecture Notes in Computer Science, pages 413{427. Springer{Verlag, 1974.

56. Steven Huss-Lederman, Elaine M. Jacobson, Jeremy R. Johnson, Anna Tsao, and Thomas Turnbull.

Strassen's algorithm for matrix multiplication: Modeling, analysis and implementation. Technical Report

CCS-TR-96-147, Center for Computing Sciences, 1996.

57. Anthony Skjellum and Purushotham Bangalore. Draft document for the BLAS Lite speci�cation.

Department of Computer Science, Mississippi State University, February 1997.

58. Andrew Lumsdaine, Anthony Skjellum, and Purushotham Bangalore. The multicomputer toolbox project

BLAIS working note #0: Standard sequential mathematical libraries: Promises and pitfalls, opportunities

and challenges. Department of Computer Science, Mississippi State University, May 1996.

59. Jeremy Siek and Andrew Lumsdaine. A rational approach to portable high performance: The basic linear

algebra instruction set (BLAIS) and the �xed algorithm size template (FAST) library. In Proceedings

of the 12th European Conference on Object-Oriented Programming, July 1998. Workshop on Parallel

Object-Oriented Scienti�c Computing (POOSC '98).

60. John Gunnels, Robert van de Geijn, and Greg Henry. Formal linear algebra methods environment

(FLAME) overview. Technical report, The University of Texas at Austin, November 2000. FLAME

Working Note #1.



44 V. VALSALAM

61. Bruce Greer and Greg Henry. High performance software on Intel Pentium Pro

processors or micro-ops to TeraFLOPS. In SC97 Conference Proceedings, 1997.

http://www.supercomp.org/sc97/proceedings/TECH/GREER/INDEX.HTM Date of access: May

31, 2001.

62. Fred G. Gustavson, Andr�e Henriksson, Isak Jonsson, Bo K�agstr�om, and Per Ling. Superscalar GEMM-

based level 3 BLAS - the on-going evolution of a portable and high-performance library. In Applied Parallel

Computing in Large Scale Scienti�c and Industrial Problems (PARA), Lecture Notes in Computer Science,

No. 1541, pages 207{215, 1998.

63. Vinod Valsalam and Anthony Skjellum. Linear algebra based on hierarchical extension of recursive

orderings (LAB-HERO). http://www.hpcl.cs.msstate.edu/lab-hero/ Date of access: May 31, 2001.



V. VALSALAM 45

0 1

6

54

2 3 7

8

10 11

12 13

14 15

9

16 17

18 19

20 21

22 23

24 25

27

28 29

30 31

32 33

34 35

36 37

38 39

40 41

42 43

44 45

46 47

48 49

50 51

52 53

54 55

56 57

58 59

60 61

62 63

26

Figure 1. Morton (Z) order.



46 V. VALSALAM

9

10 11

12 13

14 15

1

0

0

8

0 1 2 3

76

54

3

10

0

1 3

2

2

0 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3

1

54

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

1 2

3 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

10

32

10

32

10

000000

0

4

Level 1

Level 2

Level 4

Level 3

Figure 2. An example construction of the four levels of the hierarchical storage format for matrices
showing the ordering of submatrices in the di�erent levels.



V. VALSALAM 47

71 75 76 77 81 82 83

51 52 53 57 58 59 147 148 149 153 154 155 171 172 173 177 178 179

48 49 50 54 55 56 144 145 146 150 151 152 168 169 170 174 175 176

39 40 41 45 46 47 135 136 137 141 142 143 159 160 161 165 166 167

36 37 38 42 43 44 132 133 134 138 139 140 156 157

70

162 163 164

27 28 29 33 34 35 100 101 105 106 107 123 124 125 129 130 13199

24 25 26 30 31 32 102 103 104 120 121 122 126 127 12896 97 98

15 16 17 21 22 23 111 112 113 117 118 11987 88 89 93 94 95

12 13 14 18 19 20 108 109 110 114 115 11684 85 86 90 91 92

6965646311109543

80797874

158

7372686766626160876210

Figure 3. An example construction of the four-level hierarchical matrix storage format showing the
ordering of matrix elements in memory.



48 V. VALSALAM

C21

p

C
p-1

C11

p

C22

p

C12

p

A
p-1

A21

p

A11

p

A22

p

A12

p

B21

p

B11

p

B22

p

B12

p

B
p-1

Cp
11 = Ap

11B
p
11 hip = ip�1; jp = jp�1; kp = kp�1i

+ Ap
12B

p
21 hip = ip�1; jp = jp�1; kp = kp�1 + bi

Cp
12 = Ap

11B
p
12 hip = ip�1; jp = jp�1 + b; kp = kp�1i

+ Ap
12B

p
22 hip = ip�1; jp = jp�1 + b; kp = kp�1 + bi

Cp
21 = Ap

21B
p
11 hip = ip�1 + b; jp = jp�1; kp = kp�1i

+ Ap
22B

p
21 hip = ip�1 + b; jp = jp�1; kp = kp�1 + bi

Cp
22 = Ap

21B
p
12 hip = ip�1 + b; jp = jp�1 + b; kp = kp�1i

+ Ap
22B

p
22 hip = ip�1 + b; jp = jp�1 + b; kp = kp�1 + bi

Figure 4. Determination of the i, j and k block indices for the quadrant products in the recursive
algorithm. At level p, there are b blocks in each dimension of a quadrant.



V. VALSALAM 49

BAC

Figure 5. Access pattern of matrix elements for the oscillating iterative algorithm. The dashed arrows
indicate the order in which elements are accessed when a 2� 3 matrix is multiplied by a 3� 2 matrix.



50 V. VALSALAM

0 1000 2000 3000 4000 5000

Matrix size

250

300

350

400

450

A
pp

ar
en

t M
F

LO
P

S

Fixed block size
Variable (before correction)
Variable (after correction)

Figure 6. Performance of Strassen with �xed block size and variable block sizes before and after
correction on an SGI R10k.



V. VALSALAM 51

Top Level
Control Structure

Iterative Oscillating
Iterative

Recursive Strassen

Kernel

Figure 7. Software architecture of matrix-multiplication framework.



52 V. VALSALAM

[htb]
0 1000 2000 3000 4000 5000

Matrix size

270

280

290

300

310

320

M
F

LO
P

S

Iterative, Variant 1
Recursive, Variant 1
Iterative, Variant 2
Recursive, Variant 2
Oscillating, Variant 2

Challenge 10000

Figure 8. Performance of the various standard complexity matrix-multiplication algorithms
utilizing the hierarchical storage format on the SGI Challenge 10000. The recursive algorithm
using variant 2 of the hierarchical format o�ers the best performance. The regular iterative
algorithm, although the worst performer in general, is highly competitive with the other

algorithms for matrices smaller than 3000.



V. VALSALAM 53

[htbp]

0 1000 2000 3000 4000 5000
Matrix size

710

720

730

740

750

760

M
F

LO
P

S

Iterative, Variant 1
Recursive, Variant 1
Oscillating, Variant 1

Iterative, Variant 2
Recursive, Variant 2

AlphaServer DS20

0 1000 2000 3000 4000 5000
Matrix size

340

360

380

400

420

M
F

LO
P

S

Iterative, Variant 1
Recursive, Variant 1
Oscillating, Variant 1

Iterative, Variant 2
Oscillating, Variant 2

Pentium III

Figure 9. Performance of the various standard complexity matrix-multiplication algorithms
utilizing the hierarchical storage format on the Compaq AlphaServer DS20 and the Pentium III.
On the PIII, variant 1 of the hierarchical format performs better than variant 2. The same trend
is also visible on the Alpha, although not as pronounced. The oscillating iterative algorithm

has the best performance on both machines for most matrix sizes.



54 V. VALSALAM

[t]
0 1000 2000 3000 4000 5000

Matrix size

200

250

300

350

400

450

500

M
F

LO
P

S

Recursive, Variant 2
Strassen-Winograd

Native BLAS
ATLAS
Gustavson
Chatterjee

Challenge 10000

Figure 10. Performance of the standard complexity matrix multiplication and Strassen's algorithms
in the hierarchical framework compared with other implementations on the SGI Challenge 10000.
The hierarchical code for the standard complexity algorithm matches native BLAS performance
and beats ATLAS comfortably for large matrices. The hierarchical code has a steady performance
curve unlike that of native BLAS, ATLAS and Chatterjee. The relative performance of Strassen's

algorithm increases steadily with matrix size, over the range considered.



V. VALSALAM 55

[htbp]

0 1000 2000 3000 4000 5000
Matrix size

300

400

500

600

700

800

900

1000

1100

1200

1300

M
F

LO
P

S

Oscillating, Variant 1

Strassen-Winograd

ATLAS
Gustavson
Chatterjee

AlphaServer DS20

0 1000 2000 3000 4000 5000
Matrix size

200

250

300

350

400

450

500

550

M
F

LO
P

S

Oscillating, Variant 1

Strassen-Winograd

ATLAS
Gustavson
Chatterjee

Pentium III

Figure 11. Performance of the standard complexity matrix multiplication and Strassen's
algorithms in the hierarchical framework compared with other implementations on the Compaq
AlphaServer DS20 and the Pentium III. The hierarchical code for the standard complexity matrix
multiplication beats ATLAS on the Alpha and the PIII machines also, albeit narrowly for certain
matrix sizes. Chatterjee's method shows wild 
uctuations, evidently because of extra computations
performed on padded zero elements. Performance of Strassen on the PIII is not as good as that on
the other platforms tested here because of the smaller cache and main memory on the system.



56 V. VALSALAM

[t]
0 1000 2000 3000 4000 5000

Matrix size

200

250

300

350

400

450

500

M
F

LO
P

S

Recursive, Variant 2
Gustavson
Chatterjee

Challenge 10000

Figure 12. Performance of Gustavson's and Chatterjee's algorithms using the authors' kernels in
place of DGEMM on the SGI Challenge 10000. An algorithm implemented in the hierarchical framework
is also shown for reference. Gustavson's performance increases as a result of the replacement of
DGEMM with the low-level kernels. But Chatterjee's performance worsens, evidently because of their

particular technique for the selection of block sizes.



V. VALSALAM 57

[htbp]

0 1000 2000 3000 4000 5000
Matrix size

300

400

500

600

700

800

900

1000

1100

1200

1300

M
F

LO
P

S

Oscillating, Variant 1

Gustavson
Chatterjee

AlphaServer DS20

0 1000 2000 3000 4000 5000
Matrix size

200

250

300

350

400

450

500

550

M
F

LO
P

S

Oscillating, Variant 1

Gustavson
Chatterjee

Pentium III

Figure 13. Performance of Gustavson's and Chatterjee's algorithms using the authors' kernels in
place of DGEMM on the Compaq AlphaServer DS20 and the Pentium III. An algorithm implemented
in the hierarchical framework is also shown in each case for reference. Gustavson shows signi�cant
improvements in performance on both machines because of the replacement of DGEMM with the
low-level kernels. Chatterjee, on the other hand, shows small improvements on the Alpha, but has
poorer performance on the PIII. This behavior is evidently because of their particular choice of

blocking factors.



58 V. VALSALAM

Table I. Details of the systems used for experimentation.

SGI Challenge 10000 XL
Processor: 195MHz R10000
Peak MFLOPS: 390
Cache: 32KB data, 32KB instruction, 2MB secondary
Main Memory: 2GB
OS: Irix 6.5
Compiler: MIPSpro Compilers 7.3

Options: -r10000 -O3 -64 -TARG:platform=IP25

-LNO:blocking=OFF

-OPT:alias=typed

Options for kernel: Same as above

Compaq AlphaServer DS20
Processor: 500MHz Alpha 21264
Peak MFLOPS: 1000
Cache: 64KB data, 64KB instruction, 4MB secondary
Main Memory: 768MB
OS: Linux 2.2.12
Compiler: gcc version 2.95.2

Options: -O3 -funroll-all-loops

Options for kernel: -O1 -mcpu=ev6 -mmemory-latency=1

-fschedule-insns

-fschedule-insns2 -fexpensive-optimizations

Dual Intel Pentium III System
Processor: 550MHz Pentium III
Peak MFLOPS: 550
Cache: 16KB data, 16KB instruction, 512KB secondary
Main Memory: 512MB
OS: Linux 2.2.14
Compiler: gcc version 2.95.2

Options: -O3 -funroll-all-loops -fomit-frame-pointer

Options for kernel: -O1 -fexpensive-optimizations


