
 1

Parallel Implementation of the Fluid Particle Model for Simulating Complex
Fluids in the Mesoscale

Krzysztof Boryczko, Witold Dzwinel

AGH Institute of Computer Science, al. Mickiewicza 30, 30-059, Kraków, Poland

David A.Yuen1
Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55415-

1227, USA

Abstract

Dissipative particle dynamics (DPD) and its generalization – the fluid particle model (FPM) - represent

the “fluid particle” approach for simulating fluid-like behavior in the mesoscale. Unlike particles from

molecular dynamics (MD) method, the “fluid particle” can be viewed as a “droplet” consisting of liquid

molecules. In FPM, “fluid particles” interact by both central and non-central, short-range forces with

conservative, dissipative and Brownian character. In comparison to MD, FPM method in 3-D requires two

to three times more memory load and three times more communication overhead. Computational load per

step per particle is comparable to MD due to the shorter interaction range allowed between “fluid

particles” than between MD atoms. The classical linked-cells technique and decomposing the

computational box into strips allow for rapid modifications of the code and for implementing non-cubic

computational boxes. We show tha t the efficiency of the FPM code depends strongly on the number of

particles simulated, geometry of the box, and the computer architecture. We give a few examples from

long FPM simulations involving up to 8 million fluid particles and 32 processors. Results from FPM

simulations in 3-D of the phase separation in binary fluid and dispersion of colloidal slab are presented.

Scaling law for symmetric quench in phase separation has been properly reconstructed. We show also that

the microstructure of dispersed fluid depends strongly on the contrast between kinematic viscosities of this

fluid phase and the bulk phase. This FPM code can be applied for simulating mesoscopic flow dynamics

in capillary pipes or critical flow phenomena in narrow blood vessels.

Keywords: fluid particles, parallel algorithm, checker-board periodic boundary conditions, phase

separation, dispersion, blood flow simulation

Submitted to: Concurrency: Practice and Experience, November 2001

1 corresponding Author, Minnesota Supercomputing Institute, University of Minnesota, 1200 Washington Av. South, Minnesota, 55415-1227,

USA e-mail: davey@krissy.msi.umn.edu fax: 612 624 8861

 2

1 Introduction

Dynamical processes occurring in the mesoscopic fluids involve many disparate spatio-temporal scales,

from microscopic interactions of discrete particles, thermal fluctuations, multiphase mixing and large-

scale disturbances. The implementations of these well-known computational techniques such as:

1. molecular dynamics (MD), used in in large-scale simulations [1-7],

2. finite element methods (FEM), employed in direct numerical simulations (DNS) [8-10],

are still too demanding and, in many cases, they are not adequate for resolving fine enough features at the

mesoscale.

In the last decade we have witnessed the rapid growth in new approaches for modelling multi-

scale phenomena. They are the grid techniques (Lattice-Boltzmann Gas- LBG, cellular automata [11,12]

and the meshless fluid particle methods (DPD-dissipative particle dynamics [13] SPH- smoothed particle

hydrodynamics, [14,15], direct simulation Monte-Carlo [16]). The fluid particle can be viewed physically

as a “droplet” consisting of liquid molecules with an internal structure and with some internal degrees of

freedom.

The fluid particle methods have at least four important advantages over the grid techniques.

1. The dynamics of fluid particles develop over continuum space in real time, thus allowing for realistic

visualization and physical understanding.

2. Within the context of cross-scaling systems they are homogeneous with both microscopic molecular

dynamics and macroscopic smooth particle hydrodynamics techniques [17]. The transition from

discrete to continuum model is not necessary.

3. The methods employing fluid particles are also homogeneous within the context of solid-liquid

simulations for which both solid and liquid are represented by particles [18,19].

4. They are also homogeneous from implementation point of view. Well-known sequential and parallel

algorithms from MD simulations can be employed directly.

In [19-23] we demonstrate that the dissipative particle dynamics (DPD) [13] - the method employing fluid

particles - fits very well for simulating multi-resolution structures of complex fluids . Typical examples of

complex fluids with large molecular structure include miscellar solutions, microemulsions and colloidal

suspensions such as blood, ink, milk, fog, paints, magma melts with long silicate chains, and waste

products [24].

For complex fluids the gap in the spatio-temporal scales between the smallest microstructures and

the largest structures is much smaller than for simple fluids. In [19,22,23] we show that by using moderate

number of particles we can simulate in two dimensions multi-resolution structures ranging from micelles,

micellar arrays, colloidal agglomerates and large-scale instabilities induced by the global flow. For

 3

realistic modeling of multi-resolution structures in three dimensions, the large-scale simulations involving

hundreds of processors working in parallel are necessary for covering the same spatio-temporal scales, as

those employed in current high-resolution 2-D simulations.

Fluid particle model (FPM) [17] is a generalization of dissipative particle dynamics method. The

FPM method is computationally more intensive than DPD and MD for a constant interaction range.

However, FPM has an advantage over DPD for larger scales, in which the fluid particles are adequately

large and can interact only with their closest neighbors. In such a case DPD is less efficient because many

more particles than for FPM should be involved for creating a drag between the DPD particles. Therefore,

we can expect that FPM will enable the eventual simulation of complex fluids in 3-D, with reasonable

resources of parallel systems, which are operating in the multi-job mode.

First, we will describe the FPM model. Then we present a parallel algorithm for FPM and discuss

its efficiency. We then define the boundary conditions of the code. Next, the paralle l clustering procedure

for detection of multi-resolution structures is presented. We then show the results of tests from the FPM

simulations of phase separation in binary mixture and dispersion of colloidal slab in an elongated

computational box. Finally, we summarize our findings and discuss the prospects of employing the FPM

parallel algorithm in realistic large-scale simulations, such as flow in constricted blood vessels [25].

2. Fluid particle model

The equations of fluid dynamics describe the motion of mass in both time and space. Particle methods are

based on the idea of simulating a fluid flow as a flow of particles, which interact by short-range forces.

The total mass is subdivided into a finite number of small mass packets, which are called particles. Their

structure is described by particles mass distribution φ i>0. The particles can move independently of each

other. The total mass density is given by:

() ()∑
=

−=
N

i
i txtx

1

))(, rφρ (1)

For point-like particles, φ i is the Dirac delta function. The temporal evolution of the particle system is then

described by the equations of motion for the particle position r(t). Fluid particle model (FPM) described

here, differs from dissipative particle dynamics (DPD) by Hoogerbrugge and Koelman [13,17,26]. The

fluid particles can rotate in space and should be understood as comparatively big mass packets, though

they are still particles in the sense of statistical mechanics. The forces of interaction between the particles

are pair forces of a finite range, unlike in smoothed particle dynamics (SPH) [14,15], and a broad class of

particle methods [27] where they are derived in a canonical manner from the force laws of continuum

 4

mechanics and are directly based on a regularized stress tensor. SPH cannot be applied to the study of

mesoscopic system in the Brownian realm, because the implementation of Lagrangian fluctuating

hydrodynamics with SPH is not a trivial problem.

The fluid particles [17] are represented by their centers of mass, which posses several attributes, as

mass mi, position ri, translational and angular velocities and type. The “droplets” interact with each other

by forces dependent on the type of particles. This type of interaction is a sum of conservative force FC,

two dissipative components FT and FR and the Brownian forceF~ , that is:

ij
R

ij
T
ij

C
ijij FFFFF ~+++= (2)

The Fij force components are defined by:

() ijij
C

ij rV eF ⋅′−= (3)

ijij
T
ij m vTF •⋅−= γ (4)

()





 +×•⋅−= jiijij

R
ij m ϖϖγ rTF

2
1 (5)

() () [] () ij
A

ijijij
S

ijijij drCdtr
D

rBdrAdt eW1WWF •




 ++= ~1~~~ σ (6)

where:

rij – is a distance between particles i and j, rij = ri – rj is a vector pointing from particle i to particle j and

e ij=rij/rij, D – is the model dimension, dt – is the timestep, γ - scaling factor for dissipation forces, ω -

angular velocity, dWS, dWA, tr[dW]1 - are respectively the symmetric, antisymmeric and trace diagonal

random matrices of independent Wiener increments and A(r), B(r), C(r), () () ()rCrBrA
~

,
~

,
~

,V’(r) –

functions dependent on the separation distance r=rij. Tij – is dimensionless matrix given by:

() () ijijijijij rBrA ee1T += (7)

1 – is the unit matrix.

As shown in Español [17], the single component FPM system yields the Gibbs distribution as the steady-

state solution to the Fokker-Planck equation under the condition of detailed balance, i.e.,

mTkB ⋅= γσ 22 (8)

where: T – is the temperature of particle system, k B – the Boltzmann constant.

As a consequence, it obeys the fluctuation dissipation theorem, which defines the relationship between the

normalized weight functions, which are chosen such that:

() () ()[] () () ()[] () ()[] ,~~
2
1~~1 ,~~

2
1 222222 rCrArArB

D
rBrCrArA −+−=+=

 (9)

 5

For the dissipative particle dynamics (DPD) method A(r)=0, consequently () () ()rCrBrA ~,~,~
=0 and

V’(r)∝B(r), which means that all the DPD forces are central.

The non-central force in FPM, which is proportional to the difference between particle velocities,

introduces an additional drag lacking in the DPD model. The non-central force results also in additional

rotational friction given by Eq.(5).

The temporal evolution of the particle ensemble obeys the Newtonian laws of motion:

()∑
<

=
cutij rrj

iiiij
i

i m ;

,,1 ϖνrFv& ii vr =& (10)

()∑
<

=
cutij rrj

iiiij
i

i I ;

,,
1

ϖνϖ rN& ijijij FrN ×−=
2
1

 (11)

The FPM method can predict the transport properties of the fluid, thus allowing one to adjus t the model

parameters by using the equations of continuum limit for the partial pressure P [13]:

()
D

rrVdn
P

⋅

⋅
= ∫

2

'r
 (12)

and formulas in kinetic theory [17] for respectively bulk viscosity νb, shear viscosity νS and rotational

viscosity νR:

()00

2
2

2 1
2

2
2 BADn

cB
D

D
D

A
nb +⋅

+



 +

+⋅=
γ

γν
 (13)

()00

2
2

2

2
1

22
1

BAn
cB

A
nS +

+



 +⋅=

γ
γν (14)

2
2nA

R

γ
ν = (15)

where:

m
Tk

c B=2 (16)

and

())(
2

1
 ,)(

1
),(

1
 ,)(2

2
2

200 ∫∫∫∫ +
==== rBrd

DD
BrArd

D
ArBd

D
BrAdA rrrr (17)

The kinetic theory for FPM has been developed for deriving transport coefficients by assuming that

conservative forces are absent. For non-zero pressures, the transport coefficients computed from Eqs.[13-

 6

15] can be used as the first approximation in an iterative procedure, which matches the coefficients of the

FPM forces.

Unlike in SPH - the angular momentum is conserved exactly in FPM. The model can be

physically interpreted as a Lagrangian discretization of the non-linearly fluctuating hydrodynamic

equations.

3. Numerical realization

3.1 Decomposition of computational box

We consider here an isothermal two-dimensional system, which consists of M particles. The particle

system is simulated within a rectangular box. The particles of uniform or various types can be distributed

randomly in the box, i.e., this multi-component system can be perfectly mixed initially, or separated by a

sharp interface (stratified, circle, rectangular, random shape). The particles defined by mass mi, position ri,

velocity v i and angular velocity ωi interact with each other via a two-body, short ranged forces given by

Eqs.(3-6).

We assume that the weight functions (Eqs.(6-7)) satisfy the conditions imposed. Due to the choice

allowed by the model in selecting the weight functions, we assume that:

() () () () 








−

⋅
⋅Π−=′








−

⋅
===

cutcutcutcut r
r

nr
rV

r
r

nr
rBrArA 1

3
 ,1

2
15

 ,0
~

3

2

3 ππ
 (18)

where, rcut – is a cut-off radius, which defines the range of FPM particle interactions. For rij>rcut, Fij=0.

The first assumption is recommended in [17]. We postulate the rest of weight functions the same as in

DPD [13,26]. Due to additional drag between particles caused by the non-central interactions, we can

reduce the computational load by assuming that the interaction range is shorter than for DPD fluid.

As shown in Fig.1, the box is divided onto cubic cells of the edge size lC~rcut. For multi-

component fluid with different interaction ranges we assume that lC~maxk(rcut,k), where k means the kind

of interaction. The forces are computed by using O(M) order link-list scheme [28]. The force on a given

particle includes contribution from all the particles that are closer than rcut and which are located within

the cell containing the given particle or within the adjacent cell (see Fig.1).

Parallel computing requires decomposing the computation into subtasks and mapping them onto

multiple processors. The total volume of the box is divided into P overlapping subsystems of equal

volume, and each subsystem is assigned to a single processor in a P processors array. By using SPMD

paradigm (single program multiple data), commonly used for MD code parallelization, each processor

 7

follows an identical predetermined sequence to calculate the forces on the particles within assigned

domain.

Among many parallel implementations of molecular dynamics code [1,3,5,6,29] two approaches for

particles redistribution between processors are employed.

1. The box is sliced along one coordinate and divided up onto identical sub-boxes (see Fig.1).

2. The system is partitioned into a mesh of sub-boxes in x, y and z directions.

The particle positions and velocities from cells, which are situated on the boundaries between processor

domains, are copied to the neighboring processor (see Fig.1). Thus the number of particles located in the

boundary cells defines the communication overhead. Let us assume that:

1. The system is confined in a box elongated in z direction and the x,y cross-section of the box is a

square of unit area.

2. The number of processors P, the system size and the length of the box Lz>>1 are constant.

3. The box is partitioned along z-axis onto processor domains.

For this case, the communication overhead tstrips, which is proportional to the area of the interface between

processor domains, is constant and equal to 1. Let us assume that the box is partitioned additionally into n2

-mesh of identical sub-boxes on x,y plane. The communication cost tbox for n>1 is proportional to the area

of walls (only half of them) of a single sub-box and is equal to 2Lz/(P/n2)⋅1/n + 1/n 2. For sufficiently long

boxes with L>>1 the ratio of two overheads ϕ=tbox/tstrips=[2Lz/(P/n2)]⋅1/n + 1/n2 is greater than 1. This

means that the communication overhead is lower - and consequently calculation communication ratio

higher - for the first method consisting in slicing the box onto strips along z coordinate. The value of ϕ is

less than one for more regular computational boxes, e.g., a cubic computational box for which P∼n3 and

Lz=1. In this case the second partition method dividing the box onto cubic sub-domains is better.

Slicing the box along the z-axis considerably simplifies the routing of messages and enables sending

them in unblocking way. Each processor sends the message only in one direction to its closest neighbor.

The load balancing is easier and consists in shifting the boundaries of processor domains along one

direction, while for the second method the load balancing schemes are very complex requiring irregular

mesh. In Fig.2 we present the sequence of computation and communication procedures invoked in

parallel implementation of FPM code.

Many parallel implementations of molecular dynamics codes employ neighbor tables for each particle

for speeding-up the evaluation of forces. This increases considerably the memory requirements,

communication overheads and makes the code more complex. Fluid particle model (FPM) has two-four

times greater memory requirements than codes for molecular dynamics. Besides the positions and forces

in highly optimized parallel codes for large-scale MD [3] (minimum 6 arrays), additional arrays must be

allocated such as: the angular and translational velocitie s, torques and replicated arrays for velocities

 8

needed for integrating Newtonian equations of motion (see Eqs.(21-24)), that is, minimum 24 arrays.

Moreover, the random number generator is invoked 4 times for computation of Brownian forces for each

pair of interacting particles.

Therefore, the speed-up expected from application of neighbor tables can be compromised due to the

effect of frequent cache misses resulting from its overload. The particles from boundary cells “cached” on

the neighboring processors and those migrating from one processor to another must be updated every

timestep (see Fig.2). Unlike in MD, the FPM forces (see Eqs.3-6) depend not only on the particle positions

but also on translational and angular velocities. Moreover, besides reaction forces, the reaction torques

must be updated. Thus, the communication overhead is almost three times greater for FPM than for MD.

Because FPM fluid particle interacts only with their closest neighbors, the number of interactions per

particles is smaller by factor of 4.5 than for a standard MD code. However, the number of arithmetic

operations involved for evaluation of FPM interactions is greater, at least by the same factor, than for

calculating the Lennard-Jones forces in MD code. Thus, we may expect that computational load per

particle should be similar for these two cases. Summarizing, the high memory load in FPM will result in:

1. greater communication overhead,

2. more frequent occurrence of cache misses,

than in standard implementations of MD method in multiprocessor environment (e.g., in [3,5]).

3.2 Temporal evolution of fluid particles

Integration of the Newtonian equations of motion in the fluid particle model is more complex than in MD

and DPD codes. From Eqs.(3-6,10-11) we note that the forces and torques depend not only on particle

positions (as in MD) and translational velocity (as in DPD case) but also on angular velocities. Moreover,

due to the random Brownian force, the equation of motion are stochastic differential equations (SDE).

Numerical integration of SDE by using classical Verlet scheme [30] generates large numerical errors [31]

and artifacts, e.g., resulting in unacceptable temperature drift with simulation time. Therefore,very small

timesteps should be used to obtain a reasonable approximation to the thermodynamical quantities. On the

other hand, predictor-corrector numerical schemes are both very time and memory consuming, which for

high memory load for FPM will result in additional overheads. Therefore, we have decided to employ

extrapolation schemes, which we used successfully in our 2-D MD-DPD and MD-FPM codes [19]. The

schemes are as follows:

 9

()∑
<

−+ ∆+=
cutij rrj

n
i

n
i

n
iij

i

n

i

n

i m
t

;

2
1

2
1

~,~, ϖvrFvv (19)

()13/22/12/1 2 −−−+ −
∆

+−= n
i

n
i

i

n
i

n
i

n
i I

t
NNϖϖϖ (20)

()∑=
cutij rrj

n
i

n
i

n
iij

n
i

,;

~,~, ϖvrNN (21)









−=

−+
+ 2

1

2

1
1 3

2
1~ n

i

n

i
n
i vvv 








−=

−++ 2
1

2
1

1 3
2
1~ n

i

n

i
n
i ϖωϖ (22)

t
n

i
n
i

n
i ∆⋅+=

++ 2
1

1 vrr (23)

To assure the numerical stability of the particle system, Eq.(11) representing the conservation of angular

momentum is integrated by using the scheme of order o(∆t4) (see Eq.(20)). The coordinates of vectors

?v ~,~ in Eqs.(19,21) are extrapolated by using Adams-Bashfoth o(∆t2) scheme (see Eqs(22)).

The size of the timestep ∆t should be estimated from the characteristic time scales for both

rotational and translational motion. The mean collision time τcol defines the time scale for the translational

motion, which is given by:

rel
col v

λτ = (24)

where <vrel> is a relative velocity, λ- is the characteristic length scale, which is equal to the average

distance between particles.

Both the quality and numerical stability of the model can be estimated from the temporal behavior

of the thermodynamic temperature Tth and dimensionless pressure δ=kB⋅T/(P/n). As shown in Fig.3, the

temperature Tth of the system, computed as the average kinetic energy of the FPM particle systems,

fluctuates no more than 1.5% percent. Its average differs from the temperature T assumed (computed from

detailed balance Eq.(8)) on about 0.1%. For comparison, at the similar simulation conditions (but in 2-D)

and the same timestep, the equilibrium temperature Tth for DPD simulation of phase separation obtained

in [31] is roughly twice its input value. The temperature drift (upward or downward, depending on the

hardware and compiler used) caused by the round-off error, which is apparent for large number of

timesteps, we have greatly reduced by using 64 bit compiler. The value of δ, which represents the

reciprocal of partial pressure Pth of FPM fluid computed from the viral theorem [30], can also be

approximated accurately by the Eq.(12) (see Fig.3).

 10

3.3 Boundary conditions

Periodic boundary conditions (PBC) simulate the system of unlimited number of interacting particles by

limited number of interacting lattices where each of them stands for a particle and its replicas. When the

distance between a particle and its nearest image is too short, long wavelength phenomena are cut and

their energy is passed to the shorter waves, which go through the box generating numerical artifacts.

Moreover, the commonly used computational box shape, such as rectangular prism, makes the system

highly anisotropic. In [32,33] the minimum image convention is presented for non-cubic boxes such as

truncated octahedron, rhombic dedocahedron and hexagonal prism. In spite of the more symmetric

geometry and savings in CPU time due to increase of the nearest image distance, the non-cubic boxes are

still not popular in particle simulations. There are at least two basic problems with non-cubic boxes for

simulating large particles ensembles.

1. Non-cubic boxes involve non-cubic cells in the linked-cells algorithm. This makes the code very

clumsy (especially in 3-D) due to greater number of walls, edges and vortices in non-cubic cells

than for cubic ones, thus involving complicated nearest image convention schemes [33].

2. Domain decomposition is difficult for non-cubic boxes.

In [34], a method for uniformization of the periodic box shape for small particle system was presented. As

shown in Figs.4a,b, the periodic box can be divided onto two, black and white, rectangles of the same size.

Unlike for the periodic square, the box replicas are shifted creating checker board picture (see Fig.4). For

properly selected box sizes Lx, Ly and Lz one can reproduce different shapes. For example, the periodic

hexagon can be simulated assuming that Lx/Ly=1/√3 (see Fig.4a) while the box with Lx=1, Ly=1 and

Lz=2 (see Fig.4b) corresponds to periodic rhombic dodecahedron [34].

In Fig.5 we compare the largest circles inscribed in a hexagonal and square boxes of the same

area, which diameter represent the distance between a particle and its nearest image. Diameter of the circle

inscribed in hexagon is about 7% greater than in the square. In three dimensions, the sphere inscribed in a

rhombic dodecahedron is 15% larger than the largest sphere inscribed in a cubic box of the same volume.

For keeping the same distance between the particles and their nearest images, one can employ periodic

rhombic dodecahedron with particle ensemble 40% smaller than those for the cubic box.

The possibility of application of linked-lists method with cubic cells for non-cubic periodic boxes

is the great advantage of using the checker-board PBC. Below we present the translation scheme for

renumbering the cell coordinates: Nx, Ny and Nz, from the border of the computational box by replicating

periodic rombic dodecahedron.

 11

ix = INT ((float(Nx)/N) +1) - 1
iy = INT ((float(Ny)/N) +1) - 1
iz = INT ((float(Nz)/N) +1) + INT (float (Nz)/N) – INT (float(Nz)/(2*N)) – 2
iz = iz * [(abs(ix) + abs (iy) +abs(iz) – 1) mod 2]

Nx = Nx – N*ix
Ny = Ny – N*iy
Nz = Nz – N*iz

The parallel code for the checker board periodic boundary conditions is relatively easy to implement by

assuming that the box is decomposed by segmenting it along x or y coordinate. For boxes elongated in z

direction, such the decomposition will increase communication time due to thin layers of domains and

larger interface area between neighboring processor domains. Slicing the box along z-axis (see Fig4b)

may generate even more serious problems with communication. The processors will communicate not

only with their neighboring processors, as it is for periodic rectangle shown in Fig.1, but also with the

distant processors. In this situation, communication time may depend strongly on the architecture and

memory access time of the parallel system.

 For simulating the flow in an elongated and periodic capillary, we have employed the hexagonal

prism PBC shown in Fig.4a. The checker board PBC are realized only on x,y plane. This preserves more

circular shape of the capillary section than for a periodic rectangular prism and allows us to employ the

same strategy of domain decomposition as shown in Fig.1. We simulate the box with circular section in

x,y plane with reflecting or dissipative boundaries in x and y directions by filling white space in Fig.5 with

heavy or motionless particles.

3.4 Clustering procedure

The patterns created in macrosopic flows, for which a homogeneous physical process dominates in

multiple spatio-temporal scales, have typically self-similar fractal structures. In [19-23] we show that the

strong heterogeneities of the flow in the mesoscale co-produce complex multiresolution patterns [24]. The

creation of micelles, colloidal arrays, colloidal agglomerates and large-scale instabilities in fluid are the

consequence of the competition between two coupled non-linear processes: global motion of particle

ensembles and local interactions between particles. These multiscale structures are complex due to the

inflexibility of the description level with varying scale of observation. The detection of particle clusters

for controlling their temporal behavior represents a very important aspect in visualizing and extracting the

complex patterns.

 12

We have solved the problem for detecting clusters by using efficient O(M) algorithm inscribed in

parallel structure of FPM code. The algorithm is based on the mutual nearest neighborhood (MNN)

concept. The algorithm is outlined as follows:

1. Find the list Li of K nearest neighbors j of each particle i in Rclust radius and sort out the list in

ascending order according to the distance between i and j particles. Thus Li(k)=j and k is the position

of the particle j in the list. This procedure can be performed in parallel along with computation of

forces in FPM code. To reduce the communication overhead, we use the parallel clustering algorithm

off-line after simulation.

2. Assuming that Li(k)=j and Lj(m)=i, compute MNN(i,j) distances defined as: MNN(i,j) =m+k . The

maximum MNN distance is less than 2K.

3. Begin a classical agglomerative clustering algorithm (e.g., nearest linkage [35]) with the linked-lists

concept, starting from the smallest MNN(i,j)=2 value.

4. This is terminated upon reaching the greatest value of MNN.

The value of Rclust should be somewhat larger than the spacing between particles in aggregates (Rclust

≈0.2-0.3× rcut), and K value should be between 3-8. In Fig.6 we show the clusters of complicated shape

from non-linear aggregation process. This event is detected by using MNN algorithm [35].

3.5 Tests for computational efficiency

The FPM code was written in FORTRAN 95 and was implemented on the MPI interface for both the IBM

SP and SGI/Origin 3800 platforms. We performed our tests on IBM SP with WinterHawk+ nodes

consisting of 4 Power3+/375MHz processors with 4GB of memory per node. For comparison we present

the benchmarks for SGI/Origin 3800 system with R14000/500 CPUs.

Our tests were performed in production run mode, sharing communication switch with other users.

The maximum number of nodes we use was 8 (4 CPUs per node) both for IBM SP and for SGI/Origin

3800. The timings obtained for parallel jobs we compare with the CPU time measured for the serial

version of the FPM code. The periodic rectangular prism was decomposed along z axis (see Fig.1). The

test parameters are summarized in Table 1.

In Fig.7a we depict the CPU times and speed-ups obtained for fixed number of particles

(M=1,048,576). The speed-ups for parallel runs refer to the CPU time per step per particle measured for

the serial version of the FPM code. Each point on the plots represents the average from ten runs and the

first 100 timesteps of simulation. The superlinear speed-up observed in Fig.7a results directly from the

 13

cache. For pfpm0 and pfpm0_origin runs, the box is very thin. By increasing the number of processors,

the fraction of computations involving cache increases (the number of cache misses decreases). The cache

effect is more distinct for IBM SP machine with Power3+ CPUs, whose cache size is smaller (4MB) than

that of the R14000 processor (8MB).

Making the computational box wider in x,y plane and proportionally shorter in z direction (in

pfpm1 the number of cells remains the same as in pfpm0) the communication overhead increases

proportionally to the increase of the interface area between processor domains. Moreover, the cache

misses become more frequent. Because the particles that are the physical neighbors should also be closer

one another in the computer memory, to avoid frequent cache misses the particles are renumbered every

some period of time. In result the particles residing in the same cell have consecutive numbers. However,

the gap between particle numbers still exists for the particles from different cells. This is due to the

sequential numbering of particles in domains. Let us assume that the particles are numbered first along x,

then y and finally z directions. By increasing 4 times the sizes of computational box in x,y plane, the gap

between particle numbers from the ne ighboring cells in z-direction increases also 4 times. Thus, the

respective r, v and ω coordinates of two interacting particles from these cells can be very distant in

memory generating cache misses.

For 32 processors we observe a decrease in the speed-up for all the tests. This is caused by the

small number of cell layers residing in processor domains and the degradation of

computation/communication ratio. When decomposition goes along the shorter side of the box (fpmy),

this overhead is much larger.

 In Fig.7b we compare the two scalable runs performed on IBM SP and SGI/Origin 3800

computers. The number of particles increases proportionally to the number of CPUs, from 500,000 to 16

millions on 32 processors. The computational box increases only in one (z) direction. This keeps the

communication overhead constant, due to unblocking and bi-directional communication between domains.

For larger number of CPUs than 8, we observed the rapid degradation of code performance on IBM SP

machine. This may come from communication delay between processors belonging to different IBM SP

frames, which involve switches between the frames. The network is shared between other users. The

machine remains very busy. Thus communication between processors from different frames (supernodes)

may be much slower than in a single node or inside the frame.

From Fig.7b we find that our code runs more than 2 times faster on a single R14000/500 processor

than on Power3+/375. This effect can be a combination of two factors: greater peak performance of MIPS

processor (1 Gflops, i.e., about 30% more than Power3) attained by implementing a new MIPS-IV 64-bits

instruction set and aggressive optimization strategy of f90 compiler. We expect, however, that the second

factor is crucial in the case of FPM model. As shown in [43], for parallel version of clustering procedure it

 14

appeared that IBM SP is two times faster than SGI/Origin 3800 in spite of a slower clock speed. However,

in the case of clustering the code has much modest memory requirements and is much simpler than for

FPM model, which involves time consuming floating point computations of interparticle forces and many

nested loops.

For the number of nodes greater than 2, the FPM code achieves better scalability with the number

of CPUs on SGI/Origin 3800 than on IBM SP. This difference is not observed for parallel clustering [43]

involving only 10% of memory requirements and communication bandwidth of those demanded by the

FPM code. Therefore, better scalability of FPM code on SGI/Origin 3800 must be the consequence of

faster communication between nodes on the SGI machine than on IBM SP. IBM SP is a distributed

memory machine, while SGI/Origin 3800 is ccNUMA (cache coherent non uniform memory access)

machine with virtual shared memory and with highly optimized distant memory calls. They must be

optimized due to the calls to the slow, distant memory are the main source of the overheads on ccNUMA

systems. The FPM code, which employs MPI communication interface, uses both the high memory

bandwidth of ccNUMA architecture and the procedures which forces locality of the data by placing

neighboring domains on neighboring processors. However, for very long boxes, the calls to distant

memory from extreme processors, can produce overheads observed in Fig.7b.

5. Simulation results

In the FPM code we employ dimensionless program units collected in Table 2. We set arbitrary partial

pressure P - defined in Eq.(12) - divided by the number density n, as a reference point for computing the

energy unit δ. Larger value of δ means the greater contribution of thermal fluctuations. The scaling

coefficient Π for conservative FPM forces (Eqs.3,18) can be computed directly from Eqs.(12). It is

responsible for the compressibility of FPM fluid and is chosen such that the FPM particle system exhibits

liquid ordering (see [21]). The scaling factor for dissipative forces (Eq.4,5) is computed from the value of

Ω (see Table 2), which stands for the dimensionless kinematic viscosity of FPM particle system [36]. This

value represent the ratio of the time taken by a particle covering rcut distance at the thermal velocity c and

the time γ-1 associated with friction. The value of σ - scaling factor for Brownian forces - is computed

from the detailed balance equations Eqs.(8).

We present here sampling simulation results obtained by using FPM parallel code from:

1. Phase separation (symmetric quench) in binary fluid.

2. Dispersion of colloidal slab in an elongated pipe.

4.1 Phase separation

 15

The growth kinetics of binary immiscible fluid and phase separation in two dimensions have been

investigated with dissipative particle dynamics by Coveney and Novik [31]) and Dzwinel and Yuen [21].

It was shown that time-dependent growth of average domain size R(t) in two dimensions, follows

algebraic growth laws of the form R(t)=tβ where β=1/2 for Brownian regime and 2/3 for inertial regime.

In the absence of Brownian diffusion of interfaces and droplets the growth proceeds by the Lifshitz-

Slyozov mechanism [37] and the power-low index β is set to 1/3.

We have simulated two immiscible FPM particle fluids in 3-D assuming that the particles are

perfectly mixed at the beginning of simulation. We define [21] the immiscibility factor to be ∆P=P1-P1,2

where P1=P2 are the partial pressures in fluid 1 and 2 respectively. The value of P1,2 denotes the pressure

computed from Eq.(12) for scaling factor Π1,2 of conservative forces between two types of particles

representing different fluids. Important property of detailed balance for multi-component DPD particle

ensemble is satisfied as for one-component system [38]. Here we presume that this is also valid for the

FPM. In Table3 we display the principal physical and numerical parameters employed in the simulations.

As we have depicted in Fig.8, in 3-D FPM the lamellar phase resulting from the Lifshitz-Slyozov

mechanism (β =1/3) [31,37] can be observed in the initial stages of separation. The lamellas are destroyed

quickly by the thermal fluctuations. The value of β changes to 1 for the diffusive regime and β =2/3 for an

average domain size greater than hydrodynamic length. From FPM simulation of phase separation - shown

in Fig.9 - we have obtained the three regimes and additional one with β =1/2, which was observed before,

but only in two dimensions.

4.2 Dispersion of colloidal slab

The principal parameters for the simulations of the slab accelerated in the periodic hexagonal prism,

elongated in z direction are presented in Table. 4. The particle system consists of two types of particles

with the same size. The particles forming initially a rectangular slab are accelerated in a solvent, which is

made up of particles, which are 5 times lighter.

In Fig.10 we present the snapshots from FPM simulations and the results from clustering, which

reveal cluster structures creating during dispersion. As shown in Fig.11, this structure changes depending

on the viscosity contrast between slab ΩS and bulk of fluid ΩS. The slab shape resembles a comet in

appearance for ΩB=10 and ΩS=100 with the dense cluster in the tip and the tail consisting of smaller

structures.

For ΩB=ΩS=100, the head of slab becomes distinctly smaller and clusters create the streaks at the

end of the tail. In the case of higher viscosity in the bulk fluid (ΩB=100 and ΩS=10), the head of slab

 16

disappears and smaller clusters collectively create long streaks by the large shear developed along the flow

field.

5 Conclusions

Fluid particle model (FPM) is a very interesting physical paradigm, which can be used successfully for

simulating mesoscopic fluid dynamics. The deployment of fluid particles in realistic 3-D cross-scaling

simulations requires resolving a few fundamental issues.

1. Scale matching - matching particle interactions to the properties of simulated fluid in the

spatio-temporal scale under interest.

2. Coupling – combining particles of different types and length-scale (e.g., defining interactions

between them)

3. Scales bridging – defining the rules of splitting fluid particles into particles from larger to

smaller spatio-temporal scale and combining them vice versa. The problem with multiple

timestepping should be solved.

4. Implementation – efficient numerical implementation of the model in a parallel

environment.

In the paper we have discussed the last item. For investigating the structures of multiple scales created in

complex fluids, the problems of coupling and bridging can be partly overcome by the bottom-up approach.

This approach involves millions of particles and an efficient parallel code for simulating their temporal

evolution.

We have proposed here an algorithm for parallel implementation of the fluid particle model

(FPM) and we have presented the results of its implementation on the two parallel platforms of different

architecture. We have used distributed memory IBM SP machine and ccNUMA SGI/Origin 3800 system.

We have shown that due to much greater memory load than in classical parallel MD codes, the optimal

use of cache memory becomes crucial for obtaining efficient scalability of the parallel FPM code on the

IBM SP machine. Moreover, the slow communication between distant processors – assigned to the

extreme domains in an elongated computational box - results in a bad scalability of the code for the

number of nodes greater than 2 (i.e. 8 CPUs). The ccNUMA architecture of SGI/Origin 3800 appeared to

be more efficient than the IBM SP due to the different organization of the cache and a faster memory

access. We have obtained the speedup of 26 on 32 processors of SGI/Origin 3800. Further increase of

efficiency can be achieved by optimizing distant memory calls between domains located at the two ends

 17

of the elongated box. Our code executed on R14000/500 processor is more than 2 times faster than on

Power3+/375. This result is somewhat surprising in light of a higher peak performance of the Power3+

resulting from its 4-way architecture. In order to speed-up the calculations on IBM SP by reducing cache

misses, the particles that are the physical neighbors should also be close to one another in the operational

memory. Better scalability can be obtained by renumbering the particles in the neighboring cells and by

splitting up the loop in which the forces are evaluated.

However, constant tuning of the code can make it too complicated for rapid modifications because

of adjustment to the physics. This can increase considerably the design and testing time. Our parallel code

can be employed for production runs involving reasonable computational resources, i.e., up to 32

processors simulating about 20 million particles in 5,000-10,000 timesteps.

 The FPM code can be applied for simulating vascular fluid flow in capillary pipes [39] or blood

flow in small vessels. A periodic grid of long boxes fits well for modeling the flow in bunch of capillary

pipes carrying fluid by employing capillary forces. Blood flow in small vessels during a rapid heart-attack

or a rapid stroke developed by deep vein thrombosis require more complicated boundary conditions. The

computational boxes should have more complex shapes and also elastic boundaries. In this connection the

checker-board boundary conditions are helpful for reducing the superfluous space.

The axisymmetric pulsatile flows and flows subject to acceleration in blood vessels have been investigated

both experimentally and numerically for a long time (see e.g. [10,39–42]) by using Navier-Stokes

equations with proper substitution of the blood rheological properties. Up to now, there has not been much

progress made in the field concerning the flow interactions between the microstructural dynamics and the

larger-scale flow. The modelling of the dispersion of drugs and thrombosis along tiny blood vessels

demands a completely different approach.

Parallel implementation of the fluid particle model is also a good starting point for simulating the physical

and chemical processes involving nano to mesoscale structures, which are essential to critical phenomena

that govern the trapping and release of nutrients, contaminants and pathogens, such as anthrax .

Acknowledgments

We thank Professor Dr Jacek Kitowski from the AGH Institute of Computer Science and Dr Dan Kroll

from Minnesota Supercomputing Institute for their contribution to this work. Support for this work was

provided by the Energy Research Laboratory Technology Research Program of the Office of Energy

Research of the U.S. Department of Energy under subcontract from the Pacific Northwest National

Laboratory and partly by the Polish Committee of Scientific Reasearch (KBN), AGH Institute of

Computer Science and ACK Cyfronet, Kraków, Poland.

 18

6. References

1. Abraham F, Broughton, J, Q, Bernstein, N, Kaxiras, E. 1998. Spanning the Length Scales in

Dynamic Simulation. Computers in Physics1998; 12(6):538-546.

2. Alda W, Dzwinel W, Kitowski J, Moscinski J, Pogoda M, Yuen, D.A. 1998. Complex Fluid-

Dynamical Phenomena Modeled by Large-Scale Molecular Dynamics Simulations. Computers in

Physics 1998; 12(6):595-600.

3. Beazley D M, Lomdahl P S, Gronbech-Jansen N. Giles R, Tomayo P. 1996. Parallel Algorithms

for Short Range Molecular Dynamics. Annual Reviews of Computational Physics III. World

Scientific:Singapur, 1996; pp.119-175.

4. Holian B L, Ravelo R. 1995. Fracture Simulation Using Large-Scale Molecular Dynamics. Phys.

Rev. B 1995;51(17):11275-11285.

5. Moscinski J, Alda W, Bubak M, Dzwinel W, Kitowski J, Pogoda M, Yuen D. 1997. Molecular

Dynamics Simulations of Rayleigh-Taylor Instability, in: Annual Review of Computational

Physics, V, World Scientific:Singapur, 1997: pp.97-136.

6. Nakano A, Bachlechner M E, Campbell T, Kalia R K, Omaltchenko A, Tsuruta K, Vashishta P.

1998. Atomistic Simulation of Nanostructured Materials, IEEE Computational Sci. and

Engineering1998. October-December, 68-7.

7. Vashishta P, Nakano A. 1999. Dynamic fracture analysis. Computing in Science and Engineering

1999, Sept/October, 20-23.

8. Glowinski R, Pan T W, Hela T I, Joseph D D, Priaux J. 2000. A Fictitious Domain Approach to

the Direct Numerical Simulation of Incompressible Viscous Flow Past Moving Rigid Bodies:

Application to Particle Flow. University of Minnesota Supercomputing Institute Research Report,

UMSI 2000/68, April 2000.

9. Singh P, Joseph D D, Hesla T I, Glowinski R, Pan T-W. 2000. A distributed Langrange

multiplier/fictitious domain method for viscoelastic particulate flows, J. Non-Newtonian Fluid

Mech 2000; 91:165-188.

10. Taylor C A, Hughes T J R, Zarins C K. 1998. Finite element modeling of blood flow in arteries.

Meth.Appl. Mech. Eng.1998;158(1-2):155-196.

11. Chopard B, Droz M. Cellular Automata Modelling of Physical Systems. Cambridge University

Press, 1998.

12. Rothman D H, Zaleski S. Lattice-Gas Cellular Automata: Simple models of complex

hydrodynamics. Cambridge University Press, 1997.

 19

13. Hoogerbrugge P J, Koelman JMVA. 1992. Simulating Microscopic Hydrodynamic Phenomena

with Dissipative Particle Dynamics. Europhysics Letters1992;19(3):155-160.

14. Gingold R A, Monaghan J J. 1977. Smoothed particle hydrodynamics: theory and application to

non-spherical stars. Mon. Not. R. Astr. Soc . 1997;181:375-389.

15. Libersky L D, Petschek A G, Carney T C, Hipp J R, Allahdadi F A. 1993. High Strain Lagrangian

Hydrodynamics, J. Comp. Phys.1993;109(1):67-73.

16. Bird G A. Molecular Dynamics and the Direct Simulation of Gas Flow. Oxford Science

Publications: Oxford, 1994.

17. Español P. 1998. Fluid particle model. Physical Review E 1998; 57(3):2930-2948.

18. Dzwinel W, Alda W, Yuen D, A. 1999. Cross-Scale Numerical Simulations Using Discrete

Particle Models. Molecular Simulation 1999; 22:397-418.

19. Dzwinel W, Yuen D A. 2001. Dispersion of Colloidal Agglomerate Modelled by a Hybrid Fluid

Particle Model. University of Minnesota Supercomputing Institute Research Report UMSI

2001/23, accepted for publication in J. Colloid and Interface Sci., October 2001.

20. Dzwinel W, Yuen D A. 2001. Mixing Driven by Rayleigh-Taylor Instability in the Mesoscale

Modeled with Dissipative Particle Dynamics. International J. of Modern Physics C

2001;12(1):91-118.

21. Dzwinel W, Yuen D A. 2000. Matching macroscopic properties of binary fluid to the interactions

of dissipative particle dynamics. International Journal of Modern Physics C 2000;11(1):1-25.

22. Dzwinel W, Yuen D A. 2000. A two-level, discrete-particle approach for simulating ordered

colloidal structures. J. Colloid Interface Science 2000; 225(1):79-190.

23. Dzwinel W, Yuen D A. 1999. Dissipative particle dynamics of the thin-film evoluation in

mesoscale. Molecular Simulation 1999;22:369-395

24. Larson R G. The structure and Rheology of Complex Fluids. Oxford University Press:New York

1999.

25. Perkold K, Rappitsch G. 1995. Computer simulation of local blood flow and vessel mechanics in

a compliant carotid artery bifurcation model. J.Biomech.1995;28:845-856.

26. Marsh C, Backx G, Ernst M H. 1997. Static and dynamic properties of dissipative particle

dynamics, Physical Review E 1997; 56:1976.

27. Yserentant A. 1997. A new class of particle methods, Numerische Mathemetik 1997;76:87-109,

(1997)

28. Hockney R W, Eastwood J W. Computer Simulation Using Particles , McGraw-Hill Inc.1981.

29. Rapapport D C. The art of molecular dynamics simulation. Cambridge Univ.Press:Cambridge,

1995.

 20

30. Haile P M. Molecular Dynamics Simulation. Wiley:New York, 1992.

31. Coveney P V, Novik K E. 1996. Computer simulations of domain growth and phase separation in

two-dimensional binary immiscible fluids using dissipative particle dynamics. Physical Review E

1996;54(5):5134-5141.

32. Adams D,J. 1983. Alternatives to the periodic cube in computer simulation. CCP5 Information

Quarterly for Computer Simulation of Condensed Phases 1983; 10:30 (Informal Newsletter,

Daresbury Laboratory, England).

33. Smith W. 1989. The minimum image convention in non-cubic MD cell. CCP5 Information

Quarterly for Computer Simulation of Condensed Phases 1989;30:35 (Informal Newsletter,

Daresbury Laboratory, England).

34. Dzwinel W, Kitowski J, and Moscinski J. 1991. „Checker board” periodic boundary conditions in

molecular dynamic codes. Molecular Simulation 1991;7:171-179.

35. Jain D, Dubes R C. 1988. Algorithms for Clustering Data . Prentice-Hall Advanced Reference

Series, 1988.

36. Español P, Serrano M. 1999. Dynamical regimes in DPD. Phys.Rev.E 1999;59(6):6340-7.

37. Gonnella G, Orlandini E, Yeomans J M.1997. Spinodal Decomposition to a Lamellar, Phase:

Effects of Hydrodynamic Flow. Phys. Rev. Lett. 1997;78(9):1695-1698.

38. Coveney P V, Español P. 1997. Dissipative particle dynamics for interacting multicomponent

systems. J.Phys.A:Mathematical and General 1997; 30:779-784.

39. Quarteroni A, Tuveri M, Veneziani A. 2000. Computational vascular fluid dynamics: Problems

models and methods. Comput. Visualization Sci 2000;2:163-197.

40. Gueraoui K, Hammoumi A, Zeggwagh G.1998. A theoretical model of pulsatile flow of an

inelastic fluid through anisotropic porous viscoelastic pipes. Computes Rendus de l Academie des

Sciences Serie II Fascicule B-Mecanique Physique Chimie Astronomie 1998;326(9):561-8.

41. Latinopoulos P, Ganoulis J. 1982. Numerical simulation of pulsatile flow in constricted axi-

symmetric tubes. Applied Mathematical Modelling 1982;6(1):55-60.

42. Misra J C, Sahu B K. 1988. Flow through blood vessels under the action of a periodic acceleration

field: a mathematical analysis. Computers & Mathematics with Applications 1988;16(12):993-

1016.

43. Boryczko K, Dzwinel W, Yuen D.A. 2001. Parallel Extraction and Visualization of Clusters from

Large-Scale Data Sets, University of Minnesota Supercomputing Institute Research Report, UMSI

2001/87, submitted for publication in Parallel Computing

 21

Figure captions

Fig.1 The box decomposition onto cells and processor domains.

Fig.2 The sequence of computation and communication procedures invoked in FPM parallel code.

Fig.3 Dimensionless pressure δ=kBT/(P/n) and thermodynamic temperature Tth of the FPM particle

system in 3-D (number of particles M=1.3×105) with time. The initial values for δ=0.021 (in

dimensionless units) and for an assumed temperature T=100 K.

Fig.4 a) Checker-board periodic boundary conditions in 2-D. Computational box simulating the hexagonal

periodic boundary conditions along with its replicas are depicted.

b) Checker board periodic boundary conditions in 3-D. Computational box of side lengths Lx=1, Ly=1

and Lz=2 represents periodic boundary conditions for rhombic dodecahedron (see [34]). The domain

decomposition onto CPU units is shown. The arrows show the communication paths among the

processors.

Fig.5 The largest circle inscribed in a hexagonal box compared to the largest circle inscribed in a square

box of the same area.

Fig.6 The result of clustering procedure detecting colloidal agglomerates in 2-D. The largest cluster is

shown in black.

Fig.7 Speed-ups and CPU time per step per particle for benchmark on IBM SP and SGI/Origin 3800.

Fig.8 Two snapshots from 3-D FPM simulation of phase separation in binary fluid involving 8 million

FPM particles. Cross-sections are depicted. A) lammelar phase at t=400 (β=1/3) B) the regime with β=1/2,

at t=4000.

Fig.9 The growth of average domain size in time in symmetric quench.

Fig.10 The snapshots from FPM simulation of a slab accelerated in the particle fluid. Only the slab is

shown. The contrast in viscosity between slab and solvent is 10:1. The pictures from a) comes from Data

Explorer and show droplet’s surface. In the following figures the raw particle positions are shown.

Multiresolution structures are detected from the clustering procedure. The light gray tip of slab is the

largest cluster extracted. The blue particles create the smallest clusters (consisting of at most 2 particles).

The red particles represent medium scale clusters, i.e., the streaks are created due to shear. In solvent (c)

low density cluster is shown in blue. This situation can be applied to flow in narrow blood vessels.

Fig.11 Different viscosity contrast between solvent ΩB and a slab ΩS. a) ΩB=10, ΩS=100 b) ΩB=ΩS=100

c) ΩB=100, ΩS=10. The first three pictures come from Data Explorer and show clusters surface. The

pictures on the right depict the multi-scale features extracted with the clustering MNN algorithm. These

situations can be applied to flow in narrow blood vessels.

 22

Tables

Table 1. Parameters of the efficiency tests. Number of particles in a single unit cell is equal to 4.

Test Number of

particles M
Namber of cells in
x,y and z direction

Number of
processors P=2k

Platform

Serial FPM, sfpm 1,048576 64×64×64 1 IBM SP,
Origin 3800

Parallel FPM pfpm1 1,048576 64×64×64 2-32 IBM SP
Parallel FPM pfpm0

pfpmp_origin0
1,048576 32×32×256 2-16 IBM SP,

Origin 3800
Parallel FPM pfpmy 1,048576 32×256×32 2-16 IBM SP

Scalable parallel FPM
spfpm_ibm2-4-8-16-32

1,048576 to
16,777216

64×64×64×P/2 2-32 IBM SP

Scalable parallel FPM
spfpm_origin2-4-8-16-32

1,048576 to
16,777216

64×64×64×P/2 2-32 Origin 3800

Table.2. Program units
VALUE UNIT

Length λ

the average distance between the neighboring fluid particles λ = 1

Mass m

dimensionless - mass of the lightest fluid particle m = 1

Time ∆t

in tref=λ/c where c2= k BT/m
λ -unit of length

Energy δ in k BT/(P /n) where P-partial pressure defined in Eq.(12)

Viscosity Ω crcut ⋅=Ω 3/γ where γ is the scaling factor of dissipative forces

 23

Table.3. Principal physical and numerical parameters employed in FPM simulation of phase separation in
3-D

General parameters Values
kBT /(P/n) 0.015

Number density n 1.0
(per cube of volume λ3)

Viscosity (in Ω) 25
∆P/P=P1-P1,2/P 5%

Number of particles 8.2×106
∆t (in tref) 0.01

Cut-off radius rcut (in λ) 2.0
Computational box periodic rhombic dodecahedron
Box size (in cells) 80×80×160

Table.4. Principal physical and numerical parameters employed in FPM simulation of dispersion of
colloidal slab.

General parameters Values
kBT /(P/n) 0.015

g (λ/∆t2) (accel.) 10

Particle masses mSLAB=5, mSOLVENT=1
Number density n 1.0

(per cube of volume λ3)
Viscosity (in Ω) 10 and 100
∆P/P=P1-P1,2/P 5%

Number of particles: Total: 1.76×106
 Solvent:1.49×106 Slab: 171,000

∆t (in tref) 0.01
Cut-off radius rcut (in λ) 1.58

Computational box periodic hexagonal prism
Box size (in cells) 44×50×200

 24

Figures

Fig.1

Processor 1

Processor 2

Processor 3

Processor 4

Processor 4 x

y

z

z

x
y

 25

Fig.2

PARALLEL LOOP

 For all P = 1, N

 SENDfrom_P-1_to_P_particles_from_boundary_cells (Nkind?,?r ,,

rrr
);

 Compute_INTERACTIONS_in_P (ijij NF
rr

,);

 SENDfrom_P_to_P-1_reactions_on_boundary_particles_in -P-1 (ijij NF
rr

,);

 Update_INTERACTIONS_for_boundary_particles_in-P-1 (ijij NF
rr

,);

 MOVE_particles_in_P (?,?r

rrr
,);

 SENDfrom_P_to_P-1_outcoming_particles (Nkind?,?r ,,

rrr
);

 SENDfrom_P-1_to_P_incoming_particles (Nkind?,?r ,,
rrr

);
 SEND_totals_from_P_to_master_processor (Virial, Ekin, etc.);

 endfor

 26

Fig.3

0 10000 20000
Timestep

92

94

96

98

100

102

Te
m

pe
ra

tu
re

 (
in

 K
el

vi
ns

)

0.0210

0.0215

0.0220

0.0225

0.0230

δ

Thermodynamic temperature

δ

 27

Fig.4

Computational
box x y

z

CPU 1

CPU 1
CPU 2

CPU 2CPU 3

CPU 4

CPU 4

CPU 3

 28

Fig.5

 29

Fig.6

 30

Fig.7a

10 20 30
Number of processors

10

20

30
S

pe
ed

-u
p

1

10

100

Ti
m

e
pe

r
st

ep
 p

er
 p

ar
tic

le
 (i

n
m

ic
ro

se
co

n
ds

)Test symbol

pfmp0

pfmp1

pfmpy

pfmp_origin0

Fig.7b

10 20 30
Number of processors

10

20

30

S
pe

ed
-u

p

1

10

100

Ti
m

e
pe

r
st

ep
 p

er
 p

ar
tic

le
 (i

n
m

ic
ro

se
co

nd
s)

Test symbol

spfpm_ibm

spfpm_origin

 31

 Fig.8

x

zy

x

zy

 32

Fig.9

1.02

0.64

 33

Fig.10

a b c

 34

Fig.11

a a

b

c

b

c

 35

About authors

David A. Yuen is a professor of geophysics and scientific computation at the University of
Minnesota, Twin Cities and a fellow of the Minnesota Supercomputing Institute. He is interested
in modelling of all scales, ranging from microscopic to large-scale mantle convection and fluid
dynamics problems. He is also working on problems related to multidimensional wavelets and 3-
D feature extraction using wavelets.

Witold Dzwinel is a professor of computer science at the University of Mining and Metallurgy
(AGH), Institute of Computer Science, Kraków, Poland. His main fields of interest are
simulations using particles, natural solvers and evolutionary systems. He is also working on
application of pattern recognition systems in diagnostics of nuclear reactors and in geophysical
prospecting.

Krzysztof Boryczko is an assistant professor at the University of Mining and Metallurgy (AGH),
Institute of Computer Science, Kraków, Poland. He is a specialist in parallel programming and
large-scale computing. He is interested in application of scientific visualization systems in
feature extraction and clustering data from large-scale simulations with particles.

