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Abgtract

Dissipative particle dynamics (DPD) and its generalization — the fluid particle model (FPM) - represent
the “fluid particle” approach for smulating fluid-like behavior in he mesoscale. Unlike particles from
molecular dynamics (MD) method, the “fluid particle’ can be viewed as a “droplet” consisting of liquid
molecules. In FPM, “fluid particles’ interact by both central and non-centra, short-range forces with
conservative, dissipative and Brownian character. In comparison to MD, FPM method in 3-D requires two
to three times more memory load and three times more communication overhead. Computational load per
step per particle is comparable to MD due to the shorter interaction range alowed between “fluid
particles” than between MD aoms. The classica linked-cells technique and decomposing the
computationa box into strips alow for rapid modifications of the code and for implementing non-cubic
computational boxes. We show that the efficiency of the FPM code depends strongly on the number of
particles smulated, geometry of the box, and the computer architecture. We give a few examples from
long FPM simulations involving up to 8 million fluid particles and 32 processors. Results from FPM
smulaions in 3D of the phase separation in binary fluid and dispersion of colloida dab are presented.
Scaling law for symmetric quench in phase separation has been properly reconstructed. We show aso that
the microstructure of dispersed fluid depends strongly on the contrast between kinematic viscosities of this
fluid phase and the bulk phase. This FPM code can be applied for smulating mesoscopic flow dynamics
in capillary pipes or critical flow phenomenain narrow blood vessdls.
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1Introduction

Dynamical processes occurring in the mesoscopic fluids involve many disparate spatio-tempord scales,
from microscopic interactions of discrete particles, thermal fluctuations, multiphase mixing and large-
scale disturbances. The implementations of these well-known computational techniques such as

1. molecular dynamics (MD), used in in large-scale smulations [1-7],

2. finite dement methods (FEM), employed in direct numerical simulations (DNS) [8-10],

are till too demanding and, in many cases, they are not adequate for resolving fine enough features at the

mesoscale.

In the last decade we have witnessed the rapid growth in new approaches for modelling multi-

scale phenomena. They are the grid techniques (Lattice-Boltzmann Gas- LBG, cdllular automata [11,12]

and the meshless fluid particle methods (DPD-dissipative particle dynamics [13] SPH- smoothed particle

hydrodynamics, [14,15], direct smulation Monte-Carlo [16]). The fluid particle can be viewed physicaly
as a “droplet” conggting of liquid molecules with an internal structure and with some internal degrees of
freedom.

The fluid particle methods have at least four important advantages over the grid techniques.

1. The dynamics of fluid particles develop over continuum space in red time, thus alowing for redistic
visualization and physica understanding.

2. Within the context of cross-scading systems they are homogeneous with both microscopic molecular
dynamics and macroscopic smooth particle hydrodynamics techniques [17]. The transition from
discrete to continuum model is not necessary.

3. The methods employing fluid particles are also homogeneous within the context of solid-liquid
simulations for which both solid and liquid are represented by particles[18,19].

4. They are dso homogeneous from implementation point of view. Well-known sequential and parald
agorithms from MD simulations can be employed directly.

In [19-23] we demonstrate that the dissipative particle dynamics (DPD) [13] - the method employing fluid
particles - fits very well for smulating multi-resolution structures of complex fluids. Typical examples of
complex fluids with large molecular structure include miscellar solutions, microemulsions and colloidal
suspensions such as blood, ink, milk, fog, paints, magma melts with long slicate chains, and waste
products [24].

For complex fluids the gap in the spatio-temporad scaes between the smallest microstructures and
the largest structures is much smaler than for simple fluids. In [19,22,23] we show that by using moderate
number of particles we can smulate in two dimensions multi-resdution structures ranging from micelles,
micellar arrays, colloidd agglomerates and large-scde ingabilities induced by the globd flow. For



realistic modeling of multi-resolution structures in three dimensions, the large-scale smulations involving
hundreds of processors working in parallel are necessary for covering the same spatio-tempora scales, as
those employed in current high-resolution 2-D simulations.

Fluid particle model (FPM) [17] is a generdlization of disspative particle dynamics method. The
FPM method is computationaly more intensive than DPD and MD for a constant interaction range.
However, FPM has an advantage over DPD for larger scales, in which the fluid particles are adequately
large and can interact only with their closest neighbors. In such a case DPD is less efficient because many
more particles than for FPM should be involved for creating a drag between the DPD particles. Therefore,
we can expect that FPM will enable the eventual smulation of complex fluids in 3D, with reasonable
resources of parallel systems, which are operating in the multi-job mode.

First, we will describe the FPM model. Then we present a parallel agorithm for FPM and discuss
its efficiency. We then define the boundary conditions of the code. Next, the parallel clustering procedure
for detection of multi-resolution structures is presented. We then show the results of tests from the FPM
smulaions of phase separation in binary mixture and disperson of colloidd dab in an elongated
computationa box. Finaly, we summarize our findings and discuss the prospects of employing the FPM
parald agorithm in redigtic large-scale smulations, such as flow in congtricted blood vessels [25].

2. Fluid particle modd

The equations of fluid dynamics describe the motion of mass in both time and space. Particle methods are
based on the idea of smulating a fluid flow as a flow of particles, which interact by short-range forces.
The total mass is subdivided into a finite number of small mass packets, which are called particles. Their
structure is described by particles mass distribution f ;>0. The particles can move independently of each

other. The total mass density is given by:

N
r(xt)=af(x-r) @

iz
For point-like particles, f i is the Dirac delta function. The tempora evolution of the particle system is then
described by the equations of motion for the particle position r(t). Fluid particle model (FPM) described
here, differs from dissipative particle dynamics (DPD) by Hoogerbrugge and Kodman [13,17,26]. The
fluid particles can rotate in space and should be understood as comparatively big mass packets, though
they are till particles in the sense of statistical mechanics. The forces of interaction between the particles
are pair forces of afinite range, unlike in smoothed particle dynamics (SPH) [14,15], and a broad class of
particle methods [27] where they are derived in a canonica manner from the force laws of continuum



mechanics and are directly based on a regularized stress tensor. SPH cannot be applied to the study of
mesoscopic Ssystem in the Brownian realm, because the implementation of Lagrangian fluctuating
hydrodynamics with SPH is not atrivia problem.

The fluid particles [17] are represented by their centers of mass, which posses severd attributes, as
mass m, position r, trandational and angular velocities and type. The “droplets’ interact with each other
by forces dependent on the type of particles. This type of interaction is a sum of conservative force FC,
two dissipative components F' and F~ and the Brownian forcer, that is:

—_rC =
Fij - Fij + FijT + Fin + Fij @

The F;; force components are defined by:
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where:

r; — is a distance between particles i and j, r;=r; —r;isavector pointing from particle i to particle j and
e;=r;;/rij, D — is the modd dimension, dt — is the timestep, g - scaling factor for dissipation forces, w -
angular velocity, W°, dV*, trfdW]1 - are respectively the symmetric, antisymmeric and trace diagonal

random matrices of independent Wiener increments and A(r), B(r), C(r), Alr ),§(r),5(r),v’(r) -
functions dependent on the separation distance r=r;;. Tj; — is dimensionless matrix given by:

T, = Alr, 1+ Br Jeye @
1 — isthe unit matrix.
As shown in Espafiol [17], the single component FPM system yields the Gibbs distribution as the steady-
state solution to the Fokker-Planck equation under the condition of detailed balance, i.e.,
s? =2k, Tgxm )
where: T — isthe temperature of particle system, ks — the Boltzmann constant.

As a consequence, it obeys the fluctuation dissipation theorem, which defines the relationship between the
normalized weight functions, which are chosen such that:

Al )=2[R0)+c0) Bb)=2[8°0)- )]+ 3[R 0)- ()} o



For the disspative particle dynamics (DPD) method A(r)=0, consequently A(r).B(r).C(r)=0 and
V' (NuB(r), which means that all the DPD forces are central.

The non-central force in FPM, which is proportiond to the difference between particle velocities,
introduces an additiona drag lacking in the DPD mode. The non-central force results also in additional
rotational friction given by Eq.(5).

The tempora evolution of the particle ensemble obeys the Newtonian laws of motion:
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The FPM method can predict the transport properties of the fluid, thus alowing one to adjust the mode

parameters by using the equations of continuum limit for the partia pressure P [13]:
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and formulas in kinetic theory [L7] for respectively bulk viscosity n,, shear viscosity ns and rotationa
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The kinetic theory for FPM has been developed for deriving transport coefficients ty assuming that
conservative forces are absent. For non-zero pressures, the transport coefficients computed from Egs.[13-



15] can be used as the first approximation in an iterative procedure, which matches the coefficients of the
FPM forces.

Unlike in SPH - the angular momentum is conserved exactly in FPM. The mode can be
physicaly interpreted as a Lagrangian discretization of the non-linearly fluctuating hydrodynamic
equations.

3. Numerical realization

3.1 Decomposition of computational box

We consider here an isothermal two-dimensiona system, which consists of M particles. The particle
system is simulated within a rectangular box. The particles of uniform or various types can be distributed
randomly in the box, i.e, this multi-component system can be perfectly mixed initialy, or separated by a
sharp interface (dtratified, circle, rectangular, random shape). The particles defined by mass m, postion r;,
velocity v; and angular velocity wi interact with each other via a two-body, short ranged forces given by
Eqgs.(3-6).

We assume that the weight functions (Egs.(6-7)) satisfy the conditions imposed. Due to the choice
alowed by the mode in selecting the weight functions, we assume that:

Ar)=0. Al)=8()=5 2B rLg vé)=-px 3 & T
w2 ' (19

where, ro« —is acut-off radius, which defines the range of FPM particle interactions. For rij>rq, F;;=0.
The firgt assumption is recommended in [17]. We postulate the rest of weight functions the same as in
DPD [13,26]. Due to additional drag between particles caused by the non-central interactions, we can
reduce the computational load by assuming that the interaction range is shorter than for DPD fluid.

As shown in Fig.1, the box is divided onto cubic cells of the edge size lc~fcu. FOr multi-
component fluid with different interaction ranges we assume that Ic~max(r k), Where k means the kind
of interaction. The forces are computed by using O(M) order link-list scheme [28]. The force on a given
particle includes contribution from al the particles that are closer than r., and which are located within
the cdll containing the given particle or within the adjacent cell (see Fig.1).

Parallel computing requires decomposing the computation into subtasks and mapping them onto
multiple processors. The total volume of the box is divided into P overlapping subsystems of equa
volume, and each subsystem is assigned to a single processor in a P processors array. By usng SPMD

paradigm (single program multiple data), commonly used for MD code parall€lization, each processor



follows an identical predetermined segquence to calculate the forces on the particles within assigned
domain.

Among many paralel implementations of molecular dynamics code [1,3,5,6,29] two approaches for
particles redistribution between processors are employed.

1. Thebox isdiced along one coordinate and divided up onto identical sub-boxes (see Fig.1).

2. Thesystemis partitioned into a mesh of sub-boxesin x, y and z directions.
The particle positions and velocities from cells, which are situated on the boundaries between processor
domains, are copied to the neighboring processor (see Fig.1). Thus the number of particles located in the
boundary cells defines the communication overhead. Let us assume that:
1. The system is confined in a box elongated in z direction and the X,y cross-section of the box is a

square of unit area.
2. The number of processors P, the system size and the length of the box L,>>1 are constant.
3. Thebox is partitioned along z-axis onto processor domains.
For this case, the communication overhead tsips, Which is proportiona to the area of the interface between
processor domains, is constant and equal to 1. Let us assume that the box is partitioned additionally into n
-mesh of identical sub-boxes on xy plane. The communication cost t,. for n>1 is proportiona to the area
of walls (only half of them) of a single sub-box and is equa to 2L/(P/n°)*/n + 1/n>. For sufficiently long
boxes with L>>1 the ratio of two overheads | =toodtsyips=[2L/(PIN°)]Un + 1/n® is greater than 1. This

means that the communication overhead is lower - and consequently calculation communication ratio
higher - for the first method consisting in dicing the box onto strips aong z coordinate. The value of | is
less than one for more regular computational boxes, e.g., a cubic computational box for which P~n® and
L ~=1. In this case the second partition method dividing the box onto cubic sub-domains is better.

Slicing the box dong the zaxis considerably smplifies the routing of messages and enables sending
them in unblocking way. Each processor sends the message only in one direction to its closest neighbor.
The load baancing is easier and consists in shifting the boundaries of processor domains aong one
direction, while for the second method the load balancing schemes are very complex requiring irregular
mesh. In Fig.2 we present the sequence of computation and communication procedures invoked in
paralel implementation of FPM code.

Many parallel implementations of molecular dynamics codes employ neighbor tables for each particle
for speeding-up the evauation of forces. This increases considerably the memory requirements,
communication overheads and makes the code more complex. Fluid particle mode (FPM) has two-four
times greater memory requirements than codes for molecular dynamics. Besides the positions and forces
in highly optimized pardld codes for large-scae MD [3] (minimum 6 arrays), additional arrays must be
alocated such as. the angular and trandationa veocities, torques and replicated arrays for velocities



needed for integrating Newtonian equations of motion (see Egs.(21-24)), that is, minimum 24 arays.
Moreover, the random number generator is invoked 4 times for computation of Brownian forces for each
pair of interacting particles.

Therefore, the speed-up expected from application of neighbor tables can be compromised due to the
effect of frequent cache misses resulting from its overload. The particles from boundary cells “cached” on
the neighboring processors and those migrating from one processor to another must be updated every
timestep (see Fig.2). Unlike in MD, the FPM forces (see Egs.3-6) depend not only on the particle positions
but dso on trandational and angular velocities. Moreover, besides reaction forces, the reaction torques
must be updated. Thus, the communication overhead is amost three times greater for FPM than for MD.
Because FPM fluid particle interacts only with their closest neighbors, the number of interactions per
particles is smaller by factor of 4.5 than for a standard MD code. However, the number of arithmetic
operations involved for evauation of FPM interactions is greater, at least by the same factor, than for
caculating the Lennard-Jones forces in MD code. Thus, we may expect that computationa load per
particle should be similar for these two cases. Summarizing, the high memory load in FPM will result in:

1. greater communication overhead,

2. more frequent occurrence of cache misses,
than in standard implementations of MD method in multiprocessor environment (e.g., in [3,5]).

3.2 Temporal evolution of fluid particles

Integration of the Newtonian equations of motion in the fluid particle moddl is more complex than in MD
and DPD codes. From Egs.(3-6,10-11) we note that the forces and torques depend not only on particle
positions (as in MD) and trandationa velocity (asin DPD case) but dso on angular velocities. Moreover,
due to the random Brownian force, the equation of motion are stochastic differential equations (SDE).
Numerical integration of SDE by using classical Verlet scheme [30] generates large numerical errors [31]
and artifacts, e.g., resulting in unacceptable temperature drift with smulation time. Therefore,very small
timesteps should be used to obtain a reasonable approximation to the thermodynamical quantities. On the
other hand, predictor-corrector numerical schemes are both very time and memory consuming, which for
high memory load for FPM will result in additiond overheads. Therefore, we have decided to employ
extrapolation schemes, which we used successfully in our 2D MD-DPD and MD-FPM codes [19]. The

schemes are as follows;
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To assure the numerical stability of the particle system, Eq.(11) representing the conservation of angular
momentum is integrated by using the scheme of order o(DtY) (see Eq.(20)). The coordinates of vectors
V,? inEgs.(19,21) are extrapolated by using Adams-Bashfoth o(Dt*) scheme (see Eqs(22)).

The size of the timestep Dt should be estimated from the characteristic time scales for both
rotational and trandational motion. The mean collison time t ., defines the time scale for the trandationa
motion, which is given by:

= @

(Vea)

where <v,4> is a rdative veocity, | - is the characterigtic length scale, which is equal to the average

distance between particles.

Both the quality and numerical stability of the model can be estimated from the temporal behavior
of the thermodynamic temperature Tth and dimensionless pressure d=kz/(P/n). As shown in Fig.3, the
temperature Tth of the system, computed as the average kinetic energy of the FPM particle systems,
fluctuates no more than 1.5% percent. Its average differs from the temperature T assumed (computed from
detailed balance Eq.(8)) on about 0.1%. For comparison, a the similar simulation conditions (but in 2D)
and the same timestep, the equilibrium temperature Tth for DPD simulation of phase separation obtained
in [31] is roughly twice its input value. The temperature drift (upward or downward, depending on the
hardware and compiler used) caused by the round-off error, which is apparent for large number of
timesteps, we have greatly reduced by using 64 bit compiler. The value of d, which represents the
reciproca of partial pressure Pth of FPM fluid computed from the viral theorem [30], can aso be
approximated accurately by the Eq.(12) (see Fig.3).



3.3 Boundary conditions

Periodic boundary conditions (PBC) smulate the system of unlimited number of interacting particles by
limited number of interacting lattices where each of them stands for a particle and its replicas. When the
distance between a particle and its nearest image is too short, long wavelength phenomena are cut and
their energy is passed to the shorter waves, which go through the box generating numerical artifacts.
Moreover, tie commonly used computational box shape, such as rectangular prism, makes the system
highly anisotropic. In [32,33] the minimum image convention is presented for non-cubic boxes such as
truncated octahedron, rhombic dedocahedron and hexagona prism. In site of the more symmetric
geometry and savings in CPU time due to increase of the nearest image distance, the non-cubic boxes are
dtill not popular in particle smulations. There are at least two basic problems with norn-cubic boxes for

smulating large particles ensembl es.

1. Non-cubic boxes involve non-cubic cdls in the linked-cells algorithm. This makes the code very
clumsy (especialy in 3D) due to greater number of walls, edges and vortices in non-cubic cells
than for cubic ones, thus involving complicated nearest image convention schemes [33].

2. Domain decomposition is difficult for non-cubic boxes.

In [34], a method for uniformization of the periodic box shape for small particle system was presented. As
shown in Figs.4ab, the periodic box can be divided onto two, black and white, rectangles of the same size.
Unlike for the periodic square, the box replicas are shifted creating checker board picture (see Fig.4). For
properly selected box sizes Lx, Ly and Lz one can reproduce different shapes. For example, the periodic
hexagon can be smulated assuming that Lx/Ly=1/O3 (see Fig.4a) while the box with Lx=1, Ly=1 and
Lz=2 (see Fig.4b) corresponds to periodic rhombic dodecahedron [34].

In Fig.5 we compare the largest circles inscribed in a hexagona and sguare boxes of the same
area, which diameter represent the distance between a particle and its nearest image. Diameter of the circle
inscribed in hexagon is about 7% greater than in the square. In three dimensions, the sphere inscribed in a
rhombic dodecahedron is 15% larger than the largest sphere inscribed in a cubic box of the same volume.
For keeping the same distance between the particles and their nearest images, one can employ periodic
rhombic dodecahedron with particle ensemble 40% smaller than those for the cubic box.

The possibility of gpplication of linked-lists method with cubic cdls for non-cubic periodic boxes
is the great advantage of using the checker-board PBC. Below we present the trandation scheme for
renumbering the cell coordinates: Nx, Ny and Nz, from the border of the computational box by replicating
periodic rombic dodecahedron.
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ix = INT ( (float(NX)/N) +1) - 1

iy = INT ( (float(Ny)/N) +1) - 1

iz= INT ((float(N2)/N) +1) + INT (float (N2)/N) —INT (float(N2)/(2*N)) -2
iz =iz * [(abs(ix) + abs (iy) +abs(iz) — 1) mod 2]

NXx = Nx — N*ix
Ny = Ny — N*iy
Nz =Nz - N*iz

The pardld code for the checker board periodic boundary conditions is relatively easy to implement by
assuming that the box is decomposed by segmenting it along x or y coordinate. For boxes elongated in z
direction, such the decomposition will increase communication time due to thin layers of domains and
larger interface area between neighboring processor domains. Slicing the box aong zaxis (see Figab)
may generate even more serious problems with communication. The processors will communicate not
only with their neighboring processors, as it is for periodic rectangle shown in Fig.1, but aso with the
distant processors. In this situation, communication ime may depend strongly on the architecture and
memory access time of the pardlel system.

For simulating the flow in an elongated and periodic capillary, we have employed the hexagonal
prism PBC shown in Fig.4a. The checker board PBC are redized only on X,y plane. This preserves more
circular shape of the capillary section than for a periodic rectangular prism and alows us to employ the
same strategy of domain decomposition as shown in Fig.1. We simulate the box with circular section in
Xy plane with reflecting or dissipative boundariesin x and y directions by filling white space in Fig.5 with
heavy or motionless particles.

3.4 Clustering procedure

The patterns created in macrosopic flows, for which a homogeneous physical process dominates in
multiple spatio-tempora scales, have typicaly sdf-similar fractal structures. In [19-23] we show that the
strong heterogeneities of the flow in the mesoscale co-produce complex multiresolution patterns [24]. The
cregtion of micelles, colloidal arays, colloidd agglomerates and large-scale ingtabilities in fluid are the
consequence of the competition between two coupled nortlinear processes. globa motion of particle
ensembles and local interactions between particles. These multiscale structures are complex due to the
inflexibility of the description level with varying scale of observation. The detection of particle clusters
for controlling their tempord behavior represents a very important aspect in visuaizing and extracting the

complex patterns.
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We have solved the problem for detecting clusters by using efficient O(M) agorithm inscribed in
parale structure of FPM code. The agorithm is based on the mutual nearest neighborhood (MNN)
concept. The algorithm is outlined as follows:

1. Find the lig L; of K nearest neighbors j of each particle i in Ry radius and sort out the list in
ascending order according to the distance between i and j particles. Thus L;(k)=j and k is the position
of the particle j in the list. This procedure can be performed in paralel dong with computation of
forces in FPM code. To reduce the communication overhead, we use the pardlel clustering algorithm
off-line after smulation.

2. Assuming that Li(k)=j and L;(m)=i, compute MNN(i,j) distances defined as: MNN(i,j) =m+k. The
maximum MNN distanceislessthan 2K.

3. Begin aclassicd agglomerative clustering agorithm (e.g., nearest linkage [35]) with the linked-lists
concept, starting from the smallest MNN(i ,j)=2 vaue.

4. Thisisterminated upon reaching the greatest value of MNN.

The vaue of Ryus should be somewhat larger than the spacing between particles in aggregates (Reus
»0.2-0.3 rq), and K value should be between 38. In Fig.6 we show the clusters of complicated shape

from non-linear aggregation process. This event is detected by using MNN adgorithm [35].

3.5 Testsfor computational efficiency

The FPM code was written in FORTRAN 95 and was implemented on the MPI interface for both the IBM
SP and SGI/Origin 3800 platforms. We performed our tests on IBM SP with WintertHawk+ nodes
consisting of 4 Power3+/375MHz processors with 4GB of memory per node. For comparison we present
the benchmarks for SGI/Origin 3800 system with R14000/500 CPUs.

Our tests were performed in production run mode, sharing communication switch with other users.
The maximum number of nodes we use was 8 (4 CPUs per node) both for IBM SP and for SGI/Origin
3800. The timings obtained for parald jobs we compare with the CPU time measured for the serid
version of the FPM code. The periodic rectangular prism was decomposed aong z axis (see Fig.1). The
test parameters are summarized in Table 1.

In Fig.7a we depict the CPU times and speed-ups obtained for fixed number of particles
(M=1,048,576). The speed-ups for parallel runs refer to the CPU time per step per particle measured for
the serial version of the FPM code. Each point on the plots represents the average from ten runs and the
first 100 timesteps of simulation. The superlinear speed-up observed in Fig.7a results directly from the



cache. For pfpmO and pfpmO_origin runs, the box is very thin. By increasing the number of processors,
the fraction of computations involving cache increases (the number of cache misses decreases). The cache
effect is more distinct for IBM SP machine with Power3+ CPUs, whose cache size is smaller (4MB) than
that of the R14000 processor (8MB).

Making the computational box wider in x,y plane and proportionally shorter in z direction (in
pfpml the number of cells remains the same as in pfpm0) the communication overhead increases
proportionaly to the increase of the interface area between processor domains. Moreover, the cache
misses become more frequent. Because the particles that are the physical neighbors should aso be closer
one ancther in the computer memory, to avoid frequent cache misses the particles are renumbered every
some period of time. In result the particles residing in the same cell have consecutive numbers. However,
the gap between particle numbers ill exists for the particles from different cells. This is due to the
sequential numbering of particles in domains. Let us assume that the particles are numbered first dlong X,
then y and finally z directions. By increasing 4 times the sizes of computationa box in X,y plane, the gap
between particle numbers from the neighboring cells in zdirection increases also 4 times. Thus, the
respective r, v and w coordinates of two interacting particles from these cdlls can be very distant in
memory generating cache misses.

For 32 processors we observe a decrease in the speed-up for dl the tests. This is caused by the
snadl number of cdl layers redding in processor domains and the degradation of
computation/communication ratio. When decomposition goes along the shorter side of the box pmy),
this overhead is much larger.

In Fig.7b we compare the two scaable runs performed on IBM SP and SGI/Origin 3800
computers. The number of particles increases proportionally to the number of CPUs, from 500,000 to 16
millions on 32 processors. The computational box increases only in one @ direction. This keeps the
communication overhead congtant, due to unblocking and bi-directional communication between domains.
For larger number of CPUs than 8, we observed the rapid degradation of code performance on IBM SP
machine. This may come from communication delay between processors belonging to different IBM SP
frames, which involve switches between the frames. The network is shared between other users. The
machine remains very busy. Thus communication between processors from different frames (supernodes)
may be much dower than in a single node or inside the frame.

From Fig.7b we find that our code runs more than 2 times faster on a single R14000/500 processor
than on Power3+/375. This effect can be a combination of two factors: greater pesk performance of MIPS
processor (1 Gflops, i.e., about 30% more than Power3) attained by implementing a new MIPS-1V 64-bits
instruction set and aggressive optimization strategy of f90 compiler. We expect, however, that the second
factor is crucia in the case  FPM model. As shown in [43], for parallel version of clustering procedure it
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appeared that IBM SP is two times faster than SGI/Origin 3800 in spite of a dower clock speed. However,
in the case of clustering the code has much modest memory requirements and is much smpler than for
FPM modd, which involves time consuming floating point computations of interparticle forces and many
nested loops.

For the number of nodes greater than 2, the FPM code achieves better scalability with the number
of CPUs on SGI/Origin 3800 than on IBM SP. This difference is not observed for parald clustering [43]
involving only 10% of memory requirements and communication bandwidth of those demanded by the
FPM code. Therefore, better scalability of FPM code on SGI/Origin 3800 nust be the consequence of
faster communication between nodes on the SGI machine than on IBM SP. IBM SP is a distributed
memory machine, while SGI/Origin 3800 is ccNUMA (cache coherent non uniform memory access)
machine with virtua shared memory and with highly optimized distant memory cdls. They must be
optimized due to the calls to the dow, distant memory are the main source of the overheads on ccNUMA
systems. The FPM code, which employs MPI communication interface, uses both the high memory
bandwidth of ccNUMA architecture and the procedures which forces locality of the data by placing
neighboring domains on neighboring processors. However, for very long boxes, the cals to distant
memory from extreme processors, can produce overheads observed in Fig.7b.

5. Smulation results

In the FPM code we employ dimensionless program units collected in Table 2. We set arbitrary partia
pressure P - defined in Eq.(12) - divided by the number dendty n, as a reference point for computing the
energy unit d. Larger value of d means the greater contribution of therma fluctuations. The scaling
coefficient P for conservative FPM forces (Egs.3,18) can be computed directly from Egs.(12). It is
responsible for the compressibility of FPM fluid and is chosen such that the FPM particle system exhibits
liquid ordering (see [21]). The scaling factor for dissipative forces (Eq.4,5) is computed from the value of
W (see Table 2), which stands for the dimensionless kinematic viscosity of FPM particle system [36]. This
value represent the ratio of the time taken by a particle covering r distance at the thermal velocity ¢ and
the time ¢* associated with friction. The value of s - scaling factor for Brownian forces - is computed
from the detailed balance equations Eqgs.(8).

We present here sampling simulation results obtained by using FPM paralld code from:

1. Phase separation (symmetric quench) in binary fluid.

2. Dispersion of colloidal dab in an elongated pipe.

4.1 Phase separation
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The growth kinetics of binary immiscible fluid and phase separation in two dimensions have been
investigated with dissipative particle dynamics by Coveney and Novik [31]) and Dzwinel and Yuen [21].
It was shown that time-dependent growth of average domain size R(t) in two dimensions, follows
agebraic growth laws of the form R(t)=t° where b=1/2 for Brownian regime and 2/3 for inertial regime.
In the absence of Brownian diffusion of interfaces and droplets the growth proceeds by the Lifshitz
Slyozov mechanism [37] and the power-low index b is set to 1/3.

We have smulated two immiscible FPM particle fluids in 3-D assuming that the particles are
perfectly mixed at the beginning of smulation. We define [21] the immiscibility factor to be DP=P;-P;,
where P,=P, are the partial pressuresin fluid 1 and 2 respectively. The value of P, denotes the pressure
computed from EQ.(12) for scaling factor P, of conservative forces between two types of particles
representing different fluids. Important property of detailed balance for multi-component DPD particle
ensemble is satisfied as for one-component system [38]. Here we presume that this is also valid for the
FPM. In Table3 we display the principa physica and numerical parameters employed in the smulations.

As we have depicted in Fig.8, in 3D FPM the lamellar phase resulting from the Lifshitz-Syozov
mechanism (b =1/3) [31,37] can be observed in the initid stages of separation. The lamellas are destroyed
quickly by the thermd fluctuations. The value of b changesto 1 for the diffusive regime and b =2/3 for an
average domain size greater than hydrodynamic length. From FPM simulation of phase separation - shown
inFg.9 - we have obtained the three regimes and additiona one with b =1/2, which was observed before,

but only in two dimensions.

4.2 Dispersion of colloidal slab

The principd parameters for the simulations of the dab accelerated in the periodic hexagonal prism,
elongated in z direction are presented in Table. 4. The particle system consists of two types of particles
with the same size. The particles forming initialy a rectangular dab are accdlerated in a solvent, which is
made up of particles, which are 5 times lighter.

In Fig.10 we present the snapshots from FPM simulations and the results from clustering, which
revedl cluster structures cresting during dispersion. As shown in Fig.11, this structure changes depending
on the viscosity contrast between dab Ws and bulk of fluid Ws. The slab shape resembles a comet in
appearance for Ws=10 and Ws=100 with the dense clugter in the tip and the tail consisting of smaller
structures.

For Ws=W&=100, the head of dab becomes distinctly smaller and clusters create the streaks at the

end of the tail. In the case of higher viscosity in the bulk fluid (Ms=100 and Ws=10), the head of dab
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disappears and smaller clusters collectively create long streaks by the large shear developed aong the flow
fidd.

5 Conclusions

Fluid particle modd (FPM) is a very interesting physicd paradigm, which can be used successfully for
simulating mesoscopic fluid dynamics. The deployment of fluid particles in redigtic 3-D cross-scaing

simulations requires resolving a few fundamental issues.

1. Scale matching - matching particle interactions to the properties of smulated fluid in the
gpatio-tempora scale under interest.

2. Coupling — combining particles of different types and length-scale (e.g., defining interactions
between them)

3. Scalesbridging — defining the rules of splitting fluid particles into particles from larger to
smaller spatio-temporal scale and combining them vice versa. The problem with multiple

timestepping should be solved.
4. Implementation — efficient numerical implementation of the mode in a paald
environment.

In the paper we have discussed the last item. For investigating the structures of multiple scales createdin
complex fluids, the problems of coupling and bridging can be partly overcome by the bottom-up approach.
This approach involves millions of particles and an efficient pardld code for smulating their temporal
evolution.

We have proposed here an agorithm for parale implementation of the fluid particle model
(FPM) and we have presented the results of its implementation on the two parallel platforms of different
architecture. We have used distributed memory IBM SP machine and ccNUMA SGI/Origin 3800 system.
We have shown that due to much greater memory load than in classical paralledd MD codes, the optimal
use of cache memory becomes crucia for obtaining efficient scalability of the parald FPM code on the
IBM SP machine. Moreover, the dow communication between distant processors — assigned to the
extreme domains in an dongated computational box - results in a bad scalability of the code for the
number of nodes greater than 2 (i.e. 8 CPUs). The ccNUMA architecture of SGI/Origin 3800 appeared to
be nore efficient than the IBM SP due to the different organization of the cache and a faster memory
access. We have obtained the speedup of 26 on 32 processors of SGI/Origin 3800. Further increase of
efficiency can be achieved by optimizing distant memory calls between domains located at the two ends
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of the elongated box. Our code executed on R14000/500 processor is more than 2 times faster than on
Power3+/375. This result is somewhat surprising in light of a higher peak performance of the Power3+
resulting from its 4way architecture. In order to speed-up the calculations on IBM SP by reducing cache
misses, the particles that are the physical neighbors should aso be close to one another in the operational
memory. Better scalability can be obtained by renumbering the particles in the neighboring cells and by
splitting up the loop in which the forces are evaluated.

However, constant tuning of the code can make it too complicated for rapid modifications because
of adjustment to the physics. This can increase considerably the design and testing time. Our parallel code
can be employed for production runs involving reasonable computational resources, i.e, up to 32
processors smulating about 20 million particles in 5,000-10,000 timesteps.

The FPM code can be applied for smulating vascular fluid flow in capillary pipes [39] or blood
flow in smdl vessdls. A periodic grid of long boxes fits well for modeling the flow in bunch of capillary
pipes carrying fluid by employing capillary forces. Blood flow in small vessels during a rapid heart-attack
or a rapid stroke developed by deep vein thrombosis require more complicated boundary conditions. The
computational boxes should have more complex shapes and also eastic boundaries. In this connection the
checker-board boundary conditions are helpful for reducing the superfluous space.

The axisymmetric pulsatile flows and flows subject to acceleration in blood vessals have been investigated
both experimentally and numericaly for a long time (see eg. [10,39-42]) by using Navier-Stokes
equations with proper subgtitution of the blood rheological properties. Up to now, there has not been much
progress made in the field concerning the flow interactions between the microstructural dynamics and the
larger-scale flow. The modelling of the dispersion of drugs and thrombosis aong tiny blood vessds
demands a completely different approach.

Paralle implementation of the fluid particle modd is aso a good starting point for smulating the physical
and chemical processes involving nano to mesoscale structures, which are essential to critical phenomena

that govern the trapping and release of nutrients, contaminants and pathogens, such as anthrax .
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Figure captions

Fig.1 The box decomposition onto cells and processor domains.

Fig.2 The sequence of computation and communication procedures invoked in FPM parald code.

Fig.3 Dimensionless pressure d=kgT/(P/n) and thermodynamic temperature Tth of the FPM particle
system in 3D (number of particles M=1.3 10°) with time. The initid values for d=0.021 (in
dimensionless units) and for an assumed temperature T=100 K.

Fig.4 a) Checker-board periodic boundary conditions in 2D. Computational box smulating the hexagona
periodic boundary conditions along with its replicas are depicted.

b) Checker board periodic boundary conditions in 3-D. Computational box of side lengths Lx=1, Ly=1
and Lz=2 represents periodic boundary conditions for rhombic dodecahedron (see [34]). The domain
decomposition onto CPU units is shown. The arrows show the communication paths among the
Processors.

Fig.5 The largest circle inscribed in a hexagona box compared to the largest circle inscribed in a square
box of the same area.

Fig.6 The result of clustering procedure detecting colloidal agglomerates in 2D. The largest cluster is
shown in black.

Fig.7 Speed-ups and CPU time per step per particle for benchmark on IBM SP and SGI/Origin 3800.
Fig.8 Two snapshots from 3D FPM simulation of phase segparation in binary fluid involving 8 million
FPM particles. Cross-sections are depicted. A) lammelar phase at t=400 (b=1/3) B) the regime with b=1/2,
at t=4000.

Fig.9 The growth of average domain size in time in symmetric quench.

Fig.10 The snapshots from FPM simulation of a dab accelerated in the particle fluid. Only the dab is
shown. The contrast in viscosity between slab and solvent is 10:1. The pictures from &) comes from Data
Explorer and show droplet’s surface. In the following figures the raw particle positions are shown.
Multiresolution structures are detected from the clustering procedure. The light gay tip of dab is the
largest cluster extracted. The blue particles create the smallest clusters (consisting of at most 2 particles).
The red particles represent medium scale clusters, i.e., the streaks are created due to shear. In solvent (c)
low dendty cluster is shown in blue. This situation can be applied to flow in narrow blood vessels.

Fig.11 Different viscosity contrast between solvent W; and a dab Ws. a) We=10, W=100 b) Wz=W=100
¢) Ws=100, Ws=10. The first three pictures come from Data Explorer and show clusters surface. The

pictures on the right depict the multi-scale features extracted with the clustering MNN algorithm. These
situations can be applied to flow in narrow blood vessdls.
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Tables

Table 1. Parameters of the efficiency tests. Number of particlesin asingle unit cell is equd to 4.

Test Number of Namber of cellsin Number of Platform
particlesM x,y and z direction | processorsP=2"
Seria FPM, sfpm 1,048576 64 &4 64 1 IBM SP,
Origin 3800
Paralel FPM pfpm1 1,048576 64 &4 64 2-32 IBM SP
Pardlel FPM pfpmO 1,048576 32 X 256 2-16 IBM SP,
pfpmp_origin0 Origin 3800
Pardlel FPM pfpmy 1,048576 32° 256 32 2-16 IBM SP
Scaable pardld FPM | 1,048576 to 64" 64 64" P/2 2-32 IBM SP
spfpm_ibm2-4-8-16-32 | 16,777216
Scalable pardld FPM | 1,048576 to 64" 64 64" P2 2-32 Origin 3800
spfpm_origin2-4-8-16-32 | 16,777216

Table.2. Program units

VALUE UNIT
Length | the average distance between the neighboring fluid particles| = 1
Mass m dimensionless - mass of the lightest fluid particle m=1
Time Dt int,=I|/c where c= kg T/m
| -unit of length
Energyd |inkgT/(P/n) where P-partid pressure defined in Eq.(12)
Viscosity W | W=g /3> where gis the scaling factor of dissipative forces




Table.3. Principa physica and numerical parameters employed in FPM simulation of phase separation in

General parameters Values
Ke1 A(PIN) 0015
Number density n 10
(per cube of volume| °)
Viscosity (inW) 25
DP/P=P,-P,,/P 5%
Number of particles 8.2 10°
Dt (int) 0.01
Cut-off radiusrae (inl) 20
Computational box periodic rhombic dodecahedron
Box size (in cells) 80" 80" 160

Table.4. Principa physical and numerical parameters employed in FPM simulation of dispersion of

colloidal dab.
General parameters Values
Ks T /(P/n) 0.015
g (I /D) (accel.) 10
Particle masses My A= 9, MoLvent=1
Number density n 10
(per cube of volume| )
Viscosity (inW) 10 and 100
DP/P=P1-P1,2/P 5%
Number of particles: |Total: 176" 10°
Solvent:1.49" 10° Sab: 171,000
Dt (int.«) 001
Cut-off radiusrg (inl) 158
Computational box periodic hexagond prism
Box size (in cells) 44" 50° 200
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Fig.2

PARALLEL LOOP

For all

endfor

P=1,N

SENDfrom_P-1 to_P_particles_from_boundary cells( r,?,7,Nkind);

Compute INTERACTIONS in_P (F;,N;);

ij?

SENDfrom_P_to_P-1 reactions_on_boundary_particles in-P-1 (F;,N; );
Update_INTERACTIONS for_boundary_particles in-P-1 (F;,N;);

ij?

MOVE particles in P(1,?,7);

SENDfrom P_to P-1 outcoming particles ( r,?,7 ,Nkind);
SENDfrom _P-1_to P_incoming_particles ( ', ?,7 ,NKkind);
SEND _totals from P_to_master_processor (Virial, Ekin, etc.);
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