
NetBuild: Transparent Cross-Platform Access to Computational Software Libraries

Keith Moore
Jack Dongarra

Innovative Computing Laboratory
University of Tennessee

Email: {moore,dongarra}@cs.utk.edu
Telephone: +1 865 974 8295

Fax: +1 865 974 8296

Summary:NetBuild is a suite of tools which automate the process of selecting, locating,
downloading, configuing, and installing computational software libraries from over the Internet,
and which aid in the construction and cataloging of such libraries. Unlike many other tools,
NetBuild is designed to work across a wide variety of computing platforms, and perform fine-
grained matching to find the most suitable version of a library for a given target platform. We
describe the architecture of NetBuild and its initial implementation.

1. Overview

A. Description and Goals

As computationally intensive modeling and simulation become increasingly important staples of
scientific life across nearly every domain and discipline, the challenge of deploying the software
that encodes the underlying computational science has become increasingly complex and
pressing. The ubiquity of the Internet and the establishment of large software repositories, such
as Netlib [1], have made it relatively easy to provide basic access to such software. However, a
rapidly growing and more diverse user community still has to cope with the process of
collecting, compiling, installing, configuring, and managing the software on a constantly
changing and increasingly elaborate computing infrastructure.

For all of its promise, the development of Grid-enabled computing [2] may actually exacerbate
this problem. A program may require certain software libraries be installed on large numbers of
diverse computing platforms. These platforms are administered by a variety of concerns, and
therefore have wide variation in their library support. It can be difficult merely to keep track of
which libraries are installed on each platform, and even more difficult to arrange for any missing
(or obsolete) libraries to be installed (or updated).

In addition, an increased acceptance of software reuse has enabled creation of more and more
sophisticated software packages, built out of numerous components obtained from diverse
sources. This in turn has created a configuration management problem for users and system
administrators, who must devote valuable time to obtaining and installing those components,
tracking changes (including enhancements, bug fixes, and sometimes security fixes) to those
components. Version conflicts, where one software package requires version X of a library while
another package on the same platform requires version Y, are common.

Packages such as ATLAS [3,4] can increase the effective performance of many platforms by
optimizing the parameters of the computation for that specific platform. However, for the same
reason, these packages can be sensitive to specific platform characteristics (CPU features, cache
sizes, etc.). These packages must therefore be configured on a per-platform basis, using fairly



fine-grained attributes of each platform to identify the proper version of the library.

To enable scientists and engineers to spend more of their time thinking about their research and
less time managing the quirks and intricacies of their computing tools, new approaches must be
found to automate these tasks. The NetBuild tools attempt to address the problem of automatic
library identification, configuration, and installation. Though these tools can be used
independently of the Grid, we believe that they are well-positioned to address problems of large-
scale complex distributed software systems of which the Grid is an example.

At the same time, NetBuild's goals are modest. In particular:

• NetBuild does not attempt to incorporate any knowledge about the characteristics of the
data being used into the library selection process. Thus it remains the programmer's
responsibilit y to explicitl y choose between (for example) a routine that expects a dense
matrix and a similar routine that expects a sparse matrix.

• NetBuild does not attempt to adapt between dissimilar calli ng conventions. So for
instance NetBuild cannot generate "glue" code to allow a Fortran program to call a C
library.

• NetBuild cannot resolve fundamental incompatibiliti es between different libraries.
However, given suff iciently detailed information about those libraries it may be able to
avoid such incompatibiliti es, if there is a set of libraries for the target platform which are
mutually compatible.

NetBuild is best understood as a set of tools to ease configuration management, by removing the
need for a user to explicitl y arrange that the libraries needed to perform a particular computation
are installed and up-to-date.

B. Services Provided

The NetBuild suite of tools provides the following services:

• Automatic tagging (at compilation time) of computational software libraries with catalog
information, including an indication of the target platform characteristics for which the
library is suitable,

• Replication of libraries to multiple servers from which the library can be downloaded,

• Indexing of libraries according to targeted platform characteristics, and indexing of
locations of each instance of a library,

• Automated searching of libraries for candidates meeting target platform criteria,

• Matching of candidate libraries against fine-grained characteristics of a target platform,

• Downloading of a selected candidate library from an appropriate location,

• Cryptographic verification of the authenticity and integrity of a library,

• Linking of the downloaded library into an executable image, and



• Run-time dynamic loading of a downloaded library into a running program.

From the perspective of the author of a scientific computing program, NetBuild provides the
abilit y to incorporate standardized computational software libraries, at link time or run time,
without imposing the requirement that they be pre-installed on a target platform.

C. Systems/Sites/Users Served

We initially intend to make the most popular of the mathematical software libraries on Netlib
available for use from NetBuild, with libraries pre-built for the most popular computing
platforms. These libraries will be available on all Netlib mirrors. There are efforts underway to
equip Netlib with faciliti es to allow computational software developers to compile and test their
libraries on a wide range of target platforms.

Once NetBuild is more stable, we intend to make the entire suite of tools available to others, as
free software, via the Internet. This will allow other developers to build NetBuild-compatible
libraries, and other repositories to establish NetBuild-compatible servers.

D. Status

NetBuild currently exists as a prototype, with limited distribution to alpha testers.

2. Architecture

The following tools comprise the principal components of NetBuild:

• The netcompile tool assists the library developer in constructing libraries that can be
used by NetBuild. It performs several functions, including:

• Invoking the compili ng system's compilers, linkers, and library managers with
appropriate options to produce either code which is portable across a variety of
target environments, or code which is optimal for a particular target environment,
according to the developer's preference,

• Concurrently with compilation of an object module, producing meta-data which
precisely describes both the compilation environment and the target platform(s)
for which the object module is presumed to be appropriate,

• Cryptographically signing the library and metadata, to allow users to verify these
components for authenticity and integrity,

• Incorporating the results into a package from which individual components can be
extracted, and which is usable by NetBuild.

Operation of netcompile is ill ustrated in Figure 1. The netcompile tool accepts source
code from the library author, invokes the system compiler and/or linker (with appropriate
options) to compile the code and produce a library, and uses GPG to generate a signature
for that library. The result (along with automatically- and optionally manually-generated
metadata) is packaged into a container file which is placed in a (distributed) code
repository. The metadata is also sent to a search engine for use by netbuild and
NetLoader.



Figure 1. Operation of the netcompile tool.

• The netbuild tool assists the computational scientist in incorporating NetBuild libraries
into his or her programs. Its functions include

• Intercepting calls to the build platform's compilers and linkers,

• Identifying libraries that are needed by the software and which are not installed on
the build platform,

• Searching for instances of the missing libraries which are compatible with the
build platform and appropriate for the target platform,

• Downloading those libraries to the build platform,

• Verifying their signatures for authenticity and integrity,

• Invoking the build platform's compilers and linkers with appropriate options to
allow the downloaded libraries to be linked into the compiled program.

Operation of netbuild is shown in Figure 2. The netbuild tool interprets the command-
line supplied by the user (or the Makefile or compilation scripts), consults a search
engine to determine locations of needed libraries which are suitable for the target
platform, downloads those libraries from a code repository, verifies their signatures using
GPG, and if successful, feeds those libraries to the local compiler and/or linker, which
combines those with local source code and libraries to produce an executable program.

netcompile

object
code

metadata

container
file

source
code

system
compiler

GPG

search
engine

code
repository

signature



Figure 2. Operation of the netbuild tool.

• NetLoader is a set of library routines which are analogous to the netbuild tool, but
which operate at run-time. Specifically, when asked to load a particular library,
NetLoader:

• Searches for instances of that particular library which are appropriate for the
target platform,

• Downloads the library to the target platform,

• Verifies the signature on that library for authenticity and integrity, and

• Incorporates that library into the running program

In addition the NetBuild system includes a server which indexes object files according to their
characteristics, and which answers queries from NetBuild tools and NetLoader library calls for
locations of libraries matching particular characteristics. The libraries are provided using
ordinary HTTP servers.

3. Implementation

3.1 netbuild tool

The netbuild tool may be invoked in either of two ways - explicitly, by use of the netbuild
command, or implicitly. In the latter case the user or program invokes a compiler or linker as it
normally would, but the PATH environment variable has been modified to contain a directory of
shims that intercept calls to the compiler and linker. Users do not normally include the shim
directory in their PATHs; this is done only when the compiler is some descendant subprocess of
an explicit invocation of netbuild. This allows compilers and linkers called by make and other
tools to be invoked in the netbuild environment simply by typing netbuild make, without

search
engine

code
repository

netbuild

local
source
code

local
libraries

executable
program

local 
compiler/linker

GPG



changes to the Makefiles or other compilation scripts.

Figure 3. Illustration of shim directory

The effect of the shims is shown in Figure 3. The top half of the figure shows a user's PATH and
the contents of the directories in the PATH. (For simplicity, only the compilation tools are shown.)
If f or example the user types "netbuild make program" the user's shell will search the PATH, find
the netbuild executable in /usr/local/bin, and invoke it.

Since netbuild was invoked by the name "netbuild", it modifies its PATH to look like that in the
lower half of Figure 1, and then treats the remainder of the line as a command to be run with the
modified PATH. In this example the command "make program" would be run with the modified
PATH variable.

make would then invoke the commands (specified in the Makefile or as system defaults) required
to compile "program". However, it would search for those commands using the modified PATH.
Since all of the program-building tools have "shims" in /usr/local/netbuild/bin, any
attempt to invoke a compiler or linker would actually cause netbuild to be invoked with the
name of that compiler or linker.

netbuild would then parse the command-line according to the rules for that compiler or linker,

as
cc
f77
ld
make

g++
gcc
g77
netbuild

/usr/ccs/bin: /usr/local/bin:/usr/local/netbuild/bin:

as -> /usr/local/bin/netbuild
cc -> /usr/local/bin/netbuild
f77 -> /usr/local/bin/netbuild
g++ -> /usr/local/bin/netbuild
gcc -> /usr/local/bin/netbuild
g77 -> /usr/local/bin/netbuild
ld -> /usr/local/bin/netbuild
make -> /usr/local/bin/netbuild

/usr/bin: /bin:

as
cc
f77
ld
make

g++
gcc
g77
netbuild

/usr/ccs/bin: /usr/local/bin: /usr/bin: /bin:

PATH=/usr/ccs/bin:/usr/local/bin:/usr/bin:/bin

PATH=/usr/local/netbuild/bin:/usr/ccs/bin:/usr/local/bin:/usr/bin:/bin



identify any missing libraries, download them to the local system and (after verification) invoke
the "real" system compiler or linker (found using the original PATH) to compiler and/or link the
user's program.

General

netbuild is a C program that runs on several UNIX-derived and UNIX-like platforms.  It works
as follows:

• The program checks the name by which it was invoked.  If that name ends in netbuild, 
it adds the directory containing netbuild's shims to the PATH environment variable, and
treats the remainder of the command-line as a command to be invoked with the modified
PATH.

• Otherwise, netbuild parses the command-line arguments as if it were the compiler or
linker, identifying options that specify libraries to be linked.

• For each of these libraries, netbuild determines whether those libraries are already
installed on the local system.

• For each of the libraries that are not installed, netbuild consults one or more network
servers in an attempt to find libraries which match the characteristics of the target
platform.  When it finds such a library it will download it to the local system.  Previously
downloaded libraries are cached so they are not downloaded again if they have not
changed.

• The authenticity and integrity of the libraries is verified, and if valid, the libraries are
installed in local directories which are private to netbuild.

• The system compiler or linker is then invoked with extra options to cause the newly-
downloaded libraries to be linked in along with the resident ones.

Option parsing

Since netbuild is invoked as if it were the normal system compiler or linker, it needs to be able
to understand options that vary from one compiler or linker to another.  netbuild therefore has a
configurable parser for command-line options.  The parser can be configured on a per-host, per-
platform, and per-compiler basis.

netbuild need not understand the full syntax and semantics of each option, but it does need to
know which options require additional arguments (so that subsequent arguments beginning with
a hyphen are not treated as separate options), which options specify libraries to be linked, and
which options specify local directories which should be searched.  In the future, other extensions
may be necessary. For instance, it may also need to be aware of options which specify variants of
the compiler's target platform, so that it can use the correct libraries if the specified target is
different than the default one.

Searching for local libraries

netbuild must search local directories to determine whether some of the requested libraries are



already resident.  Since these directories vary from one target platform to another and from one
compiler to another on the same platform, the list of directories which netbuild consults is
configurable.  In addition, any directories specified on the command-line are also consulted. 
Finally, since naming conventions vary from one platform to another, netbuild can be
configured to understand the file naming conventions for libraries on the local platform.  For
instance, library "xyz" might be matched by any of libxyz.a, libxyz.so, or libxyz.so.1.2.

Identifying suitable remote libraries

In order to search for suitable remote libraries, netbuild queries a search engine for libraries
matching the target CPU type and operating system. A list of descriptions of candidate libraries
is returned. The descriptions include a "constraint expression", a "preference expression" and a
URI. The constraint expression is a boolean expression, written in terms of characteristics of the
target platform, which is evaluated to determine whether the candidate library can be used on the
target platform. The netbuild client may impose additional constraints, based on the
characteristics of the candidate library.

In many cases (especially where performance is not critical) this is sufficient to find an
appropriate match. However, if multiple libraries satisfy the constraint expressions, the
preference expression of each library is evaluated library (higher values are preferred) to select a
library from the candidates.

The set of attributes which can be used in computing these expressions is platform-specific and
extensible, but may include:

• CPU architecture family (e.g. Intel IA32),

• instruction set version (where later versions are supersets of earlier ones)

• instruction set extensions (e.g. MMX, 3DNow!),

• sizes of various caches,

• CPU chip vendor,

• CPU chip version,

• number of processing elements,

• primary memory required,

• working set size required,

• disk space required,

• operating system,

• operating system version,

• operating system features/extensions,



• compiler,

• compiler version,

• compiler ABI or calli ng sequence,

• source language,

• object file format (e.g. ELF, COFF, a.out)

A concrete example is shown in Table 1, which ill ustrates constraint expressions for various
versions of ATLAS libraries which were compiled for Windows NT or 2000.

Table 1. Constraint expressions for Windows ATLAS binaries

Windows NT/2000 Athlon
"classic" with 512K off-chip
L2 cache

target.arch == "ia32" && target.ia32.vendor ==
"AuthenticAMD" && target.ia32.family = 6 &&
(target.ia32.processor == "AMD-K7(tm) Processor" ||
target.ia32.processor == AMD Athlon(tm) Processor") &&
target.ia32.l2.size = 512*1024 &&
(compiler=="gcc" || compiler=="ms.vc++" ||
compiler=="compaq.vf")

Windows NT/2000 Athlon
"enhanced" with 256K on-
chip L2 cache

target.arch=="ia32" && target.ia32.vendor=="AuthenticAMD" &&
target.ia32.family = 6 && (target.ia32.processor ==
"AMD-K7(tm) Processor" || target.ia32.processor ==
"AMD Athlon(tm) Processor") && target.ia32.l2.size =
256*1024 &&
(compiler=="gcc" || compiler=="ms.vc++" ||
compiler=="compaq.vf")

Windows NT/2000 Intel PII
with 512K L2 cache

target.arch=="ia32" && target.ia32.vendor=="GenuineIntel" &&
target.ia32.family = 6 && target.ia32.model = 3 &&
target.ia32.model <= 5 && target.ia32.l2.size = 512*1024 &&
(compiler=="gcc" || compiler=="ms.vc++" ||
compiler=="compaq.vf")

Windows NT/2000 Intel PIII
with 256K on-chip L2 cache

target.arch=="ia32" && target.ia32.vendor=="GenuineIntel" &&
target.ia32.family = 6 && target.ia32.model = 7 &&
target.ia32.l2.size = 256*1024 && target.ia32.sse &&
(compiler=="gcc" || compiler=="ms.vc++" ||
compiler=="compaq.vf")

Windows NT/2000 Intel
Pentium Pro with 256K on-
chip L2 cache

target.arch=="ia32" && target.ia32.vendor=="GenuineIntel" &&
target.ia32.family == 6 && target.ia32.model == 1 &&
target.ia32.l2.size = 256*1024 &&
(compiler=="gcc" || compiler=="ms.vc++" ||
compiler=="compaq.vf")

Windows NT/2000 Intel P4
with 256K L2 cache, using
SSE instructions

target.arch=="ia32" && target.ia32.vendor=="GenuineIntel" &&
target.ia32.family = 15 && target.ia32.l2.size = 256*1024 &&
target.ia32.sse2 &&
(compiler=="gcc" || compiler=="ms.vc++" ||
compiler=="compaq.vf")

Search engine interface

netbuild currently consults an external HTTP server to identify which libraries might be
available for a particular platform.  In order to find which versions of library ``xyz'' are available,
netbuild accesses a URL which is constructed from the library name, the target platform name,



and the target operating system. Accessing that URL causes a ̀ `common gateway interface''
(CGI) program to be invoked, which returns a list of candidate libraries, including their
constraint expressions, preference expressions, and URIs.

We used HTTP and CGI both for ease of prototyping and because most sites allow access to
external HTTP servers through their firewalls. However, the search engine is not inherently
centralized, and the netbuild client can choose from multiple search engines if they are
advertised either in the domain name system or via HTTP redirects.

Library container file format

netbuild expects downloaded libraries to be in a netbuild-specific container format with
multiple components.  The actual li brary archive is one component, the metadata is another, and
the signature on the library and metadata are yet another component. On some platforms, the
archive may also contain other components.  After downloading the container file the archive is
extracted, renamed as necessary, verified against its signature, and copied to the cache directory.

Caching

netbuild caches files that are downloaded from the network so that they are not downloaded
again unless necessary.  The cache is currently maintained on a per-user basis, in each user's
private filestore, due to security concerns associated with maintaining a shared cache.  Libraries
downloaded from servers are stored in a directory whose name is derived from a hash of the
(canonicalized) URL from which the library was obtained; a separate metadata file contains the
last-modified date of that URL.  Subsequent attempts to download that file use the HTTP "i f-
modified-since" directive which causes the file to be downloaded only if it has been changed. 
Note that the last change date of the container file which is downloaded may be different than the
last change date of the actual li brary; thus it is possible for the metadata (and signature) to be
updated even though the object library is unchanged. We can use this feature, for example, to
change the constraints on use of a library to reflect experience with the library after its
publication.

Authenticity and Integrity verification

We currently use GNU Privacy Guard (GPG) [5] to verify digital signatures on netbuild
libraries.  Compatible signatures can be created with GPG or any of several PGP variants. 
Because the trust model for netbuild libraries is different from that of normal PGP signatures
(just because a signature on a library is trusted to be authentic does not mean it that it is safe to
execute code from that library on a computer), the signatures used by netbuild are kept on a
separate key ring in a separate directory.

GPG is used in netbuild prototypes because it is easy to interface to, portable, readily available,
and presumably free of patent issues.  However the current implementation requires that GPG be
installed in addition to netbuild.  To make it easier for the user to install netbuild, it would be
preferable for the signature verification code to be incorporated directly.  This would allow
netbuild to support additional signature formats, and additional certificate formats such as
X.509v3.



3.2 netcompile

The operation of netcompile is similar to netbuild, but the function is different. Instead of
supplying missing libraries, netcompile's job is to invoke the native compilers and library
managers in such a way that:

• The compiler is optimally tuned for the assumed target environment, or to produce
portable code;

• The characteristics of the compiler and the resulting object files are recorded,

• The characteristics of the assumed target are recorded,

• The resulting library and metadata are signed, and

• The result is packaged for easy downloading by netbuild.

Whereas netbuild tries to transparently preserve the native interface to each compiler or linker,
netcompile tries to provide a platform- and compiler-independent interface to compilers,
linkers, and library managers.

3.3 NetLoader

NetLoader consists of an application programmer's interface to the portions of netbuild which
download and verify code, along with a dynamic library loader. However, the matching
algorithms are subtly different than those used by netbuild. For instance, NetLoader can only
use dynamically-loadable libraries, while netbuild can also use static libraries. Another
difference is due to target platforms that support emulation of the operating environment for non-
native images - for instance, a NetBSD platform can often run an executable image compiled for
Linux. In this case it is necessary to load a library that is compatible with the emulated
environment, rather than one which is compatible with the target's native environment. On the
other hand, if netbuild is asked to install a particular executable image, it might substitute one
intended for a different platform if the target platform supports emulation of the other platform
and no native executable is available.

Distribution and Location of Libraries

The distribution system takes advantage of the fact that Netlib is already extensively mirrored.
Each distinct version of a library is assigned a unique (and cryptic) filename which will never be
reused, so if a file with the same name appears on a mirror site, it's very likely to be an identical
copy of that library. The netbuild servers will maintain a list of mirror sites and the directories
on which they store Netlib files, to use in determining the probable location of the library on the
mirror. The servers initially will use heuristics (such as the last-changed-date of the library) to
guess whether a particular mirror site is li kely to have a copy of a particular library. (If the client
doesn't find a copy of the library at that mirror, or if the library is truncated or altered, the client
will t ry to obtain the library from another mirror.)

We plan to periodically check Netlib mirror sites for integrity and currency of mirroring, and
update our location database accordingly.



Related Work

NetBuild bears a resemblance to several other works:

The NetLink project [6] has similar goals to those of NetBuild, in that it is also focused on easing
the burden of maintaining software libraries used in scientific computing. Their stated objective
is to ̀ `identify a data distribution architecture [...] that can help to centralize the library
maintenance and tuning''. Their work appears to be focused on identifying an appropriate data
distribution architecture, whereas our work to date has focused on making NetBuild as
transparent as possible, and effective matching of object files with target platform characteristics.
We intend to actively cooperate with the NetLink project as part of our continued work on
NetBuild.

Libtool [7] is a package which eases the burden of development of software for multiple
computing environments, by providing a uniform interface to a variety of compilers, linkers, and
library archivers. Libtool is similar to netbuild and netcompile in that both sets of tools run
the existing compilers, linkers, etc. within a wrapper. Libtool allows developers to write scripts
and makefiles which invoke compilers and linkers via the libtool command; these scripts and
makefiles will be portable to every platform supported by libtool. Libtool also includes the
abilit y to dynamically load libraries created by Libtool. Libtool has been ported to a wide variety
of platforms. Our initial implemention of netcompile uses Libtool as a platform-independent
means of generating shared libraries.

The NetBSD operating system [8] contains a ̀ `package'' facilit y [9] which automates the process
of downloading source code for a particular program or library, verifying its integrity,
configuring it to run on NetBSD, compili ng it, installi ng it, and cataloging it for configuration
management purposes. The package facilit y also handles dependencies, so that any components
needed by the component to be installed are automatically compiled and installed also. The
facilit y supports both source-code packages and pre-compiled binary packages, and has
successfully been used to ease installation of over two thousand different tools and libraries. The
package facilit y has been ported to each of the several hardware platforms supported by
NetBSD, as well as to the Solaris operating system. The NetBSD package system is itself
descended from a similar ``ports'' system incorporated into FreeBSD; similar but independently-
derived features exist in Debian and RedHat Linux.

4. Status and Future Plans

The NetBuild tools currently exist as prototypes. We are currently experimenting with the data
model for platform and compiler characteristics, and working on more automatic derivation of
these characteristics at library build time. Our next step will be to construct an ̀ `compile and test
zoo'' for the purpose of automatically building and testing large numbers of libraries on various
platforms.

The current implementation is intended as a proof-of-concept and a testbed for new features
rather than a code base for use by ordinary users.  As such, it is designed to be flexible and
configurable and easily implemented, rather than (say) secure and robust. The publicly-
distributed version of NetBuild will need to pay much more attention to security and robustness
issues..



5. References

1.Browne S, Dongarra J, Grosse E, Rowan T. 1995. ̀`The Netlib Mathematical Software
Repository,'' D-Lib Magazine, September 1995.
http://www.dlib.org/dlib/september95/netlib/09browne.html

2.Foster I, Kesselman C, eds. The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufman: San Francisco, 1999.

3.Whaley, R C, Dongarra J. 1998. ̀`Automatically Tuned Linear Algebra Software''.
Proceedings Supercomputing 1998 conference.
http://www.supercomp.org/sc98/TechPapers/sc98_FullAbstracts/Whaley814/INDEX.HTM

4.Whaley R, Petitet A, Dongarra J. 2001. ̀`Automated Empirical Optimization of Software and
the ATLAS Project'' Parallel Computing 2001; 27(1-2):3-25.

5.Gnu Privacy Guard. http://www.gnupg.org/

6.Holmqvist I, Lindström E. 1998. ̀`NetLink: A Modern Data Distribution Approach Applied to
Transparent Access of High Performance Software Libraries, in Kågström, et. al. (eds),
Applied Parallel Computing: Large Scale Scientific and Industrial Problems, Lecture Notes in
Computer Science, Springer-Verlag, 1998;1541:248-254.

7.GNU libtool website and documentation. http://www.gnu.org/software/libtool/li btool.html
Free Software Foundation, 2001.

8.NetBSD - http://www.netbsd.org/

9.Feyrer H, Crooks A. ̀ `Documentation on the NetBSD Package System''
ftp://ftp.netbsd.org/pub/NetBSD/packages/pkgsrc/Packages.txt


