C549: Responses to Reviewer Comments

Referee 1

1. Add a case study to Section 7.

We have added a short description of our recent integration of the CORBA-CoG collaboratory with the DISCOVER collaboratory.

2. Change URL reference to full references

Done.

Referee 2

1. Typos pointed out.

Corrected.

2. Figures seem smudged in the PDF document.

Corrected.

3. The authors referred (page 7, line 11) to servers in their model being lightweight, manageable. This does not seem to be entirely true, as from what I read I believe they have an ORB running at each server.

The servers in the hybrid model are relatively lightweight as compared to servers in pure client-server systems as the functionality of a centralized server can be distributed across multiple peer servers. This makes them more manageable and lightweight as compared to a centralized server in a client server system, even though each server has an ORB running. While some of the commercial ORBs can indeed make the servers heavy weight, Open Source ORB - JacORB and Javasoft’s ORB – Java IDL are relatively lighter.

4. On page 10: Clients using CORBA/IIOP to connect to servers may actually reduce latencies. This seems to be open to debate. Since clients need to have an ORB on their side to communicate in IIOP in which case the clients are not really lightweight. Plus, in the case of ORBlets that are setup inside browsers there is quite some time (usually a few seconds) involved in downloading the ORB inside the browsers Java VM.
In the hybrid architecture presented in the paper, clients still communicate with their “home” server using HTTP. However, this home server communicates with remote servers on the clients’ behalf using IIOP. Thus, only the servers have an ORB running – the clients are HTTP clients implemented as Java applets. The reduction in latencies occurs when a large geographical distance separates the two communicating servers, and small chunks of data are transferred (<20Kbytes). This is shown in experiments presented in Section 7 (experiment 1, Fig 8). This reduction in latencies is due to the use of IIOP (which, unlike HTTP, reuses connections and hence reduces connection overheads) over the larger distance.

5. On page 11: section 6.1 2nd paragraph: There are 3 communication channels that are set up. Does this imply that there socket connections are initiated with the server? Or is this simply an abstraction. Also are any of these channels encrypted since some applications may be really sensitive to tempering of requests.
The three communication channels are abstractions for server to application commands/requests, application to server responses, and application notifications (global updates) communications – in the current implementation these channels do correspond to three different socket connections. We do have support for encrypting these channels.

6. There's a reference to clients differentiating between messages employing Java's reflection mechanism. This would, IMHO, increase communication latencies since the reflection process is a very slow process. Is there a reason why reflection needs to be used? Wouldn't a simple investigation of message header would do. Or are we constrained to do so, because all communication involves CORBA objects?

Use of reflection to differentiate messages from the server at the client side has been incorporated to use Java’s object serialization for all communication between the client and the server. Since the client-server communication is between two Java entities, Java’s object serialization mechanisms can be used. This eliminates the need for message parsing at the client side as entire Java objects can be sent from the server. Although it might be a little slow, object serialization makes the client code much cleaner and simpler. With object serialization, there are two ways to incorporate different kinds of objects. First is to use a different stream for each object (in different threads if there’s no definite sequence in which these different objects might be sent from the server). This is not a very scalable solution if there are a lot of different types of objects and it will increase the number of threads at the client requiring more processing and making it much heavier and slower. The other option is to use a single stream for all types of objects and differentiate between them using reflection. We decided to go for the second option as we wanted the clients to be thin and light weight.

7. Could a client connect to multiple servers? If so, is there a limit on preventing clients from doing so?

Yes, clients can connect to multiple servers as long as they have login privileges. However, our design doesn’t encourage this since once the client connects to one (typically the nearest) server it has access to all relevant applications (to which it has access privileges).

8. Page 12, section 6.2.1: There exist methods for a client to query a server and obtain a list of users logged in? Do they also form a collaboration group. Is there a way to allow clients anonymity and prevent invasive communications from other clients.

Yes, all clients (possibly on different servers) that connect to an application form a collaboration group. The clients can prevent invasive communication from other clients by choosing not to participate in the collaboration and disabling all collaboration updates. In our design (by choice), there is no anonymity between clients connected to the same application. Furthermore, even if a client does not participate in a collaboration session, its interactions with the application are visible to the group. This design decision was to ensure that all collaborators interacting with the applications are aware of the current state of the application. Note that clients connected to different applications however, are not directly visible to other clients and can remain anonymous.

9. Page 13, section 6.3.1 2nd paragraph: I was under the impression that an application is connected to a local server, access control etc. are much easier to implement in such settings. However, I see in this paragraph that it possible for the same application to be connected to multiple servers. What is the security strategy that would need to be in place to support such a scheme. It seems to me, that a distributed token/locking mechanism should also be present.

Typically, an application will connect just to its local server. However, in the case of meta-applications, different application components may connect to different servers (without overlap). There is also the possibility that there are multiple instances of an application (run by different groups) on the same or different servers. We chose a scheme for assigning globally unique identifiers to applications such that the identifiers are unique for both of these cases. In both cases the local server manages security and access control for its application or application components.

10. Page 14, section 6.3.3: All clients connected an application form a collaboration group. I believe an application could have multiple instances, similarly an application could be connected to multiple servers. I assume, the authors are referring to clients connected to an application instance forming a group. Since the same application instance could be connected to multiple servers would all clients accessing the same application instance from potentially different servers form a collaboration group.

Yes, in the case of multiple instances of an application connected to a single server or to multiple servers, all clients connected to a specific application instance form a collaboration group. In the case of different components of a single application connected to multiple servers, currently all clients connected to the application components at a server will form a group by default. We are working on enabling all clients connects to all components of the application to form a group by default.

11. Section 7.3 (Evaluation of Server Memory requirements): This was one area where I had some rather serious reservations. Values returned by freeMemory(), totalMemory() as rightfully suggested are very approximate. Compounding the issue is the fact that the system thread which is responsible for returning these values are not always scheduled for running when the most intensive operations are performed. They at best return values after the CPU intensive operations are performed. Also, this value is ever changing and continuously decreases after an operation is performed. If the authors feel this is a crucial element of their test results what would be more appropriate is using the NT Task Manager like utility that would available on their system. Native system calls do help in getting this number down to a great degree.

Also, I believe the contention that actual values would be lower than plotted in the paper is open to debate. First if it's a Java client one has to account for the JVM's utilization too. Intuitively it seems the values should be significantly higher than the ones plotted in the paper.

We do agree with referee’s comments about the approximate nature of the memory usage values at the server. However, the memory measurements are not a critical part of the experimental evaluation (the critical part being the latency measurements). Furthermore our emphasis is more on the relative difference in memory usage values for different configurations of the middleware substrate rather than the absolute values (the assumption here being that all the values have approximately the same error value, which might not be true).

Referee 3

1. As written, the first part of the paper (through Section 4) is not supported by the remaining sections of the paper. The paper does not describe the process of combining different collaboratories, but only how the distributed operation of the DISCOVER collaboratory is being supported. The paper also does not motivate the concept of tying collaboratories together from a domain scientists perspective, it really don't establish the need for this work. The implied message is "If we build it, they will come".
The objective of this paper was to 1) motivate the need for interoperable collaboratories and identify the issues in enabling this, and 2) to describe how we have taken the first step towards this by enabling instances of DISCOVER to interoperate. The primary contribution of this paper is the design of the middle architecture that enables multiple instances of the DISCOVER computational collaboratory to interoperate. We do address how this architecture can be extended to integrate different collaboratories operating on the Grid. However, this part of our research is still in an early stage.

We have modified the title of the paper and rewritten (focused) the first three sections make this point clear from the beginning and to address referee’s comments.

2. What would make this an interesting paper is an example of two of the different collaboratories mentioned, being modified to use this middleware substrate and reporting what was required to make this happen, what problems were encountered and overcome, and what was learned from the process. The paper doesn't outline or analyze what would be required for an existing collaboratory to utilize this middleware substrate. Does it require modifying client-side software, server-side software or both to use the CORBA IDL specification? Furthermore, while this is technically possible, experience shows isn't a practical or feasible solution because of organizational considerations, unless there is almost universal acceptance of the solution and a real impetus to change existing software. CORBA has not been able to attain this status.
The overall vision of this paper is that the middleware would provide underlying services that would be used to build collaboratories and to enable the services provided by these collaboratories to be composed and shared. In the case of existing collaboratories this would mean modifying the lower layers to use the middleware services. We do believe that it is important and we outline our motivations in the paper (Section 2.2). Furthermore, we do realize that the interfaces provided by different collaboratories will be customized to meet the needs of their specific user group – however, we believe that the proposed architecture does accommodate this as pointed out in the paper.

We have recently combined the CORBA-CoG collaboratory with the DISCOVER collaboratory using this middleware as proof of concept. Users can now combine the services provided by the CORBA-CoG (discover and allocate resource, to deploy applications, etc) with the services provided by DISCOVER (discover and connect to these applications, interact with them, collaborate with other users, publish results, etc.). We are currently evaluating this implementation and will report on our experiences in the future.

3. The paper also seems to equate focused Collaboratories and PSEs. In our opinion this isn't accurate, and not all of the collaboratories mentioned in the introduction are focused, therefore they definitely do not qualify as a PSE. Several of the collaboratories are also not grid-enabled, unless a very broad definition of the grid is being used that essentially equates to distributed computing.
We do use the terms “focused collaboratories” and “PSEs” interchangeably in the paper. We believe that the collaboratories in the introduction are focused in that they provide specific services and not every possible service. Furthermore, we do not understand the reviewer’s use of the term “grid-enabled” or the meaning of a collaboratory being grid-enabled. In paper we talk about collaboratories being “on the grid” rather than being grid-enabled.

4. Although, there are technical topics of interest in this paper, the different concepts brought forth (interoperability between collaboratories, middleware substrate, DISCOVER computational collaboratory) were not tied together well and caused confusion about what was trying to be conveyed.
We have re-written and focused the paper to address the reviewer’s concern.

5. Section 3.1 states that true interoperability can be achieved with Shared Protocols, but the implementation that has been followed by the project is Shared Interfaces and APIs. A path towards the Shared Protocol approach is mentioned by integrating the services into the CORBA ORB as standard CORBA services. Is this feasible? Does this require involvement in the standards process?

Yes, this does require involvement in the standards process. While this would not be easy, we believe that the idea is feasible. A similar approach is being discussed by the grid community in the form of grid-orbs.

6. Section 4 states that a server that provides a single instance of an application or a service is only required to provide the second level interface. A justification for why this was done was not provided. It seems, like this service would still need to advertise its capabilities. Also, in this section the paper states CORBA IDL was chosen instead of XML to describe interfaces, but no justification was given.

The justification is that in case of a server providing a single application, there’s no need to identify the server and the service differently. The service itself can represent the server. We have modified the statement to make this clear as follows: “If a server provides a single application or a service, only the second level interface is required”.

Choice between CORBA IDL and XML is a trade-off between speed and loose coupling. XML is self-describing and can provide a greater level of interoperability. However, XML parsing is still an overhead and is slow as compared to CORBA IDL based object marshalling. CORBA also provides more sophisticated discovery and naming services. We have explained this in the paper.

7. The experimental evaluation is also not very extensive and should undergo further evaluation. More than ten simulations should be used for the values used in the graphs. Not all of the diagrams said they were mean averages, were they? This is important for Figure 9, since the explanation is not sufficient if it is a mean response time. Regarding server memory consumption in Figure 10, given the total memory use of the server is less than 10MB for 25 clients then this doesn't seem like a very important evaluation criteria.

In the first experiment, which compares latencies for direct and indirect accesses on a LAN and a WAN, each value on the graph is a mean calculated over 10 measurements. This experiment forms the most critical evaluation criteria. The server memory comparison is not a critical part of the experimental evaluation and is given just to provide an idea of the relative difference in memory usage values for different configurations of the middleware substrate.

8. Presentation Changes: The test describing the hourglass model in Section 3.2 should have a diagram, the text alone was confusing. The conclusion mainly summarizes the paper contents, what are the real conclusions? The information regarding future work is interesting and could be further expanded upon. The appendices did not add to the paper and should be removed.

We will address these in combination with the comment from the other reviewers in the final version of the manuscript.

