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ABSTRACT

 MPI is commonly used to write parallel programs for distributed memory parallel computers.  MPI-CHECK is a tool developed to aid in the debugging of MPI programs that are written in free or fixed format Fortran 90 and Fortran 77.  MPI-CHECK provides automatic compile-time and run-time checking of MPI programs.  MPI-CHECK automatically detects the following problems in the use of MPI routines: (i) mismatch in argument type, kind, rank or number; (ii) messages which exceed the bounds of the source/destination array; (iii) negative message lengths; (iv) illegal MPI calls before MPI_INITIALIZE or after MPI_FINALIZE; (v) inconsistencies between the declared type of a message and its associated DATATYPE argument; and (vi) actual arguments which violate the INTENT attribute.

1. INTRODUCTION

MPI [1] is commonly used to write parallel programs for distributed memory parallel computers.  Writing and debugging MPI programs is often difficult and time consuming. MPI-CHECK is a tool developed to help make this process easier and faster.  MPI-CHECK provides compile-time and run-time checking that automatically finds many of the errors made when writing MPI programs.

While MPI-CHECK was being developed, a similar project was being carried out at Lawrence Livermore National Laboratories where they were developing an MPI tool named Umpire, see [2]. Umpire is a tool for detecting MPI errors at run-time that monitors the MPI operations of an application by interposing itself between the application and the MPI run-time system using the MPI profiling layer.  Umpire then checks the application’s MPI behavior for certain errors.  Umpire’s initial collection of programming errors detected includes deadlock detection, mismatched collective operations, and resource exhaustion.  Unlike MPI-CHECK, Umpire has a central manager that controls the execution of the MPI program and collects the MPI call information.  Currently, Umpire only runs on shared memory machines and not on distributed memory parallel computers.  Umpire may be used with Fortran, C and C++ MPI programs.

Compile-time checking of MPI-CHECK is discussed in section 2. Section 3 discusses the run-time checking done by MPI-CHECK and section 4 contains our conclusions and future directions.  

MPI-CHECK may be obtained at [17].

2. COMPILE-TIME CHECKING

When writing a C/C++ program with calls to MPI routines, one is required to add the statement #include <mpi.h> which supplies needed MPI constants and the prototypes for each MPI function.  When writing a Fortran program with calls to MPI routines, one is required to add the statement include “mpif.h” which supplies needed MPI constants but not the Fortran 90 interface blocks since Fortran77 compilers do not recognize interface blocks.  The MPI-2 standard allows one to use the statement use mpi instead of include “mpif.h” when compiling with a Fortran 90 compiler.  We have created a module that not only supplies all the information in mpif.h but also contains the interface blocks for all MPI routines.  This allows the Fortran 90 compiler to check each MPI routine for    

· the data type of each argument,

· the intent of each argument, and

· the number of arguments.  

MPI_CHECK automatically inserts the statement use MPI in each routine and supplies the necessary module. All include “mpif.h” and use mpi statements in the original program are removed to avoid conflicts with our MPI module.

At Argonne National Laboratories, one can obtain an MPI module, see ftp://ftp.mcs.anl.gov/pub/mpi. However, there were two problems with using this module in MPI-CHECK (1) This module does not handle messages that arrays of more than 2 dimensions.  (2) This module does not contain the intent information for the arguments of the MPI routines.  Some vendors, e.g. SGI, do provide the MPI module with intent information, but not all vendors do this.  The intent information for all MPI-1 and MPI-2 routines can be found on the MPI Forum web site, see [16]. Adding the intent information from the MPI Forum web site with the MPI module obtained from Argonne National Laboratories was relatively easy, but adding all possible combinations of message array dimensionalities cause the module to become too large to compile, and caused the compiled modules to become unmanageably large.  To avoid this problem, MPI-CHECK creates modules only for the MPI routines used. These modules are then compiled and linked with the executable. Creating these modules dynamically requires little time.  MPI-CHECK accepts arrays up to dimension seven, the maximum allowed by Fortran.

The following example illustrates the usefulness of checking argument intent information.

use MPI

integer parameter :: p = 2, n = 5

real :: A(n) 

...

call random_number(A) ! initialize array A

...

call mpi_comm_size(mpi_comm_world, p, ierror)

...

q=3

call mpi_send(A,q,mpi_real,2,1,mpi_comm_world, ierror)

Notice that there are two errors in this program.  In the call to mpi_comm_size, p is a constant and cannot have intent(out).  Notice that the variable q has been initialized but its type has not been declared. Therefore q takes the default REAL type and hence is not used properly in the call to mpi_send. A Fortran 90 compiler with the MPI module in MPI-CHECK will flag both errors.

3. RUN-TIME CHECKING
MPI-CHECK accomplishes run-time checking by instrumenting the original program and then compiling and linking the resulting program to produce an instrumented executable.

When the resulting executable is run, error/warning messages are automatically reported. The run-time portion of MPI-CHECK consists of a parser, a file containing MPI routine information (called the MPI Knowledge Base), and the code instrumentation portion.  In this section, we first discuss each of these components of MPI-CHECK and then list the MPI problems that are automatically detected.  MPI-CHECK run-time checking will check all MPI-1 and MPI-2 routines for the problems listed in section 3.3.  MPI-2 added the MPI_IN_PLACE option for most of the collective routines.  MPI-CHECK does not recognize MPI_IN_PLACE as a valid argument for a buffer and issues an error message. Note that MPI-CHECK does not abort execution after issuing an error unless it detects that the following MPI call will generate an array out-of-bounds condition.

3.1 The MPI-CHECK Parser

The MPI-CHECK parser assumes that the Fortran 90 syntax is correct and that there is at most one call to an MPI routine on each line.  MPI-CHECK supports programs written in free or fixed format Fortran 90.  

The MPI-CHECK parser copies all lines without MPI calls in the source program to the instrumented code without any change.  When the parser detects an MPI call, it collects the following information: the routine name, the number of arguments, the name of each argument, the dimension of each argument (if it exists), and line number scope of an MPI call.  The MPI-CHECK parser stores this information in the FUNCTION structure.  The productions used by the parser when encountering a call to an MPI routine are illustrated in Figure 1.


Notice that EXPRESSION in Figure 1 is defined as a string consisting of any ASCII characters without any analysis. Analyzing EXPRESSION is not necessary since expression is used as a single unit for the MPI-CHECK instrumentation.  

3.2 The MPI Knowledge Base

The information in the MPI Knowledge Base is used to determine what instrumentation is needed for each MPI routine.  The MPI Knowledge Base contains the following information about each MPI routine.  The first line in the MPI Knowledge Base contains the routine name, a tag = 0 or 1 indicating if MPI-CHECK uses this routine for instrumentation, and the number of arguments.  Each of the rest of the lines contain the name of each argument, an integer indicating the function of each argument, and either a nonnegative integer m or an *.   If the * is used, this indicates that this argument can be an array of any size.  If m is used, this indicates that the argument must be of dimension m, where m = 0 means the argument is a scalar.  If there are integers following the m, they indicate the size of each dimension of the array for this argument.  


Figure 2 shows how this information for MPI_RECV is stored in the MPI-CHECK Knowledge Base. “1” indicates that MPI-CHECK uses this routine for instrumentation; 8 indicates the number of arguments in MPI_RECV. 

The information for the MPI-CHECK Knowledge Base was obtained by writing a tool in Perl that parses the complete MPI document which can be found on the MPI Forum Web site, see [16].  Notice that if more MPI routines are added to the MPI standard or if arguments of some MPI routines change in future versions of MPI, then it would be easy to update MPI-CHECK since only the MPI Knowledge Base need be updated.

3.3 The MPI-CHECK Instrumentation

After parsing the MPI source code, MPI-CHECK inserts use MPI_CHECK (see section 2) as the first line of the instrumented MPI code for the main program and for each function and subroutine.  For each MPI call, MPI-CHECK retrieves the entry of this MPI routine from the MPI Knowledge Base, interprets the function of each argument, and then inserts additional statements before and/or after the call to the MPI routine into the instrumented MPI code.  This section shows how MPI-CHECK instruments a program to detect MPI-specific problems.

3.3.1 Buffer Data Type Inconsistency

MPI-CHECK compares the Fortran data type of each message in an MPI call with the corresponding MPI data type argument.  If they are inconsistent, MPI-CHECK issues an error message.  For example, for the following code:

real*8 ::  A(m1,m2)

...

call mpi_send(A, m, mpi_integer, dest, tag, mpi_comm_world)

MPI-CHECK will issue the message: 

      Error: [File = filename, line = 30, argument = 3] data type mismatch, expecting MPI_REAL8  

      call mpi_send(A, m, mpi_integer, dest, tag, mpi_comm_world)

Notice that it is possible to write a correct MPI program that mixes data types, but we consider this to be poor programming style that can easily lead to execution errors when running the MPI program on different machines.  In the above example, MPI-CHECK will also issue an error message if the MPI data type in the call to mpi_send is MPI_REAL4.  Matching data types between the Fortran type statement and the MPI call is necessary when writing portable MPI programs.  Table 4 summarizes the data type checking done by MPI-CHECK.  If the MPI program used data type REAL for the buffer, then MPI-CHECK will match the buffer with either REAL*4 or REAL*8, depending on the machine used.  Similar comments apply to INTEGER, LOGICAL, COMPLEX, and DOUBLE PRECISION.  The mpi_packed data type can be used with any of the other types, so there is no checking needed.  

	Fortran data type
	MPI data type

	INTEGER*1
	MPI_INTEGER1, MPI_BYTE, MPI_PACKED

	INTEGER*2
	MPI_INTEGER2, MPI_BYTE, MPI_PACKED

	INTEGER*4
	MPI_INTEGER4, MPI_BYTE, MPI_PACKED

	INTEGER*8
	MPI_INTEGER8, MPI_BYTE, MPI_PACKED

	REAL*4
	MPI_REAL4, MPI_BYTE, MPI_PACKED

	REAL*8
	MPI_REAL8, MPI_BYTE, MPI_PACKED

	LOGICAL1
	MPI_LOGICAL1, MPI_BYTE, MPI_PACKED

	LOGICAL2
	MPI_LOGICAL2, MPI_BYTE, MPI_PACKED

	LOGICAL4
	MPI_LOGICAL4, MPI_BYTE, MPI_PACKED

	COMPLEX8
	MPI_COMPLEX8, MPI_BYTE, MPI_PACKED

	COMPLEX16
	MPI_COMPLEX16, MPI_BYTE, MPI_PACKED

	CHARACTER
	MPI_CHARACTER, MPI_BYTE, MPI_PACKED



This data type checking is accomplished by creating a generic interface named type_check based on Table 1.  The generic interface for type_check defines specific interfaces not only for all the type-kind combinations in Table 1 but for all degrees of dimensionality including scalars and arrays of dimensionality from one to seven, the   maximum allowed by Fortran.

MPI-CHECK checks buffers that are MPI derived types as follows.  The parser scans for mpi_type_commit and stores the names of the committed derived data types in an array.  If the MPI data type used in the MPI routine is neither a primitive MPI data type nor one of the committed data types, MPI-CHECK issues an error message. 

For primitive data types, MPI-CHECK determines if the size of the MPI data type matches the size of the elements of the buffer.  For examples, on an SGI Origin, MPI-CHECK issues an error message for the following: 

real*8 ::  A(n1,n2)

...

call mpi_send(A(m1,m2), m, mpi_real, dest, tag, mpi_comm_world)

However, MPI-CHECK does not issue any message when this is run on a Cray T3E, since real and real*8 are equivalent on a T3E.  This size checking of the data type is done by calling mpi_type_extent(mpi_real, extent, ierror), which assigns extent the value of 8 instead of 4.  This check is performed by the subroutine type_check.  See statement 6 in the example in Figure 3, Section 3.3.6.    


3.3.2 Buffer Out of Bounds

Another problem occurs when attempting to send or receive elements that are not within the declared bounds of an array.  This can be checked using the Fortran 90 intrinsic functions LBOUND and UBOUND.  If one calls an MPI routine as in the following example,

call mpi_send (A, m, mpi_real, dest, tag, comm, ierror)

no bounds checking for the starting address need be done, so MPI-CHECK does no checking in this case.  In all other cases, MPI-CHECK checks the starting address.  To illustrate how this is done, suppose we have the following MPI call:

call mpi_send (A(m1), m, mpi_real, dest, tag, comm, ierror)

Then the starting address of the send buffer is inside the declared bounds if the following condition is satisfied:

                                              lbound(A,1)  (  m1  (  ubound(A,1)


(1)

where lbound and ubound are the Fortran 90 intrinsic functions that return the lower and upper bounds of an array.  The ending address of the message is within the bounds of the declared message buffer if
                                              lbound(A,1)  (  m1 + m - 1  (  ubound(A,1)

(2)

Notice that this assumes that the datatype of A is the same as the MPI data type in the call and this may not be true.  By using mpi_type_extent, MPI-CHECK removes this assumption.  MPI detects an out of bounds condition for higher dimensional arrays in a similar fashion.  This check is performed by the subroutine buffer_check.  See statement 7 in the example in Figure 3, Section 3.3.6.    


3.3.3 Improper Placement of MPI_INIT

MPI requires that the first call to an MPI routine must be to mpi_init with the possible exception of mpi_initialized.  MPI-CHECK inserts a call to subroutine init_check prior to each MPI call except for mpi_initialized and mpi_init.  This subroutine uses mpi_initialized to determine if mpi_init has been called.   See statement 8 in the example in Figure 3, Section 3.3.6.    


3.3.4 Illegal Message Length

MPI requires that the message length count be ( 0.  This checking is performed by calling the count_check subroutine, see statement 5 in the example in Figure 3, Section 3.3.6.
3.3.5 Invalid MPI Rank

Let p be the number of processes involved in a communicator comm as given by the MPI call mpi_comm_size(comm,p,ierr).  Then the rank of a processes involved in a communication must satisfy 0 ( rank ( p-1.  MPI requires that the root and dest arguments to MPI routines be the rank of the calling processor, and that the source argument must either be a valid rank for the communicator or be the MPI defined constant MPI_ANY_SOURCE.  
These conditions are checked by calling the rank_check subroutine, see statement 9 in the example in Figure 3, Section 3.3.6. 

3.3.6 An Example
We present an example below to show how to use MPI-CHECK and to illustrate how MPI-CHECK instruments a program. Assume the example program is stored in the file test.f90. To use MPI-CHECK to find MPI errors at either compile time or run-time, issue the command

mpicheck  f90  [compiler options]   -o  prog  program.f90  –lmpi 

This creates the instrumented executable prog.  Now run the executable as usual, i.e.

mpirun –np 4 prog.

The following example MPI program has a number of MPI usage errors:

1. implicit real*8 (a-h, o-z)

2. integer, parameter :: n = 3

3. real*8 A(n)

4. include "mpif.h"

5. integer p, rank, status(mpi_status_size)

6. call mpi_comm_size(mpi_comm_world, p, ierror)

7. call mpi_init(ierror)

8. call mpi_comm_rank(mpi_comm_world, rank, ierror)

9. if (rank == 0) then

10. do i = 1, n

11. A(i) = float(i)

12. enddo

13. do i = 1, p

14. call mpi_send(A, p, mpi_real4, i, 1, mpi_comm_world, ierror)

15. enddo

16. endif

17. if (rank > 0) then

18. call mpi_recv(A, p, mpi_real8, 0, 1, mpi_comm_world, status, ierror)

19. print *, 'On processor ', rank, 'A= ', A

20. endif

21. call  mpi_finalize(ierror)

22. end

The following shows the instrumentation produced by MPI-CHECK only for lines 6,7 and 14 of the above program.


The first error in the above program is that in line 6 of the original MPI program, mpi_comm_size is called before mpi_init.  This error will be found by the subroutine init_check and MPI-CHECK will issue the following message: 

  Error: [File=/t1.f90, Line= 6 ]  mpi_comm_size must be called after calling mpi_init

         call mpi_comm_size(mpi_comm_world, p, ierror)

The second error is that A is declared to be of type real*8 in the Fortran program but in the call to mpi_send at line 14, mpi_real4 is used as the MPI data type. This error will be found by the subroutine type_check.  MPI_CHECK issues the following message:

   Error: [File=/t1.f90, Line= 14  Argument=  3 ] datatype mismatch,  expecting mpi_real8

             call mpi_send(A,p,mpi_real4,i,1,mpi_comm_world, ierror)

The third error, using p as the count instead of n in the mpi_send call, is an error only when p > n.   When p > n, the error is found by the buffer_check subroutine and MPI_CHECK issues the following message 

  Error: [File=/t1.f90, Line= 14 , Argument= 1 ] A, message size exceeds the bounds of this array, please check the message size.

             call mpi_send(A,p,mpi_real4,i,1,mpi_comm_world, ierror)

The fourth error is that the fourth argument of mpi_send is the rank of the destination process and will not be between 0 and p-1 when i = p.   The subroutine rank_check finds this problem and reports the following message:  
       Error: [File=/t1.f90, Line= 14 , Argument= 4 ] i, rank should be between 0 and p-1

             call mpi_send(A,p,mpi_real4,i,1,mpi_comm_world, ierror)

4. CONCLUSIONS and FUTURE DIRECTIONS

MPI-CHECK is a tool developed to aid in the debugging of MPI programs that are written in free or fixed format Fortran 90.  MPI-CHECK provides automatic compile-time and run-time checking of MPI programs.  MPI-CHECK automatically detects the following problems:

· mismatch in argument type, kind, rank or number

· messages which exceed the bounds of the source/destination array 

· negative message lengths 

· illegal MPI calls before MPI_INITIALIZE or after MPI_FINALIZE 

· inconsistencies between a message’s declared type and the MPI data type used as an argument in the MPI routine; and 

· actual arguments, which violate the INTENT, attribute for that dummy argument.

Currently, we are working on improvements to MPI-CHECK.  The improvements will be in the areas of adding support for C++ and detecting deadlocks.  
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Figure 2: MPI_RECV in an MPI Knowledge Base 





#MPI_RECV 1 8


BUF 20 1 *


COUNT 60 0


DATA TYPE 40 0


SOURCE 81 0


TAG 50 0


COMM 30 0


STATUS 10 1 MPI_STATUS_SIZE


IERROR 10 0











Table 1: Data type matching  


































































































MPI_CALL:: “call” MPI_NAME ‘(‘ [ARGUMENT_LIST]* ‘)’


MPI_NAME:: [A-Z|a-z|0-9|_]+


ARGUMENT_LIST:: ARGUMENT[, ARGUMENT]*


ARGUMENT:: VAR [(DIMENSION)]*


VAR:: [A-Z|a-z|0-9|_]+


DIMENSION:: EXPRESSION [, EXPRESSION]*


EXPRESSION:: [any ASCII]+.








Figure 1: Productions of MPI Statements



























































Figure 3: Example of an Instrumented Program





 1 use MPI_CHECK


 2 call init_check('/t1.f90',6,6,'mpi_comm_size')


 3 call  mpi_comm_size(mpi_comm_world, p, ierror)


 4 call mpi_init(ierror)


       ...


 5 call count_check('/t1.f90',14, 14,p>=0, 'p', 1,                &


         'count should not be less than 0')


 6 call type_check('/t1.f90',14, 14,A, mpi_real4, 2, .true. )


 7 call buffer_check('/t1.f90',14, 14, extent_mpi(mpi_real4)*p+   &


    extent_fortran(A)*mpicheck_startarray()<=extent_fortran(A)*get_size(A),&


    'A',0,'message size exceeds the bounds of this array, please& 


   &' check the message size.')


 8 call init_check('/t1.f90',14, 14,'mpi_send')


 9 call rank_check('/t1.f90',14,14,i>=0.and. i<get_commsize(mpi_comm_world)&        


    ,'i', 3,'rank should be between 0 and p-1')


10 call mpi_send(A, p, mpi_real4, i, 1, mpi_comm_world, ierror)


       ...
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