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SUMMARY

Configuration and coordination are central issues in the design and implementation of

middleware systems and are one of the reasons why building such systems is more difficult

and complex than constructing stand-alone sequential programs. Through configuration,

the structure of the system is established — which elements it contains, where they

are located and how they are interconnected. Coordination is concerned with the

interaction of the various components —when an interaction takes place, which parties

are involved, what protocols are followed. Its purpose is to coordinate the behaviour

of the various components in a way that meets the overall system specification. The

open and adaptive nature of middleware systems makes the task of configuration and

coordination particularly challenging. We propose a model that can operate in such

an environment and enables the dynamic integration and coordination of components

through observation of their behaviour.
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2 M. RADESTOCK AND S. EISENBACH

1. Introduction

We can view a distributed system as a collection of distributed components that interact with

each other. The concerns of any distributed system, including middleware systems, can be

separated into four parts:

• The communication part defines how components communicate with each other.

• The computation part defines the implementation of the behaviour of individual

components. It thus determines what is being communicated.

• The configuration part defines the interaction structure, or configuration. It states which

components exist in the system and which components can communicate with each other,

as well as the method of communication. Basically it is a description of where information

comes from and where it is sent to.

• The coordination part defines patterns of interaction, ie. it determines when certain

communications take place.

Inter-part dependencies yield a layered structure (cf. Fig. 1). From a software engineering

viewpoint lower layers need not, and should not, know about the higher layers. As far as the

lower layers are concerned the upper layers need not even exist. Each of the layers could have

its own model, language and implementation (ie. support in a distributed system platform).

This clear separation of concerns is extremely beneficial, enabling a high degree of reuse and

easier maintenance.
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Coordination

Configuration

Computation

Communication

When is something communicated?

Where is something communicated to/from?

What is communicated?

How is something communicated?

Figure 1. The Four Concerns in Distributed Systems

1.1. Dynamic Configuration and Coordination

The interaction structure in middleware systems often changes dynamically: new components

are created, existing components are destroyed, connections between components are

established and broken up. Such dynamic configuration activities are derived from the

functional specification of the system which may state, for instance, that a new member

can join a video conference after receiving an invitation. These activities thus need to be

triggered by the components in the system themselves, and so the configuration layer needs

to be supported by the distributed system platform during the entire life-time of the system

in order to enable dynamic access to its functionality.

Coordination specifies patterns of interaction. Such a pattern may, for instance, be that

component A can only send message X to component B after component C has sent message

Y to component D. Coordination requires configuration — the patterns of interaction need

to be specified before the parties of interaction; which is precisely the task performed by
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4 M. RADESTOCK AND S. EISENBACH

configuration. We can make a distinction between static and dynamic coordination. In the

former case, the interaction patterns are fixed throughout the life-time of a system. In the

latter case, interaction patterns are altered dynamically as part of satisfying the application

requirements, ie. the changes to the interaction structure and patterns are ultimately triggered

by computational components. The coordination layer must exist during the entire life-time of

the system. A mechanism is required that enables the interaction with the computation layer.

1.2. Adaptive Systems

A dynamic coordination model allows us to specify systems where all possible dynamic

changes to the interaction structure and patterns are known at compile time and are

triggered by application components. However, this is insufficient in many large distributed

systems, especially middleware systems[27] tasked with enterprise application integration[5].

Such systems are typically long-lived, and require interactive management; both human and

automated agents need to be able to reconfigure the system while it is running and even need

to be able to alter the specification of the coordination, configuration and computation layers

in order to make permanent changes to the overall system behaviour. An example would be

a video-conferencing system where some new hardware, say a projection screen, is added to

the system during a conference. The components representing the screen need to be added to

the system’s computation layer and the configuration layer needs to be modified to forward

all data of the conferencing communication to that component. Finally we need to alter the

coordination layer to ensure that the new component interacts with the rest of the system in

the desired manner.
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COORDINATING COMPONENTS 5

These so-called adaptive systems or evolving systems are capable of accommodating changes

that were not anticipated during the original system development. This is in contrast to static

and dynamic systems. Both of these can contain interactive user interfaces or can interact with

external components, but such interaction and the resulting changes need to be implemented

as part of the system functionality; the system functionality itself cannot be altered. Adaptive

systems create considerable demands on the capabilities of a middleware architectures and

the use of reflection [18, 16] as a means of supporting these advanced requirements has been

advocated in recent research [25, 6].

1.3. Open Systems

A universal model for configuration and coordination has to be suitable for operating within

the context of open systems; it has to be easy to integrate it into existing distributed system

platforms and it needs to enable configuration and coordination of existing components without

requiring any alterations to them. The model needs to function across heterogeneous systems

that may be based on a variety of programming paradigms, languages and platforms. Not

only should it be possible to control the configuration and coordination of components in a

heterogeneous system, but it must also be possible to control it from the inside of the various

platforms that make up the system — if configuration and coordination are part of application

requirements, then they need to be controllable from potentially any part of the application.

In an open system little is known of the components’ implementations and it may even

be impossible to alter them. Thus for configuration and coordination to operate in a truly

open setting and enable the dynamic integration of components, they must not depend on
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6 M. RADESTOCK AND S. EISENBACH

any knowledge of component behaviour. They certainly should not rely on any behaviour

specifications, because in general it is impossible to ascertain whether components actually

meet them, and hence system safety and security could be compromised. Coordinating

components without relying on any explicit behaviour specification is crucial when it comes

to middleware systems, where it is important to perform integration with a minimum impact

on existing components. Typically, integration is achieved by embedding calls to some special

communications API that enable interaction with other system components via the middleware

infrastructure. The impact on the existing application in terms of code changes is usually

minimal and introducing coordination should not increase this.

1.4. Related Research

The issues of configuration and coordination have received growing attention from the

research community, and, as a result, several models, languages and implementations have

been proposed and executed. Distributed System standards such as CORBA [20, 22], DCE

[28] and RM-ODP [7], and their implementations, address the issue of configuration by

introducing a brokering mechanism which matches requests by components for particular

services with components providing these services. With this basic building block in place,

most configuration issues can be addressed. However, coordination is not addressed at all and

left entirely to the programmer of the components.

Formalisms, such as Gamma [2] and languages such as Linda [14, 3] have emerged. However,

they are not aimed at integration with existing systems or operation in an open environment.

Furthermore, only limited facilities exist for re-using coordination patterns, and coordination
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COORDINATING COMPONENTS 7

is typically embedded in application code rather than being separated. Research in software

architecture [13, 21, 12, 26], by contrast, has placed considerable emphasis on layer separation.

However, the distinct role of coordination has only been recognised recently. Consequently

several systems have emerged that address coordination issues, usually as extensions to existing

systems. Examples of this are ToolBus [4] (an extension to the PolyLith software bus [24]),

ConCoord [15] and Midas [23] are extension of Darwin [17]. ActorSpace [8] is an extension

of an actor language and Manifold [1] is based on a model where processes communicate

anonymously via streams. Common to all approaches is the lack of openness — coordination

in these systems relies on particular features that are unique to the specific system. Dynamic

integration of existing components is usually possible, but only for components that have

been designed, implemented and compiled for the particular system used. Dynamic change is

supported, but systems cannot adapt to changes in the requirements that go beyond the scope

of the original specification. Furthermore, the above coordination mechanisms only provide

limited means of abstraction, ie. the construction of patterns of coordination and their reuse.

This is mainly due to the use of separate coordination languages that lack expressiveness.

1.5. Outline of Our Approach

Our aim is to enable coordination in adaptive and open distributed systems, such as middleware

systems. Further to that, we want to be able to integrate components on the level of source

code, object code and running code, including existing and running legacy applications. The

key element in our solution is a mechanism that enables the observation and coercion of

dynamic component behaviour through the interception of messages. The first part of this
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8 M. RADESTOCK AND S. EISENBACH

paper is devoted to the description of this so-called traps model. Traps employ a sophisticated

type system for specifying message patterns and rules for defining actions to be taken when

messages have been intercepted. The patterns and rules can be altered dynamically and

thus traps represent a dynamic configuration and coordination layer. Since traps operate

without having any knowledge of the behaviour of the components, they do not depend

on any component interface/behaviour specification. Traps integrate the configuration and

coordination layers into the computation layer without jeopardising the benefits of clear

separation. Thus coordination can be designed and implemented using the same techniques

deployed in the design and implementation of the application components. As a result,

coordination code can be reused in the same way as application code. The approach also

enables meta coordination; the coordination of coordination itself. In the final part of this

paper we use the well-known example of the Dining Philosophers to illustrate how our model

can deal with various, increasingly complex, coordination tasks.

2. Traps —A New Model For Coordination

In order to facilitate configuration and coordination in an evolving heterogeneous distributed

environment, we need to devise a suitable model that has very few demands on the system

architecture and is thus easily incorporated into both existing and new systems. The first step

in devising our coordination model is to take a slightly different view of the message-based

communication model. This new view is illustrated in Figure 2. When a component A sends

a message to another component B, the message gets stored in a location of the so-called

message space, based on its type. From that location it is then forwarded to the receiving
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A B
msg

msgmsg a msg b Message Space

Communicating Components

Figure 2. Communication via Message Spaces

component. It should be noted that this transformation of our view of the communication

model happens on the conceptual level, unlike, for instance, in Linda where the tuple-space

model is exposed to the programmer. The new view is transparent to the components involved;

as far as component A is concerned it is still sending a message to component B, and as far

as component B is concerned it is still receiving a message from component A. Conceptually

though we can view things differently. Component B is notified of an ‘interesting’ activity: a

message that component A is trying to send to component B.

2.1. Message Types

A message between two components consists of

• the originator, ie. the component that sent the message,

• the recipient, ie. the component that is the intended recipient of the message,

• the content, ie. the data elements, and
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10 M. RADESTOCK AND S. EISENBACH

• the context, ie. additional information required by the communication and coordination

layers, such as time stamps and request ids.

The type of a message encompasses those elements that are visible to the programmer,

ie. everything apart from the context information. It can therefore be defined as

Message = Component × Component × Component∗

That is, the product type of components (originator), components (recipients) and sequences

of components (message content). Locations in a message space correspond to message types,

hence messages sharing the same originator, recipient and content are stored in the same

location. Some examples of message types (in pseudo-code) are:

device=>handler() an empty message from device to

handler

device=>handler(handle,data,12) a message from device to handler

with three components as content:

handle, data and 12.

We do not attach any special significance to the first element of the message content. In many

object-oriented systems this will be the name of a method to be invoked, however, our model

operates on a more abstract level and can therefore be oblivious to this special semantics.∗

∗The => in our notation should not be confused with the -> method invocation construct found in languages

like C++. In our notation the element to the left of the arrow is the sender, the element to the right is the

recipient and the arguments follow.
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COORDINATING COMPONENTS 11

2.2. Message Patterns

A message pattern defines a subset of the domain of message types. Its domain can therefore

be defined as the power-set of message types, ie.

MessagePattern = P(MessageType)

Message patterns are used by the programmer to identify interesting messages, messages

requiring special treatment by the coordination layer. They typically use the type system

of the underlying programming language. However, it should be noted that the type system

ought to be sophisticated, with the ability to dynamically construct types from instances and

not just other types. If these capabilities are not present then a separate type system must

be introduced to complement the existing one. Examples of some more sophisticated message

patterns are:

device=>handler(handle,data,12)

Device=>Handler,’special(handle,Any)+^String

Device=>handler()+Any,Device=>Device(transfer)

Any=>Any()+Any

The first pattern covers exactly one message. The second pattern covers all messages from

components of type Device to components of type Handler or the symbolic component special,

with at least two arguments, the first of which must be the component handle, the second of

which can be of any type, and the remaining arguments being of a type other than String.† The

†Upper case identifiers in our pseudo-code denote types, lower case identifiers denote variables holding

component references and identifiers prefixed with a single quote denote symbols.
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12 M. RADESTOCK AND S. EISENBACH

third pattern covers all messages from components of type Device to the component handler

with any number of arguments of any type, and messages between components of type Device

with transfer as an argument. The fourth pattern covers all messages.

As can be seen from these examples, a sophisticated type system enables the concise

specification of very complex patterns. Traps do not inherently depend on such type systems

though, as there are other places in the trap system where such complex decisions can be

made. However, the more expressive the type system is, the less computationally expensive

the introduction of traps becomes.

Having introduced the notion of message types, we now view communication between two

components in the following way: Messages, instead of being sent directly to their intended

recipients, are stored in locations of the so-called message space. Locations in a message space

correspond to message types, hence messages sharing the same originator, recipient and content

are stored in the same location. From that location they are then forwarded to the receiving

component. It should be noted that this transformation of our view of the communication

model happens on the conceptual level, unlike, for instance, in Linda where the tuple-space

model is exposed to the programmer. The new view is transparent to the components involved;

as far as the sending components are concerned they are still sending messages in the usual

way and as far as the receiving components are concerned they are still receiving messages in

the usual way. Conceptually though we can view things differently; the receiving components

are notified of an ‘interesting’ activity: a message that some component is trying to send to it.
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msg msg’ Message Space

translation rule

Communicating Components

Figure 3. Message Relocation by Translation Rules

2.3. Translation Rules

Our message-based communication model is obviously of not much use if all that happens is

essentially the same as before; locations in the message space just serve as ‘trampolines’ that

bounce messages to their target components. What we require for coordination is some means

of altering the flow of messages. We achieve this by installing translation rules at locations in the

message space. These translate the messages at the location into other messages, thus relocating

them to different places in the message space and effectively intercepting the message.

The translation rule in Fig. 3 translates the original message (from component A to

component B) into a message that has component C as the target. The new message could

be seen as having precisely the meaning presented earlier as an alternative perspective,

ie. component C is notified of the attempt by component A to send a particular message

to component B. Component C thus conceptually resides in the coordination layer. It could

coordinate all the activities between component A and B if translation rules were specified

that relocate any messages exchanged between the two components. Thereby C could act as a
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14 M. RADESTOCK AND S. EISENBACH

simple forwarder, or could accomplish arbitrarily complex coordination tasks, such as protocol

translation and enforcement, interaction with other coordinators etc.

In our model, translation rules always translate messages into new messages where the

originator is the message wrapper of the original message, ie. an encapsulating component for

the original message.‡ Further, the recipient and content of the new message does not depend

on the original message. A translation rule thus simply specifies a new recipient and content:

TranslationRule = Component × Component∗

Such translation rules can be defined completely independently of the underlying programming

language since they do not perform any computation whatsoever. This keeps the semantics

simple, offers opportunities for easy and efficient implementation, and enables deployment in

a heterogeneous language/platform setting.

When a translation rule is applied to a message, the resulting message contains the message

wrapper of the original message as the originator. The recipient and content are supplied by

the translation rule

logger(’io-event)§

applied to a message

device=>handler(handle,data,12)

‡The purpose of message wrappers is to expose messages as components in the programming language, even

though messages themselves may not be components.
§In our pseudo-code we define translation rules in the same way as message types, except that the originator

and following => are not present.
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will result in a message

device=>logger(’io-event,[device=>handler(handle,data,12)])

where the square brackets denote the message wrapper of the original message.

Messages resulting from the application of translation rules get stored at their appropriate

locations in the message space. Hence they can be subject to further translation. Eventually

the messages cannot be translated any further and are sent to their intended recipient. Since

translation rules always generate messages containing an encapsulation of the original message

as part of the content, the elements of the original message, such as the original recipient, can

all be used in the further decision process by coordination components.

2.4. Defining Traps

Placing a translation rule on a location in the message space is the equivalent of ‘setting a trap’,

hence the name of this model. Instead of being bounced back and delivered to the intended

recipient, a trapped message undergoes translation. The same translation rule often applies

to many locations in the message space. As we noted before, the number of locations in the

message space can be very large or even infinite. It is therefore impossible to install translation

rules individually at every location in the message space. Hence a trap definition consists of

two components:

• a message pattern— using the described type system for messages, this defines a subset

of the domain for messages, ie. locations in the message space. Messages in the subset

are caught by the trap.
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16 M. RADESTOCK AND S. EISENBACH

• a translation rule— using a new recipient and message prefix, this translates it into a

new message.

Thus, traps can be characterised as

Trap = MessagePattern × TranslationRule

= MessagePattern × Component × Component∗

In our pseudo-code we define traps using a >> operator. For instance, the trap

Device=>Handler(handle)+Any >> logger(’io-event)

will trap all messages sent from devices to handlers with handle as the first argument plus

any number of further arguments of any type. It will translate these messages to messages to

the component logger, with the symbolic component ’io-event as the first argument and the

encapsulated original message as the originator. Note that message patterns are part of the

type system and message wrappers can be matched against them. This enables the specification

of traps that further translate a message that has already undergone some translation. For

instance, messages generated by the above trap would match the pattern

[Device=>Handler(handle)+Any] => logger(’io-event).

2.5. Matching Policies

When a message is matched against the message patterns of the currently installed traps, it

is possible that it matches more than one pattern. In dealing with this situation, we have a

choice between two matching policies:
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1. Message translation is performed by all traps whose message pattern matches a message.

2. Message translation is performed by the traps whose message pattern matches the

message most specifically, compared to the other patterns.

Both policies are useful in certain contexts. The first policy would be employed in cases where

several independent coordinators are interested in a message and therefore install traps to

intercept it. For instance the two traps

Device=>Handler()+Any >> forwarder(’io-event)

Device=>Handler(handle)+Any >> logger(’io-event)

could be installed completely independently; one in order to forward messages, one in order to

log a subset of the messages. We would actually want both coordinators (ie. the forwarder and

logger) to deal with messages matching both patterns, instead of a selection being performed

based on the most specific message pattern (which in the above case would select the second

trap in preference to the second). The second policy is typically employed in cases where a

single coordinator installs several traps; more general traps for dealing with ‘normal’ messages

and specific traps for dealing with ‘exceptional’ messages requiring special coordination, e.g.

Device=>Handler()+Any >> forwarder(’io-event)

Device=>Handler(handle)+Any >> forwarder(’handle-io-event)

In order to deal with these two cases we therefore implement the following policy:

Traps with the same new recipient form a trap group. When a message matches

the message patterns of several traps in the group, then only the translation

rule of the trap with the most specific matching message pattern is invoked.
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18 M. RADESTOCK AND S. EISENBACH

Message translation is performed by all trap groups that contain traps with patterns

matching the message.

Trap groups define the boundaries of pattern-based selection and ensure that a message is

not translated into two messages with the same recipient. Thus, if all the above traps were

installed, a message

device=>handler(handle,data,12)

would be translated into two messages,

[device=>handler(handle,data,12)]=>forwarder(’handle-io-event)

[device=>handler(handle,data,12)]=>logger(’io-event).

which is exactly what we would expect.

There is a special case involving the pattern-based selection — when several patterns match

a message but neither of them is more specific than any of the others. In the simplest case this

will occur when two patterns are identical. The policy we employ in this case is to select the

most recently installed trap, thus ensuring a deterministic outcome of the selection process.

2.6. Coordination Protocol

When integrating a component into a system, the system needs to be configured in a way that

translates messages sent from the component to other components into messages the other

components understand and visa versa. This is accomplished by enclosing the component

in a container that performs the required translation, and by defining traps that intercept

messages sent from the component. Traps are applied recursively in order to translate a
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messages, resulting in a set of messages that logically replaces the original message. Every

message in the message set is delivered to its new recipient. If the original message was a

request requiring a reply then the first reply to any of the messages in the message set is sent

back to the originator of the original message as the reply to the request. All further replies

to messages in the message set are ignored, thus ensuring that at most one reply is returned.

Typically all intercepted messages are translated into messages to the container component

which in that case contains logic to perform the actual message translation. Thus the container

component becomes a true wrapper around the integrated component, dealing with both the

incoming and outgoing messages.

Configuration with traps is thus a function that is performed just after a message has been

sent. By contrast, coordination is performed just before a message is delivered. It is concerned

with ensuring that the processing of messages of an integrated component is synchronised,

depending on the application logic, with the processing of messages by other components

in the system. In our model, coordination is accomplished by encoding the required logic

in components that receive intercepted messages. The principal decision to be made by the

components is when the message should be submitted for processing to the original recipient.

In order to make that decision, the coordination components need to interact with each other.

This causes a software engineering problem because the coordination logic is often a composite

entity whose elements are unaware of each other and hence cannot engage in any explicit

interaction. This composite nature of the coordination logic is a result of the composite nature

of applications — they are built out of components which each have their own coordination

logic and are ‘glued together’ by yet more coordination logic. To overcome this problem we
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[msg]

dispatch(msg)

dispatch/delaydispatch/delay

replyreply

A B

vote_request vote_request

Figure 4. Coordination Protocol

add a coordination protocol to our model that manages the interaction between coordinators

transparently, ie. in a way that doesn’t require coordinators to know about each other. As

a result, coordinators can be implemented as state machines that perform state transition

whenever an interesting event occurs and whose states corresponds to sets of constraints on

occurrences of events.

When a message is intercepted by traps, it is eventually translated into a set of messages

that cannot be further translated. Then the following happens (cf. Fig. 4):

1. The message wrapper of the original message initiates a round of voting. Messages in the

message set are interpreted as requests for votes and dispatched.

2. The message wrapper waits until the same number of votes as requested, have been

received. Participants in a vote submit their vote through sending a dispatch or delay

message. They expect to receive a reply to that message, containing the outcome of the

round of voting.
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3. If all participants voted for dispatch then the outcome is dispatch. The original message

is dispatched, ie. sent on its way to its destination.

4. If one participant voted for delay then the outcome is delay. Nothing is done.

5. The reply messages with the vote result are sent to the participants.

The complexities of the coordination protocol can be hidden from the programmer by

splitting coordination components into two separate components; a protocol wrapper and a

logic wrapper. Programmers need only to be concerned with the logic wrapper which, typically,

implements some kind of state machine. All that the component has to do is vote on a message

and perform a state transition if the vote succeeds. The protocol wrapper, which can be

automatically created by the system, controls the message flow to and from the logic wrapper

and implements the coordination protocol. It takes care of message ordering and re-voting and

isolates the programmer from any changes that may be made to the protocol over time.

An important property of our coordination protocol is that it ensures fairness in the absence

of progress; a message that can be processed will be processed no later than at the time were

no other message is being processed by any component in the system. This ensures that

applications do not come to a standstill because messages whose processing is required to

enable the processing of other messages, are being delayed indefinitely despite being enabled

by the applications coordination logic.
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3. An Example

We shall now demonstrate how configuration and coordination in applications can be

accomplished with traps, using the well-known example of the ‘Dining Philosophers’.

Philosophers sit around a table with food. There is a chopstick between every two philosophers.

Philosophers require both their left and right chopstick in order to eat. A chopstick can only

be held by one philosopher at a time. It needs to be ensured that philosophers don’t starve

— we need to prevent situations of deadlock and livelock and ensure fairness. Philosophers

and chopsticks are to be treated as ‘given’ types of components, ie. we do not have access

to their source code and hence cannot modify it. Neither do we have any detailed knowledge

of the components’ behaviour. Thus coordinating philosophers and chopsticks in the context

of Dining Philosophers is very similar to the integration/reuse of ‘legacy’ components in a

heterogeneous distributed system, such as a middleware system. We investigate two variations

of the example, with increasing degree of complexity and show how the additional complexity

is primarily accommodated in an incremental fashion without the need for rewriting existing

code.

3.1. Configuration

Initially, we deal with static configuration only, ie. we create a certain number of philosophers

and chopsticks and establish a configuration where philosophers are assigned chopsticks in the

manner specified. We are assuming that coordination is performed by the philosophers and

chopsticks themselves, which therefore have to be aware of the context they are being used in.

When philosophers and chopsticks are created, the required coordinators are set up as well.
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After all coordination logic is in place, the philosophers are told to start eating. A philosopher

attempts to pick up a chopstick by sending a pick message to the symbolic components ’left

or ’right. It drops a chopstick by sending a drop message. We assign a coordinator to each

philosopher, which installs traps that intercept the pick and drop messages of a philosopher

and translate them into messages to the coordinator. Upon receipt of one of these messages

the coordinator replaces the original pick or drop message with a get or put message to the

actual left or right chopstick.

3.2. Coordination

To facilitate reuse, philosophers and chopsticks should be completely unaware of the context in

which they are being used, specifically philosophers should not require knowledge that picking

up a chopstick requires coordination with other philosophers. Philosophers should be able to

attempt picking up a chopstick at any time and dropping a previously picked up chopstick

at any time. They can attempt to pick up both chopsticks at the same time or one after the

other or pick one up and then drop it again. The only assumptions we make, for simplicity’s

sake, is that philosophers will not pick up a chopstick they currently hold, and will not drop a

chopstick they do not currently hold. The result of this liberal approach is that a great variety

of component implementations can fulfil the roles of philosophers or chopsticks. Thus there is

a wide scope for reusing existing components in that role without the need for modification.

We coordinate the dining philosophers by ensuring that when a philosopher attempts to

pick up the first chopstick, the request is delayed until both chopsticks are available. When the

first chopstick is being picked up by a philosopher all requests by other philosophers to pick up
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Figure 5. Coordinating the Dining Philosophers

the complementary chopstick are delayed. This policy ensures both freedom of deadlock and

livelock as well as guaranteeing that chopsticks are only picked up by one philosopher at a time.

In order to implement the coordination policy, coordinators create an auxiliary component.

Traps are installed that intercept messages to the philosopher’s chopsticks (cf. Figure 5). One

set of traps intercepts the messages sent by the philosopher’s coordinator, another set has a

message pattern which matches messages to the chopsticks from any component. Since the

latter pattern is less specific than the one of the first set of traps, these traps will intercept all

messages sent to the chopsticks by other coordinators. The intercepted messages are submitted
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for synchronisation to the auxiliary components. The auxiliary components implement a state

machine encapsulating the coordination policy by delaying get messages.

3.3. Dynamic Change

In the previous two variations of the Dining Philosophers, the configuration of the system

remained unchanged once it had been set up. However, coordination is often required in

settings where components are created dynamically. We shall now demonstrate how this can

be accomplished in a variation of the Dining Philosophers example in which we allow new

philosophers to join the existing ones.

New philosophers are placed at the ‘end’ of the table, ie. next to the last philosopher. A new

chopstick is created that will be shared between the new philosopher and the last philosopher.

The coordinator of the last philosopher needs to be notified of the changed configuration so

that it can amend its existing traps. We do this by sending it a changeL or changeR message,

depending on whether the new philosopher is seated to the left or right of the last philosopher.

The message contains a reference to the new chopstick and causes all existing traps of the

coordinator to be removed and new traps to be installed. The resulting changes in the system

configuration are illustrated in Figure 6.

Replacing a chopstick is not always safe. We cannot replace it while it is held by the

philosopher in question. We therefore amend the coordinator state machine to defer the

changeL and changeR message in certain states. Furthermore, it is important to initialise

the coordinator of the philosopher in a way that reflects the current state, ie. which of its

two chopsticks are currently held by other philosophers. We accomplish this by getting the
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Figure 6. Introducing a new Philosopher

initialisation code of the coordinator to ask the chopsticks whether they are currently being

held by anyone. The traps for the coordinator are installed prior to submitting these requests,

thus ensuring that the results obtained are current and won’t change without involvement of

the coordinator.
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4. Performance Evaluation

Our model introduces overheads that affects performance in two ways:

1. The “fixed” cost of coordination, i.e. what overhead is incurred by introducing our

coordination model into a system without actually using it.

2. The “variable” cost of coordination, i.e. how coordination affects scalability — the ability

of a system to cope with an increased workload by increasing resources, e.g. processor

speed, memory, number of nodes, network bandwidth.

Below we investigate each issue in turn.

4.1. Test Framework

Our main interest is in systems where coordination primarily takes place between components

executing in a single address space in a multi-threaded environment. Hence we assess the fixed

and variable cost of coordination in our model (and its implementation in TECCware [29]) by

measuring the average delay to the processing of messages in a generic framework that permits

the simulation of various coordination scenarios in precisely such an environment. However,

we will also discuss the implications of our findings for the more general case. Note further

that we focus on coordination, but the results are equally applicable to configuration since it

is based on the same algorithms as coordination.

Figure 7 shows our generic framework. A stream of messages is fed to each of nwork = n

worker components W1 . . . Wn. There are ncoord = m coordinator components C1 . . . Cm.

Every coordinator coordinates every worker. This is a worst-case scenario since in most cases
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Figure 7. Performance Test Framework

coordination can be accomplished by coordinating smaller groups of workers. For instance

only two chopsticks are coordinated by every coordinator in our Dining Philosopher example,

regardless of the total number of chopsticks. Note that we are interested in measuring

overheads, and hence both the worker and coordinator components in our test framework

do not actually perform any work upon receiving a message.

4.1.1. Measurements

The framework allows us to measure the impact of the following factors on the average message

delay:

Workload. An increase of workload, i.e. the number of messages needing processing within

a certain period of time, can be dealt with architecturally by increasing the number of
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workers nwork . For this to result in any improvement, the number of processors (and

processes) and/or the number of nodes should be increased as well, i.e. a new worker

should be placed on a new processor/node. We perform our tests on a single single-

processor machine and hence we can measure the overhead that is associated with an

increased number of workers. The size of this overhead, and how it increases with the

number of workers and in different coordination settings can limit scalability since it

might cancel out any gain obtained from the availability of additional resources.

Degree of Coordination. By varying ncoord , the number of coordinators, we can measure

the impact of the degree of coordination — i.e. the more coordinators are interested in

an intercepted message the “more” coordination takes place.

Probability of Failure. By altering the constraints enforced by coordinators, we can control

pdisabled , the probability of an intercepted message not being enabled for processing.

Changes in the value reflect different “styles” of coordination. For instance, an application

programmer could use coordination in order to delay the processing of messages in certain

exceptional circumstances (and hence pdisabled would be very small) or in order to control

access to a heavily used resource (in which case pdisabled could be very large).

Our aim is to ascertain how the degree of coordination and probability of failure affect

scalability, i.e. how particular settings of ncoord and penabled affect the message delay at

increasing workloads generated by an increase in the number of workers nwork .
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4.1.2. Optimisations
In our implementation we chose not to dispatch vote requests in parallel because there is

nothing to be gained from doing so in our setting:

• Parallel voting reduces communication overheads, but since we are operating in a single

address space, these are very low anyway.

• Parallel voting allows parallelism between coordinators. However, this would only

result in a performance gain if the coordinators each had their own resources, i.e. a

node/processor. This is not the case in the kind of systems we are interested in, where

system resources would typically be allocated to workers rather than coordinators.

Performing the voting sequentially, allows us to perform an optimisation: we establish an

ordering on coordinators and always dispatch vote request in the same order. This practise is

widely used in databases for prevention of deadlock during the acquisition of table locks. In our

test framework (and indeed in most other coordination scenarios) this means that any potential

deadlocks are detected by the first coordinator and no vote requests are sent to any of the

other coordinators in such a case. Even in a fully distributed setting, where each coordinator

has its own resources, sequential voting will usually be more efficient since the optimisation can

significantly reduce the amount of “unnecessary” work performed by coordination controllers.
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The optimisation enables us to refine the formula which determines the average message

delay as follows:

tmessage = (nabort + nfail + 1)(tconstraint + ntrapstmatch) +

(nabortcabort + nfailcfail + ncoord )(tconstraint + troundtrip + t′vote) +

ncoord (troundtrip + t′ack )

where nabort is the average number of times a vote is aborted, cabort is the average number

of coordinators that vote before a vote is aborted, nfail is the average number of times a vote

fails due to constraints not being satisfied, and cfail is the average number of coordinators that

vote before a vote fails.

In our test scenario cabort is 1 because all workers share the same set of coordinators and

hence the first coordinator in the established coordinator order will perform any necessary

aborts. Furthermore, all coordinators enforce the same constraints and hence cfail is 1.

Consequently the above formula can be simplified as follows:

t′message = (nabort + nfail + 1)(tconstraint + ntrapstmatch) +

(nabort + nfail + ncoord )(tconstraint + troundtrip + t′vote) +

ncoord (troundtrip + t′ack )

4.2. Constant Overheads

4.2.1. Ordinary Message Delivery

The vast majority of messages in any application will typically be between uncoordinated

components since coordination tends to take place on a coarse-grain level and the finer-grain
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components, which perform the bulk of the work, remain uncoordinated. Our model does

not add any overheads to these very common interactions. There is, however, an inherent

cost of interaction in any system. By measuring it we can later compare it with coordination

overheads.

By setting ncoords to 0 we ensure that no traps are installed on worker components. This

means that message delivery to the components remains unaffected by coordination. Since our

workers do not actually perform any work, the average time it takes to process the message

is equivalent to the average dispatching overhead. The value we obtain by performing these

measurements on a dedicated Sun Sparc Ultra/300 workstation is 0.054ms.

4.2.2. Reflection
The implementation of our model uses reflection, specifically reflected mailboxes. By measuring

the overhead associated with the use of reflection we can determine a “base line” — messages

that are subject to coordination in our implementation cannot possibly be subject to a smaller

overhead than that of reflection. In order to determine this base line we carry out tests in

the same system as above except that worker components use enabled sets and hence have

reflected mailboxes. The average per-message overhead we measured in this setting is 0.13msg.

The results show that the cost of mailbox reflection is significant; it doubles the message

delivery overhead.
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4.2.3. Coordination Controllers

The two scenarios from above identify the overhead associated with sending messages to

ordinary components and to components with reflected mailboxes. Both of these are not

affected by our coordination model. These are the vast majority of messages in an application.

The third most common category are messages to coordinated components that are themselves

not subject to coordination, i.e. no traps have been installed for them. We can determine the

overhead associated with the delivery of such messages by setting ncoords to 1 and letting

the coordinator install non-matching traps on the workers, i.e. traps that do not match the

messages received by them. This forces the workers’ mailboxes to become reflected and replaced

by trap-aware mailboxes which serve as coordination controllers. The overhead we measured

in this setting is 1.28ms.

The result shows that the implementation of coordination controllers as reflected mailboxes

creates a very significant overhead — approximately ten times that of basic reflection and

twenty times that of ordinary message delivery. The fact that the overhead is larger than that

of basic reflection is not surprising since a message received by a coordination controller has

to undergo more checks before being scheduled for processing than in the case of ordinary

reflected mailboxes. However, this does not really explain the size of the overhead, i.e. the

fact that it is ten times that of basic reflection. The reasons for this considerable overhead are

inherent inefficiencies in our implementation — it is a prototype and emphasis was placed on

the clarity of the implementation rather than efficiency. For the same reasons no optimisations

were performed for dealing with uncoordinated messages and hence a lot of unnecessary work

is performed when dealing with such messages.
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4.2.4. Pattern Matching and Constraint Evaluation

We are also interested in determining the impact of pattern matching and constraint evaluation

— every received message needs to be matched against local constraints and the message

patterns of potentially all traps installed on the worker. We measure the impact of the number

of traps on the per-message overhead by getting the coordinator to install 128 traps instead

of just 1. We obtain a result of 4.76ms.

The result implies that the overhead per trap is just under 0.03ms. Since typically only very

few traps are installed, the contribution of this overhead to the overall per-message overhead is

negligible. Constraint matching uses the same algorithms as pattern matching; they are both

based on type comparison. As with traps, the number of installed constraints are typically be

very small and hence the contribution of the overhead to the overall per-message overhead is

negligible.

4.3. Variable Overheads

4.3.1. Workload

Figure 8 illustrates the increase in the overhead that results from an increase in the number of

workers. We can see that the rate of increase seems to be rather low initially and eventually

converges upon a value close to 100 percent, i.e. doubling the number of workers doubles the

overhead.¶

¶Note that both the x and y axis are scaled logarithmically.
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Figure 8. Dependency of the overhead on the workload

The result can be explained as follows: In the worst case scenario a coordinator is asked

simultaneously by each worker to vote on a message. This may result in nwork − 1 polls being

aborted and one succeeding. Messages are aged artificially when polls have been aborted in

order to prevent repeated aborts, but it may take up to nwork (and an average of nwork/2)

attempts before a message is considered successfully, because by then the message will have

reached age nwork and necessarily be the oldest. Thus, doubling nwork doubles nabort , the

average number of times a message is being aborted, which in turn doubles the overhead. For

large numbers of coordinators the overhead is masked by the overhead associated with the
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Figure 9. Dependency of the overhead on the degree of coordination

degree of coordination (see below) and hence the 100 percent rate of increase will only be seen

with a much larger number of workers, e.g. the diagram shows that the 100 percent rate of

increase is reached at 26 workers for 4 coordinators and at 27 workers for 8 coordinators.

A distributed setting will not improve this result since most of the overhead occurs at

the coordinators and their resources are not increased by placing new workers at new nodes.

Furthermore, the communication overhead is increased.
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4.3.2. Degree of Coordination

Figure 9 illustrates the increase in the overhead that results from an increase in the number of

coordinators. As in the above scenario, the rate of increase seems to be rather low initially and

eventually converges upon a value close to 100 percent, i.e. doubling the number of coordinators

doubles the overhead.

The result can be explained as follows: The consideration of a message requires interaction

with all coordinators. An overhead is associated with each of these interactions and doubling

the number of coordinators doubles the overhead. For large numbers of workers this overhead

is masked by the overhead associated with the workload (see above) and hence the 100 percent

rate of increase will only be seen with a much larger number of coordinators, e.g. the diagram

shows that the 100 percent rate of increased is reached at 22 coordinators for 4 workers and

26 coordinators for 64 workers.

In a distributed setting, the communication overhead is higher, and thus the overhead is

increased.

4.3.3. Probability of Failure

Figure 10 illustrates the increase in the overhead that results from an increase in the probability

of failure, i.e. the likelihood of the coordinator’s constraints preventing a message from being

processed. For low probabilities of failure, the impact on the overhead appears to be negligible.

By contrast, the impact for high probabilities of failure is considerable.

The latter result should not come as a surprise. Doubling the probability of failure means

that, on average, a message consideration fails twice as often. An 80 percent probability
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Figure 10. Dependency of the overhead on the probability of failure

of failure, for example, means that the consideration of a message fails approximately five

times whereas a 40 percent probability only results in two-and-a-half failures. However, from

this explanation we would expect a near linear curve, but instead the actual result curve

is extremely flat for low probabilities and very steep for high probabilities. Tracing of the

execution revealed the following: In our coordination algorithm a message consideration cannot

be both aborted and failed, and aborts have a higher priority than failures. This means that

messages can be aborted when they would fail otherwise. For low probabilities of failure this

could take place almost all the time and message consideration would therefore almost never
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fail. With the probability of failure increasing, the chances of all failed message considerations

being masked by aborted message considerations decreases, resulting in the steeper curve for

high probabilities of failure.

In a distributed setting, the result will look similar, apart from the overhead being generally

higher due to do the increased cost of communication.

4.4. Performance Evaluation Results

Summarising the results from above, we can make the following observations about the per-

message overhead:

• The overhead resulting from the number of traps installed per component is negligible.

• The overhead resulting from the constraint evaluation is negligible.

• The overhead resulting from the use of reflected mailboxes is about two times that of

using ordinary mailboxes.

• The overhead resulting from the implementation of coordination controllers in terms of

reflective mailboxes is about twenty times that of using ordinary mailboxes.

• The overhead resulting from the workload increases linearly with the workload.

• The overhead resulting from the degree of coordination increases linearly with the number

of coordinators.

• The overhead resulting from the probability of failure is negligible for low probabilities

and substantial for high probabilities.

The results show that the base cost of coordination, i.e. the fixed overhead, is considerable.

It could be reduced significantly by implementing all or most of the coordination support
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layer in C++ eliminating most of the cost of reflection and speeding up coordination-related

computation.

Even with most of the coordination implemented in C++, some sizeable overhead will always

remain and factors like the number of traps and the cost of constraint evaluation will become

more dominating. These overheads can have a major impact on performance if coordination is

performed at a fine-grain component level where the cost of a component processing a message

is small. Coordination on this level typically does not have the requirement for separation,

openness and adaptability which our model was designed for. Hence it is reasonable to perform

coordination in a different manner, e.g. by making it part of the computation process. By

contrast, the fixed cost of coordination (after optimisation of the implementation) is likely to

be insignificant when coordination is performed on a coarse-grain component level, since there

most of the overall cost of processing a message results from the associated computation.

The negligible impact of the number of traps and constraint evaluation allows us to further

simplify the formula that calculates the per-message overhead.

t′message = (nabort + nfail + ncoord )(t′vote + troundtrip) + ncoord (t′ack + troundtrip)

We can plot tmessage in a three-dimensional space for a given setting of nfail (e.g. zero),

with nwork and ncoord representing the x and y coordinates respectively. The results of this are

shown in Figure 11. Our tests showed that nabort is proportional to nwork and hence we would

expect a plane, which is indeed what we get. This confirms the correctness of our formula for

calculating the overhead.

In the above formula, the increase in the overhead due to an increase in the number of

workers is constant. Specifically, it is independent of the number of coordinators. This will
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Figure 11. Dependency of the overhead on the workload and degree of coordination

not be the case in general since this independence is primarily due to the fact that in our test

framework all workers are coordinated by the same coordinators and that the same constraints

are enforced by all coordinators. In the worst case scenario, the last rather than the first

coordinator will detect deadlocks (and cause an abort) and constraint violations (and cause a
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failure). This means that tmessage , in the worst case scenario, is actually calculated as follows:

tmessage = (nabortncoord + nfailncoord + ncoord )(troundtrip + t′vote) +

ncoord (troundtrip + t′ack )

= ncoord (nabort + nfail + 1)(troundtrip + t′vote) +

ncoord (troundtrip + t′ack )

Thus, the overhead is still linearly dependent upon nabort and hence the number of workers,

but the rate of increase per worker depends on ncoord .

The linear increase of the overhead with the number of workers means that a system is

scalable, i.e. can cope with an increased workload by (linearly) increasing the number of

worker nodes, provided that the following condition holds

tprocess � ncoord (troundtrip + t′vote)

i.e. the time it takes a worker to process a message must be significantly greater than the

differential of tmessage with respect to nwork (i.e. nabort ). We can calculate the degree of

scalability

scalability = 1 − ncoord (troundtrip + t′vote)/tprocess

i.e. a scalability of 1.0 means that in order to cope with a doubling of the workload the number

of workers needs to be doubled, 0.5 means it needs to be quadrupled, etc.

The result has three important implications:

• Due to the linear dependency of the degree of scalability on the average roundtrip time,

coordinators should be placed on the same node as the coordinated components or on
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node that is close in the network topology.‖ Practically this is actually almost always

impossible, since a system that is scaled by adding nodes will not be placing worker

components on the same nodes as coordinators.

• Efficient implementations of our model, that minimise the residual voting overheads, can

greatly improve scalability, as there is a linear dependency of the degree of scalability on

it.

• Minimising the degree of coordination, i.e. minimising the number of coordinators

interested in any particular intercepted message, is essential, since there is a linear

dependency of the degree of scalability on the number of coordinators — doubling the

number of coordinators doubles the overhead.

The second item we already discussed above. We estimate that optimising our implementation

on the Rosette level will reduce the overhead by a factor of 2-3. Re-implementing time-critical

parts of our solution in C++ should reduce the overhead by a further factor of approximately

5, which is the typical performance gain achieved by moving code from Rosette to C++.

This means that the base overhead of coordination will only slightly increase message delivery

time. Furthermore, the degree of scalability in settings with a small number of coordinators

and short message roundtrip times (which is precisely the types of system we are primarily

interested in), will be close to 1.0 and hence application programmers will be able to utilise

our coordination model in such a setting without having to worry about performance.

‖This conclusion is really obvious; we include it for completeness.
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Of most interest to the application programmer, is the last item. It implies that generally

they should aim to implement any particular piece of coordination logic with as few

coordinators as possible. However, there might be good reasons for selecting an algorithm that

requires a higher number of coordinators per message. For instance, we could have coordinated

the Dining Philosophers with a single “central” coordinator, in which case every message would

only be subject to coordination by one coordinator instead of two (the chopstick’s coordinator

and one of its neighbours). Doing so, on the other hand, would actually make the solution

unscalable since the workload on the single coordinator would increase with every philosopher

added to the system. By contrast, the workload on coordinators in our implementation of the

Dining Philosophers only depends on the workload of the neighbouring philosophers. A new

coordinator is added with every new philosopher and can be placed on a separate node, thus

permitting the scaling of the system. Note though that this scalability of the coordination

logic, i.e. the ability of coordinators to cope with an increased workload, is only of concern if

the amount of computation performed by the coordination logic is within the same order of

magnitude or greater than the computation performed by the coordinated components. For the

application programmer, finding the most efficient algorithm for implementing the coordination

logic in such applications requires striking the right balance between the scalability of the

computation layer (i.e. the coordinated components) and the scalability of the coordination

layer (i.e. the coordinating components).
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5. Conclusions

The model of coordination presented in this paper enables the coordination of components

in open adaptive systems, independently from the underlying distributed system platforms.

Some recent advances in this direction can be found in the notions of synchronisers [11, 10],

regulated coordination [19] and programmable coordination media [9]. Our approach shares

many of the initial motivations and there are also some similarities between the concepts. For

instance, the notion of a programmable coordination media is based on intercepting messages

in a very similar way to our traps, and underlying synchronisers is a coordination protocol that

is in many ways similar to ours. However, in our opinion these models are still not sufficiently

open and only have very limited support for system evolution and the abstraction and reuse

of coordination patterns in a truly open setting.We can make several important observations on the model presented in this paper. Firstly,

the presence of coordinating components is transparent to the components in the computation

layer that are being coordinated. Coordination can be imposed without changes to these

components by observing and coercing their visible behaviour. All that is required is the ability

to observe (and intercept) the messages emitted from components. Secondly, coordination will

only take place where it is needed. Components are free to interact with each other without

the involvement of the coordination layer if the coordination layer hasn’t specified that such an

involvement is required, by defining suitable traps. The safety and liveness requirements of a

system can be met using whatever information is available about the messages sent/expected

by a component, it’s internal behaviour, protocols etc. This, somewhat pragmatic, approach
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enables the integration of components implemented in a multitude of languages and running

on a multitude of systems.

Finally, we can observe that coordination in our model is performed by ordinary components

residing in the computation layer. This is a result of the reflective nature of traps. The

only difference is in the role played by the components. Their specification, design and

implementation can utilise the same tools, paradigms and languages. Hence the means of

abstraction and reuse apply to our coordination logic in the same way as they are applicable

to the application logic. For instance it doesn’t take much effort to abstract generic resource

allocation coordination patterns from our Dining Philosopher example. In addition to the

obvious software engineering advantages of implementing coordination logic in the same way as

application logic, we gain the ability to perform meta coordination, ie. coordinator components

themselves can be subject to coordination by other components. Thus, instead of statically

categorising components into those dealing with configuration/coordination and those dealing

with computation, we have a dynamic relationship between components that is a result of

the role they play with respect to each other at a particular point in time. This dynamic

categorisation provides the means for implementing systems where coordination is an integral

part of the functionality, and hence complex interactions take place between the coordination

and computation layers.

Traps can easily be integrated into existing systems by modifying the communication

layer. Thus all existing application code remains unaffected and the model functions in

a heterogeneous setting, enabling the coordination of existing components across system

boundaries. We have successfully implemented trap-based coordination in a heterogeneous

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1–48

Prepared using cpeauth.cls



COORDINATING COMPONENTS 47

setting consisting of a distributed actor-based system and a CORBA half-bridge [30]. The

model has been successfully used commercially by TECC Ltd in the design and implementation

of several middleware applications [29]. Our current research concentrates on establishing a

formal semantics for traps and their application in the definition of reusable coordination

patterns.
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