
Advanced Concurrency Control in Java

Pascal A. Felber
Bell Laboratories

600 Mountain Ave, Room 2B-303
Murray Hill, NJ 07974

pascal@research.bell-labs.com

Michael K. Reiter
Bell Laboratories

600 Mountain Ave, Room 2T-316
Murray Hill, NJ 07974

reiter@research.bell-labs.com

ABSTRACT

Developing concurrent applications is not a trivial task� As

programs grow larger and become more complex� advanced

concurrency control mechanisms are needed to ensure that

application consistency is not compromised� Managing mu�

tual exclusion on a per�object basis is not su�cient to guar�

antee isolation of sets of semantically�related actions� In this

paper� we consider �atomic blocks�� a simple and lightweight

concurrency control paradigm that enables arbitrary blocks

of code to access multiple shared objects in isolation� We

evaluate various strategies for implementing atomic blocks

in Java� in such a way that concurrency control is transpar�

ent to the programmer� isolation is preserved� and concur�

rency is maximized� We discuss these concurrency control

strategies and evaluate them in terms of complexity and per�

formance�

1. INTRODUCTION

Writing concurrent programs is a challenging task� While

it is well known that shared resources must be protected

from concurrent accesses to avoid data corruption� guarding

individual resources is often not su�cient� Sets of semanti�

cally related actions may need to execute in mutual exclu�

sion to avoid semantic inconsistencies� While databases have

native support for such �transactional� constructs� most

concurrent programming languages lack adequate mecha�

nisms to handle this task�

The system model and assumptions of concurrent appli�

cations are generally di�erent from those of databases� Un�

like databases� concurrent programs generally manipulate

transient data and may not be able to �undo� a set of ac�

tions �rollback	� This means that concurrency control mech�

anisms should avoid situations where rollback is necessary

�such as deadlocks	� and should implement con
ict avoid�

ance rather than con
ict resolution� This can translate into

the use of pessimistic locking strategies instead of the opti�

mistic strategies often used in databases� Another di�erence

is that the the code of a concurrent application may be ar�

bitrary complex and may not easily be reduced to read and

write operations on data items� This is especially true of

code that was not developed with concurrency in mind� but

is executed a posteriori in a concurrent context�

Concurrency control mechanisms that implement mutual

exclusion of multiple actions in concurrent applications face

a tradeo�� On the one hand� control over shared resources

must be acquired in a conservative way to avoid situations

where rollback would be necessary� On the other hand� con�

trol over these shared resources must be held for the shortest

amount of time possible to increase concurrency� While this

�



tension has been extensively studied in databases ��� sur�

prisingly little work has been performed in the context of

concurrent programming languages�

This paper discusses concurrency control mechanisms for

implementing atomic sets of actions in Java� a general�purpose�

object�oriented concurrent programming language� The goal

is provide simple yet e�cient mechanisms to implement mu�

tual exclusion on arbitrary sets of objects� in order to in�

crease concurrency of multi�threaded application without

violating safety� We take advantage of the object�oriented

nature of the language to guarantee isolation in a trans�

parent way and decouple the declaration of critical sections

from the underlying mutual exclusion mechanisms� Code

executing in an atomic block does not need to be aware of

concurrency� and existing applications only require trivial

modi�cations for taking advantage of our mechanisms� Sev�

eral concurrency control strategies are presented and eval�

uated in terms of complexity and performance� While the

mechanisms discussed in this paper have been packaged as a

class library for ease of implementation� they could easily be

added to the language through a simple extension of Java�s

�synchronized� statement�

The rest of the paper is organized as follows� Section � in�

troduces background concepts and presents the motivations

of this work� Section � brie
y discusses related work� Sec�

tion  describes the various locking policies supported by our

Java concurrency control framework� Section � discusses the

implementation of atomic blocks in Java using the locking

policies previously introduced� Section � presents experi�

mental results from our Java implementation� and compares

the di�erent policies in terms of concurrency and runtime

performance� Finally� Section � concludes the paper�

2. BACKGROUND AND MOTIVATIONS

Consider the simple problem of transferring money from

one bank account to another�� This transfer operation must

be atomic� in the sense that any other entity accessing these

accounts concurrently will see their balance before or after

the transfer� but not in between the withdrawal and the

deposit� For instance� a concurrent operation that computes

the sum of both bank accounts would return inconsistent

results if it sums the balance of bank accounts after the

withdrawal but before the deposit� the sum of the balances

is a semantic invariant that should not be violated�

Databases have native support for such constructs� They

guarantee that operations gathered into transactions satisfy

the four so�called ACID properties� Atomicity� i�e�� trans�

actions executes completely or not at all� Consistency� i�e��

transactions are a correct transformation of the state� Isola�

tion� i�e�� even though transactions execute concurrently� it

appears for each transaction T that others transactions ex�

ecute either before T or after T � but not both� and Durabil�

ity� i�e�� modi�cations performed by completed transactions

survive failures� Databases implement this behavior by con�

trolling access to shared data� and undoing the actions of a

transaction that did not complete successfully �roll�back	�

The cost of running a transaction in a database is not

negligible� and applications that do not need all four ACID

properties could bene�t from using more lightweight mech�

anisms� In this paper we only focus on isolation guarantees

for concurrent applications that essentially manipulate tran�

�We chose the bank transfer example to illustrate our prob�

lem because of its simplicity and intuitiveness� Note however

that bank accounts are typical examples of critical data that

should be persistent and kept in a database�

�



sient data� do not need durability� and never need to abort

�mandating arbitrary actions of a concurrent application to

be reversible is incompatible with the goals of keeping con�

currency management transparent	� Using a database in

this context is obviously inadequate�

In our bank application� application consistency can be

preserved by making the withdrawal and the deposit part of

an atomic block that cannot be interrupted by concurrent

threads accessing the same bank accounts� In the rest of

this paper� we will refer to the set of operations of an atomic

block using the generic term of �transactions�� even though

they are not formally equivalent to database transactions

that satisfy all four ACID properties� Figure � shows how

the bank transfer might be implemented in Java if the lan�

guage had an �atomic� keyword for declaring atomic blocks�

� class Bank f
� void transfer �Account from� Account to � int amount�
� f
� atomic f
� from�withdraw�amount��
� to � deposit�amount��
� g
� g
� g

Figure �� Atomic transfer between bank accounts
with an hypothetical �atomic� keyword�

In a programming language that does not natively sup�

port transactions� like Java� isolation must be implemented

using concurrency control mechanisms� Java�s built�in con�

currency support ��� allows programmers to create multiple

threads and let them execute simultaneously� Each Java ob�

ject contains a synchronization lock which can be used to

implement mutual exclusion� only one thread at a time can

hold the lock�

Java de�nes the �synchronized� keyword to acquire the

lock of an object and guard a method or a block of code�

Synchronized methods acquire the lock of the target object

or class for the duration of the method� The more versatile

synchronized block construct locks an arbitrary Java object

for the duration of the block� However� it is not possible to

atomically acquire the locks of multiple objects for a syn�

chronized block�

� class Bank f
� synchronized
� void transfer �Account from� Account to � int amount�
� f
� from�withdraw�amount��
� to � deposit�amount��
� g
� g
� �� Thread ��

�	 bank� transfer �a�� a�� ������
�� �� Thread ��
�� bank� transfer �a�� a	� ������
�� �� Thread � and thread � are serialized

Figure �� Synchronizing on a global object reduces
concurrency�

A �rst solution to the bank transfer problem using a syn�

chronized method is given in Figure �� The synchronization

lock of the bank object is acquired when entering the �trans�

fer� method and released upon completion� thus ensuring

that no two threads can execute this method concurrently�

The problem with this approach is that it does not discrim�

inate between transfers that interfere and those that do not�

For instance� the two concurrent transfers shown in the �g�

ure �lines �� and ��	 will be serialized� although they do not

access the same accounts and thus do not interfere� If the

bank manages a large number of account and interferences

are not frequent� this approach is obviously inadequate� it

guarantees isolation but signi�cantly limits concurrency�

Another solution is given in Figure �� Instead of obtain�

ing the lock on the bank� we obtain the locks on all ac�

count objects part of the transaction� This is implemented

using nested synchronized blocks �lines ��	� The major

problem of this solution is that it introduces risks of dead�

lock� A deadlock is a form of liveness interference in that

it prevents progress� As shown in the �gure� two threads

�



� class Bank f
� void transfer �Account from� Account to � int amount�
� f
� synchronized�from� f
� synchronized�to� f
� from�withdraw�amount��
� to � deposit�amount��
� g
� g
�	 g
�� g
�� �� Thread ��
�� bank� transfer �a�� a�� ������
�� �� Thread ��
�� bank� transfer �a�� a�� ������
�� �� Thread � and thread � may deadlock

Figure �� Nested synchronized blocks may cause
deadlocks�

performing concurrent transfers on the same accounts but

in the reverse order may deadlock �lines �����	� Indeed� if

one thread locks the �rst account at the same time as the

other thread locks the second account� we run into a dead�

lock situation because each thread will try to acquire a lock

held by the other thread� thus violating liveness� Database

systems traditionally solve deadlocks by selectively aborting

some transactions� In a concurrent program� it is generally

not possible to detect deadlocks and�or abort transactions�

and the appropriate strategy is to avoid deadlock�

Another problem of this approach is that it cannot easily

be applied to an arbitrary number of objects �not known

statically	� For instance� it is not straightforward to imple�

ment a method that takes an array of bank accounts and

compute the sum of their balances� because the number of

nested synchronized blocks depends on the number of ac�

counts� which is not known at compile time�� The limita�

tions of Java�s concurrency control mechanisms for transac�

tional operation are further discussed in ����

The main motivation of this work is to provide generic

mechanisms to solve these kinds of problems� Isolation mech�

�A practical solution to this problem is to use recursion to

simulate an arbitrary number of nested synchronized blocks�

However� this solution is complex and lacks generality�

anisms should have minimal impact on the application�s

code �non�intrusiveness	 and should increase concurrency

while avoiding deadlocks� i�e�� provide both liveness and

safety�

3. RELATED WORK

There exist numerous languages or libraries for parallel

programming with various levels of transactional support

�see ���� for a survey	� They introduce high�level tools and

paradigms adapted to the development of parallel applica�

tions� by enabling the decomposition of complex programs

into multiple tasks that can execute concurrently on par�

allel or distributed architectures� When available� trans�

actional semantics are generally implemented through dis�

tributed commit protocols�

In contrast� general�purpose programming languages with

multi�threading support �such as Java	 generally provide

low�level concurrency�control mechanisms like locks� semaphores�

or monitors that guarantee mutual exclusion to speci�c sec�

tions of code ���� While 
exible� these mechanisms are not

well adapted to non�trivial problems such as isolation of mul�

tiple concurrent transactions�

For e�ciency reasons� database management systems �DBMSs	

generally implement advanced concurrency control mech�

anisms for executing numerous transactions concurrently

while guaranteeing ACID properties ��� DBMSs focus on

persistent data management and provide no or limited con�

currency control mechanisms for code executing outside of

the DBMS�

The mechanisms presented in this paper have a di�erent�

less ambitious goal than parallel programming languages or

DBMSs� Instead of de�ning new tools and paradigms for





parallel programming or transaction management� our goal

is to provide a few simple� transparent mechanisms for in�

creasing concurrency of Java applications while preserving

some limited form of transactional integrity� These mecha�

nisms can be easily added to existing applications� without

the need of a specialized programming language or deploy�

ment of the application�s data in a DBMS�

Java already o�ers two transaction frameworks� the Java

Transaction API �JTA�� part of the enterprise edition of the

Java platform �J�EE	 ���� and Jini Transactions ����� The

Java Transaction API is a set of local interfaces between

a transaction manager and the parties involved in a dis�

tributed transaction system� the application� the resource

manager� and the application server� It includes transac�

tional application interfaces� a Java mapping to the standard

X�Open XA protocol� and a transaction manager interface�

While JTA aims at providing a complete set of transac�

tional mechanisms to Java applications� the Jini Transaction

Speci�cation provides a minimal set of protocols and inter�

faces to allow objects to implement transactional semantics�

The responsibility of actually implementing these semantics

is left to the individual objects that take part in a transac�

tion� Coordination between transaction objects is achieved

through a two�phase commit protocol� which is the most

widely used protocol for distributed transactions�

Both Java transaction frameworks di�er from the work

presented in the paper by several aspects� First� both JTA

and Jini transactions essentially target distributed transac�

tions� ��	 as APIs to a complete distributed transaction sys�

tem or ��	 as minimal interfaces for distributed coordination

between transactional Java objects� A consequence of dis�

tribution is that these frameworks must deal with situations

where transactions abort because of exceptional conditions

that a�ect only some of the distributed components �such

as partial failures or local scheduling con
icts	� Finally�

JTA and Jini transactions essentially provide a declarative

APIs to the basic components of a transactional system and

thus require transaction participant to support speci�c in�

terfaces and take part to well�de�ned protocols� In contrast�

the work presented in this paper is more restrictive in that

it does not deal with distributed transactions� it does not

guarantee transaction durability nor allows transactions to

abort� and it focuses on providing transparent integration

of transactional facilities into the programming language

rather than through a programmatic API�

4. LOCKING POLICIES

To ensure mutual exclusion on a set of shared resources�

threads must lock these resources prior to accessing them�

and release the locks when they are no longer needed� The

strategy used for acquiring and releasing locks is called the

locking policy� Locking policies try to maximize concurrency

by minimizing the time during which locks are held� In this

paper� we only consider locking policies that avoid dead�

locks and thus do not require undoing partial transaction

execution�

In this section� we present several locking policies that of�

fer various tradeo�s in terms of overhead� concurrency� and

required transaction knowledge� A good understanding of

these policies is important for maximizing the performance

of a concurrent application� The �rst few policies are vari�

ations of so�called two�phase locking ��PL	 strategies ����

while the last one is a non��PL policy� Our Java implemen�

tation of atomic blocks can use any of these policies�

�



To illustrate these locking policies� we consider the follow�

ing simple example that involves three transactions T�� T��

and T� executed concurrently on four objects a� b� c� and

d �Figure 	� Unlike typical database transactions� we do

not distinguish between read and write operations� we as�

sume that each object has a set of operations ��op� in the

�gure	 that can perform arbitrary accesses to the state of

the object�

T� � a�op�	 � b�op�	 � c�op�	 � d�op�	

T� � a�op�	 � b�op�	

T� � c�op�	 � d�op�	

Figure �� Three sample transactions�

4.1 Two-phase Locking

The best�known deadlock�free locking policy is two�phase

locking ��PL	� All objects accessed by a transaction are

locked during the �rst phase and released during the sec�

ond phase� It is not possible to unlock an object before all

objects have been locked� or to lock an object once any lock

has been released� There exist several variations of �PL

protocols� some of which are discussed in the rest of this

section�

In order to avoid deadlocks� objects should be locked in

an order consistent with a total order on the objects� We

assume that there exists a unique value �o associated with

each object o that can be used to assign ranks to objects�

Objects are always locked in increasing rank order� thus

avoiding deadlocks �the order in which resources are un�

locked does not matter	� In our example� we assume that

�a � �b � �c � �d�

Conservative 2PL. The most basic �PL protocol is conser�

vative �PL �also known as static �PL	� With this protocol�

all objects are locked before starting the transaction� and

unlocked after the transaction has completed� Operations

of the transaction execute only when all objects are locked�

Figure ��a	 shows an execution history of the transac�

tions of Figure  with a conservative �PL policy� A trans�

action is represented by a horizontal line� split into multiple

segments that represent individual operations� We indicate

above each operation the object accessed by that operation�

Lock acquisition and release are represented in the �gures

using the notation L�o	 for locking an object o and U�o	

for unlocking o� We consider that each individual opera�

tion consumes one unit of time and successful locking and

unlocking takes no time� Therefore� execution of all three

transactions take � units of time�

2PL with Late Locking. A �rst optimization to conser�

vative �PL is to wait until an object is actually accessed

for locking it� This technique� known as strict �PL in the

database world� will be referred to as �PL with late locking

in this paper�

As with conservative �PL� objects are locked in increasing

rank order to avoid deadlocks� Therefore� the late locking

protocol works as follows �Figure ��b		� Before accessing an

object o� the transaction T checks if o is already locked� If

it is not the case� T locks every object o� accessed by T such

that �o� � �o and o� is not yet locked� in increasing rank

order� Therefore� the e�ectiveness of this policy strongly de�

pends on the order in which objects are accessed� If objects

are mostly accessed in the same order as their rank� then

the late locking policy can signi�cantly increase concurrency

�



T1

U(abcd)L(abcd)

a b c d

T2 a b

L(ab) U(ab)

T3

L(cd) U(cd)

c d

�a	 Conservative �PL�

T1

U(abcd)

a b c d

L(a) L(b) L(c) L(d)

T3

U(cd)

c d

L(c) L(d)

T2 a b

L(a) L(b) U(ab)

�b	 Late locking�

T1

L(abcd)

a b c d

U(a) U(b) U(c) U(d)

T2 a b

U(a) U(b)L(ab)

T3

L(cd)

c d

U(c) U(d)

�c	 Early unlocking�

T3 c d

T2 a b

T1 a b c d

U(d)

�d	 Optimal locking�

Figure �� Execution of the transactions of Figure � with various locking strategies�

over conservative �PL �if we only consider execution of T�

and T�� execution completes in  units of time vs� � for

conservative �PL	� On the other hand� if the �rst object ac�

cessed by a transaction is the object with the highest rank�

then late locking is equivalent to conservative �PL�

2PL with Early Unlocking. �PL with early unlocking is

another variation of �PL� However� unlike late locking� the

e�ectiveness of early unlocking does not directly depend on

the order in which objects are accessed�

With early unlocking� all objects accessed by a transac�

tion are locked at the beginning of the transaction� After

each operation� we check if the object accessed by the last

operation will be accessed again by the transaction� If this

is not the case� we release the lock on that object� In other

words� objects are locked from the begin of the transaction

up to the last operation that accesses them�

Early unlocking generally achieves better concurrency than

conservative �PL� For instance� if we consider only transac�

tions T� and T�� early unlocking executes in  units of time

�vs� � for conservative �PL	� For a given set of transactions�

each of the late locking and early unlocking strategies can

have the edge� For instance� late locking performs better

with T� and T� while early unlocking is more e�cient with

T� and T�� Late locking generally provides slightly lower

concurrency with random transactions that early unlocking

because it requires objects to be accessed in the same or�

der as they are locked to perform optimally� On the other

hand� the early unlocking protocol needs to know when an

object is no longer needed in the transaction� i�e�� the ap�

plication must provide a description of the transaction for

taking advantage of early unlocking�

�



Generalized 2PL. The last 
avor of �PL discussed in this

paper is generalized �PL� It combines the optimizations of

late locking and early unlocking� Locks can be acquired late

and released early as long as the locking pattern complies

with the basic �PL protocol�

In theory� there exist multiple lock acquisition patterns

for a given transaction with generalized �PL� Some of these

patterns are more e�cient than others� but choosing the

best pattern requires �global� knowledge of the transactions

executing in the system� For instance� with the transactions

of Figure � generalized �PL can execute all transactions in

 units of time if it executes transaction T� according to

the following schedule� L�a	� L�b	� a�op� b�op� L�c	� L�d	�

U�a	� U�b	� c�op� d�op� U�c	� U�d	� The choice of locking c

and d and unlocking a and b between the second and third

operations of T� is arbitrary and may be motivated by static

transaction knowledge or runtime heuristics�

In practice however� a generalized �PL protocol tries to

acquire locks as late as possible and� when all locks have

been obtained� releases them soon as they are no longer

needed� We call this protocol �deterministic� generalized

�PL because the lock acquisition pattern does not depend on

other factors than the structure of the transaction on which

it is applied� In the rest of this paper� we will only consider

this variant of generalized �PL� With the transactions of

Figure � deterministic generalized �PL executes transaction

T� according to the following schedule� L�a	� a�op� L�b	�

b�op� L�c	� c�op� L�d	� U�a	� U�b	� U�c	� d�op� U�d	� This

schedule is almost equivalent to late locking and executes in

� units of time�

4.2 Tree Locking

The deadlock�free �PL locking policies have in common

that no object can be unlocked before all objects have been

locked� and objects must be locked in a prede�ned order�

Tree locking ���� is a non��PL policy that avoids these limi�

tations by using di�erent rules to decide when and in which

order to lock and unlock objects� Tree locking is a deter�

ministic� deadlock�free locking policy that is optimal for our

example� it executes all three transactions in  units of time�

as shown in Figure ��d	 �lock acquisition and release are not

shown in the �gure and will be discussed after the tree lock�

ing protocol has been introduced	�

Tree locking was originally developed to take advantage

of the hierarchical structure of a database� represented as

a tree� Transactions always access data items by following

paths in the tree� Any node in the tree can be locked� and

locks held on a node implicitly propagate to all of its chil�

dren� A transaction starts by locking� the top�most node

of the tree� Then� it travels down to the data item to be

accessed� locking every intermediate node� A node N can

be unlocked when the transaction has obtained all the locks

it needs on N �s children� Once unlocked� a node cannot

be locked again� A direct consequence of this protocol is

that the order in which locks are obtained depends on the

the structure of the tree� not on an order relation between

individual data items�

To increase concurrency of atomic actions in concurrent

applications� we use a variation of the tree locking protocol

used in databases� Resources are organized in a tree� data

�For simpli�cation we assume that there is only one type of

lock�

�



items �i�e�� shared objects	 are located on leaves of the trees�

and internal nodes are �arti�cial� objects that impose rela�

tionships between resources and coordinate lock acquisition

and release� Since internal nodes are not data items� the

tree does not depend on the physical structure of the data

and can dynamically evolve into con�gurations that are op�

timal for the transactions being processed� Details of the

tree locking protocol are given in Appendix A�

N N

N

a b dc

0

1 2

Figure 	� With tree locking
 shared resources are

organized in a tree�

The tree locking protocol with the tree of Figure � results

in optimal execution for the transactions of Figure � It

takes only  units of time� which is the length of the longest

transaction� and there are always two transactions executing

concurrently� Tree locking has however the same drawback

as early unlocking� the protocol needs to know when an

object is no longer needed in the transaction� In addition�

the runtime overhead of tree locking is the biggest among all

protocols presented in this paper� since more locks need to

be acquired and released� Indeed� transactions need to lock

the nodes of the tree� in addition to the data items actually

accessed�

4.3 On Performance and Concurrency

In this section� we have presented several �PL locking pro�

tocols� as well as a non��PL tree locking protocol� Each

locking protocol has bene�ts and drawbacks� A general rule

is that complex protocols have more runtime overhead but

potentially achieve increased concurrency� Although we will

discuss performance in Section �� we present a few prelimi�

nary observations below�

First� when there is low contention �i�e�� it happens rarely

that two transactions compete to access a shared object at

the same time	� policies that have small runtime overhead

perform better� In this scenario� conservative �PL is gener�

ally the best choice�

On the other hand� when there is much contention it is im�

portant to maximize concurrency� even at the price of addi�

tional runtime overhead� In these situations� a locking policy

like generalized �PL or tree locking is more adequate� Ex�

periments show that �PL policies permit signi�cantly more

concurrency than tree locking with a static tree and ran�

dom transactions� However� with a tree that is �adequate�

for a set of transactions �i�e�� the structure of the tree is

optimized for these transactions	� tree locking can increase

concurrency substantially over �PL protocols� In particu�

lar� tree locking appears to be a promising approach when

working with structured data�

The problem of �nding a tree that is adequate for a given

set of transaction is not trivial� We have identi�ed four

adequacy criteria that characterize a good tree for a given

set of transactions �see Appendix B	� ��	 The root node of

a transaction should be as deep in the tree as possible� ��	

The acquisition of a node must pay o� and concurrency can

be optimal when transactions access all resources located

below that node� ��	 Concurrency is increased if accesses to

the resources of a subtree are adjacent in a transaction� �	

Concurrency is generally increased if shared resources are

�



accessed by multiple transactions in the same order�

When data is naturally organized in a hierarchical manner

and accesses follow structured patterns �e�g�� traversal of a

sub�tree	� then a good tree can be trivially inferred from

the data�s hierarchical structure� On the other hand� when

data and accesses are not structured� �nding a tree that is

adequate for a given set of transaction is a di�cult problem�

This problem can be stated as follows�

Consider a set of n transactions T�� ���� Tn with sizesm�� ���� mn�

Each transaction Ti is composed of mi individual operations

oi�� ���� o
i
mi

and is executed by a di�erent thread� All threads

start at the same time� Individual operation all take one

unit of time� and concurrency management operations �lock

acquisition and release	 happen instantaneously� When two

transactions try to acquire a lock at the same time� the lock

is granted to the transaction with the smallest index �i�e��

Ti will acquire the lock before Tj if i � j	�

Problem ��� Given a set of n transactions T�� ���� Tn�

	nd �
� a tree Fmin such that all transactions complete in

minimum time� and ��� a tree Favg such that the average

time required by each transaction to complete is minimum�

The tree Fmin is optimal for a one�time execution of the

transactions� while the tree Favg is better when each thread

executes more than one transaction� This problem can be

shown to be NP�hard �see Appendix C	� As a result� we

have primarily focused on heuristics for building a good tree

in polynomial time� To evaluate the e�ectiveness of tree

locking with unstructured data and transactions� we have

implemented a simple greedy algorithm that produces bal�

anced binary trees where objects are organized according

to their frequency and proximity in the transactions� This

algorithm tries to place objects that are close in the given

transactions in the same subtree� with the priority given to

objects that are accessed more often� The details of the

algorithm are given in Appendix D� Experiments results

with tree locking and the tree construction algorithm are

discussed in Section ��

5. ATOMIC BLOCKS IN JAVA

This section describes the implementation of atomic blocks

in our Java Concurrency Framework �JCF 	� We �rst present

the design goals and introduce the notions of atomic object

and atomic block� We then describe the various mecha�

nisms used for providing transparent concurrency manage�

ment and discuss the bene�ts and drawbacks of each of

them� For ease of implementation� these mechanisms have

been packaged as a set of Java classes� we do however believe

that basic support for atomic blocks would be a desirable ex�

tension to the Java language� as proposed in the end of this

section�

5.1 Goals

Implementation of atomic blocks in JCF was in
uenced

by the following design goals�

� Transparency� Code should not be modi�ed for ex�

ecuting within an atomic block�

� Generality� Atomic blocks can be placed around ar�

bitrary Java code�

� E�ciency� Atomic blocks should add as little runtime

overhead as possible while maximizing concurrency�

� Separation of concerns� The declaration of an atomic

block should be independent of the locking strategy�

��



The �rst goal � transparency � states that atomic blocks

should not be visible by code executing within the block

and should not require modi�cations to that code� This

also means that legacy code� written without concurrency

in mind� can execute safely in a concurrent environment

just by surrounding critical operations with atomic block

constructs�

The second goal � generality � requires support for arbi�

trary code inside atomic blocks� as within a �synchronized�

statement� This code can perform arbitrary operations and

use any language construct� as long as it executes in the

context of a single thread of control� Transactions do not

need to be described in a separate language� such as SQL�

for managing concurrency and maintaining consistency�

The third goal � e�ciency � means informally that the

runtime overhead of concurrency control mechanisms should

not be higher than the performance improvements resulting

from increased concurrency� On the one hand� serial execu�

tion can be implemented with very low runtime overhead�

but no e�ective concurrency� On the other hand� advanced

concurrency control mechanisms have higher runtime over�

head� but also better concurrency� Atomic blocks should try

to minimize runtime overhead and maximize concurrency�

The last goal � separation of concerns � states that the

locking strategy used for ensuring isolation of atomic blocks

should be independent of the atomic block declaration� In

other words� the application developer can declare an atomic

block without having to know how concurrency control is im�

plemented� and the system developer can program a locking

strategy for atomic blocks without having to know the appli�

cation�s code� It follows that it must be possible to con�gure

the locking strategy at deployment time �or even at runtime	

without changes to the application�s code�

Note that JCF does not aim at being a full transaction

framework� intended to replace a DBMS� It rather focuses

on transparent mechanisms to ensure isolation and atom�

icity of concurrent object invocations and seamless integra�

tion with programming language constructs� A consequence

of our transparency goals is that we do not distinguish be�

tween read and write operations and we consider a restricted

transaction model that does not guarantee durability and

does not allow transactions to abort �no rollback	� JFC can

be used for instance to maintain consistency of in�memory

data structures �e�g�� B�tree� XML data tree	 accessed by

multiple threads� Such data does not need to be persistent�

but its complex structure and large size can making explicit

concurrency control error�prone and subject to poor perfor�

mance� JCF hides this complexity by allowing non�trivial

operations such as moving data or traversing subtrees to be

performed concurrently on arbitrary nodes without having

to explicitly deal with concurrency control�

5.2 Atomic Objects and Atomic Blocks

An atomic object ��� is an object that can be accessed

concurrently by several threads� Even though accesses are

concurrent� an atomic object behaves as if accesses occur

one at a time� in an order which is consistent with the or�

der of invocations and responses� The smallest granular�

ity of atomicity supported by JCF is the invocation of an

atomic object� JCF also provides concurrency control mech�

anisms that guarantee isolation of sequences of invocations

on atomic objects� Such a sequence of invocations forms an

atomic block�

An atomic object is essentially an application�speci�c ob�

��



ject whose concurrency is managed by JCF � Application can

render an arbitrary object atomic by calling a JCF �speci�c

method �this is a one�time procedure performed during ap�

plication initialization	� If the application object does not

already behave like an atomic object �i�e�� it does not sup�

port concurrent invocations	� JCF transparently serializes

invocations to that object� This guarantees that objects re�

main consistent individually� Global �or transactional	 con�

sistency is maintained using atomic blocks�

An atomic block executes sequences of invocations to atomic

objects �and other instructions	 in isolation� It is instanti�

ated with the set of atomic objects that it manages as a

parameter� and is semantically bound to a thread of con�

trol� Atomic blocks can be arbitrarily nested in practice�

but in that case � similarly to �synchronized� statements

� there exists a risk of deadlock� Atomic blocks provides

two methods� �begin� and �end�� that act as delimiters� The

code executing between these methods executes in isolation

of other atomic blocks� Atomic blocks are represented by

objects that implement the �AtomicBlock� interface� There

are several kinds of atomic blocks that implement di�erent

locking policies�

� class Bank f
� void transfer �Account from� Account to � int amount�
� f
� AtomicBlock ab�
� ab 
 Atomic�newAtomicBlock�new Object�� f from� tog��
� ab� begin���
� from�withdraw�amount��
� to � deposit�amount��
� ab�end���

�	 g
�� g
�� �� Initialization
�� for�int i 
 �� i � accounts � length � i�
�� accounts � i � 
 �Account�Atomic�makeAtomic�accounts � i � � �
��

�� �� Thread ��
�� bank� transfer �accounts � � � � accounts � �� � ������
�� �� Thread ��
�� bank� transfer �accounts � � � � accounts � �� � ������
�	 �� Threads � and � conflict and execute in isolation
��

�� �� Thread ��
�� bank� transfer �accounts � � � � accounts � 	� � ������
�� �� Thread � executes concurrently with treads � and �

Figure �� Atomic blocks improve concurrency while
ensuring isolation�

Figure � shows an implementation of the bank applica�

tion of Section � that uses atomic blocks� Initially� all ac�

count objects are made atomic �lines ����	� In the trans�

fer method� an atomic block is instantiated with the source

and destination account as parameter �line �	� The money

transfer is performed inside the atomic block �lines ���	�

delimited by the invocations to �begin� and �end� on the

atomic block object �lines � and �	� The runtime concur�

rency control mechanisms ensure that the �rst and second

transfers �lines �� and ��	� which con
ict� execute in isola�

tion� The third transfer �line ��	� which does not con
ict

with the other transfers� can execute concurrently� Although

not shown in the code� a good practice is to include the in�

structions of an atomic block in a �try�catch� statement and

end the atomic block in the ��nally� block� This ensures

that all resources and locks acquired by the concurrency

control protocol will be released when exiting the atomic

block�

Atomic blocks can be customized in several ways �via over�

loading of the �newAtomicBlock� method	� In particular�

they are optionally parameterized by a locking policy� which

can be chosen at runtime �some guidelines for selecting a

locking policy are given in Subsection ��	� In the case of

tree locking� the programmer can also provide a tree gen�

erator� whose function is to construct a tree adequate for

the given transactions� Trees can evolve over time� and it

is possible to use di�erent trees for non�intersecting sets of

objects� For locking policies that require a description of

the transactions� structure �tree locking and �PL policies

that implement early unlocking	� atomic blocks are further

parameterized by a �Transaction� object� which enumerates

the individual operations of the transaction and the objects

��



they access�

5.3 Intercepting Invocations

As previously stated� a major goal of atomic blocks is

to manage arbitrary code� without having to perform mod�

i�cations to that code� A direct consequence is that the

JCF runtime must be able to transparently perform con�

currency control operations during execution of an atomic

block� Indeed� all locking policies discussed in this paper ex�

cept conservative �PL acquire and release locks in the middle

of atomic blocks� immediately before or after invocations to

atomic objects�

JCF performs dynamic concurrency control management

by intercepting invocations to atomic objects� As part of

the process through which objects are made atomic� JCF

transparently encapsulates the application object inside a

system�level wrapper that can pre� and post�process any re�

quest targeted to the application object� Among the opera�

tions performed by this wrapper are object atomicity �if an

application object is not atomic� the wrapper serializes invo�

cations to that object	 and block isolation �lock acquisition

and release according to the atomic block�s locking policy	�

JCF performs the actual interception of invocations through

the well�known technique of object proxying� A proxy is and

object that acts as a surrogate or delegate for another object�

and usually behaves in such a way that the its invokers have

no indication that they deal with a proxy instead of the un�

derlying object being proxied �see the proxy design pattern

in ���	� Object proxying is implemented in JCF using one of

three approaches� dynamic proxies� static proxy generation�

and custom proxies� These approaches are described in the

rest of this section�

Dynamic Proxies. Dynamic proxies are a mechanism in�

troduced in Java ���� which permit the creation of a class

that implement a set of interfaces speci�ed at runtime ���� A

dynamic proxy object receives all invocation targeted at the

proxied object�s	 and can perform arbitrary tasks instead of�

prior to� or after forwarding the request to its actual target�

JCF �s dynamic proxy implementation permits registra�

tion of per� and post�invocation handlers� Each locking

protocol provides its own invocations handlers� which are

registered upon entering an atomic block and unregistered

at its end� Various locking protocols have di�erent needs

in terms of invocation handlers� conservative �PL does not

use invocation handlers� �PL with late locking only uses

pre�invocation handlers� �PL with early unlocking only uses

post�invocation handlers� and generalized �PL and tree lock�

ing use both� In addition to pre� and post�invocation han�

dlers� dynamic proxies also ensure object atomicity�

Dynamic proxies have three drawbacks� First� they are a

recent addition to the Java language and are not widely de�

ployed yet� Second� because of their dynamic nature� they

have a non�negligible runtime overhead� Indeed� dynamic

proxies intercept and process requests using Java�s re
ec�

tion API� which has a high cost in terms of performance�

Finally� dynamic proxies only intercept operations declared

on interfaces� In other words� for using dynamic proxies�

all operations of the application object must be declared in

interfaces implemented by that object�

Static Proxy Generation. The second approach for inter�

cepting invocations consists is generating static proxies for

atomic objects� A static proxy implements the same meth�

ods as the actual object� Each method of the static proxy

��



performs three operations� pre�processing� invocation to the

actual object� and post�processing� During pre� and post�

processing� the static proxy performs the same concurrency

control operations as dynamic proxies� The actual process�

ing of the request is delegated to the target object through

a static method call�

The static proxy generator uses re
ection to discover the

methods implemented by application objects� Proxy gener�

ation can happen at compile�time or at runtime� In the �rst

case� the code of the proxy is generated in a �le that must

be compiled to produce the proxy class� In the second case�

the proxy is directly generated as bytecode and dynamically

loaded in memory by the Java class loading mechanisms�

The latter approach is more convenient because the devel�

oper does not need to deal with proxy classes� It does how�

ever require runtime permissions that may not be granted to

code executing in a protected environment� such as applets�

Since static proxies intercept and invoke operations on

application objects statically� their runtime overhead is sig�

ni�cantly smaller than dynamic proxies� Static proxies also

do not su�er from the same limitations as dynamic proxies�

which only intercept invocations to the methods declared on

the interfaces implemented by an object�

Custom Proxies. JCF provides a third approach to in�

tercept invocations� in which the developer can explicitly

control how concurrency control is applied to application

objects� With this method� the programmer is responsible

for ensuring atomicity of objects� and for calling JCF pre�

and post�invocation handlers at relevant places in the code

�concurrency control is explicitly delegated to JCF 	�

Custom proxies are the most 
exible approach� because

the programmer can control when and how concurrency con�

trol is applied to application objects� This may lead to �ne�

grain optimizations� such as disabling concurrency control

for methods that are not required to execute in isolation�

On the other hand� custom proxies are also the most �dan�

gerous� approach because the programmer has to comply

with a set of rules that� if not followed� may lead to viola�

tions of transaction isolation or deadlocks� In addition� it

requires code modi�cations� which makes its application to

legacy code less straightforward�

5.4 Design and Runtime Choices

JCF is a versatile concurrency framework that o�ers a va�

riety of choices� The locking strategy in
uences the concur�

rency degree of the application� and the interception mecha�

nisms a�ects the runtime overhead and in some respects the

programming model�

Decisions about the locking strategy can be performed

late in the development cycle� as late as at runtime� It is

possible to use multiple locking policies in the same appli�

cation� with the following restrictions� All �PL policies are

compatible with each other and any combination of these

policies can be used simultaneously in an application� Tree

locking and �PL are not compatible and they should not be

used to manage the same resources� When using tree lock�

ing for a set of objects� all threads that access these objects

concurrently must use the same tree to guarantee isolation�

This is enforced by JCF runtime� which does not allow an

object to be part of multiple trees�

The locking policy should be chosen to yield the best per�

formance for the application� The experimental results pre�

sented in Section � can give guidelines on how locking strate�

�



gies behave with some type of applications� If the applica�

tion exhibits repeatable access patterns� it may be wise to

test each locking strategy and chose the most e�cient prior

to deploying the application�

Unlike with locking policies� the criteria for selecting an

interception mechanism are not only based on performance�

Transparency and security constraints are other factors that

can in
uence this choice� Dynamic proxies require almost no

modi�cations to legacy application but are limited to prox�

ying interfaces and add signi�cant runtime overhead� Static

proxies are more e�cient and powerful� but they can be

cumbersome to manage and require additional permissions

in the case of runtime proxy generation� Custom proxies are

the most 
exible approach� but it requires the programmer

to perform substantial modi�cation to his�her code� The

runtime impact of the di�erent interception mechanisms is

discussed in greater detail in Section �� Note that all three

approaches are compatible with each other� objects that use

di�erent interception mechanisms can coexist in the same

application�

5.5 Atomic Blocks as an Extension to the Java

Language

The Java language de�nes a �synchronized� statement

that locks an individual object for the duration of the associ�

ated block� A simple extension to support atomic blocks in

the Java language would be to allow multiple objects as ar�

gument of the �synchronized� statement� Without o�ering

the whole spectrum of concurrency control strategies dis�

cussed in this paper� the virtual machine could use a con�

servative �PL policy to lock all objects in a deadlock�free

manner� Since conservative �PL does not need to know the

structure of the transactions in advance� nor does it need

to acquire and release locks during execution of the atomic

block� no additional modi�cations should be performed to

the syntax and semantics of the �synchronized� statement�

In contrast� support for other locking strategies would re�

quire additional information to be provided to the Java run�

time� e�g�� using a thread�speci�c interface or extra argu�

ments to the �synchronized� statement�

6. EXPERIMENTAL RESULTS

This section presents experimental results with JCF and

the locking policies described in this paper� We also quantify

and discuss the runtime overhead of the di�erent intercep�

tion mechanisms presented in Section ��

6.1 The Model

For concurrency measurements� we assume that the ac�

tions of locking and unlocking an object take a negligible

amount of time� This assumption is realistic with applica�

tions where operations that execute in mutual exclusion are

time consuming �e�g�� disk access� remote invocation� com�

plex computations	� The goal of these experiments is not

to provide absolute performance �gures� but rather to mea�

sure the degree of concurrency of an application relative to

a serial version of the same application�

For runtime overhead measurements� we concentrate on

the cost of concurrency management and interception mech�

anisms� For this purpose� we ran transactions with opera�

tions that do not perform any actual processing �empty op�

erations	� All tests have been performed with Java ��� on a

single�processor PC �P�����	 running Windows NT ���

We have implemented a simulation environment to com�

��



pare the di�erent concurrency control strategies� The test

environment permits the speci�cation of the number of con�

current threads� the length of transactions� the number of

objects in the system� the duration of operations� etc� Time

consuming operations are simulated by yielding the proces�

sor to other threads for a given amount of time �as an I�O

operation would do� for instance	� The transactions are cho�

sen randomly� but the same transactions are used for all

concurrency control strategies� In the tests below� we only

used binary trees for tree locking�

6.2 Low Contention Tests

We �rst consider the case of applications where contention

is low� i�e�� con
icts are infrequent� For instance� in the ex�

ample of the bank application� transactions typically have

few operations �two for transfers	 and the number of ac�

counts is much larger than the number of concurrent trans�

actions� thus leading to low contention�

We have run tests with �� concurrent transactions� each

composed of � randomly�chosen operations� on a set of ob�

ject of variable size� As the number of object grows� con�

tention decreases� The experimental results are shown in

Figure �� The ordinate shows the concurrency degree ex�

pressed in percentage with respect to serial execution �i�e��

in the case where there is no e�ective concurrency	�

As one can see on the �gure� all �PL locking policies per�

form well and the concurrency degree approaches the theo�

retical optimum ������	 as the number of object grows and

contention decreases� There is only little gain from using

more elaborate �PL strategies �e�g�� generalized �PL	 over

strict �PL�

On the other hand� tree locking performs poorly and re�

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300

C
on

cu
rr

en
cy

 d
eg

re
e 

w
.r

.t.
se

ria
l e

xe
cu

tio
n 

(%
)

Nb obj

Concurrency of locking policies
(32 threads, 2 op/trans)

Serial execution
Conservative 2PL

Late locking
Early unlocking

Generalized 2PL
Tree locking

Figure � Concurrency degree with low contention

tests�

mains almost constant as the number of object grows�� This

is due to the fact that� with random transaction� there is a

��� likelihood that a transaction with two operations ac�

cesses objects located in di�erent halves of the tree� and

contention appears on the root and intermediary nodes of

the tree rather than on the actual object being accessed�

This example demonstrates that tree locking is not suitable

for random transactions�

6.3 High Contention Tests

In situations where a large number of threads compete

for a small number of resources� contention is high� This

may be the case with resources such as �les� I�O devices

�disks� printers� network interfaces	� or more generally ap�

plication objects that have a large granularity �e�g�� a bank

object instead of an individual account	� The nature of such

applications strongly limits the concurrency degree and� as

�Figures � and � show the performance of tree locking with

�non�optimized� trees� i�e�� without using our algorithm for

construction good trees� there was no noticeable improve�

ment when running these experiments with optimized trees�

because of the random nature of the transactions�

��



contention grows� we can expect only little gain over serial

execution�

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30 35

C
on

cu
rr

en
cy

 d
eg

re
e 

w
.r

.t.
se

ria
l e

xe
cu

tio
n 

(%
)

Nb op/trans

Concurrency of locking policies
(32 threads, 16 obj)

Serial execution
Conservative 2PL

Late locking
Early unlocking

Generalized 2PL
Tree locking

Figure �� Concurrency degree with high contention

tests�

Figure � shows execution of �� concurrent transactions�

each composed of variable number of randomly�chosen op�

erations� on a set of �� objects� As one can see on the �g�

ure� as the number of operation per transaction grows and

contention increases� the concurrency degree approaches a

constant value approximatively ��� times better than serial

execution� Conservative �PL and early unlocking even show

no gain over serial execution starting from � �resp� ��	 op�

erations per transaction� Tree locking performs empirically

better than �PL locking policies when contention is high�

However� the di�erence may not be signi�cant enough to

justify the use of tree locking over a �PL policy�

6.4 Hierarchical Data Tests

In situations where data can be organized in a hierarchy� it

is straightforward to build a tree that matches this hierarchy

and is adapted to tree locking� For instance� XML data can

be naturally stored as a tree� Let a �subtree transaction�

be a transaction that accesses every object of some subtree

exactly once� We have performed tests with �� concurrent

subtree transactions on a variable set of objects� Since we

only consider balanced binary trees� the number of objects

in the tree is always a power of �� In addition� because

each transaction accesses all the objects of sub�tree �set	�

transactions also have a length equal to a power of �� The

subtree accessed by each transaction is chosen randomly�

0

200

400

600

800

1000

1200

8 16 32 64 128 256
C

on
cu

rr
en

cy
 d

eg
re

e 
w

.r
.t.

se
ria

l e
xe

cu
tio

n 
(%

)

Nb obj (log)

Concurrency of locking policies
(32 threads, monotonous trans)

Serial execution
Conservative 2PL

Late locking
Early unlocking

Generalized 2PL
Tree locking

Figure ��� Concurrency degree with hierarchical

data�

Figure �� shows that� with subtree transactions tree lock�

ing performs as much as � or � times better than �PL locking

policies� This can be explained by the fact that� since the

structure of the tree matches the access patterns of transac�

tions� many transactions that con
ict can still execute con�

currently with tree locking� Therefore� the nature of an

application and the access pattern of its transactions have a

strong impact on the e�ectiveness of locking strategies and

are the key factor for choosing the best strategy�

6.5 Tree Construction Algorithm

When data accesses in a set of transactions are purely

random� we noticed that tree locking does not perform well�

independent of the structure of the locking tree� We also

��



showed that for hierarchical data and structured accesses�

tree locking can signi�cantly increase concurrency� We per�

formed additional experiments to test the e�ectiveness of the

simple tree construction algorithm presented in this paper�

For this purpose� we have generated �skewed� transactions�

where the objects accessed are chosen according to a Zipf

distribution ����� Some objects are accessed much more of�

ten than others� making it important to locate these objects

close to each other� For this experiment� we have used short

transactions and a variable number of threads�

0

200

400

600

800

1000

1200

1400

10 20 30 40 50 60 70 80 90 100

C
on

cu
rr

en
cy

 d
eg

re
e 

w
.r

.t.
se

ria
l e

xe
cu

tio
n 

(%
)

Nb threads

Concurrency of tree locking policies
(32 obj, 2 op/trans)

Random Tree
Optimized Tree

Figure ��� Concurrency degree with skewed trans�

actions �random tree vs� optimized tree��

The results �Figure ��	 show signi�cant improvement with

the optimized tree� even though the tree generated by the

algorithm is sub�optimal� Since real�world applications do

not generally access objects at random but according to re�

peatable patterns� algorithms for generating locking trees

adapted to these pattern could be a promising approach for

increasing concurrency of those applications�

6.6 Runtime Overhead

In this subsection� we compare the runtime overhead of

the various locking policies and the di�erent interception

mechanisms� For this purpose� we have run experiments

with a single thread that executes a sequence of transactions�

each made of �� empty operations� Since there is only one

thread and operations take no time� the results re
ect the

cost of concurrency management when there is no contention

and no e�ective processing�

0

1e+06

2e+06

P
er

fo
rm

an
ce

 (
op

/s
)

 

Runtime overhead of concurrency
control mechanisms

No
locking

Serial
locking

Conservative
2PL

Late
locking

Early
unlocking

Generalized
2PL

Tree
locking

Dynamic proxy
Static proxy

Figure ��� Runtime overhead of the di�erent locking

policies and interception mechanisms�

Results are shown in Figure ��� We have measured the

cost of each locking policy with dynamic and static proxies�

The column labeled �no locking� corresponds to execution of

the application with the interception mechanisms but with

no actual concurrency management� Serial locking acquires

and releases a single global lock� �PL locking policies ac�

quire locks on all objects accessed by the transaction� Tree

locking additionally locks and unlocks intermediary nodes

of the tree�

The results are not surprising� Static proxies are clearly

more e�cient than dynamic proxies� The cost of using re�


ection to intercept invocations appears to be signi�cantly

bigger than the cost of concurrency management� In appli�

cations that perform time�consuming operations� the run�

time overhead of dynamic proxies may be negligible in com�

��



parison to processing time� However� in applications that

perform short operations� this overhead may become a bot�

tleneck and static proxies should be preferred�

Among all locking policies� tree locking exhibits the high�

est overhead� This is easily explained by additional con�

currency management performed on the nodes of the tree�

Early unlocking and generalized �PL pay the cost of post�

invocation �lters� Late locking performs slightly better be�

cause it only uses the less costly pre�invocation �lters� Con�

servative �PL does not use invocation �lters at all and has

the smallest overhead among �PL policies� Finally� serial

locking prevents concurrency by using a single global lock�

thus minimizing runtime overhead� While these �gures show

the bene�ts of using simple locking policies� one has to bal�

ance the runtime costs with the increased concurrency of

more complex locking policies� For application that per�

form time�consuming operations� concurrency must be the

key factor for choosing a locking policy and runtime over�

head should be ignored�

7. CONCLUSION

In this paper� we have presented mechanisms for imple�

menting atomic sets of actions in Java� These mechanisms

transparently manage isolation on a set of shared objects on

behalf of the application� by increasing concurrency while

preserving safety and liveness� They reduce the burden of

the developer of concurrent applications� reduce the likeli�

hood of semantic errors� and have the potential of increasing

concurrency in complex applications�

We have presented various locking policies adapted to our

application model� which consider a simpli�ed form of trans�

actions where operations are performed on transient data

�no durability	 and actions never need to be undone� Each

strategy has speci�c bene�ts and drawbacks� and the choice

of the best strategy ultimately depends on the nature of the

application�

We have introduced several techniques used for the imple�

mentation of atomic blocks in Java and given some guide�

lines for choosing the technique best adapted to a given ap�

plication� Transparent concurrency control management is

achieved through object proxying� Finally� we have pre�

sented experimental results that illustrate the concurrency

degree and runtime overhead of the various strategies dis�

cussed in this paper� These results show that there are

tradeo�s between concurrency degree� runtime overhead� trans�

parency� and 
exibility�

We believe that basic mechanisms for atomic blocks would

be a relevant addition to the Java language� A simple yet

elegant approach for this purpose� without adopting all the

features of our Java concurrency framework� consists in ex�

tending the �synchronized� keyword so that it can take an

array of objects as argument and lock them conservatively

using a deadlock�free conservative �PL strategy�

8. REFERENCES

��� P� Bernstein� V� Hadzilacos� and N� Goodman�

Concurrency Control and Recovery in Database

Systems� Addison�Wesley� �����

��� J� Blosser� Explore the dynamic proxy api� JavaWorld�

Nov� ����� http���www�javaworld�com�javaworld�jw�

��������jw������proxy�html�

��� E� Gamma� R� Helm� R� Johnson� and J� Vlissides�

Design Patterns� Elements of Reusable

Object�Oriented Software� Addison�Wesley� �����

��



�� J� Gray and A� Reuter� Transaction Processing�

Concepts and Techniques� Morgan Kaufmann� �����

��� D� Lea� Concurrent Programming in Java�

Addison�Wesley� �����

��� N� Lynch� Distributed Algorithms� Morgan Kaufmann�

�����

��� F� Schneider� On Concurrent Programming� Springer

Verlag� �����

��� P� D� Seymour and R� Thomas� Call routing and the

ratcatcher� Combinatorica� ���	�������� ����

��� B� Shannon� M� Hapner� V� Matena� J� Davidson�

E� Pelegri�Llopart� and L� Cable� Java � Platform�

Enterprise Edition� Platform and Component

Speci	cations� Addison�Wesley� �����

���� A� Silberschatz and Z� Kedem� Consistency in

hierarchical database systems� Journal of the ACM�

����	������� Jan� �����

���� D� Skillicorn and D� Talia� Models and languages for

parallel computation� ACM Computing Surveys�

����	��������� �����

���� B� M� W�K� Edwards� Core Jini� Prentice Hall� �����

���� G� Zipf� Human Behaviour and Principle of Least

E�ort� Addison�Wesley� Cambridge� Massachusetts�

����

��



APPENDIX

A. THE TREE-LOCKING PROTOCOL

The tree locking protocol follows these simple rules�

� A transaction T always starts by acquiring the lock on

its root node� which is the lowest common ancestor of

all the objects accessed by T �

� To access an object o� T follows the path that leads

from the last accessed node �initially the root node	

to the leaf holding o� On that path� T performs the

following operations�

� Let N be the current node in the path� and N � the

next node in the path� T �rst acquires the lock on

N � �if T does not already hold that lock	�

� If there is no object o� in the remaining operations

of T such that N is an ancestor of o�� then T re�

leases the lock on N � �This situation happens if T

has performed all its operations on the objects of a

branch� and is moving upstream along the path�	

� Otherwise� if for each object o� in the remaining

operations of T such that N is an ancestor of o��

N � is also an ancestor of o�� then T releases the

lock on N � �This situation happens if all remaining

operations of T are con�ned in one branch� and T

is moving downstream along the path towards that

branch�	

� After its last operation� T releases the lock on the last

accessed object�

Figure �� shows an execution history of the transactions

of Figure  with a tree locking policy� The tree is a balanced

binary tree with three levels� three internal nodes� and four

leaves� Transaction 
ow is represented by dashed arrows�

Intermediary actions �i�e�� locking� unlocking� operation ex�

ecution	 are indicated along the arrows as they occur� The

di�erent transactions on a �gure execute concurrently and

time 
ows in the direction of arrows�

B. ADEQUACY CRITERIA FOR LOCKING
TREES

We discuss below the four criteria that we have identi�ed

to characterize a good tree for a given set of transactions�

A �rst observation is that transactions can execute con�

currently if they are con�ned in separate branches of the

tree� Obviously� if all transactions compete to lock the root

node of the tree� then concurrency will be equivalent to or

worse than conservative �PL� On the other side� if the root

node of some transactions are in separate subtrees� they can

execute in complete independence� Criterion 
� The lower

the root node of a transaction is� the better concurrency is�

Nodes high in the tree are more crucial than nodes low in

the tree� because they control a larger number of resources�

It can be highly ine�cient to lock a node high in the tree to

access a single resource below that node� For instance� with

the tree of Figure ��� a transaction that accesses a and c

will prevent concurrent accesses to b and d because it locks

nodes that control these objects� Concurrency is thus better

if the transactions that lock a node access a large number

of the resources controlled by that node� Criterion �� The

acquisition of a node must pay o� and concurrency can be

optimal when transactions access all resources located below

that node�

The order in which transactions access resources is also

an important factor for concurrency� If a transaction leaves

a subtree in which it will return later� it has to keep locks

��



c.op()

L(N2)
T3

L(N0)
T1

L(a)
a.op()

L(N1)

L(c)

N

dc

2

0N

1

ba

N

�a	 T� executes in the left branch� T�

can execute concurrently in the right

branch�

U(a)

T3T1 L(b)
b.op()

d.op()

U(c)
L(d)
U(N2)

U(d)

2

c d

N

0N

1

b

N

a

�b	 T� and T� do not interfere because

they execute in separate branches� T�

completes�

U(b)

T1

T2

U(N1) L(N2)
U(N0)

L(c)L(a)

L(N1)

c.op()a.op()

2

c d

N

0N

1

ba

N

�c	 T� moves to the right branch� T�

can execute concurrently in the left

branch�

U(a)

T1T2

L(d)

d.op()

L(b)

b.op()
U(d)

U(c)U(N1)

U(b)

U(N2)

2

c d

N

0N

1

a

N

b

�d	 T� and T� �nish their execution in

separate branches without interfering�

Figure ��� Execution of the transactions of Figure � with a tree locking protocol�

on that subtree� On the other hand� if a transaction leaves

a subtree de�nitively� it can release the locks it holds on the

subtree� Therefore� if all accesses to the resources of a sub�

tree are adjacent� the transaction can release all locks on the

subtree when leaving it� This is the case of T� with the tree

of Figure ��� once T� has accessed a and b� it can leave the

left branch of the tree and release all the locks it holds on

that branch �Figure ���c		� Criterion � Concurrency is in�

creased if accesses to the resources of a subtree are adjacent

in a transaction�

The �rst three criteria apply to individual transactions�

i�e�� they de�ne if a tree is adequate for each transaction

in isolation� A fourth criterion can be de�ned on sets of

transactions� It derives from the observation that� if multi�

ple transactions access the same subtrees� concurrency can

be increased if they access these subtrees in the same order�

For instance� in the tree of Figure ��� if we de�ne a new

transaction T �
� which accesses the same objects than T� in

the same order� T �
� can start executing in the left branch as

soon as T� moves to the right branch� If T �
� was accessing

objects in the reverse order than T�� then it would have to

wait until T� completes before starting execution� Criterion

�� Concurrency is generally increased if shared resources are

accessed by multiple transactions in the same order�

C. THE OPTIMAL TREE PROBLEM

The Problem �� can be proved to be NP�hard� While the

details of the proof are outside the scope of this paper� the

intuition behind the proof can be outlined by considering

the special case in which each of T�� ���� Tn is of size two�

��



and accesses two distinct objects� The problem of �nding

an optimal tree for these transactions is easily seen to be

equivalent to the following problem� given a graph G �

�V�E	 and a weight function w � E � N � construct a routing

tree T for G� i�e�� a tree T in which each internal node has

degree � and the leaves correspond to vertices of G� such that

the congestion at each internal node of T is minimized� The

congestion at a node of the routing tree is the maximum� for

any vertex x� of
P

�u�v��E�u�S�v ��S w�u� v	� where S is one of

the three connected components obtained by deleting x from

T � The tree that minimizes B can be shown to be equal to

Fmin and Favg with the algorithm of Section ��� when the

weight w�u� v	 of each edge �u� v	 of G corresponds to the

number of occurrences of the transactions fu� vg or fv� ug�

Seymour and Thomas proved in ��� that a closely�related

problem� where the congestion of the routing tree must be

minimized at its edges instead of its nodes� is NP�hard� Our

problem can also be shown to be NP�hard by extension of

Seymour and Thomas� results�

As a result� we have primarily focused on heuristics for

building a good tree in polynomial time� Since the nodes of

a tree are arti�cial objects that are not associated with data�

their number and structure is very variable� Although we

presented a balanced binary tree in Figure ��� the algorithm

of Section �� does not impose restrictions on the depth of a

tree or the arity of any of its nodes�� These factors in
uence

the performance of the tree locking protocol and must be

chosen accordingly�

�In fact� with our simpli�ed model� for any tree with some

nodes of arity greater than � it is possible to �nd an equiv�

alent binary tree� at the price of increased depth�

D. TREE CONSTRUCTION ALGORITHM

Given a set of n transactions T�� ���� Tn with sizesm�� ���� mn�

where each transaction Ti is composed of mi individual op�

erations oi�� ���� o
i
mi

on shared resources r�� ���� rl� Informally�

our greedy algorithm for building binary locking trees works

as follows�

�� Shared resources r�� ���� rl are organized in an �access�

graph G � �V�E	 with a weight function w � E � N

such that w�ri� rj	 is a pair of values �wd� wn	� wn is

the number of occurrences of operations on both ri and

rj in each transaction T�� ���� Tn� and wd is the sum of

the distance between these operations� Let L be an

�ordered	 list initially empty�

�� Select the vertex u that maximizes
P

�u�v��E�v�V wn�u� v	�

If there is more than one candidate vertex� select the

one that minimizes
P

�u�v��E�v�V wd�u� v	� Add u to L�

�� Select the vertex u� �� L that maximizes
P

�u��v��E�v�Lwn�u� v	�

If there is more than one candidate vertex� select the

one that minimizes
P

�u��v��E�v�Lwd�u
�� v	� Append u�

to the end of L� Repeat this step until L contains all

vertices of V �

� Create a balanced binary tree with l leaves and arrange

the resources the resources r�� ���� rl in the leaves of the

tree in the same order as they appear in L�

��



For instance� given the transactions T�� T�� and T� in

Figure �� the algorithm will produce the graph in Figure ��

and the same tree as in Figure ��

T� � a�op�	 � b�op�	 � a�op�	 � c�op�	

T� � c�op�	 � b�op�	 � d�op�	

T� � a�op�	 � b�op�	

Figure ��� Three sample transactions�

ba

c d

3,3

4,2 3,2 1,1

2,1

Figure ��� Access graph for the transactions of Fig�

ure ���

�


