
CONCURRENCY—PRACTICE AND EXPERIENCE
Concurrency: Pract. Exper. 2000;00:1–9 Prepared using cpeauth.cls [Version: 2000/05/12 v2.0]

Java Access Protection
through Typing

Eva Rose1 and Kristoffer Høgsbro Rose2

1 GIE Dyade, INRIA-Rocquencourt, Domaine de Voluceau,
Rocquencourt B.P.105, 78153 Le Chesnay (France)
2 IBM T. J. Watson Research Center, 30 Saw Mill River Road,
Hawthorne, NY 10532 (USA)

SUMMARY

We propose an integration of field access rights into the Java type system such that those access permission
checks which are now performed dynamically (at run-time), can instead be done statically, i.e., checked by
the Java compiler and rechecked (at link-time) by the bytecode verifier.

We explain how this can be extended to remove all dynamic checks of field read access rights, completely
eliminating the overhead of get methods for reading the value of a field. Improvements include using
fast static lookup instead of dynamic dispatch for field access (without requiring a sophisticated inlining
analysis), the space required by get methods is avoided, and denial-of-service attacks on field access is
prevented.

We sketch a formalization of adding field access to the bytecode verifier which will make it possible to
prove that the change is safe and backwards compatible.

Key words: Java, Java Virtual Machine, Java bytecode verification, read-only field access.

1. Introduction

Object-oriented programming languages in general, and Java in particular, do not distinguish between
read- and write-access to fields. Instead the recommended way of only permitting read access to a field
is to make the field private and write a get method that accesses the field and returns the stored value.
A field with both a get and set method is conventionally called an “attribute” or “property” and it is
generally considered good practice to use such instead of fields:

� A property hides the actual data representation of the field so the implementation can be changed
without consequence for the property.

� In Java, fields cannot be overridden by a subclass.

�Correspondence to: Kristoffer H. Rose, IBM T. J. Watson Research Center, 30 Saw Mill River Road, Hawthorne, NY 10532
(USA); E-mail: krisrose@watson.ibm.com.

Received 9 October 2000
Copyright c
 2000 John Wiley & Sons, Ltd. Revised 16 March 2001

Accepted 28 March 2001



2 E. & K. H. ROSE

� A get method may trigger an exception or other action that a simple field access cannot.
� In Java, fields cannot be declaredsynchronized thus thread-safe access is only possible by

using a property.

On the other hand, if performance issues are critical then using fields may be preferable because
the Java semantics of field access states that the actual field location accessed in an object can
be determined statically (at compile-time), whereas the actual get method to invoke is determined
dynamically (at run-time) [2, §15.11.1]. This has the following consequences:

� Using a get method is significantly slower (at run-time) than using a direct field access. (The
traditional remedy for this is to declare get methodsfinal which permits the compiler to “inline”
its body,i.e., insert the field access instruction directly at the invocation place. In Java this is
frequently not feasible because Java employs dynamic class loading so the class containing the
get method may not have been loaded yet.)

� It is possible to access the field belonging to a particular (super)class of an object by simply
casting the object of the field access to the appropriate class. One cannot obtain a similar effect
with a get method. (One may see this as a feature rather than an inconvenience.)

� “Denial-of-service” attacks (or accidents) are possible in that a get method can be overriden by
a subclass. (This can also be avoided by declaring the methodfinal.)

� Finally, get methods may add a significant space overhead to class files since they must be
declared and their code given. For example, get methods account for about one fourth of the
total number of methods in the standard Java “java.*” package source classes.†

Furthermore, the Java virtual machine, JVM [3], specifies that field access control is performed through
(dynamic) load and run time checks. This seems a shame since everything else about fields is static.

Here is a traditional example with a get method: an object that simply contains an integer value that
should be publicly readable.

Example 1.1 (a traditional get method).

public class ReadOnly1 {
private int it;
public int getIt() {return it;}

}

Access to theit field is then done with code such as the following within some other class:

ReadOnly1 cc;
...cc.getIt()...

with the problems discussed above.

In this paper we propose a simple modification in two steps that eliminates the problem:

†This measure was obtained for Sun’s JDK 1.1 [6] with the unix command “find jdk1.1 -name ’*.java’ -exec
grep ’ +public .*(’ ’{}’ ’;’ | wc -l” to get the total number of public methods (4317), and “find jdk1.1 -name
’*.java’ -exec egrep ’ +public .* get.*(’ ’{}’ ’;’ | wc -l” to get the number of get methods (999).

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000;00:1–9
Prepared using cpeauth.cls



JAVA ACCESS PROTECTION THROUGH TYPING 3

Table I. Java Access Modifiers.

Accessibility from M
od

ifi
er

pr
iv
at
e

“p
ac

ka
ge

”
pr
ot
ec
te
d

pu
bl
ic

same class X X X X

other class, same package � X X X

subclass outside package � � X X

other class outside package� � � X

1. add a special get-specific access modifier that permits making the reading of a field “more public”
than the modification of it, and

2. integrate field access checks into the type system.

In effect we propose replacing the class declaration above with the following:

Example 1.2 (a modified get method).

public class ReadOnly2 {
private read public int it;

}

which explicitly permits everyone to read the field value with the usual field access syntax:

ReadOnly2 cc;
...cc.it...

but does not permit assigning to the field outside of theReadOnly2 class.

Overview. In Section 2 we formalize field access rights of Java and explain how these could be
integrated into the type system implemented by the Java Virtual Machine “bytecode verifier”. Section 3
then explains how field access types can be exploited to achieve overhead-free read access to fields.
Finally, we conclude in section 4 with some remarks on future work.

2. Field Accessibility Types

In this section we summarize the Java access modifiers [2, §6.6] and formalize accessibility for the
field access instructions of the Java Virtual Machine.

The access granted by each modifier is shown in Table I. The first column indicates the four possible
field access situations: Either the field is referenced from thesame class where it is defined, from
another class within thesame package where it is defined, from asubclass of the class where it is

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000;00:1–9
Prepared using cpeauth.cls



4 E. & K. H. ROSE

defined but outside its package, or, finally, from a class outside its package which isnot a subclass
of the class in which the field is defined. The columns are the Java access modifiers:private,
protected, public, and the default case where no keyword is given, denoted “package” protection.
For each combination the table indicates with “X” that a field declared with the given access modifier
is accessible from the given context, and with “�” that is it not.

The access rules of Table I are progressive in the sense that each row in the table extends the access
permissions of the row above it. We formalize this as an ordering “<” on the set of access modifiers,
with the meaning that an access modifier is less permissive than another if it permits less access to a
field in the four access situations.

Definition 2.1 (accessibility ordering). An access modifier, denoteda, is a member of the following
totally ordered set:

private < “package”< protected < public

In practice accessibility is checked at run-time by the JVM, specifically field accessibility is checked
before the field value is accessed when the field reference is “resolved” [3, §5.4.4]. A field reference
occurs in two instructions,putfield or getfield, depending on whether it was compiled from a the Java
field reference that was aLeftHandSide of an assignment [2, §15.26] or not. We shall usegetfield in
our examples below but everything is equivalent forputfield.

Consider the Java code snippet

class c1 f: : : ((c2)e): f : : :g

(where we have explicitly indicated the static typec2 of the expressione). The field f must be declared
by code such as

class c3 f: : : a t f; : : :g

with a the access modifier defining from where access tof is permitted,t the field type, andc 3 a
superclass ofc2.

The c1 class compiles to a JVM sequence of bytecode instructions that we may represent
symbolically as

class c1 f: : : getfield(c3; t; f ) : : :g

(concretely the “getfield instruction is a single bytecode followed by an index into the JVM class
file “constant pool” pointing toCONSTANT Fieldref info structure which again points to similar
structures fora, t, andc3 [3, §4.4.2]).

Checking that thegetfield access is permitted requires the resolver to look up the real field declaration
of f in thec3 class merely because this is the only way to obtaina to use the rules of Table I to determine
if f is accessible fromc1.

Our idea for the JVM is the following: if access information –a in our example above – is integrated
into thegetfield instruction, then

1. the bytecode verifier can check for access violations assuming that the provided access
information (in the type) is correct, and

2. resolution can be reduced to merely checking that the type assumptions made at verification time
were correct.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000;00:1–9
Prepared using cpeauth.cls



JAVA ACCESS PROTECTION THROUGH TYPING 5

c1 = c3

c1 ` c2 : c3:a
(SameClass)

same-package(c1;c3) “package”� a
c1 ` c2 : c3:a

(SamePackage)

c2 extends� c1 c1 extends� c3 protected � a
c1 ` c2 : c3:a

(Subclass)

a = public

c1 ` c2 : c3:a
(Other)

Figure 1. Access Modifier Type Rules.

Using the access modifier order of Definition 2.1 we can express the access rules used by JVM [3,
§4.8.2, §5.4.4] as logical rules.

Definition 2.2 (field accessibility). Figure 1 gives the rules for the judgment

c1 ` c2 : c3:a

which expresses that within the classc1 an object of typec2 has access to a field declared inc3 with
access modifiera. The rules use the following auxiliary tests: (1)c 0 extends� c is true whenc0 is the
same as or a subclass ofc, and (2) same-package(c;c 0) is true when the two classes are in the same
package (this amounts to checking that the fully qualified class names are identical up to the last “.”).

Rule (SameClass) states that a field is accessible from the class it is defined in. Rule (SamePackage)
states that a field with a non-private access modifier can be accessed from the same package.

The (Subclass) rule is the only slightly complex rule. It states that a field withprotected (or
public) access can be accessed from a class which satisfies two conditions:

� it is a subclass of the class the field is declared in, and
� it is a superclass of the actual class of the object containing the field.

Finally, the (Other) rule states that onlypublic fields are accessible from everywhere.
Our idea can now be formalized.

Theorem 2.3 (Static Field Accessibility Check). The bytecode verifier can prove field accessibility
provided the getfield instruction is augmented with the access modifier.

Proof. If the access modifier is included in thegetfield instruction then field accessibility can be
approximated at verification time: in the judgment

c1 ` c2 : c3:a

we havec1, c3, anda, in the bytecode thus available at verification. These suffice to decide the rules
(SameClass), (SamePackage), and (Other) since only rule (Subclass) refers to the run-time typec 2 of

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000;00:1–9
Prepared using cpeauth.cls



6 E. & K. H. ROSE

the object containing the field. However,type safety [1, 4] guarantees thatc 2 is approximated by the
verifier with ac0

2 type that satisfiesc2 extends� c0

2. From this andc0

2 extends� c1, which we can
check, follows thatc2 extends� c1 thus we are able to check at verification time that the field access
will always be safe.

All that is needed to make this work is two things:

� Encode the access modifiera into the JVM FieldDescriptor encoding [3, §4.3.2]. Such an
encoding is not difficult but beyond the scope of this paper.

� Replace the run-time field accessibility done at resolution with a check that the access modifier
stored in the field access instruction is the same as (or stricter than) the one actually present in
the field declaration.

3. Read-only Field Access

In Example 1.2, we proposed that a shorter syntax be given to specify explicitly permissions which
are valid for a field used to read a value as is the purpose of get-methods. In this section we formalize
this by proposing an extension to the official Java field declaration syntax [2, §8.3.1]. The modification
consists in adding theread keyword to introduce the “read-only access modifier”.

Definition 3.1 (extended field declaration). Replace the Java definition ofFieldDeclaration [2, §8.3]
with the one shown in Figure 2; additions are indicated in bold.

FieldDeclaration:
FieldModifiersop ReadModifierop Type VariableDeclarators ;

ReadModifier:
read AccessModifierop

AccessModifier:
one of public protected private

Figure 2. Extended Field Declaration with Read-only Access Modifiers.

The semantics of the new construction is that it separates out the access modifiers which are specific
for reading the value of a field from those which are specific for assigning a value to a field.

In example 1.1, the integer fieldit was declared as aprivate field. So the value of that field can
only be read indirectly using thepublic getIt method. In example 1.2 we replaced this with the
proposed syntax. We specify two access modifiers: the “write access modifier”preceding the read
keyword and the “read access modifier”following theread keyword. We set the write access modifier
to private to restrict assignments toit to the same class, as before, but we relax the “read access
modifier” topublic to obtain the same availability of the field value ofit as was previously provided
through thegetIt access method.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000;00:1–9
Prepared using cpeauth.cls



JAVA ACCESS PROTECTION THROUGH TYPING 7

The read access modifier may be omitted in which case it defaults to the write access modifier thus
ensuring backwards compatibility in that “old style” declarations with noread keyword will set both
the read and write access modifier to the specified one. Other modifiers such asstatic, volatile,
etc, are not affected, but they may be intermingled with the write access modifiers for backwards
compatibility.

The semantics of the read and write access modifiers is specified by enhancing the definition of
accessibility [2, §6.6] to distinguish between two cases for field accessibility.

Definition 3.2 (read/write field access separation). If a field (access) occurs as aLeftHandSide [2,
§15.26] then use the write access declaration, otherwise use the read access declaration.

Definition 3.2 captures the way a Java compiler determines whether a field access should be
compiled into agetfield or putfield instruction. The formal semantics of read-only access for the JVM
follows:

Definition 3.3 (getfield read access check). Consider agetfield in the context

class c1 f: : : getfield(c2; aw read ar t ; f ) : : :g

with c1 a class names,t a type, f a field name,aw and ar the write and read access modifiers,
respectively, andc2 a subclass of the classc3 with the declaration

class c3 f: : : aw read ar t f; : : :g

This ispermitted if
c1 ` c2 : c3:ar

(as defined in Definition 2.2).

Again there should be a similar rule forputfield usinga w instead ofar in the judgment.

Remark 3.4. Finally remark that we can emulate the effect of the declaration

class c {
w read r t f;

}

(with c a class name,w andr field modifiers,t a field type, andf a field name) by

class c {
w t f;
final r t get_c_ f() {return f; }

}

where we must then replace all read accesses of the formo. f (for some objecto with a static type of
c) with o.get c f(). The inconvenience is that the static type is explicitly present in the get method
name, however, if this is acceptable then the argumentation above can be applied to includingfinal
in the static type information instead of the read/write accessibility.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000;00:1–9
Prepared using cpeauth.cls



8 E. & K. H. ROSE

4. Conclusion

We have outlined how access rights to fields, and specificallyread-only access rights, can be encoded
in the Java type system as implemented by a (slightly modified) Java bytecode verifier, thus eliminating
all access right checks at run-time.

One may comment that “static is bad because everything should be run-time configurable.” This
possibility remains (using set and get methods) but we believe it is important to give the programmer
of a class the choice of permitting (efficient) build-in static field access even for read-only fields,
specifically for the variants of Java targeted at devices with limited resources [7].

Our first priority will be to combine the above with a formal model of a JVM, specifically
with lightweight bytecode verification [5], as used by Sun’s KVM [8]. This will give proofs of the
consistency of the approach as well as help getting static access control even in sparse resources.

One important issue that should be investigated is whether read/write access types interferes with
other type system features, notably generic types.

A different but very interesting further venue of research is that using “access types” could be used
to implement “sticky” access rights such as “private objects” where thevalue cannot be passed out of
the current method, for example.

Another question that one could ask is “why not for set methods?” This can be done but is
complicated by the fact that set methods usually also check the value to be stored for validity to ensure
that the object is (internally) consistent. One could introduce special “validity checks” such that our
get example could be extended, for example, with a

public class ReadOnly throws IllegalIt {
protected read public int it {if (it<0) throw IllegalIt;}

}

with the semantics that any assignment toit would execute the additional “assertion” code. Such an
addition may be worth considering, however, in contrast to the read-only case it complicates the Java
language considerably.

ACKNOWLEDGEMENTS

The authors are grateful for funding provided for this project by the “Incitative JavaCard” of INRIA and the Plume
group of LIP, ENS-Lyon.

REFERENCES

1. S. Drossopoulou and S. Eisenbach. Java is type safe – probably. InEuropean Conference of Object Oriented Programming,
Lecture Notes in Computer Science. Springer-Verlag, June 1997.

2. J. Gosling, B. Joy, G. Steele, and G. Bracha.The Java Language Specification. The Java Series. Addison-Wesley, second
edition, 2000.

3. T. Lindholm and F. Yellin.The Java Virtual Machine Specification. The Java Series. Addison-Wesley, second edition, 1999.
4. T. Nipkow and D. von Oheimb. Javalight is type-safe – definitely. In Luca Cardelli, editor,Proceedings of the Twenty-Fifth

Annual ACM Symposium on Principles of Programming Languages, pages 161–170, San Diego, California, January 1998.
ACM Press.

5. Eva Rose and Kristoffer Høgsbro Rose. Lightweight java bytecode verification. Technical report, INRIA. To appear.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000;00:1–9
Prepared using cpeauth.cls



JAVA ACCESS PROTECTION THROUGH TYPING 9

6. Sun. JDK 1.1 Documentation, 1997. Available fromhttp://java.sun.com/products/jdk/1.1/docs/.
7. Sun. Java 2 platform, micro edition.http://java.sun.com/j2me, 1999.
8. Sun. The K virtual machine (KVM).http://java.sun.com/products/kvm, 1999.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000;00:1–9
Prepared using cpeauth.cls


