CONCURRENCY—PRACTICE AND EXPERIENCE

Concurrency: Pract. Exper. 2000;00:1-9 Prepared using cpeauth.cls [Version: 2000/05/12 v2.0]
Java Access Protection AV AV AP
through Typing _L#,_ #Jh#idr_

] 4 -"r ' ‘..I-::- v ! IiI '
Eva Rosé and Kristoffer Hagsbro Rose _~¢’?_= I "r ﬁ)'
1 GIE Dyade, INRIA-Rocquencourt, Domaine de Voluceau, | [T-
Rocquencourt B.P.105, 78153 Le Chesnay (France) 1

2 |BM T. J. Watson Research Center, 30 Saw Mill River Road,
Hawthorne, NY 10532 (USA)

SUMMARY

We propose an integration of field access rightsinto the Java type system such that those access permission
checkswhich are now performed dynamically (at run-time), can instead be done statically, i.e., checked by
the Java compiler and rechecked (at link-time) by the bytecode verifier.

We explain how this can be extended to remove all dynamic checks of field read accessrights, completely
eiminating the overhead of get methods for reading the value of a field. |mprovements include using
fast static lookup instead of dynamic dispatch for field access (without requiring a sophisticated inlining
analysis), the space required by get methods is avoided, and denial-of-service attacks on field access is
prevented.

We sketch a formalization of adding field access to the bytecode verifier which will make it possible to
provethat the changeis safe and backwar ds compatible.

Key words: Java, Java Virtual Machine, Java bytecode verification, read-only field access.

1. Introduction

Object-oriented programming languages in general, and Java in particular, do not distinguish between
read- and write-access to fields. Instead the recommended way of only permitting read access to a field
is to make the field private and write a get method that accesses the field and returns the stored value.
A field with both a get and set method is conventionally called an “attribute” or “property” and it is
generally considered good practice to use such instead of fields:

e A property hides the actual data representation of the field so the implementation can be changed
without consequence for the property.
¢ InJava, fields cannot be overridden by a subclass.

*Correspondence to: Kristoffer H. Rose, IBM T. J. Watson Research Center, 30 Saw Mill River Road, Hawthorne, NY 10532
(USA); E-mail: krisrose@watson.ibm.com.

Received 9 October 2000
Copyright(©) 2000 John Wiley & Sons, Ltd. Revised 16 March 2001
Accepted 28 March 2001

2 E. & K. H. ROSE

¢ A get method may trigger an exception or other action that a simple field access cannot.
¢ In Java, fields cannot be declareghchroni zed thus thread-safe access is only possible by
using a property.

On the other hand, if performance issues are critical then using fields may be preferable because
the Java semantics of field access states that the actual field location accessed in an object can
be determined statically (at compile-time), whereas the actual get method to invoke is determined
dynamically (at run-time) [2, §15.11.1]. This has the following consequences:

e Using a get method is significantly slower (at run-time) than using a direct field access. (The
traditional remedy for this is to declare get methbidsal which permits the compiler to “inline”
its body,i.e., insert the field access instruction directly at the invocation place. In Java this is
frequently not feasible because Java employs dynamic class loading so the class containing the
get method may not have been loaded yet.)

e It is possible to access the field belonging to a particular (super)class of an object by simply
casting the object of the field access to the appropriate class. One cannot obtain a similar effect
with a get method. (One may see this as a feature rather than an inconvenience.)

¢ “Denial-of-service” attacks (or accidents) are possible in that a get method can be overriden by
a subclass. (This can also be avoided by declaring the méthadi .)

¢ Finally, get methods may add a significant space overhead to class files since they must be
declared and their code given. For example, get methods account for about one fourth of the
total number of methods in the standard Jg\av4. *” package source classés.

Furthermore, the Java virtual machine, JVM [3], specifies that field access control is performed through
(dynamic) load and run time checks. This seems a shame since everything else about fields is static.

Here is a traditional example with a get method: an object that simply contains an integer value that
should be publicly readable.

Example 1.1 (a traditional get method).

public class ReadOnlyl {

private int it;

public int getlt() {returnit;}
}

Access to thét field is then done with code such as the following within some other class:

ReadOnl y1 cc;
...ccogetlt()...

with the problems discussed above.

In this paper we propose a simple modification in two steps that eliminates the problem:

TThis measure was obtained for Sun’s JDK 1.1 [6] with the unix commardd jdkl.1 -name '*.java -exec

grep ' +public .*(" "{}' ';" | we -1"to get the total number of public methods (4317), ahdrd j dkl1.1 -nanme
"*. java’ -exec egrep ' +public .* get.*(" "{}" ;' | wc -1"togetthe number of get methods (999).
Copyright(© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000;00:1-9

Prepared using cpeauth.cls

o JAVA ACCESS PROTECTION THROUGH TYPING 3

Table I. Java Access Modifiers.

= =]

o | = o
= < § a2
8| 28583
Accessibility from =| a2 353
same class VAR
other class, same package x v v Vv
subclass outside package| x x v v
other class outside package x x x v

1. add a special get-specific access modifier that permits making the reading of a field “more public”
than the modification of it, and
2. integrate field access checks into the type system.

In effect we propose replacing the class declaration above with the following:
Example 1.2 (a modified get method).

public class ReadOnly2 {
private read public int it;

}

which explicitly permits everyone to read the field value with the usual field access syntax:

ReadOnl y2 cc;
...cCLit. ..

but does not permit assigning to the field outside ofRbednl y2 class.

Overview. In Section 2 we formalize field access rights of Java and explain how these could be
integrated into the type system implemented by the Java Virtual Machine “bytecode verifier”. Section 3
then explains how field access types can be exploited to achieve overhead-free read access to fields.
Finally, we conclude in section 4 with some remarks on future work.

2. Field Accessibility Types

In this section we summarize the Java access modifiers [2, §6.6] and formalize accessibility for the
field access instructions of the Java Virtual Machine.

The access granted by each modifier is shown in Table I. The first column indicates the four possible
field access situations: Either the field is referenced fromstnee class where it is defined, from
another class within theame package where it is defined, from aubclass of the class where it is

Copyright(© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000;00:1-9
Prepared using cpeauth.cls

k=B
4 E. & K. H. ROSE 5

defined but outside its package, or, finally, from a class outside its package whiohasubclass
of the class in which the field is defined. The columns are the Java access modifierat e,
prot ect ed, public, and the default case where no keyword is given, denoted “package” protection.
For each combination the table indicates withthat a field declared with the given access modifier
is accessible from the given context, and withthat is it not.

The access rules of Table | are progressive in the sense that each row in the table extends the access
permissions of the row above it. We formalize this as an orderitigdh the set of access modifiers,
with the meaning that an access modifier is less permissive than another if it permits less access to a
field in the four access situations.

Definition 2.1 (accessibility ordering). An access modifier, denoteds, is a member of the following
totally ordered set:
private < “package’< protected < public

In practice accessibility is checked at run-time by the JVM, specifically field accessibility is checked
before the field value is accessed when the field reference is “resolved” [3, 85.4.4]. A field reference
occurs in two instructiongutfield or getfield, depending on whether it was compiled from a the Java
field reference that was leeftHandSde of an assignment [2, §15.26] or not. We shall gséield in
our examples below but everything is equivalentgdutfield.

Consider the Java code snippet

classci{... ((c) & .f ...}

(where we have explicitly indicated the static typeof the expressior). The fieldf must be declared
by code such as
classcz{...atf; ...}

with a the access modifier defining from where acces$ fe permittedt the field type, anct3 a
superclass of;.
The c; class compiles to a JVM sequence of bytecode instructions that we may represent
symbolically as
class ¢1 {... getfield(cs,t,f) ...}

(concretely the detfield instruction is a single bytecode followed by an index into the JVM class
file “constant pool” pointing toCONSTANT _Fi el dref _i nf o structure which again points to similar
structures fom, t, andcs [3, 84.4.2)).

Checking that thgetfield access is permitted requires the resolver to look up the real field declaration
of f in thecs class merely because this is the only way to obadmuse the rules of Table | to determine
if f is accessible from;.

Our idea for the JVM is the following: if access informatioa# our example above — is integrated
into thegetfield instruction, then

1. the bytecode verifier can check for access violations assuming that the provided access
information (in the type) is correct, and

2. resolution can be reduced to merely checking that the type assumptions made at verification time
were correct.

Copyright(© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000;00:1-9
Prepared using cpeauth.cls

o JAVA ACCESS PROTECTION THROUGH TYPING 5
ci=CcC
A== (SameClass)
ci Fcicza
same-packade;,c3) “package’<a (SamePackage
ci F cicza
coextends*c; cpextends*cs protected <a (Subclass)
ci1 Fcicza
a=public (Othen)
ci Fcicza

Figure 1. Access Madifier Type Rules.

Using the access maodifier order of Definition 2.1 we can express the access rules used by JVM [3,
84.8.2, 85.4.4] as logical rules.

Definition 2.2 (field accessibility). Figure 1 gives the rules for the judgment
c1 F cricza

which expresses that within the classan object of typec; has access to a field declaredcinwith
access modifies. The rules use the following auxiliary tests:)ext ends* cis true wherc' is the
same as or a subclass®@fand (2) same-packa@ec’) is true when the two classes are in the same
package (this amounts to checking that the fully qualified class hames are identical up to th§.last “

Rule (SameClass) states that a field is accessible from the class it is defined in. Rule (SamePackage)
states that a field with a ngn-i vat e access modifier can be accessed from the same package.

The (Subclass) rule is the only slightly complex rule. It states that a field prithect ed (or
publ i ¢) access can be accessed from a class which satisfies two conditions:

e itis a subclass of the class the field is declared in, and
e itis a superclass of the actual class of the object containing the field.

Finally, the (Other) rule states that orybl i ¢ fields are accessible from everywhere.
Our idea can now be formalized.

Theorem 2.3 (Static Field Accessibility Check). The bytecode verifier can prove field accessibility
provided the getfield instruction is augmented with the access modifier.

Proof. If the access madifier is included in thyetfield instruction then field accessibility can be
approximated at verification time: in the judgment

ci F cicza

we havecs, c3, anda, in the bytecode thus available at verification. These suffice to decide the rules
(SameClass), (SamePackage), and (Other) since only rule (Subclass) refers to the run-topetype

Copyright(© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000;00:1-9
Prepared using cpeauth.cls

6 E. & K. H. ROSE

the object containing the field. Howevéype safety [1, 4] guarantees that, is approximated by the
verifier with ac), type that satisfies; ext ends* c,. From this andc), ext ends* ¢y, which we can
check, follows that, ext ends* ¢; thus we are able to check at verification time that the field access
will always be safe. O

All that is needed to make this work is two things:

e Encode the access modifiarinto the JVM FieldDescriptor encoding [3, 84.3.2]. Such an
encoding is not difficult but beyond the scope of this paper.

e Replace the run-time field accessibility done at resolution with a check that the access modifier
stored in the field access instruction is the same as (or stricter than) the one actually present in
the field declaration.

3. Read-only Field Access

In Example 1.2, we proposed that a shorter syntax be given to specify explicitly permissions which
are valid for a field used to read a value as is the purpose of get-methods. In this section we formalize
this by proposing an extension to the official Java field declaration syntax [2, 88.3.1]. The modification
consists in adding theead keyword to introduce the “read-only access modifier”.

Definition 3.1 (extended field declaration). Replace the Java definition BfeldDeclaration [2, §8.3]
with the one shown in Figure 2; additions are indicated in bold.

FieldDeclaration:
FieldModifiersy, ReadModifierg, Type VariableDeclarators;

ReadModifier:
read AccessModifierqp

AccessModifier:
oneof public protected private

Figure 2. Extended Field Declaration with Read-only Access Modifiers.

The semantics of the new construction is that it separates out the access modifiers which are specific
for reading the value of a field from those which are specific for assigning a value to a field.

In example 1.1, the integer field was declared as@ i vat e field. So the value of that field can
only be read indirectly using thgubl i ¢ get |t method. In example 1.2 we replaced this with the
proposed syntax. We specify two access modifiers: the “write access mogifeeeting the r ead
keyword and the “read access modifiéallowing ther ead keyword. We set the write access modifier
to privat e to restrict assignments id to the same class, as before, but we relax the “read access
modifier” topubl i ¢ to obtain the same availability of the field valuei fas was previously provided
through theget I t access method.

Copyright(© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000;00:1-9
Prepared using cpeauth.cls

o JAVA ACCESS PROTECTION THROUGH TYPING 7

The read access modifier may be omitted in which case it defaults to the write access modifier thus
ensuring backwards compatibility in that “old style” declarations with ead keyword will set both
the read and write access madifier to the specified one. Other modifiers ssicht as, vol ati |l e,
etc, are not affected, but they may be intermingled with the write access modifiers for backwards
compatibility.

The semantics of the read and write access modifiers is specified by enhancing the definition of
accessibility [2, §6.6] to distinguish between two cases for field accessibility.

Definition 3.2 (read/write field access separation). If a field (access) occurs asLaftHandSde [2,
§15.26] then use the write access declaration, otherwise use the read access declaration.

Definition 3.2 captures the way a Java compiler determines whether a field access should be
compiled into agetfield or putfield instruction. The formal semantics of read-only access for the JVM
follows:

Definition 3.3 (getfield read access check). Consider aetfield in the context
class c1 {... getfield(cy, awread a; t ,f) ...}

with ¢; a class nameg, a type, f a field nameay and a, the write and read access modifiers,
respectively, and; a subclass of the class with the declaration

classcz {... awreada, t f; ...}
This ispermitted if
c1 F c:icza
(as defined in Definition 2.2).
Again there should be a similar rule fputfield usinga, instead ofa, in the judgment.

Remark 3.4. Finally remark that we can emulate the effect of the declaration

class ¢ {
wread rt f;

}

(with c a class namey andr field modifierst a field type, and a field name) by

class ¢ {

wt f;

final rt get_ c f() {return f; }
}

where we must then replace all read accesses of thedofn{for some objecb with a static type of

¢) with o. get _c_f() . The inconvenience is that the static type is explicitly present in the get method
name, however, if this is acceptable then the argumentation above can be applied to irfdluding

in the static type information instead of the read/write accessibility.

Copyright(© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000;00:1-9
Prepared using cpeauth.cls

k=B
8 E. & K. H. ROSE 5

4. Conclusion

We have outlined how access rights to fields, and specificedig-only access rights, can be encoded
in the Java type system as implemented by a (slightly modified) Java bytecode verifier, thus eliminating
all access right checks at run-time.

One may comment that “static is bad because everything should be run-time configurable.” This
possibility remains (using set and get methods) but we believe it is important to give the programmer
of a class the choice of permitting (efficient) build-in static field access even for read-only fields,
specifically for the variants of Java targeted at devices with limited resources [7].

Our first priority will be to combine the above with a formal model of a JVM, specifically
with lightweight bytecode verification [5], as used by Sun’'s KVM [8]. This will give proofs of the
consistency of the approach as well as help getting static access control even in sparse resources.

One important issue that should be investigated is whether read/write access types interferes with
other type system features, notably generic types.

A different but very interesting further venue of research is that using “access types” could be used
to implement “sticky” access rights such as “private objects” wheredhe cannot be passed out of
the current method, for example.

Another question that one could ask is “why not for set methods?” This can be done but is
complicated by the fact that set methods usually also check the value to be stored for validity to ensure
that the object is (internally) consistent. One could introduce special “validity checks” such that our
get example could be extended, for example, with a

public class ReadOnly throws Illegallt {
protected read public int it {if (it<0) throw lIllegallt;}

}

with the semantics that any assignment towould execute the additional “assertion” code. Such an
addition may be worth considering, however, in contrast to the read-only case it complicates the Java
language considerably.

ACKNOWLEDGEMENTS

The authors are grateful for funding provided for this project by the “Incitative JavaCard” of INRIA and the Plume
group of LIP, ENS-Lyon.

REFERENCES

1. S. Drossopoulou and S. Eisenbach. Java is type safe — probaBiyrojrean Conference of Object Oriented Programming,
Lecture Notes in Computer Science. Springer-Verlag, June 1997.

2. J. Gosling, B. Joy, G. Steele, and G. Bracfiae Java Language Specification. The Java Series. Addison-Wesley, second
edition, 2000.

3. T.Lindholm and F. Yellin.The Java Mirtual Machine Specification. The Java Series. Addison-Wesley, second edition, 1999.

4. T. Nipkow and D. von Oheimb. Jay; is type-safe — definitely. In Luca Cardelli, edit@roceedings of the Twenty-Fifth
Annual ACM Symposium on Principles of Programming Languages, pages 161-170, San Diego, California, January 1998.
ACM Press.

5. Eva Rose and Kristoffer Hagsbro Rose. Lightweight java bytecode verification. Technical report, INRIA. To appear.

Copyright(© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000;00:1-9
Prepared using cpeauth.cls

Ak

JAVA ACCESS PROTECTION THROUGH TYPING 9

6. Sun.JDK 1.1 Documentation, 1997. Available fromhttp://java.sun.com/products/jdk/1.1/docs/.
7. Sun. Java 2 platform, micro editioht t p: //j ava. sun. conl j 2me, 1999.

8. Sun. The K virtual machine (KVM)ht t p: //j ava. sun. cont product s/ kvm 1999.

Copyright(© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000;00:1-9
Prepared using cpeauth.cls

