Formal Techniques for Java Programs

Formal techniques can help analyze programs, precisely describe program
behavior, and verify program properties. Applying such techniques to object-
oriented technology is especially interesting because:

e the OO-paradigm forms the basis for the software component industry
with their need for certification techniques.

e it is widely used for distributed and network programming.

e the potential for reuse in OO-programming carries over to reusing speci-
fications and proofs.

Such formal techniques are sound, only if based on a formalization of the lan-
guage itself.

Java is a good platform to bridge the gap between formal techniques and
practical program development. It plays an important role in these areas and
is on the way to becoming a de facto standard because of its reasonably clear
semantics and its standardized library.

However, Java contains novel language features, which are not fully un-
derstood yet. More importantly, Java supports a novel paradigm for program
deployment, and improves interactivity, portability and manageability. This
paradigm opens new possibilities for abuse and causes concern about security.

The ECOOP 2000 workshop on Formal Techniques for Java Programs was
held in Sophia Antipolis, France. It was a follow-up for last year’s ECOOP
workshop on the same topic [1] and the Formal Underpinnings of the Java
Paradigm workshop held at OOPSLA 98 [2].

Proceedings containing all the papers are available as a technical report
of the Computer Science Department of the FernUniversitdt Hagen [3]. This
special issue contains extended and refereed versions of four papers, selected
from the best papers presented at the workshop.

Eva Rose and Kristoffer Rose suggest in their paper “Java Access Protection
through Typing” the integration of a dedicated read-only field access into the
Java type system. The advantage is that “getter” methods can be eliminated.
This allows for 1) static look-up as opposed to dynamic dispatch, 2) avoidance
of the space for the code of the getter method, 3) avoidance of denial of service
attacks on field access, 4) discovery of access protection violating through Java’s
bytecode verifier. They describe this through an extension of the bytecode
verifier.



Bytecode verification is a technique to check whether a piece of bytecode is
type sound. Resource-bounded implementations of the Java Virtual Machine on
smart cards do not provide bytecode verification. They do not allow dynamic
loading at all or use cryptographic techniques to rely on off-card verification. To
enable on-card verification, Eva and Kristoffer Rose in [2] developed a sparse
annotation of bytecode with type information to drastically simplify type re-
construction. This way, on-card verification essentially becomes a linear type
check. This technique is called lightweight bytecode verification.

Gerwin Klein and Tobias Nipkow in their paper “Verified Lightweight Byte-
code Verification” presented a formal proof that lightweight bytecode verifi-
cation is sound and complete. Soundness means that the lightweight verifier
should only accept an annotated pieces of code if the fullweight verifier accepts
the stripped version. Completeness means that the lightweight verifier should
accept every piece of code that is annotated with the types reconstructed by
the fullweight verifier if the fullweight verifier accepts the code.

Alessandro Coglio and Allen Goldberg describe in “Type safety in the JVM,;
some problems in Java 2 SDK 1.2 and proposed solution” a problem caused by
unprecise treatment of type identity. For some operations the bytecode verifier
loads the wrong class because it does not always take into account the association
between loaders and classes. This problem can be fixed by using as full names
both the class name and the loader name which loaded it. As a more general
approach, Coglio and Goldberg proposed a solution that more clearly separates
bytecode verification and class loading. The idea is to generate refined loading
constraints during bytecode verification.

David von Oheimb’s “Hoare Logic for Java in Isabelle/HOL” involves the
language Java“ght, which is a nearly full subset of sequential Java. Earlier a
deep embedding of Javal®™ into the higher order logic of the theorem prover
Isabelle has been developed, together with an operational semantics. Von Ohe-
imb described a Hoare logic for Java®@"® which he has proven (in Isabelle) to
be both sound and complete (w.r.t. the operational semantics). The logic covers
challenging features like exception handling, static initialization of classes and
dynamic binding of methods. The soundness and completeness proofs rely on
the type safety property (dynamic types of expressions are subtypes of their
static, declared types), which was already proven for J avafioht,

We would like to thank all the reviewers for their careful reading and helpful
comments for the papers. We are impressed that they are responsible for a not-
icable improvement of quality. The papers were refereed by Gilad Bracha, Mar-
tin Berger, John Boyland, Drew Dean, Sophia Drossopoulou, Susan Eisenbach,
Steve Freund, Arnd Poetzsch-Heffter, Atsushi Igarashi, Bart Jacobs, Thomas
Jensen, Gary Leavens, Rustan Leino, Markus Lumpe, Jens Palsberg, Lawrence
Paulson, Geoffrey Smith, Scott Smith, Raymie Stata, and Hayo Thielecke.

Finally we would like to thank the rest of the workshop organizers Sophia
Drossopoulou (Imperial College, Great Britain), Bart Jacobs (University of Ni-
jmegen, The Netherlands), Peter Miiller (FernUniversitdt Hagen, Germany),
and Arnd Poetzsch-Heffter (FernUniversitdt Hagen, Germany) for their work
on both the workshop and allowing us to ‘borrow’ some of their words for this



introduction to the special journal section.
Susan FEisenbach
Imperial College
Gary T. Leavens
Towa State University

References

[1] B. Jacobs, G. Leavens, P. Miiller, and A. Poetzsch-Heffter, Formal
Techniques for Java Programs, in A. Moreira and D. De Meyer, eds.,
ECOOP’99 Workshop Reader, vol 1743 of LNCS, Springer-Verlag, 1999.

[2] S. Eisenbach, ed, Formal Underpinnings of Java, 1998, Workshop report,
http://www.doc.ic.ac.uk/ sue/oopsla/cfp.html.

[3]

http:/ /www.informatik.fernuni-hagen.de/import /pi5 /workshops/ecoop2000_papers.html.




