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Abstract

We presentthe resultsof a detailedstudyof the Virtual In-
terface(VI) paradigmasa communicationfoundationfor a
distributedcomputingenvironment.UsingActive Messages
and the Split-C global memorymodel, we analyzethe in-
herentcostsof usingVI primitivesto implementthesehigh-
level communicationabstractions.We demonstratea mini-
mummappingcost(i.e. thehostprocessingrequiredto map
oneabstractionto a lower abstraction)of 5.4 � secfor both
Active Messagesand Split-C using 4-way 550 MHz Pen-
tium III SMPsand the Myrinet network. We breakdown
thiscostto useof individualVI primitivesin supportingflow
control, buffer managementandevent processingandiden-
tify thecompletionqueueasthe sourceof the highestover-
head. Bulk transferperformanceplateausat 44 Mbytes/sec
for both implementationsdueto the additionof fragmenta-
tion requirements.Basedon this analysis,we presentthe
implicationsfor theVI successor, Infiniband.

Index Terms: Active messages,cluster-basednet-
working,Infiniband,network abstractions,network I/O,
VI Architecture

1 Intr oduction

In order to enablethe widespreaddeploymentof high
performance,scalablesystems,therehasbeena con-
certedeffort to developa standardizedclustercommu-
nicationarchitecturefor systemareanetworks (SAN).
This effort yieldedtheVirtual Interface(VI) Architec-
ture [10] in 1998,andis now focusedon theemerging

Infinibandarchitecture[1] which alsoseeksto encom-
passnetwork basedI/O. TheVI Architecturedefinesa
methodologyfor user-level communicationbasedondi-
rect memoryaccess(DMA) descriptorprocessing.At
its coreis a setof designprinciplesfor how to imple-
ment user-level communicationin a mannerthat vir-
tualizesresourcesamongan arbitrary numberof pro-
cesses. It outlines both a hardware architecturefor
the network interfacecontroller (NIC) and a software
interfaceupon which communicationabstractionsare
implemented.Infiniband incorporatesmuchof the VI
Architecture,with somemodificationsin terminology
andbehavior, andrepresentsthe intellectualmergerof
many industry efforts in high performancenetworked
I/O. While it doesintroducesomenew conceptsand
components,its coreis stronglybasedon theVI Archi-
tectureprimitives. Thus,it is importantto evaluatethe
effectivenessof thecoreVI Architecturemodeof oper-
ationin supportof establishedcommunicationAPIs.

The VI Architectureexports two fundamentalcom-
municationoperations.Oneis a matchedsend-receive
model, in which the receiver allocatesand registers
buffersin anticipationof incomingmessages.Theother
is a RemoteDirect Memory Accessmodel,wherethe
senderdeliversor readsdatadirectly to a specifiedre-
gion in the target’s addressspace.Several studiesand
VI Architectureimplementors[7, 8,16, 17,25, 38] doc-
umentthe performanceachieved on the VI primitives.
With experienceandengineeringeffort, this aspectis
improving.

In this paper, we focuson the costof mappinguse-
ful communicationsabstractionsto the VI primitives.
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Weseekto answerthequestionof how effectively these
primitivessupportcommonusagemodels.

We consider two distinct models that have been
implementedeffectively on numeroussubstrates:ac-
tive messagesand a simple global memory model.
Theactive messages[37] paradigmis centeredaround
lightweight RPC. Communication transactionsare
basedontwo-phaserequestandreplymessagingprimi-
tivesthatinvokeuserlevel handlerswithin thereceiving
application. To explore the global memorymodel,we
usetheSplit-C parallellanguage[22]. Herethefunda-
mentalprimitivesaresimplememorytransactions:syn-
chronousread andwrite andasynchronousget, put and
store. By mappingthesetwo modelsto the VI Archi-
tecturewecanevaluatetherelativecostsof implement-
ing communicationabstractionsover theVI primitives.
Weshow theinherentcostsof usingtheVI Architecture
(regardlessof the speedof the VI interface),the costs
thatarecommonto all communicationabstractionsand
thosethatareuniqueto particularapproaches.

In the next section,we presentrelatedwork upon
which this studybuilds. Section3 explainsthe funda-
mentalsof theVI Architectureandits baselineperfor-
mance. In Section4, we review the Active Messages
andSplit-C architecturesand,in sections5 and6, dis-
cusstheir implementationson top of the VI Architec-
ture.Section7 presentsourperformancemeasurements
of thesetwo high-level communicationlayers. In Sec-
tion 8, we discussthe key lessonswe learnedandthe
implicationsfor Infiniband.

2 RelatedWork

Initial studiesof native VI primitives [8, 16, 38] have
focusedon low-level details and the performanceof
the transportitself. In addition,M-VIA [29] andSC-
Net [30] demonstratetheability to layer VI primitives
over arbitraryhardware.

High-performancesorting applications(e.g. Mill-
Sort [7] and a terabytesort [17]) were implemented
over the VI Architectureto demonstratethe feasibility
of the descriptorqueuebasedprimitives. In addition,
webtraffic workloadanalysis[20] suggestedzero-copy
VI primitivescouldassistin reducingserver load.How-
ever, noneof thesestudiesanalyzethecostsassociated

in therealizationof theseprotocolsor applicationsupon
theVI primitives.

Therehasbeenextensive work in examiningproto-
col layercostsoverotheruser-level communicationab-
stractionsfor high-performancesystems[9, 21, 23, 39],
andfrom thesewedraw muchof ourmethodology. Ad-
ditionally, we draw upon the lessonsof relatedhigh-
performancenetwork architectures[15, 31, 32] andthe
benchmarktechniquesdevelopedby Culler et. al. in
[13, 14] to analyzeour implementations.

Specificto the VI Architecture,Speightet. al. [34]
conducteda benchmarkstudy of two commercialVI
implementationsand comparedthe resultsto TCP/IP
on gigabit ethernet. Madu et. al [25] demonstrated
thefeasibilityof layeringthedistributedcomponentob-
ject model(DCOM) protocol(essentiallyan extension
of RPC)over VI primitives. The resultsindicatedthat
software overheadswere several times the underlying
transport.In aneffort to mitigatethis,Forin et. al. [18]
discussedaseriesof optimizationsto theDCOM proto-
col to minimize the overhead.However, in that study,
thecostsassociatedwith implementingtheDCOM ab-
stractionat userlevel dwarfed the impactof mapping
to theVI architectureper se. Our work extendsthis by
usingamuchlighter-weightstartingpoint to isolatethe
characteristicsof VI-basedcommunicationthatresultin
anunavoidablecost.

Other efforts to layer protocolsover VI primitives
includethe MessagePassingInterface[5, 2] andTCP
sockets[33, 35, 11], but nodetailedanalysisof themap-
ping costshasbeenpresented.Banikazemiet. al. de-
tailedVI implementationdesigntradeoffs andanalyzed
low-level costsfor the IBM SP [4, 3]. However, this
analysisdid not includehardwaredoorbellsupportand
many of thearchitecturaltradeoffs werebasedon opti-
mizing NIC performance.Using thehardwaresupport
of theMyrinet LANai 7, our studyinvestigatesthehost
processingcostorthogonalto NIC computationalload.

Liu et. al. [24] describesa software-basedfault in-
jectionmechanismfor networkedsystemsthatwasbuilt
on top of a commercialVI implementation.While this
work investigatedfault-toleranceof thearchitecture,its
contribution is largely separatefrom thiseffort.
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3 VI Ar chitecture / Infiniband

In this section,we outline the VI Architectureand its
basic descriptorqueuemessagingprimitives that are
carriedforward to Infiniband. A baselineperformance
summaryis includedfor referencein therestof thepa-
per.

3.1 VI Overview

The Virtual Interface is an abstractionfor a pro-
tected,directchannelto thenetwork interfacecontroller
(NIC). Communicationisachievedthroughmemory-to-
memorytransfersbetweena pair of connectedvirtual
interfaces(VIs). Key conceptsusedin theVI architec-
tureinclude:

� RegisteredMemory – A portion of a user’s vir-
tual addressspacethathasbeenpinnedinto phys-
ical memoryandmadeknown to aVI NIC. Regis-
teredmemoryfunctionsastheprincipalcommuni-
cationsbuffer for network operations.Associated
with eachregion is a Memory Handle(a unique
identifier)which is usedin conjunctionwith auser
virtual addressto accessabuffer.� Descriptor– A dataobject recognizedby the VI
NIC thatdescribesanetwork transferrequestto be
performed.Descriptorsresidein registeredmem-
ory andprovide control informationanda list of
pointersto databuffers.� Work Queue– A FIFO list of Descriptorsto be
processedby aVI NIC.� Doorbell– A mechanismfor a userprocessto no-
tify the VI NIC that outstandingdescriptorshave
beenpostedto an associatedwork queue. Each
doorbellis a protectedresource,typically mapped
into a user’s addressspace,which is uniqueto a
particularVI/userpair.

EachVI consistsof asendandareceivework queue,
their associateddoorbellresources,andtheuser’s reg-
isteredmemoryregions. ConnectionsbetweenVIs are
explicitly one-to-one.

Therearetwo classesof messagetransactions:send-
receive and remoteDMA (RDMA). To initiate a net-
work data transfer, the user processconstructsa de-
scriptor and posts it into an appropriatework queue

by placinga token in the queue’s associateddoorbell.
In the send-receive paradigm,the target pre-postsre-
ceive descriptorsinto the receive work queuein order
to identify memoryregions whereincomingdatawill
beplaced.Thesourcepostsasenddescriptorthatiden-
tifies memoryregionsof datato send.Eachsendoper-
ationconsumesa receive descriptoron the target. The
receivermustkeeppre-posteddescriptorsonthereceive
queueto ensureincomingmessagesarenotdropped.In
this scheme,eachapplicationmanagesits own buffer
spaceand neither has explicit information about the
peer’s registeredbuffers.

In contrast,with RDMA messagestheinitiator iden-
tifies both the sourceand destinationbuffers. Data
can be directly written to or read from a remotead-
dressspacewithout involving the target process. To
conduct an RDMA operation only the senderneed
prepareand queuea descriptor. However, both pro-
cessesmustexchangeinformationregardingtheirregis-
teredbuffersusingsomeout-of-bandmechanism(either
send-receive or anothernetwork). Oneexceptionto the
one-sidednatureof RDMA operationsis thatasmall(4
byte)message,canbepiggybackedon anRDMA write
operation. This dataword is deliveredto the target in
a specialfield of a receive descriptor. Thus,this form
of RDMA write with an immediatevalueconsumesa
descriptoron the target, while standardRDMA writes
do not.

Completionson an individual VI are monitoredei-
ther throughpolling or by waiting on a signalfrom an
individualVI. However, in mostparallelcomputingen-
vironments,eachprocesscommunicateswith several
othersusingdistinct VIs. Managinga groupof VIs is
simplifiedthroughtheuseof acompletionqueue.Com-
pletionsof any of the associatedVIs arepostedto the
completionqueueanddetectedthroughpolling or sig-
nals.

For theinterestedreader, additionaldetailson theVI
architectureareavailablein [8, 16, 10].

3.2 Infiniband

To betterunderstandthe implicationsof the VI archi-
tecturefor Infiniband, we presenta brief overview of
the Infinibandnetwork architecture[36]. Infinibandis
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thelogical mergerof several industryefforts (i.e.,Next
GenerationI/O and FutureI/O) in network basedI/O
architectures.Here,theI/O devicesareeffectively sep-
aratedfrom thehostCPU(s)by aswitchednetwork fab-
ric (Figure 1). The hostchanneladapter(HCA) con-
nectsdirectly to thememorycontrollerandis theinter-
faceto thenetwork. Thetarget channeladapter(TCA)
is the network interfacefor the individual I/O devices
(e.g. disks and WAN adapters).The TCA is similar
to theHCA, but canbe simplified accordingto the re-
quirementsof theattacheddevice(s).To provide differ-
entiatedserviceandrobust network management,data
traffic is multiplexedontomultiple independentstreams
calledVirtual Lanes(VLs). Infinibandsupports16VLs
– 15 for dataandonefor managementfunctions.

CPU CPU CPU CPU

Mem Cntlr

HCA

Switched Network

TCA TCA TCA

WAN
Disk Disk

Host

Host

Host

Host

Host

Figure1: Infiniband network architecture.

Thefundamentaltransportinterfacesupportedby the
HCA/TCA is thework queuepair (QP)which is equiv-
alentto andexportsthesamemessagingprimitives(i.e.
descriptorbasedsend-receive, RDMA) as VIs. Data
exchangebetweenQPs is still sourced/sinked to reg-
isteredmemoryregionsestablishedby theapplication.
However, Infinibandprovidesmessage-level flow con-
trol schemesbasedon receive creditsandNAK’ s.

3.3 PerformanceBaseline

For our first study, we developedimplementationsof
theVI Architecturefor theMyrinet [6] SAN usingthe
LANai 4 and LANai 7 interfaces. Theseinterfaces

RTT/2 ( � sec) Throughput(Mbytes/s)

Myricom LANai 4 VI 33.1 62.8
Myricom LANai 7 VI 30.2 68.3
GiganetcLan[34] 24 70
CompaqServerNetII [19] 7.4 180

Table1: Performance base of our VI implementa-
tion and comparison commercial implementations.
ServerNet II numbers are based on simulations.

hostan on-boardgeneralpurposeprocessor, on-board
SRAM (1-2Mbytes)and a set of DMA engines(net-
worksendandreceiveandhost-NICDMA). TheLANai
7 interface includes an extra host-DMA engine and
hardware-baseddoorbellsupport.TheVI softwarebase
includesa kernel driver, a Virtual Interface Provider
userLibrary (VIPL), andfirmwarefor theNIC thatem-
ulatesa VI-compliant device. On the LANai 4, the
firmwareemulatesdoorbells,and requiresthe host to
wait for aprevioustokento beprocessed.Thehardware
doorbellof theLANai 7 eliminatesthissynchronization
requirement.Supportedmessagingoperationsinclude
send-receive andRDMA write with Myrinet hardware-
baseddelivery guarantees.

Table1 presentsaperformancesummaryof theseim-
plementations1 in comparisonwith commerciallyavail-
abledirecthardwareimplementations.Half round-trip-
time (RTT/2) measuresthe application-to-application
latency for a singleminimum message.Throughputis
the maximumachievablebandwidthof the implemen-
tation for a given I/O architecture. The performance
of this emulationis lessthancommercialvendorsim-
plementingnative VI hardware (e.g. GiganetcLAN).
However, the featuresof the LANai interfaceprovide
adequateperformancecharacteristicswith the added
benefitsof aflexible, instrumentablesystem.Moreover,
our goal is to analyzethe cost of mappingcommon
communicationdown to the Host-NIC boundary, not
analyzeinterface implementationoptimizations. The
LANai 7 interface has sufficent hardware support to
provide aninterfacethatcanbereasonablyexpectedto

1LANai 4 performancewas measuredusing 2-Way 400 MHz
Pentium-IISMPswith a 33 MHz, 32-bit PCI bus. LANai 7 perfor-
mancewasmeasuredon 4-way, 550MHz Pentium-IIIXeonSMPs
with a33 MHz, 64-bitPCI bus.

4



mirror anative implementation.Thecombinationof the
LANai 4 andLANai 7 in this paperpermitsaninvesti-
gationof how usefulcertainhardwarefeaturesof a de-
viceare.

4 ActiveMessagesand Split-C

In this section,we briefly discusstheActive Messages
and Split-C communicationmodelsthat we have im-
plementedover theVI Architectureasthebasisfor our
study. Theemphasishereis thesemanticgapbetween
thesemodelsandthedescriptorqueuemodelof theVI
Architecture.

4.1 ActiveMessages

ActiveMessages(AM) is asimple,extensibleparadigm
for message-basedcommunicationin parallelanddis-
tributedcomputingsystems[40, 12]. While conceptu-
ally closeto VI, AM exposesnoneof the detailedde-
scriptorprocessingandmemoryregistrationto the de-
veloper. Moreover, it establishesa higher level disci-
pline for messagereceptionandhandlingwith the im-
plementationresponsiblefor achieving the necessary
buffer management,flow controlandeventprocessing.

The Active Messagemechanismmay be viewed as
essentiallya lightweight remoteprocedurecall. Each
messagecontainsthe nameof a user-level handlerto
invoke ona targetnodeandadatapayloadto passin as
arguments.The handlerfunction servesthe high-level
purposeof extractingthemessagefrom thenetwork and
eitherintegratingthedatainto thecomputationor send-
ing a responsemessage.UnderAM, a processmay is-
suea seriesof messagesinto thenetwork andcontinue
its computationwhile themessagespropagate.Thisdif-
fersfrom othercommunicationschemesthatuseblock-
ing protocolsor specialsend/receivebuffers.Toprevent
network congestionandensureadequateperformance,
messagehandlersmustbe ableto executequickly and
asynchronously. As an additionalrequirementto pre-
vent deadlock,a handlerthat generatesa reply mes-
sagemust not be preventedfrom receiving incoming
messages,regardlessof thestateof theoutgoingchan-
nel. From a programmer’s perspective, AM handlers

aresimilar to interruptserviceroutinesusedin OSker-
nelsanddevice drivers.

Active Messageshas been implementedon a vir-
tual network schemewhich supportsprotectedmulti-
programmingcommunication[26]. The architecture
consistsof two principal components:endpointsand
bundles.TheAM endpoint is theabstractionfor a pro-
cess’connectionto the network. A collectionof end-
pointsamongseparateprocessesis connectedto form
a protectedvirtual network. Endpointsimplementa
two-phaserequest/reply[27] schemein whicharequest
messageispairedwith asubsequentreplymessage.The
endpoint logically includesof a pair of buffer pools
(sendandreceive), a virtual-memorysegment,a trans-
lation table, a handlertable and a protectiontag, but
theinternalstructureis opaqueto theapplication.End-
pointsalsousea credit basedflow-control schemefor
requeststo preventnetwork congestionandbuffer over-
flow.

To provide flexibility for differentapplications,three
different messagesizesare supported: shorts ( � 32
bytes),mediums( � 4 Kbytes) and bulk transfers( �
network MTU). To initiateamessagetransfer, aprocess
calls AM Request()or AM Reply() to insert a mes-
sageinto an endpointsendpool for delivery to a re-
motereceive pool. For shortmessages,the arguments
in the data payloadare passeddirectly to the func-
tion. Medium messagesinclude a pointer to a buffer
containingdata in addition to the regular arguments.
Bulk transfersdeliver the data payload to a sender-
specifiedoffset in the endpoint’s virtual-memoryseg-
mentandtheninvoke thehandlerwith thespecifiedar-
guments. To hide network addressingdetails,remote
end-pointsarereferencedthroughaninteger index into
the translationtable that containsthe network address
of all endpointsin the virtual network. Endpointad-
dressesareinsertedinto thistablethroughseparatecalls
to AM Map(). A processcancreateseveralendpoints,
eachof which representsaconnectionto aseparatevir-
tualnetwork.

The AM bundle abstraction permits user-level
polling of anarbitrarycollectionof endpoints.Thebun-
dle abstractiongroupstogetherrelatedendpointsand
servicesthem as a single unit. Polling of the bundle
is doneexplicitly througha call to AM Poll() andim-
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plicitly whenever aprocessissuesa requestor reply.
Next, wetalk aboutourotherhigh-level communica-

tion abstraction,Split-C.

4.2 Split-C Global Memory

Split-C is a singleprogrammultiple data(SPMD)par-
allel extensionof C [22]. Eachprocessin aSplit-C pro-
gramlivesin its own localaddressspaceandcanreferto
datain anotherprocessthroughaglobal pointer, acom-
binationof aprocessid andalocaladdress.Thefollow-
ing operationscanbeperformedon aglobalpointer:

� Synchronousreadsandwrites.� Asynchronous(split-phase)readsandwrites (get
andput), with completiondetection.� Stores whichareasynchronouswriteswhosecom-
pletioncanonly bedetectedin theprocessthat is
thetargetof thestore.

Theseoperationscan be performedon the basicC
primitivetypes(char throughdouble), orasbulk op-
erationsof arbitrarysize.

TheSplit-C compileris basedon a modifiedversion
of the gcc C compiler that calls specificfunctionsfor
eachof the Split-C memory-memoryoperationsout-
linedabove(read,write,get,putandstore).Theseoper-
ationsareimplementedin a library thatprovidesother
Split-C functions(e.g. barriersynchronization,reduc-
tions,etc.) anddealswith thestartupandshutdown of
the Split-C program. In the restof this paperwe only
discusstheimplementationof thememory-memoryop-
erations: read,write, get, put, and store. Split-C ex-
posesonly theability to transferdatabetweenarbitrary
regions of partitionedglobal addressspacein a non-
blockingfashionandto detectcompletion.

AM and Split-C provide significantly higher-level
communicationabstractionsthan the VI Architecture,
onedefiningmessagingdisciplineandoneglobalmem-
ory transfers.Thenext sectionsdetailhow thissemantic
gapis bridgedandthecostsof doingso.

5 AM over VIA

In this sectionwe discussthe internalsof our Active
MessagesoverVIA (AMVIA) implementation.Thede-

signof AMVIA underwentthreemajoriterationsin or-
der to exploremajor avenuesof themapping.What is
presentedhereis thefinal architecture(AMVIA v3) and
how it differs from the older versions. Later, in Sec-
tion 8, wehighlight importantdesigntradeoffs between
thethree.

5.1 Components

AMVIA preserves all the API andmessagingseman-
tics of Active Messages.Low-level detailssuchasop-
eratingsystemandnetwork hardwarecallsarereplaced
with VI Architectureprimitive functions. Facilitating
the mappingfrom AM abstractionsto VI abstractions
is a meta-structurecalledthe MAP object,a namede-
rived from theAM methodAM Map(). TheMAP ob-
ject is essentiallya logical channelbetweentwo AM
endpointsin thevirtual network. EachMAP containsa
VI, registeredsendandreceive regionsfor descriptors
anddata,anda requestcredit counterinitialized to an
implementationparameter, k. The buffers aresizedto
support2*k sendsand2*k + 1 receives(theneedfor the
extra receive is discussedlater). A collectionof MAP
objectsin a userprocessformsanAM endpoint.Each
MAP objectin anendpointis connectedto apeerMAP
objectin every remoteendpointof thevirtual network.

TheVI completionqueuemechanismis usedto deal
with multiple endpointsand a bundle of endpoints.
Whena bundleis allocated,two completionqueuesare
created:onefor monitoringsendsandtheotherfor re-
ceives. VIs are attachedto thesecompletionqueues
when they are createdas part of a MAP. The useof
two completionqueuespermitsassigningpreferential
servicepriority to receive operations.

5.2 Operations

With the exceptionof wait semaphores,AMVIA im-
plementsall of the AM messagingprimitives. Prior
to conductingcommunication,AM bundles,endpoints
and endpointhandlersare allocatedas in past imple-
mentationsof AM. Whenestablishingthe virtual net-
work topology, eachcall to AM Map() instantiatesa
new MAP objectincludingtheVI, sufficient registered
memoryspacefor theMAP buffers,a setof pre-posted
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receive descriptorsand a small set of statevariables.
TheVI is thenconnectedwith its peerendpointVI on
theremotenode.TheVI connectionschemeusesadis-
criminatorvaluetomatchconnectionsrequestsbetween
two VIs.

Sending operationsin AMVIA use two separate
mechanisms:onefor shortandmediummessagesand
theotherfor bulk transfers.For a shortor mediumre-
quest,the function attemptsto obtain a free sendde-
scriptorandarequestcredit. If eitherof thetwo arenot
available,the functionpolls, handlingincomingtraffic
until it canproceed. The datapayloadis thencopied
into the appropriatemessagebuffer and the sendde-
scriptorpostedto thesendqueue.

For a bulk transfer, two separateVI messagesare
used: an RDMA write followed by a matchedsend-
receive. The RDMA write operationdelivers the data
directly from theapplication’s addressspaceto thedes-
ignatedoffsetin thetargetVM segment.A send-receive
messageis usedfor notification and to deliver argu-
mentsfor themessagehandler. Achieving zero-copy on
the senderis achieved by dynamicallyregisteringthe
necessaryaddressspace.A cacheof registeredregions
is maintainedsothatadditionaltransfersfrom thesame
memorypage(s)do not causeanotherexpensive regis-
trationoperation(asimilar techniquewasusedin [35]).

Repliesoperatesimilar to requests,except they do
notwait for arequestcredit.Theavailability of abuffer
slot in which to receive thereply is implicitly contained
with therelatedrequest.

The sequenceof operationsthat take place in an
AMVIA receive areroughly the samefor all message
typesandsizes.All messagesareprocessedby invok-
ing thedesignatedmessagehandlerwith thedataargu-
ments.Shortmessagespasstheir argumentsdirectly to
the handler, andhave no datapayload. Medium mes-
sages,however, carry a data payload,but insteadof
copying themessageinto a buffer in themessagehan-
dler, it is simply passeda pointerto the mediummes-
sage.Thus,incomingmediummessagesareableto ex-
ploit thezero-copy semanticsintendedby theVI archi-
tecture. Bulk receives useRDMA write, so they may
exploit zero-copy semanticsaswell.

Oncethemessagehandlerreturns,theassociatedre-
ceive descriptoris clearedandre-postedto theVI’ s re-

ceive queue.The fact that the receive descriptoris not
recycled until after the handlercompletesrequiresthe
receive queueto containoneextra element. This en-
suresthat a reply sentby a requesthandlerdoesnot
createa new requestfor which there is no available
buffer. Recycling thereceivedescriptorbeforeinvoking
thehandlerwould requireextra datacopiesthatwould
degradeperformance.

Invoking handlersand recycling descriptorsis ac-
complishedby the AM Poll() operation. This method
checksthereceive completionqueuesin thebundlefor
incomingmessages.For eachreceivedrequest,therou-
tine placesthemessageontoa queue,while repliesin-
voke thedesignatedhandlerdirectly. Requestsarepro-
cessedfrom the queueonly whena booleanargument
to the poll routine is true. This demultiplexing of in-
comingrequestsandrepliesandconditionalexecution
of requestsis necessaryfor two reasons.First, it pro-
videsthe meansto disableprocessingof incomingre-
queststhatmight resultin deadlockand,second,it en-
suresthatrequesthandlersareexecutedatomically. The
otherpurposeof the polling routine is to recycle send
descriptors.Theheadof thesendcompletionqueueis
checked oncepercall to AM Poll() andthecompleted
senddescriptormarkedavailablefor reuse.

The architecturedescribedincorporateslessonsthat
we learnedfrom our earlierattemptsat AMVIA. The
first version(AMVIA v1) usedthreeVIs perMAP, each
with its own credit counter. This permitteda larger
credit allocationfor smallermessageswhile bounding
thetotal buffer spacerequired.Onesideeffectwasthat
reply messageshadto be of thesamesizeastheasso-
ciatedrequest.Also, this versiondid not make useof
RDMA writesfor largetransfers.

The secondversion (AMVIA v2) useda single VI
per MAP, but was basedcompletelyon RDMA write
transfers. Immediatevalueswere includedwith each
RDMA write in orderto notify the target of a pending
message.Flow control was achieved througha flexi-
ble buffer managementschememanagedby thesender.
Theintenthere,asbefore,wastoallow moresmallmes-
sagesto fill thenetwork pipe.However, thecomplexity
of the scheme,alongwith otherfactors,resultedin an
unstableimplementation.As such,we do not present
any performanceresultsfor AMVIA v2 in thispaper, but
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ratheruseit asa point of designcomparison.Thefinal
version(AMVIA v3) removedthecomplexity of its pre-
decessorsand,perhapsnot surprisingly, demonstrated
the bestperformance.Later, in Section7.1, we com-
paretheperformanceof AMVIA v1 to AMVIA v3.

6 Split-C over VIA

As with AMVIA, the implementationof Split-C over
theVI Architecture(Split-C/VI) mustalsoaddresscon-
nectionestablishment,request/replymessaging(for get
andput),flow controlandbuffer management,but does
soin thecontext of globalmemoryoperations.Our im-
plementationassumesa VIA implementationthat pro-
vides “Reliable Delivery”, i.e., messagesand RDMA
operationsaredeliveredexactlyonce,in sendorder. We
could not usethe RDMA reador write operationsdi-
rectly to implementtheSplit-C get,put or storeprimi-
tivessince:

� The RDMA readoperationis an optional feature
accordingto the specification(and is in fact not
availablein ourVI implementation).

� Theactualcompletionof theRDMA write opera-
tion cannotbedirectlydetectedwith “ReliableDe-
livery”. A workaroundinvolvessendinga request
after the write. Completionof the write is guar-
anteedwhenthe reply to this requestis received.
This schemeis usedby AMVIA v3, andtheresult-
ing performanceis no better than implementing
put usingregularmessages(seeSection7). Wedid
nothaveavailableanimplementationof theVI Ar-
chitectureproviding “Reliable Reception”,which
doesallow detectionof thecompletionof RDMA
writes.

We thereforeimplementget, put and store using a
credit-based,request/replymessagingprotocolsimilar
to AMVIA. The sendandreceive overheadis smaller
for Split-C becausenoerrorcheckingis necessary;only
thecompilerbuilds messages,andthedispatchof AM
requestsand replies throughindirect function calls is
not required.

Split-C/VI usesone VI per connectionto another
Split-C/VI processanda simplermessagelayout than

AMVIA. Thesmallermessagesize(24 byteslessthan
AMVIA) reducesthe numberof cachemisseswhen
readingand writing messages(all messagesare ini-
tially un-cachedas their memory is also accessedby
theNIC).

For bulk puts and gets, we can take advantageof
the VI Architecture’s supportof segmentedmessages
to avoid copying thedatato besentinto themessage—
this wasnot possiblefor AM becausethesemanticsof
AM allows thedatasentin amessageto bemodifiedas
soonasit hasbeensent. However, whenwe receive a
messagein Split-C/VI, we mustcopy thedatafrom the
messageto its destinationaddress.In AMVIA, wewere
ableto just passa pointerto the datato the message’s
handler.

Storesdo not needto be acknowledgedin Split-C.
Thus,exceptfor flow-controlpurposes,wecanomit the
reply for stores. After we have received � storeswe
senda specialstore-acknowledge reply that acknowl-
edgesthelast � stores,thusastoreonly pays �	�
� of the
usualreply cost.Obviously, � mustbesmallerthanthe
numberof creditsotherwisethe systemwill deadlock;
we pick � to beequalto aquarterof thatnumber.

Theversionof Split-C/VI with theLANai 4 hassev-
eraldifferencesfrom theLANai 7: it usestwo VIs, one
for get,putandstoreof primitive types,andanotherfor
bulk get,put andstore.TheVI for operationson prim-
itive typeshasmore creditsthan the single VI in our
latestimplementation.2 Thebulk operationsdo not use
segmentedmessagesandthusincuranextracopy when
bulk datais sent.

7 PerformanceAnalysis

Guided by past experimentsof network communica-
tion architectures,we ran several benchmarkingsuites
to identify fundamentalcharacteristicsof Active Mes-
sagesandSplit-C over VI Architectureprimitives.

2To avoid artificial differencesbetweenSplit-C and AM over
VIA, we usethesamenumberof credits(8) asAMVIA v3 andthe
samemaximummessagesize (4K). This artificially increasesthe
overheadof storesaswe acknowledgeevery otherstore— a pro-
ductionversionof Split-C/VI would increasethenumberof credits
andthemaximummessagesize,but would notaffect ouranalysis.
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7.1 ActiveMessages

Our first setof measurementstesttheAM over VI im-
plementationsandisolateLogP[13] modelparameters
usingthe methodologyin [14]. Thesebenchmarksil-
lustratefundamentalparametersof high-performance
network architectures. Measuredparametersinclude
latency, host sendand receive overhead,and the gap,
which indicatestheminimumtime betweensuccessive
messagesbeingsentinto the network fabric. We per-
formedLogPbenchmarksfor AMVIA systemswith our
old hardware setup(Dual PII-400, LANai 4 Myrinet
NIC, VIA2) and with our new hardware setup(Quad
PIII-550 Xeon,LANai 7 Myrinet NIC, VIA2). Our re-
sultsarepresentedin Table2.

RTT/2 � L ��
 ��� g

AMVIA v1 (LANai 4) 53 +19.9 45 2.7 5.3 48.0
AMVIA v1 (LANai 7) 39.2 +9.0 33.2 3.2 2.8 34.7
AMVIA v3 (LANai 7) 35.6 +5.4 29.6 3.1 2.9 30.0

Table2: LogP measurements for AMVIA. All times
are in � sec. � refers to the increase in RTT/2 over
the native VI transport. Since the minimum AM
message size is 16 bytes, we compare with the
RTT/2 for a 16 byte VI message (32 � sec) rather
than the minimal message in Table 1.

Betweenthe LANai 4 and the LANai 7 versions,
thereis an improvementof 11-15 � secin RTT/2, La-
tency andthegap. This is principally dueto thehard-
waredoorbellassistfeaturesof thelatterinterface.The
increasein overheadfor the LANai 7 resultsfrom a
slightly morecomplex accessto thishardwareassist.

ThecomparisonbetweenAMVIA v1 andAMVIA v3
on theLANai 7 is moreinteresting.Thereis a 4 � sec
improvementin RTT/2, latency and the gap. This is
attributedto the reductionin VI resourceutilization in
how AM is implemented. The NIC polls eachactive
VI in a round-robinfashionfor outstandingsends. In
AMVIA v1, themultiple VIs increasethis polling over-
head,even thoughtwo of theVIs have no messagesto
send.AMVIA v3 usesonly oneVI andhasthesmallest
VI polling overhead.

The main thrustof our evaluationis reflectedin the
columnlabeled� whichshows thecostof anAM mes-

sageoverandabovetheraw VI Architecturecost.Hard-
waresupportfor doorbellsandminimizing thenumber
of VIs, at thecostof registeredmemoryutilization, re-
ducetheraw VI costaswell. However, it remainssub-
stantialat 5.4 � secor 2970hostcycles. The mapping
costis containedwithin theobserved sendandreceive
overhead,indicating that the basedescriptorprocess-
ing accountsfor ( ��� + ��� ) - 5.4= 0.6 � sec.Weanalyze
thesecostsin greaterdetailin Section7.3.

7.2 Split-C

To comparetheperformanceof thevariousSplit-C im-
plementations,we run a setof microbenchmarksof the
Split-C’s memory-memoryoperations:read,write, get,
put,andstore,for primitiveC types.Thisis themethod-
ologyof [23] whichcomparedSplit-C implementations
onseveraldifferenthardwareplatforms.Theresultsfor
boththecurrentandold (LANai 4) implementationare
presentedin Figure2.
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Figure2: Split-C over VI single-sender short mes-
sage times.

BetweenSplit-C over theLANai 4 andSplit-C over
theLANai 7 we seeapproximately12� secof improve-
ment(except for stores).The reasonsarethe sameas
for AMVIA. The improvementfor storesis lower be-
causeour implementationof Split-C over LANai 7 has
far fewer credits (8 insteadof 64) for operationson
primitive types,soit mustsendfarmorerepliesto store
messages.

The comparisonbetweenSplit-C and AMVIA re-
vealsvery similar performancedespitesignificantdif-
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ferencesin the mappingto VI primitives. The read
andwrite testsessentially, measuremessageroundtrip
time. Theseresultsareslightly fasterthanthe respec-
tive AMVIA numbers(AMVIA v1 over LANai 4 and
AMVIA v3 over LANai 7). The time for repeatedget
or put operations(which do not wait for completion)
reflect the gap. Again, the Split-C resultsarea slight
improvementover therespective AMVIA numbers.Fi-
nally, the storeresultsshow that we get a substantial
improvementwhenwe do nothave to acknowledgeev-
ery storeoperation.

As with AM, we seea substantialmappingcostre-
vealedin the synchronousoperations,5 � sectotal (10
� sec/ 2), andlittle impacton theasynchronousones.

Category Operation % of overhead

BaseVI 32.5%
VipSendDone 7.0%
VipPostSend 6.1%
VipRecvDone 7.4%
VipPostReceive 4.8%
Recycle senddescriptor 1.7%
Recycle receive descriptor 2.0%
Build senddescriptors 3.5%

EventNotification 44.2%
VipCQDone(Send) 22.1%
VipCQDone(Receive) 22.1%

Flow Control 14.4%
Sendbookkeeping 5.7%
Processreceivedmessage 8.7%

Semantics 8.9%
Readdatafrom message 6.3%
Act onmessage 2.6%

Table3: Breakdown of VI operations required in a
AMVIA short request-reply operation.

7.3 DetailedBreakdown of Map Cost

To betterunderstandthecausesof overheadwitnessed
in theaboveanalysis,weinstrumentedourAMVIA and
Split-C/VI implementationsto report a breakdown of
hostoverheadfor a request/replyoperation.Theresults
aregroupedinto four categories: BaseVI, Event No-
tification, Flow Control andSemantics.The BaseVI
category reflectsthe overheadthat occurswith raw VI
operationsandincludesfundamentaldescriptormanip-
ulation methods. The other groupsare the additional
costsincurredby usablecommunicationabstractions.

Category Operation % of overhead

BaseVI 36.1%
VipSendDone 7.1%
VipPostSend 9.4%
VipRecvDone 8.0%
VipPostReceive 5.6%
Recycle senddescriptor 1.8%
Recycle receive descriptor 1.8%
Build senddescriptors 2.4&

EventNotification 46.9%
VipCQDone(Receive) 22.5%
VipCQDone(Send) 24.4%

Flow Control 11.6%
Sendbookkeeping 4.9%
Pushmsgon req/repqueue 6.7%

Semantics 5.4%
Readdatafrom message 3.6%
Act onmessage 1.8%

Table4: Breakdown of VI operations required in a
Split-C get primitive operation. A get call involves
a request to be sent by the sender to the target
computer, and the matching response by the target
containing the data.

EventNotificationgroupsthoseoperationsnecessaryto
monitor for messagetransactionevents(i.e. comple-
tion). Flow Controlarecostsassociatedwith managing
buffers anddescriptorsto preventoverrunson lossage.
Semanticsareoverheadsspecificto thehigherabstrac-
tion. The resultsarepresentedin Tables3 and4 and
summarizedin Figures3 and4.

The largestcostis eventnotificationassociatedwith
VipCQDone()for bothsendandreceives.This method
executesa programmedI/O readoperationto theNIC-
hostedcompletionqueues,andif a completionhasoc-
curred,aprogrammedI/O write toclearit. Weelaborate
on the designdecisionto placethe completionqueues
on theNIC in thenext section.This eventnotification
costoccursin any realusageof theVI Architecture,but
is generallynot presentin thepublishedraw VI perfor-
manceresultsbecauseall that is requiredis completion
of a seriesof one-to-onemessages.

The next two major cost componentsare the
flow control associatedwith the VipSendDone()and
VipRecvDone()methods. After an event notification,
theapplicationusesthesefunctionsto retrieve thecom-
pleteddescriptoroff the respective work queue.These
operationsboth involve un-cachedreadsto checkde-
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Figure3: AMVIA timing breakdown.
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Figure4: Split-C/VI timing breakdown.

scriptor fields updatedby the interface. The methods
VipPostSend()and VipPostRecv()do a programmed
I/O write to postthedoorbelltokens.In theFlow Con-
trol category, there is a slight increasein the time to
processa messagefor AMVIA over Split-C dueto the
greatergeneralityof theabstraction.

Finally, weseethatthecostof implementingAM se-
mantics(gettingthepacket,dispatchingthehandler)are
indeed1.5� Split-C (gettingthe address,servicingthe
read)but that this costis dwarfedby thegenericneeds
of event notification,flow control andbuffer manage-
ment.

7.4 Bulk Transfers

As a final measurement,we examine the bulk mes-
sagethroughputattainedby the VI implementation,

AMVIA v3 and Split-C/VI for variousmessagessizes
from 4 bytesto 32 kilobytes. Theresultsarepresented
in Figure5.

Streaming Performance
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Figure5: Bandwidth (in Mbytes/s) attained by VIA,
AMVIAv3 and Split-C for a bulk send operation.

TheVI native testattainsthehighestthroughputbe-
causeit is a one-sidedstreamingbenchmark– there
is no acknowledgmentof messagesfrom the receiver.
This representsthe theoreticalmaximum bandwidth
achievableby this interface.

Below 4 Kbytes, the AM and Split-C implementa-
tions achieve nearly identical throughputbecauseof
similaritiesin theirunderlyingoperations.In AM, send
requestsmustbeacknowledgedby a reply, anda copy
is performedon thesenderfor eachmessageup to 4K
in size. In addition,Split-C requiresa responsefrom
thetarget in orderto maintainSplit-C put semanticsin
whichthesenderisnotifiedwhenthetargethasreceived
themessage.Split-C mustalsoperformamemorycopy
on receipt,sincethe datawill be deliveredto an arbi-
trary locationin thetarget’s addressspace.

To betterunderstandthe impactof this behavior on
bandwidth,we perform a timing breakdown for a 1
Kbyte message. The averagedifferencein time per
messagebetweenAM or Split-C and the native VI
benchmarkis 18 � sec.A breakdown of this difference
is in Table5.

The short network receive componentis the neces-
sary cost requiredfor the interfaceto processa short
incomingmessagefrom the network. On the LANai-
basedVI implementation,theinterfacerequiresa finite
amountof time to processa receive. During this time,
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Component Time( � sec)

Memorycopy 4
Shortnetwork receive 14.5

TOTAL 18.5

Table 5: Breakdown of per-message time differ-
ence as observed in the bulk performance test.
Memory copy bandwidth was measured using the
Pentium cycle counters.

it is unableto processthe next sendtransaction.In a
steadystate,thebenchmarkis receiving oneshortmes-
sagefor every messagesent.To estimatethis time, we
usethe single-sidedtime of the VI-native benchmark
for a 32 byte message,2.2 Mbytes/s. Assuminga re-
ceive occupiesthe sameinterfacetime asa send,this
yields a per-messagetime of 14.5 � sec. A dedicated
hardware interfacethat could alleviate this costwould
yield improvedthroughput.

Above4 Kbytes,bothimplementationsshift to send-
ing multiple messages,althoughfor different reasons.
AMVIA v3 useszero-copy RDMA write operations,but
must follow up the RDMA write with a send-receive
transactionin order to deliver the messagemeta-data.
Split-C sendsmultiple messagesdueto fragmentation
above 4 Kbytes. The effect of the transitionproduces
thekneein thecurve atapproximately44 Mbytes/sec.

8 Discussion

The development and analysis of AMVIA and
Split-C/VI yield several insights. In this section,we
evaluatethedesigntradeoffs in AMVIA andSplit-C/VI,
andshow how theseareimpactedby subtledifferences
in the underlyinglayers. We alsopresentimplications
for Infiniband.

8.1 Retrospective

The designiterationsof both AMVIA andSplit-C/VI
exploredthemappingdown to VI primitivesfrom sev-
eralangles.Theresultsof thiseffort yieldedtwo invari-
ants.

The first invariant was the needfor a flow-control

mechanismto prevent droppedVI messages(due to
buffer overrunsand/orlackof availablereceivedescrip-
tors). In AMVIA v1, AMVIA v3, and both versions
of Split-C/VI, the flow-control was basedon a credit
scheme.AMVIA v2 usedaspecializedbuffer allocation
systemtailoredfor RDMA writes.

In both AMVIA v1 and the first Split-C/VI, the ob-
jective was to permit more small messagesinto the
network (approximately64) with the belief that this
would improve smallmessageperformance.In reality,
the simple unified credit schemewith a credit alloca-
tion thatbalancedperformancewith requiredbuffering
provedtowork thebest.3 It usedfewerVI resourcesand
actuallyexhibitedbettersmallmessageperformanceas
evidencedby theLogPbenchmark.

Thesecondinvariantwastheneedto usethecomple-
tion mechanismsof the VI library for incoming mes-
sages.Accordingto VI semantics,ahostprocessis no-
tified of an incomingmessageonly whena descriptor
is consumed.Sinceall AM messagesandSplit-Creads
and writes requiretarget notification on delivery of a
message,we found that using the VI Architecture’s
send-receive model provided the closestfit. RDMA
writes generatenotification only on the delivery of a
4-byteimmediatevalue. In both AM andSplit-C, this
immediateis too small to includethe necessarymeta-
datafor theprotocollayers(we needat least16 bytes).
We could not appendthe meta-datato the end of the
message,sincethismightinterferewith applicationdata
structures.For bulk transfersin AMVIA, we choseto
usean RDMA write for the data,but followed it with
a shortVI messageto carry the meta-data.Split-C/VI
usesacopy on thereceiving endof thebulk transfer.

A key implicationof thecompletioninvariant is the
requirementto usea completionqueue. Any applica-
tion, especiallyarbitrarycommunicationprotocolsthat
canexpectto createseveral VI-basedconnectionswill
necessarilyusethe completionqueue. Attempting to
individually poll or wait on many VIs is not efficient.
This differsfrom simplenative VI benchmarksthatuse
only afew VIs andthusdon’t needacompletionqueue.

As shown, theeventnotificationhasthehighestover-
headcost,principally dueto themultiple programmed

3We arbitrarilychosea creditallocationof 8 for thelaterimple-
mentations.
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I/O operations.In our VI implementation,we choseto
make thecompletionqueuesNIC-basedbecauseof the
sizeof theeventtoken(4 bytes).Ourexperienceshows
thata null DMA transactionrequires2-3 � secwith the
LANai hardware. Thusa host-basedqueuerequiringa
NIC-hostDMA wasnotabetteralternative.

Thereis also a degreeof duplication in operations
whenusingthe completionqueue.The VipCQDone()
methodonly notifies an applicationthat an event has
occurredon a particularVI. Theapplicationmustthen
invoke theappropriatefollow-onmechanismto actually
popadescriptoroff thequeueandservicetheevent.

8.2 Implications for Infiniband

The points discussedabove have implications for In-
finibandandfuturehigh-performancenetwork architec-
tures. We separatetheseinto implementationandse-
mantics.

8.2.1 Implementation

The performancebreakdowns presentedillustrate the
costassociatedwith cachemissesandI/O operationsin
communicationoverheadonpresenthardwarearchitec-
tures. ProgrammedI/O andun-cachedmemorytrans-
actionsareexpensive relative to othersoftwaremech-
anisms. The Infiniband HCA conceptmay alleviate
someof this expenseby interfacing directly with the
memory bus and avoiding complex I/O bus interac-
tions. Still, there is an issueof cachecoherency be-
tweentheHCA andtheprocessors.Previouswork with
coherentnetwork interfaces[28] that enableI/O to be
cachedillustrateperformancegainsby allowing direct
readsandwritesof network interfaceregisters/memory
to becached.For operationssuchascompletionqueue
checking,allowing cachedreadscouldsignificantlyre-
duce overhead,especiallyin the casethat the event
queueis empty. Alternatively, if the Infinibandmech-
anismusesDMA, the hardware enginesmustbe able
to provide comparableperformanceto memoryopera-
tions,evenfor smalltransfers.

The flow-control mechanismsof Infiniband offer
somepromiseto alleviate software basedend-to-end
buffer managementcosts. The combinationof cred-

its andreceiver-not-readyNAK couldeliminatethere-
quirementfor flow-control at the upperlayers. Addi-
tionally, Infiniband-complianthardwarewouldhave the
ability to fragmentlargemessages,thuspreventingup-
per layersfrom having to adaptto network transmis-
sionunits. We believe our implementationscouldben-
efit from boththesefeatures,providedthecostof using
themdid notadverselyaffect latency or gap.

Theeffect of thevirtual lanesin Infinibandis some-
what lessclear. While the independentchannelscould
prevent headof line blocking (e.g. betweenshortand
mediummessages),a limit of 15 lanesmaynot beable
to fulfill theservicedemandsof all applications.

8.2.2 Semantics

Semantically, thedescriptor-basedqueuesof Infiniband
may still imposea cost to higher-level protocolsbe-
causethehostmustformatanddecodethedescriptors.
Oneaspectwherethis is especiallytrueis in smallmes-
sageperformance.Descriptorsthatareasleastaslarge
asasmallmessagewill imposeoverheadsbothto build
andmanipulate.AlthoughusingtheImmediatedatase-
manticsof theVI Architecturecouldhelp,it is notclear
that restrictingthis to a 4 byte value is adequate.We
suggestthattheimmediatebeableto supportthepreci-
sionof apointer(typically 64bits for futuresystems)in
orderto point to protocol-level metadata.

Another semantic issue with Infiniband regards
memory registration. In the VI Architecture, regis-
teredmemoryis pinnedby theuserapplication.In one
sense,this retentionof physicalresourceby the appli-
cationsresultsin a “not-so-virtual” interface. The In-
finibandarchitectureretainsthis samesemanticof pin-
ning physicalmemory. As yet, the impactsof this on
thelargescaleareunknown. Many hostsandprocesses
could potentially result in several VI’ s, eachrequir-
ing adequatebuffer spacefor transactions.The flow-
controlanddatagramfeaturesof Infinibandmayallevi-
atethis somewhat,but memoryscalabilitymaystill be
adverselyimpacted.
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9 Conclusion

The emergenceof the VI Architectureand Infiniband
asSAN communicationstandardsprovidesanexciting
opportunityfor widespreaddevelopmentof distributed
systems.Indeed,thenetwork-basedI/O conceptin In-
finibandrepresentsasignificantarchitecturalrevolution
for today’s systems. However, their establishmentas
the de facto standardrequiresa deepunderstandingof
theirperformanceandprocessingcost.In thispaperwe
have detailedthe inherentcostof mappingthedescrip-
tor queuebasedmodelof thesestandardsto two well-
known communicationmodels– Active Messagesand
theglobalmemorymodelusedin Split-C. Using these
models,we analyzethe necessaryhostprocessortime
requiredto maptheseabstractionsto theVI primitives.
Theresultsshow a5 � secmappingcostoncurrenthard-
ware, regardlessof the higher-level abstraction. De-
tailed analysisof this costshows that the event notifi-
cationmechanismof theVI completionqueueto have
thehighestoverheadat 2 � sec.In addition,we demon-
stratethe sensitivity of bulk messageperformanceto
key hardwarecapabilities.

While 5 � secmayseemsmall,asprocessorsmoveto
64-bit architectureswith sub-nanosecondcycle times,
thesecostswill becomelesstolerable. As well, Pro-
grammedI/O andcachemissesareunlikely to signif-
icantly improve in relation to processorperformance.
Theimplicationsof thisfor Infinibandcouldpossiblybe
severe. Our discussionof theseimplicationshighlights
theareasthatInfinibandimprovesover its predecessors
andwhereit canstill make progress.
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