CONCURRENCY—PRACTICE AND EXPERIENCE
Concurrency: Pract. Ezper. 2002; 00:1-7 Prepared using cpeauth.cls [Version: 2001/03/05 v2.01]

Data Movement and Control
Substrate for Parallel
Adaptive Applications

Kevin Barker, Nikos Chrisochoides’, Jeffrey
Dobbelaere, Démian Nave, and Keshav Pingali

Computer Science, College of William and Mary, Williamsburg, VA 23185 US
Computer Science , Cornell University, Ithaca, NY 14858-3801 US
Computer Science and Engineering, University of Notre Dame South Bend, IN 46556 US.

SUMMARY

In this paper, we present the Data Movement and Control Substrate (DMCS), a library
which implements low-latency one-sided communication primitives for use in parallel
adaptive and irregular applications. DMCS is built on top of low-level, vendor-specific
communication subsystems such as LAPI for IBM SP machines, as well as on widely
available message-passing libraries like MPI for clusters of workstations and PCs.
DMCS adds a small overhead to the communication operations provided by the lower
communication system. In return, DMCS provides a flexible and easy to understand
application program interface for one-sided communication operations. Furthermore,
DMCS is designed so that it can be easily ported and maintained by non-experts.

KEY WORDS: Message Passing, Runtime System, Parallel Adaptive Application, Mesh Generation.

1. Introduction

In this paper, we describe the design and implementation of a low-latency communication
library for use in adaptive applications such as parallel, three-dimensional, unstructured mesh
generation for crack propagation simulations [10].

The design and implementation of this library were motivated by three main concerns.

e High-performance: In particular, we wanted to provide application-level access to low-
latency communication operations.

*Correspondence to: College of William and Mary, Williamsburg, VA 23185 US.
T E-mail: nikos@cs.wm.edu

Contract/grant sponsor: National Science Foundation,; contract/grant number: Career Award #CCR-0049086,
ITR #ACI-0085969, RI # EIA-9972853, CISE Challenge #EIA-9726388, and ACI-9612959.

Received 11 March, 2001
Copyright © 2002 John Wiley & Souns, Ltd. Revised 11 September, 2001

2 K. BARKER ET AL %

o Flexibility and ease of use: We wanted to ensure that the library was useful for parallel
adaptive and irregular numerical applications.

e Portability: We wanted to make DMCS as portable as possible to a wide variety of
communication substrates.

Existing communication systems tend to fall into one of two broad camps regarding these
issues: those that are geared towards high performance at the expense of usability (e.g. Low-
level Application Programming Interface (LAPI) [33] [23]), and those that sacrifice performance
in favor of easing the burden placed on the application programmer (eg., MPI [27], and software
Distributed Shared Memory (DSM) systems like Treadmarks [1]).

Both of these camps present serious difficulties to the application developer who demands
maximal performance and a high degree of maintainability, but who does not possess the time
or the desire to master the intricacies of complex communication systems. For example, MPI
addresses portability and ease-of-use issues successfully by providing an attractive interface
for the parallel programmer, but it is not intended to be a target for runtime support systems
software needed by compilers and problem solving environments since these systems require
a very efficient (and perhaps inevitably, less friendly) communication substrate like LAPL
Also, MPI does not supports a flexible RPC communication paradigm which simplifies the
development of runtime systems for dynamic and unstructured applications. Finally, MPI
does not address the issue of dynamic resource management. A new MPI standard known as
MPI-2 [26] provides some basic one-sided functionality. Many MPI distributions [24, 36, 32]
have implemented the bulk of the one-sided communication specified in the MPI-2 standard;
however, none of them implements remote method invocation, an essential construct for writing
many asynchronous parallel applications.

The DMCS effort grew out of a consortium known as POrtable Run-time Systems
(PORTS) [30]. PORTS consisted of research universities, national laboratories, and computer
vendors interested in advancing research for software communication substrates that provide
support for compilers and advanced tools like parallel debuggers for current and next generation
supercomputers. Some of the goals of the PORTS group were the definition of standard
applications programming interfaces (APT’s) for (i) one-sided communication —the MPI-2
standard was not yet defined, (ii) integration of multi-threading with communication, (iii)
dynamic resource management, and (iv) performance measurement.

The PORTS group experimented with four different approaches and APT’s for the integration
of communication with threads [31]: (i)a thread-to-thread communication approach supported
by CHANT [22], (ii) a Remote Service Request communication paradigm like Active Messages,
supported by NEXUS [21], (iii) hybrid communication, supported by TULIP [3], and (iv)
DMCS, which was initially presented in [14]. Other systems with similar or even broader
objectives have been developed [11, 5, 7, 29, 17].

CHANT implements thread-to-thread communication on top of portable message passing
software layers such as p4 [9], PVM [4], and MPI [27]. The efficiency of this mechanism depends
critically on the implementation of message polling. There are three common approaches
to polling for messages: (i) individual threads poll until all outstanding receives have been
completed, (ii) the thread scheduler polls before every context switch on behalf of all threads,

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

% DATA MOVEMENT AND CONTROL SUBSTRATE 3

and (iii) a dedicated thread, called the message thread, polls for all registered receives. For
portability, CHANT supports the first approach.

NEXUS decouples the specification of the destination of communication from the
specification of the thread of control that responds to it. NEXUS supports the Remote Service
Request (RSR) communication paradigm based on a remote procedure call mechanism, like
Active Messages [20]. Messages are handled by message handlers; each message handler is a
thread registered by the user or by the multi-threaded system, and invoked upon receipt of
the message. The handler possesses a pointer to a user-level buffer into which the user wishes
the message contents to be placed. Handler threads are scheduled in the same manner as
computation threads.

TULIP’s hybrid approach is essentially a combination of thread-to-thread and RSR-driven
communication paradigm [3]. In the runtime substrate, TULIP provides basic communication
via global pointers and remote service requests. Threads are introduced in the pC++ language
level.

DMCS attempts to combine efficiency, ease-of-use, and portability by using the following
strategy.

1. Performance: DMCS is designed to provide one-sided communication primitives. These
primitives exploit the low-latency constructs of the underlying communication sub-
system and are optimized to handle the special requirements of adaptive applications.

2. Single-threaded implementation: To achieve low-latency, we decided to support a single-
threaded communication paradigm. In [14] we presented an implementation that
supported multi-threading, but for performance reasons, DMCS has to perform context-
switching which is a operating system dependent operation and thus impairs the
portability and maintainability of the system. The alternative was to extend DMCS’s
API to support any thread package. This approach increases the latency of the DMCS
primitives as we show in Section 5.

3. Maintainability and Portability: DMCS is written entirely in ANSI C, and is designed in
a modular fashion on top of a lower communication substrate. This reduces the amount
of code that needs to be ported to new systems since only the lowest layers must be
ported. Existing implementations on both LAPI and MPI provide examples of porting
DMCS to different platforms.

4. Flexibility and Fase-of-Use: A simple and intuitive API that interoperates with widely
used systems like MPI makes DMCS easy and useful tool to developers of parallel
adaptive applications.

We decided to address fault-tolerance only at the application level and ignored
authentication because we target MPPs and tightly coupled cluster of workstations where
the network security is handled by other systems like Cluster CoNTroler [35]. The Cluster
CoNTroller software system, developed at Cornell Theory Center and sold by MPI Softtech, is
made up of secure resource management services and a deterministic heterogeneous scheduling
algorithm. This system allows users to specify the administrator defined features that they
require on compute nodes for their job.

It should be noted that DMCS is not designed to replace LAPI, MPI, or any other
communication subsystem. DMCS is a thin, mid-level library that serves to isolate the

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

4 K. BARKER ET AL %

application, and therefore the application developer, from the details of the underlying
communication substrate while allowing applications to take advantage of any specialized
or high-performance communication features that may be present. DMCS leaves all
communication decisions like multiple communication protocols available on SMP clusters up
to the underlying messaging system. The goal of DMCS is to provide dynamic and unstructured
applications with the single-sided communication operations that they need while making it
as easy as possible to port applications across platforms. We currently have versions of DMCS
built using Active Messages [20] and LAPI [33] communication subsystems on the IBM SP
family of parallel machines, as well as using MPI [27] on clusters of workstations.

This paper describes the DMCS library and its performance. Section 2 describes in broad
terms the applications that have driven the development of DMCS. First, we look at a parallel
guaranteed-quality mesh generator [16], and then at multi-layer parallel runtime systems [2].
In Section 3, we describe the application programmer interface (API) and parallel execution
model of DMCS, and compare it with the execution models of other parallel runtime systems.
In Sections 4, we look at the architecture and the implementation of DMCS. In Section 5,
we analyze the overhead that DMCS imposes over the underlying low-level communication
subsystem. In Section 6, we discuss alternative API functions and implementations that
we considered and explain why we rejected them. Finally, in Section 7 we summarize our
conclusions and we briefly describe our plans for the next version of the DMCS system.

2. Motivating Applications

The development of DMCS can be best understood by examining some of the applications
in which it is used. In this section, we look at two such applications: (i) three-dimensional
Adaptive Mesh Generation, and (ii) a Multi-layer Runtime System (MRTS) designed to
tolerate large-latency events and facilitate large-scale, out-of-core, adaptive applications. We
describe why existing communication software and paradigms are often insufficient for such
applications, and argue that what is needed is (i) a shared global address space and (ii) giving
processors the ability to make remote service requests.

2.1. Adaptive Mesh Generation

Mesh generation is a basic building block for the numerical solution of partial differential
equations (PDEs). One successful approach for guaranteed-quality adaptive unstructured mesh
generation is Delaunay triangulation [34]. Delaunay triangulation refines unstructured meshes
by adding new points on demand, thereby modifying an existing triangulation by means of
purely local operations. The basic kernel for Delaunay algorithms is a four-step procedure that
is often called the Bowyer-Watson (BW) kernel [8, 37]. The first step, point creation, creates
a new point by using an appropriate spatial distribution technique. The second step, point
location, identifies an element containing this new point. The third step, cavity computation,
removes existing elements that violate the Delaunay property. Finally, the fourth step, element
creation, builds new triangles or tetrahedra by connecting the new point with old points such
that the resulting triangulation satisfies certain geometric properties.

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

% DATA MOVEMENT AND CONTROL SUBSTRATE 5

48000 100 T
T || Meshing
: 90 F|[] Communication Overhead (dmesand mol)f ==~ = ===~ -- -zozcacc-r---
42000 | 2000k || Update Mesh dueto Partitioning
M 1000k 80 H U Setbacks L __
! 500k Termination and misc logic
36000 W [~ - Ny 1
70 HH Decision Making for Partitioning |~~~ .
Pack/Unpack for Meshing
» 30000 Pack/Unpack for Partitioning
8 B0 free e -
: O
9 24000 Q B f-mmm s --
: " E
5 | LT S e .
* 18000 40
30 oo — -
12000
Q=
6000 0l |
[, —_— _—
g" N N‘p v 'b% k] F:: » b“’ 9 (”@ o "o‘” A «% ® 500K lOOOK szK
Message Size (Kb) Mesh Size

Figure 1. (a) Distribution of messages with respect to message size. (b) Breakdown of the total
execution time of an adaptive parallel Delaunay triangulation using the BW kernel.

The parallel implementation of the BW algorithm for three-dimensional domains starts
with an initial Delaunay tetrahedralization of a set of points. This tetrahedralization is over-
decomposed into N > P subdomains (or regions), where P is the number of processors.
Regions are assigned to processors in a way that maximizes data locality; each processor is
responsible for managing multiple regions. It is the third step in the BW kernel that is the
source of unpredictable computation and communication. This step requires the following
computation: given a point p and an element e, search among all elements adjacent to e and
identify those that violate the Delaunay property. This search is usually done in a breadth-
first order. The number of elements in a cavity depends on the location of the newly inserted
point, and on the existing elements themselves; furthermore, approximately 20% to 30% of the
breadth-first searches touch non-local data elements. Synchronous communication deteriorates
performance because it forces the computation to be executed almost sequentially, in phases.
Moreover, it is difficult to use any two-sided communication protocol (communication in
which explicit receives are required) because messages are sent with uncertain frequencies
from uncertain sources.

Asynchronous remote procedure calls and one-sided communication primitives improve
performance and simplify the logic of the code because they eliminate the problem of placing
receives for unexpected data movement (one-sided communication primitives like put or put_op
perform a remote write or remote write plus a simple operation like gather or scatter) on remote
memory without the participation of the application on the target side. For example, once all

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

6 K. BARKER ET AL %

elements (if any) from a portion of the breadth-first search are found on a remote node, they
can be stored in the memory of the process or thread that initiated the search, without having
that process or thread wait or look for these elements.

Work-load imbalance is another problem whose solution requires flexible, one-sided, non-
blocking, and asynchronous data movement primitives. Imbalance can occur due to refinement,
remeshing, and setbacks. Mesh refinement takes place because of large variability in the error
of the solution. For applications such as crack propagation, remeshing is required to handle
changes in the topology and geometry of the mesh. Setbacks in the progress of the algorithm in
certain regions occur because of concurrency. Specifically, some of newly-inserted points have
to be removed because their corresponding cavities (i.e., elements that violate the Delaunay
property due to a newly-inserted point) intersect and thus destroyed because the triangulation
of intersecting cavities will lead to a non-conforming or non-Delaunay mesh.

n summary, adaptive applications require one-sided, non-blocking, and asynchronous data
movement primitives such as get/put, get_op/put_op and remote procedure calls. In addition,
the latency of small size (half kilobyte) data movement primitives is very critical for the
performance of adaptive applications. Figure 1(a) shows that the communication traffic due to
small size messages for three-dimensional unstructured mesh generation is more than 90% of
the overall communication. Furthermore, Figure 1(b) indicates that the the total time spent in
message passing is about 15% of the total execution time; so optimizing this time is important.

2.2. Multi-layer Runtime System

Modern runtime systems for parallel computers provide another example of the need for
efficient one-sided, non-blocking, and asynchronous communication. A major concern in these
systems is that performance is becoming bound by large-latency events such as disk reads and
communication between processors because advances in network and disk technology have not
kept pace with advances in processor performance. While advances in network technology, such
as Myrinet [6] and Giganet [19] have dramatically improved the network bandwidth available
to the application, system software must still be able to effectively mask the latency associated
with network communication. As a result of the growing gap between the latency associated
with processor-to-memory communication and processor-to-disk communication, processors
are wasting more and more cycles waiting for communication and I/0. This problem is only
exacerbated by the types of applications that typically make use of parallel architectures.
In particular, out-of-core applications must manipulate much more data than can fit in
the combined memories of all of the processors in the parallel system or cluster. For these
applications, masking the latency associated with reads from disks is critical. To accommodate
these application types, we have developed the Multi-layer Runtime System(MRTS) [2] on top
of DMCS.

The MRTS divides the hardware into two (or more) layers, with the lower layer acting
as a data server for the upper layer which acts as a computing engine. It is possible with
such an approach to reserve faster processors for the upper layer, keeping slower processors
or processors with larger amounts of memory for the lower layer (such a configuration may
arise naturally when organizations choose to upgrade clusters or parallel machines with newer
hardware, but still wish to make use of the older machines). The MRTS allows applications

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

% DATA MOVEMENT AND CONTROL SUBSTRATE 7

to create percolation objects which are nothing more than application-defined pieces of data
with user-defined handlers. For example, a 3D mesh generator may define tetrahedra or mesh
subregions to be percolation objects which have a user-defined handler for mesh refinement. As
work becomes available for a percolation object (for example, from refining a mesh subregion),
the percolation object migrates from the lower layer into the upper layer where the work is
actually performed. Once this work is completed, the percolation object will migrate back
into the lower layers, and will possibly be retired to disk. In this way, running the application
results in a continuous migration of objects from the lower layer to the upper layer and back
again.

Communication substrates that rely on binary communication semantics (such as MPI)
are ill-suited for implementing such a system. Because of the unstructured nature of the
application, percolation objects have no way to know where the communication is going to
take place. Refinement in a particular mesh subregion may trigger changes in a neighboring
subregion at any time, as described in Section 2.1. Building such an adaptive system on top of
a communication substrate like MPI would place much of the communication burden on the
application programmer, and would greatly increase the complexity of the code.

For these reasons, the MRTS makes use of the DMCS and the Mobile Object Layer [15] which
provide single-sided communication in the context of data migration. Application-defined
data, called Mobile Objects, migrate from processor to processor in the parallel system in
any application-defined manner. The Mobile Object Layer (MOL) makes use of a distributed
directory protocol in which messages are sent to processors where Mobile Objects are believed
to reside, and then forwarded if this location turns out to be incorrect [15]. This directory
protocol is heavily dependent upon remote procedure invocation, or sending a message to a
remote processor which specifies a handler to be invoked upon message receipt. Typically,
these messages are very small (refer to Section 5.2), and so low latency for small messages is
crucial. Additionally, the MOL must be able to manipulate remote memory with get/put or
get-op/put-op semantics that DMCS supports.

3. DMCS Application Program Interface and Architecture

We now present the DMCS API and architecture which was motivated by the considerations
described in Section 2. A complete list of all functions with brief description can be found in
Table 1. Details of these functions can be found in the DMCS web page [18].

3.1. DMCS API

The functionality provided by DMCS can be broken into three broad categories.

The first category is made up of Enwvironment functions, and these are used to initialize
and shutdown DMCS in an orderly fashion, as well as to query the DMCS environment for
information such as the number of processors in the parallel machine, and the rank of the

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

8 K. BARKER ET AL %

calling processor. Environment manipulation functions like dmes_init() and dmcs_shutdown()
are responsible for the orderly startup and shutdown of the DMCS environment. Routines like
dmes_num_procs() and dmcs_my_proc() are used to query the environment for particular
information such as the number of processes and process rank in the parallel system.
The handler registration function dmcs_register_handlers() also falls into the category of
environmental functions.

The second category of functions are Remote Memory Manipulation functions. Included in
this group are dmcs_malloc() and dmecs_free(), which allow a process to allocate and later
free memory on a remote node. Data movement functions provide remote read and write
operations on a parallel system. DMCS provides two basic function types: Get and Put
functions (dmcs_get() and dmes_put()) which correspond to reads and writes, respectively.
DMCS extends these basic function types with the concept of Get-and-op and Put-and-op
functions, dmcs_get_op() and dmcs_put_op(), which allow users to specify operations to take
place on the target nodes after a particular read or write has completed. Furthermore, DMCS
provides both synchronous and asynchronous data movement functions, the default being
asynchronous communication. The synchronous alternatives use the same names with the
addition of sync. For example, the default dmcs_put_op() function becomes dmcs_sync_put_op()
in its synchronous form.

The last category is concerned with Remote Service Requests. A Remote Service Request
is similar to a remote procedure invocation, but with the added restriction that a Remote
Service Request cannot return any value. There are several RSR calls, each of which takes a
different number of arguments. This allows DMCS to optimize the communication, possibly
avoiding argument marshaling if the underlying communication layer makes it possible to do so.
For example, DMCS built on top of Active Messages can take advantage of Active Messages
functionality and avoid argument marshaling for up to four machine word size parameters.
Removing unnecessary functionality (such as argument marshaling) allows DMCS to provide
the lowest latency communication operations possible. As with remote memory manipulation
functions, RSR’s come in synchronous and asynchronous forms. The synchronous version will
return only after the message has been received at the target node, but possibly before the user
handler executes on the target. The asynchronous operation will return immediately, possibly
before the message has been sent. For optimization purposes we have implemented RSRs with
between zero and four (dmcs_rsr0() to dmes_rsr4()) arguments for the user-defined handler. A
version for arbitrary size data, dmes_rsrN(), is available, but requires marshaling of the data
(the arguments) into a contiguous memory buffer. Because of this, there is a higher amount
of latency associated with this function.

3.2. DMCS Architecture

In this section, we describe the internal architecture of DMCS, highlighting the features that
simplify maintaining and porting DMCS to a wide variety of hardware and software platforms.

TDMCS ranks start at 0 and continue with consecutive integers up to the number of processes in the parallel
system minus one.

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

@ DATA MOVEMENT AND CONTROL SUBSTRATE 9

Table I. A brief description of the DMCS API

DMCS Environmental Functions

dmcs_init initialize DMCS
dmcs_shutdown shutdown DMCS
dmcs_my _proc the relative process ID of the calling process
dmcs_num_procs the number of running processes
dmcs register_rsr X _handlers | registers rsrX type handlers where X € {0,1,2,3,4, N}
DMCS Remote Memory Manipulation Functions

dmcs_malloc allocate memory on a remote processor
dmcs_free frees memory on a remote processor
dmcs_async_put copy a data buffer to a remote processor
dmcs_async_put_op copy a data buffer to a remote processor;

the remote processor then returns with a dmcs_async_rsrl
dmcs_async_get retrieve a data buffer from a remote processor
dmcs_async_get_op requests a dmcs_async_put_op be executed on a remote

processor

DMCS Remote Service Request Functions

dmcs_async_rsr X RSR with an X argument handler where X € {0,1,2,3,4}
dmcs_async_rsrN RSR with a handler taking a variable size buffer

3.2.1. Parallel Execution Model

A key design decision we took was make the DMCS execution model single-threaded.

There are two primary reasons for this. First, adding threads to DMCS goes against the
philosophical grain of the software. DMCS is designed to provide an efficient communication
abstraction layer which provides dynamic and unstructured applications with the single-sided
communication operations that they most need. We do not believe that support for multiple
threads helps in achieving this goal. Furthermore, adding threads support to DMCS will most
likely cause two unfavorable outcomes: increasing latency during message passing or forcing
applications to conform to a more complicated runtime model. Forcing DMCS to be thread-
safe adds cycles to the critical path of message passing due to the fact that we must lock
internal data structures and provide mutual exclusion.

The second reason we have elected to provide only a single-threaded runtime model with
DMCS is portability. There are two methods we could use to provide threads support with
DMCS; we could either provide threads ourselves or we could provide an API which allows any
third party threads package (such as pthreads [25][28]) to be used. Providing our own threads
package severely hampers the portability of DMCS, due to the fact that the Operating System

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

10 K. BARKER ET AL %

and the processor architecture play a pivotal role in context switching between threads *.
Developing our own threads library would therefore come into conflict with our stated goal of
designing DMCS in such a way that it can be ported to new platforms by non-experts. In a
similar way, simply providing an API that allows any third party threads package to be used
in conjunction with DMCS does not guarantee consistent application behavior across different
platforms. It also forces anyone attempting to port DMCS to a new platform to port along
two different ” axes” , namely message passing and threads, which only complicates the porting
process.

In short, we have elected to leave threads out of our DMCS design because it does not
aid in our goal of providing efficient single-sided communication operations and because it
greatly complicates the task of porting DMCS. If, in the future, we determine that our target
applications would benefit from the availability of multiple threads, we can either add thread
support to DMCS via a separate utility module or through an entirely separate library. Because
DMCS is single-threaded, all user-defined handlers must execute in the main application
thread. This thread executes calls to dmecs_poll() to poll for the arrival of messages. Polling
is desirable because frequent context switching from taking interrupts can have a detrimental
impact on performance, and may also thrash memory, causing an unnecessarily large number
of page faults. By allowing user handlers to execute only when poll operations are executed,
we can avoid such behavior.

In contrast, the LAPI execution model involves two threads: (i) a user application thread,
and (ii) a LAPI completion handler thread or completion thread that constantly polls the
network for incoming messages and executes any user-defined handlers referenced by those
messages. By default, LAPI executes in interrupt mode. This means that as messages arrive,
the main application thread is interrupted so that incoming messages may be handled.

In contrast to LAPI, the MPI execution model is inherently single-threaded. In this sense, it
is closer to the execution model provided by DMCS. However, there are significant differences
between the two. Most notably, MPI-1 provides only a binary communication protocol, which
means that send operations originating at one node must be paired with explicit receive
operation on the target node. MPI does provide several variations on this basic execution
model, including non-blocking immediate send operations, and synchronous send operations,
but these variations do not significantly alter the basic communication model of MPI. For many
types of applications, particularly those that involve bulk data transfers, this is an acceptable
communication model. For other application types, such as those that make use of dynamic
runtime load balancing or unstructured communication patterns, a binary communication
protocol is inappropriate. For these applications, the single-sided communication operations
provided by DMCS are more efficient.

$The importance of the Operating System can be seen from the fact that threads designed for the same
processor often have different context switching semantics under various operating systems, such as Unix and
Windows. Knowledge of the underlying processor architecture is necessary in order to save the registers and
program state during a context switch.

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

% DATA MOVEMENT AND CONTROL SUBSTRATE 11

LAPI Completion Application Thread LAPI Completion Application Thread

Thread Thread
I
wait() wait()
LAPI Send

I
I
I
I
I
I
I
I
I
|
I
- Dispatcher ! - Dispatcher
Incoming ! Dispatcher Incoming
I
I
I
I
I
I
I
I
I

Message

DMCS Poll

Message Message
User Handler DMCS Handler

_ Pending Handler
Table

Figure 2. A closer look at the LAPI and DMCS parallel execution models

4. DMCS Implementation

As we will see in this section, the challenges in porting the DMCS communication primitives to
a low-level system like LAPI, which supports the Active Messages communication paradigm,
are completely different from the challenges found in porting DMCS to MPI, which implements
a binary communication protocol. We achieve portability and maintainability by splitting
DMCS into the Messaging Layer (the ML) and the Application Program Interface (the API)
layers. The API layer is invariant across platforms and implementations. The ML contains
all hardware or software communication specific code, and its purpose is to isolate code that
needs to be modified for portability reasons.

We will look at two implementations of DMCS, one built on top of LAPI for the IBM
SP family of parallel machines, and another built for clusters of workstations using MPI for
communication. Because both implementations must support the same API, several interesting
construction details needed to be resolved. In this section, we will look at these and other issues.

4.1. DMCS Implementation Using LAPI

The execution model of DMCS differs significantly from that of LAPI, so there are a number of
challenges in implementing DMCS on top of this substrate. For example, the LAPI execution
model mandates that user-defined handlers execute inside a LAPI completion handler thread,
while DMCS handlers must execute in the main application thread. In addition, LAPT executes

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

12 K. BARKER ET AL %

* Function: dml_rsrX_complhndlr()

* Returns: void

* Description:

* LAPI completion handler. Because dmcs is single threaded, we

* simply enqueue messages in a delay table so they can be dequeued
* and handled during a poll() from the main thread.

dml_rsrX_complhndlr(lapi_handle_t *pHndl, void *pParam)
{
dml_message_t *pMsg = (dml_message_t*)pParam;
dml_delay_table_insert (pMsg->nSrc, pMsg->nSeq_num, (void*)pMsg);
}

Figure 3. DMCS RSR LAPI Completion Handler

in interrupt mode by default, meaning that user handlers execute as soon as messages arrive
at the target node (a LAPI thread executes in the background, interrupting the application
thread when a message arrives). On the other hand, DMCS handlers must only execute when
the application performs a polling operation.

We deal with these issues as follows.

Single- Threaded Execution Model With LAPI

When a Remote Service Request message arrives at a node, a LAPI header handler and
completion handler execute. The completion handler, running in the LAPT completion handler
thread, simply inserts a data structure describing the user handler and any parameters into a
delay table, instead of calling the user handler directly. This method has a couple of advantages.
First, this insertion operation is very quick, thus freeing the LAPT completion thread to service
other requests and preventing the network from backing up during times of peak traffic.
Second, it allows DMCS to provide the necessary single-threaded execution model. The polling
operation, which executes in the main thread, simply empties the delay table, executing any
handlers that may be pending. With this design, only the delay table itself needs to be thread
safe, and user applications do not need to worry about thread safety issues such as locking
common data structures.

Figure 3 illustrates a completion handler for a Remote Service Request. The completion
handler is passed a pointer to a message object from the header handler. This message object
is inserted into the delay table using the source node identifier and the message sequence
number as a key. The delay table is a hash table in order to make lookups as speedy as

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

% DATA MOVEMENT AND CONTROL SUBSTRATE 13

/* x Construct a new message object */ pMessage->nType = RSRX_TYPE;
pMessage->nSrc = dml_my_proc(); pMessage->nTgt = tgt;
pMessage->nSeq_num = dml_get_sequence_number (tgt) ;
pMessage->nAsync_flag = DML_SYNC; pMessage->nRemote_handler_idx =
dml_lookup_handler (handler); pMessage->pCompletion_handler =
dml_rsrX_complhndlr; pMessage->nArgs[0] = nArgl;

Figure 4. Construction of a New Message Object

possible. When the application executes a poll operation, the delay table is flushed and any
pending handlers are executed in the order specified by DMCS’s message ordering strategy.
The same solution is used to handle put-op and get-op messages.

Message Ordering Strategy

LAPI, like many other low-level messaging systems, does not guarantee message ordering by
default. Unfortunately, message ordering is crucial for the correctness of many applications,
and therefore must be provided by DMCSS.

Message ordering is provided via sequence numbers, which are appended to a message at
transmission time and then checked upon receipt. Each processor maintains a list of sequence
numbers, one for each other processor in the system. When a message is sent, the current
sequence number corresponding to the target processor is included in the message, and that
number is then incremented. Figure 4 shows the construction of a message for a DMCS Remote
Service Request with a single argument, showing how sequence numbers are associated with
messages.

Maintaining message ordering upon arrival is handled by the delay table mechanism. As
messages arrive, they are inserted into the delay tables using their source node and sequence
number as a key. The insertion algorithm is designed so that gaps will be left in the table if
messages arrive out of order. In other words, if message n arrives before message n — 1, there
will be a gap left in the table where message n — 1 should reside. When a polling operation
is executed, the messages in the delay table are processed, beginning with the message with
the next expected sequence number for each processor in turn. Messages are processed until
a message with the next expected sequence number is not present in the delay table. This
happens when either all messages that have arrived have been processed or when messages

§Message ordering is an example of functionality that is necessary, but is also platform specific. In other words,
some low-level communication software may provide message ordering, and in such cases it should not be
provided by DMCS. Such redundant functionality only adds to the overhead incurred by the runtime system.
Therefore, message ordering functionality belongs in the platform-specific ML layer of DMCS.

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

14 K. BARKER ET AL %

arrive out of order; in either case, processing stops till the next message in logical sequence is
received.

4.2, DMCS Implementation Using MPI

MPI inherently provides a single-threaded execution model and therefore maps well to the
single-threaded model provided by DMCS. There is no need for the enqueueing of messages
to guarantee ordering and single-threaded execution. The ordering of messages is left to the
MPI layer of the system; with MPI, messages are guaranteed to be received in the order
that they are sent so long as certain criteria are met. However, because MPI implements
a binary communication protocol, an explicit receive must be posted to match the send
request of a remote node. Because of the binary nature of MPI, the receives must contain
certain information about the incoming message in order for that message to be received.
This information includes the source of the message, the size of the message, and the MPI
tag associated with the message. With DMCS, we do not know in advance the information
of messages that must be posted, making it difficult to receive messages in order of arrival.
Fortunately, MPI offers two probing functions (MPI_Probe() and MPI_Iprobe()) that check
the network for any incoming messages ready to be received by the polling node. If there are
multiple messages available, the probe will return the information of the message that arrived
earliest. DMCS is then able to receive that message and handle it appropriately.

In accordance with the standards imposed on DMCS, the reception of messages takes place
in the dmes_poll() function call. The only exception to this rule occurs when endeavoring to
avoid deadlock. Efficient message reception is critical to maintaining high performance in the
runtime system. For example, dynamically allocating memory to hold incoming messages can
lead to unacceptable performance and wasted memory resources. To make message reception as
efficient as possible, DMCS makes use of a preallocated message pool. When a message arrives,
a preallocated message object will store its contents, and will be used by DMCS to invoke the
user-specified handler. This method requires all messages to be received in the same way, and
therefore the encoding and decoding of messages must be very specific to ensure messages are
handled in the proper manner. With the help of C macros, the type of message is encoded
in the message. Upon reception of a message, this flag is extracted and examined in order to
determine which DMCS level handler should be called to properly execute the message intent.

This is the encoding strategy employed by DMCS for all message types except for Remote
Service Requests. Since MPI was created to run on many systems, memory mapping across
distributed memory machines is not guaranteed. To execute a user-level handler on a remote
node, that handler must be registered as a DMCS handler. This is described further in
Section 4.3.

Because DMCS offers synchronous versions of all of its operations, the possibility of deadlock
needed to be taken into account during implementation. Since DMCS is a single-threaded
system, and the only time a DMCS message of any kind can be received is during a dmcs_poll(),
deadlock may occur if two nodes invoke synchronous DMCS methods at the same time. In this
case, each node will be waiting for the signal that the message is received on the remote node,
but, unfortunately, if both sides are waiting, then neither side is able to send the signal. To avoid
this possibility of deadlock, a second polling function (one that is invisible to the programmer)

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

% DATA MOVEMENT AND CONTROL SUBSTRATE 15

had to be created. This polling function operates almost identically to dmcs_poll(), except
that it receives only a single message at a time instead of extracting all pending messages. In
synchronous operations, there is a loop that waits for notification that the sent message has
been received on the remote node. If this loop executes for a predetermined number of cycles
without receiving this notification, the new polling function is called to determine if a message
is on the network that may be causing the deadlock. If there is such a message, it is received
and handled in the intended manner. Control is then returned to the synchronous operation
to determine if the deadlock has been eliminated. This process continues till the deadlock is
resolved and execution continues as normal.

4.3. Handler Registration

Because DMCS is designed to run on a large variety of hardware and software platforms,
it must make as few assumptions as possible about the underlying operating environment.
On some parallel platforms, application and system programs reside at the same memory
addresses on every processor. In that case, the sender of a message can simply use a function
pointer to specify which handler should be invoked when that message is received. However, on
other platforms, handlers can reside at different addresses on different processors. The obvious
solution to this problem is to use a level of indirection. User handlers must be registered at
the time of DMCS initialization. The collective dmcs_register_handlers() operation creates an
internal handler table which associates user handlers with small integer indexes. In all DMCS
operations that specify a user handler (such as a Remote Service Request), a translation takes
place before the message is actually sent. The function pointer specified in the function call
is converted to the handler index, which is then converted back to a function pointer on the
remote node.

4.4. Optimizing with Preallocated Message Pools

Providing low latency communication operations and a suitably high level of performance
often means minimizing the amount of dynamic memory allocation in the critical path of
sending a message. To reduce the amount of dynamic memory allocation, DMCS makes use of
preallocated message pools to send and receive messages. These message pools are allocated
at system startup time, and provide message buffers to processes that wish to send or receive
messages.

When a process wishes to send a message, it simply dequeues the head of the outgoing
message pool. The outgoing message pool contains unused message buffers, which are
contiguous regions of memory ready to be filled in with valid outgoing message field values.
Once the message has been sent and the memory on the sending node is free to be modified, the
message buffer is returned to the outgoing message queue, ready to be used for a subsequent
message.

A similar strategy handles incoming messages. When a message arrives from the network,
a preallocated message buffer is taken from an incoming message pool to store the message.
Once the message is handled, the preallocated message buffer is returned to the message pool,
to be used again by some future message.

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

16 K. BARKER ET AL %

Because the entries in the message pool are of a fixed size, they cannot store variable
sized data, such as the data for a Put operation or for an RSR operation with more than
four arguments. Storage to store this data needs to be allocated during the runtime of the
program, but the responsibility for allocating the memory falls on a different party in each
case. For a Put operation, the responsibility for making sure there is storage available falls on
the application, while in the case of the RSR message, it is the responsibility of the runtime
system to allocate the memory. If, during the course of execution, it can be determined that the
dynamic memory allocation required to handle the variable sized buffer for the RSR message
is hampering performance, the application can replace dmcs_rsrN() calls with dmcs_put_op()
calls. This will allow the application to preallocate storage for the Put operation, which will
copy the arguments to a known location, and then run a handler.

Another solution is for DMCS to provide preallocated message pools of user-specified sizes
to store the incoming RSR argument buffers. This is optimization will be incorporated into
the next version of the DMCS implementation.

5. Performance Analysis

In this section, we measure the performance of DMCS operations, using microbenchmarks
and complete adaptive applications. We use microbenchmarks to evaluate DMCS primitives
on two different implementations: (i) DMCS implementation using LAPI, and (ii) DMCS
implementation using MPI. The evaluation of the three complete adaptive applications is
performed only on the MPI implementation because we did not have access to a large enough
SP machine.

The DMCS/LAPI performance figures were collected using an IBM SP parallel machine with
two 2-way 200 MHz PowerPC 604e processors with 256 MBytes of memory per processor.

The DMCS/MPI performance figures were collected using two systems. The Linux numbers
were collected from a network running 1GHz Pentium IIT machines with 128 megabytes and
connected by 100 Mb/s fast-Ethernet. The Solaris numbers were collected on a network of Sun
Ultra 5 machines with 333MHz processors connected by a 100 Mb/s fast-ethernet network and
with 256 megabytes of memory.

5.1. Microbenchmarks

To demonstrate how thin the DMCS layer is, we executed two of the most frequently used
DMCS operations: remote service request, and put_op. It is apparent from Tables IT and III
that DMCS suffers very little overhead with respect to the total execution time as well as the
MPI overhead¥. This can also be observed in the graphs of Figure 5.

Note that the DMCS overhead time is completely independent of message size. The DMCS
overhead from Figure 5 are consistently 1 microsecond, despite sending an 8K message. This

TThe “send time” measured in the experiments refers to the amount of time spent in a method invocation
before control is returned to the user-level program.

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

% DATA MOVEMENT AND CONTROL SUBSTRATE 17

Table II. Send times (in microseconds) for DMCS RSRs. These include the DMCS
overhead, the MPI (LAM) overhead, and the total time to execute the call. Tests were run
on Intel PIII 1GHz machines running Linux connected by 100 Mb/s Fast Ethernet.

DMCS Overhead | MPI Overhead | Total Time
dmcs_async_rsrQ 1.000 7.000 10.000
dmcs_async_rsrl 1.000 10.000 13.000
dmcs_async_rsr2 1.000 11.000 14.000
dmcs_async_rsr3 1.000 9.000 12.000
dmcs_async_rsr4 1.000 10.000 12.000

Table III. Send times (in microseconds) for DMCS RSRs. These include the DMCS
overhead, the MPI (LAM) overhead, and the total time to execute the call. Tests were run
on Sun Ultra 5 333Mhz machines running Solaris connected by 100 Mb/s Fast Ethernet.

DMCS Overhead | MPI Overhead | Total Time
dmcs_async_rsr0 2.0 67.0 73.0
dmcs_async_rsrl 2.0 64.0 69.0
dmcs_async_rsr2 2.0 70.0 75.0
dmcs_async_rsr3 2.0 69.0 74.0
dmcs_async_rsrd 2.0 63.0 68.0

reflects the fact that DMCS uses no unnecessary memory allocation, deallocation, or copying.
Also note that DMCS is not charged with the time for data transfer which allows the DMCS
overhead to be fairly consistent no matter the amount of data being sent. Any discrepancy
between numbers is simply network and processor noise created during the experiments.
Numbers similar to those found on the Linux cluster can be seen in the experiments run
on Solaris.

Both imply that as the message size increases, the percentage of total execution time spent in
the DMCS layer decreases. For a one byte message on the Linux cluster, the DMCS overhead for
total execution time is approximately 2%. Similarly, for an 8K message, the percentage drops to
approximately 0.5% of the total execution time. It is apparent from these tables and graphs,
that DMCS suffers little overhead while providing the power of a one-sided asynchronous
paradigm.

Table IV depicts the send times for DMCS RSR operations with a fixed number of machine-
word sized parameters and Put-op times for different sized message payloads. The total time
is broken into several categories: the DMCS overhead, which contains the time spent in DMCS
code; the LAPI overhead, which contains the time spent executing LAPI polls, handlers, and
other operations; and the total time spent in the DMCS operation as perceived by user code.

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

18 K. BARKER ET AL %

1000.0

T
C—Odmcs_aix
O—-H lapi_aix
&< total_aix
A—A dmcs_linux
L[<Impi_linux
8000 V- Vtotal_linux
> [>dmcs_solaris
H—— mpi_solaris
XX total_solaris

600.0 -
4000 | |

2000 I e

be

0.0 B=5&

0.0 2000.0 4000.0 6000.0 8000.0 10000.0

Figure 5. A plot of the Put-Op times. The graph contains plots of DMCS overhead, MPI/LAPI

overhead, and total execution time. Tests were run on Sun Ultra 5 333Mhz machines running Solaris

connected by 100 Mb/s Fast Ethernet, Intel PIII 1Ghz machines running Linux connected by 100
Mb/s Fast Ethernet, and an IBM SP parallel machine with 200MHz RS/6000 processors.

However, there are several things that must be noted when examining these numbers. First is
the difficulty in measuring LAPI time. Specifically, the time spent moving the user data from
the Network Interface (NIC) into the kernel, and finally into user space cannot be measured
without access to the LAPI implementation code. Because we do not have such access, we
measured LAPI calls by simply wrapping timers around them. While this serves as only an
approximation, it still allows us to view trends in the timings. Secondly, the DMCS overhead
plus the LAPI overhead does not equal the total user time. This is due to several factors
which we are not able to measure, including thread context switch time, kernel-level polling
time, and the time to run the LAPI dispatcher. Every LAPI call attempts to make progress
on any pending messages by running the dispatcher function, either in the user’s main thread
on the LAPI completion handler thread. This function does not execute instantaneously, and
therefore adds time to the perceived user time.

In Figure 5, we can see that the DMCS overhead time remains fairly constant for each
operation. This is due to the fact that no copies of parameters must be made. Also, we see
that the LAPI overhead and the total execution time are constant, due to the fact that each
operation simply fills in a system structure, which is the same size no matter the number of
parameters sent. Importantly, we can see that the DMCS overhead is in the range of 10% of the
LAPI overhead we could measure; using the total LAPI overhead, including context switching

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

% DATA MOVEMENT AND CONTROL SUBSTRATE 19

that takes place in the LAPI layer, the actual DMCS should be substantially smaller, for each
operation.

Figure 5 depicts the performance of DMCS Put-op operations with message payloads of
various sizes. Once again, the DMCS overhead remains fairly constant as the message size
increases. This once again demonstrates the fact that there are no message copies within
DMCS, allowing it to propagate the performance of the underlying communication substrate
to the user. As the message size increases, we can see that the LAPT overhead grows along with
the total user-level time. As before, the DMCS overhead added to the LAPI overhead does
not equal the total user-level time because we could not measure the time taken by internal
LAPI operations accurately. Overall, DMCS overhead adds between roughly 1% and 10% of
the LAPI overhead we could measure; this is obviously an even smaller percentage of the total
LAPI overhead.

Figure 6 depicts the performance of DMCS polling under LAPI and MPI. Part A provides
the LAPI times; these are the totals and the averages for 10000 messages sent. The total LAPI
time is the time spent inside LAPI poll (even if no message was received). Actual LAPI time
is the time spent inside LAPI poll when there was actually a message there to receive. When
messages arrive at the target processor during a LAPI Probe() operation, two handlers are
executed. The first is the header handler, and it is called when the first packet of a multi-
packet message arrives. It provides LAPI with the address of a buffer to store the incoming
message. The completion handler is called when all of the packets have arrived, and it builds
a DML data structure containing the new message. The completion handler then inserts this
data structure in the delayed table (which is the delay table insert time).

Figure 6(a) depicts the breakdown of a dmcs_poll() in the LAPI implementation. Inside of
a dml_poll(), we check to see if there is anything in the delayed table (this is the delayed table
check time). If there is, we get the first item. This is the delayed table removal time. From the
data structure retrieved from the delayed table, we get the index of the handler. We use this
index to look up the handler address in our handler table. This is the get handler index time.
Then the user handler is immediately called.

Figure 6(b) depicts the breakdown of the dmcs_poll() in the MPI implementation. It is
immediately apparent that the MPI version has a much simpler version of the polling routine.
Because MPI guarantees message ordering if a few rules are followed, there is no need to create
delayed queues in which to put incoming messages. The dmcs_poll() therefore is implemented
simply by a MPI_Probe() followed by an M PI_Recuv() if there is message.

5.2. Adaptive Applications

In this subsection, we evaluate the DMCS overhead in the context of two complete applications
and a netsort kernel. The first application is a 3-dimensional Parallel Guaranteed Quality
Delaunay Triangulation [16] and the second application is a Multi-layer Runtime System [2]
that is intended to build parallel, out-of-core adaptive mesh generation codes. The third
application is a netsort kernel which consist of two parallel network sort routines using two
different scenarios: static netsort and mobile netsort where parts of the data to be sorted move
around randomly. Data might have to move in different processors to minimize load imbalance
of the processors.

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

20 K. BARKER ET AL %

Table IV. Send times (in microseconds) for DMCS RSRs. These include the DMCS
overhead, the LAPI overhead, and the total time to execute the call. Tests were run
on an IBM SP parallel machine with 200MHz RS/6000 processors.

DMCS Overhead | LAPI Overhead | Total Time
dmcs_async_rsrQ 2.103 34.024 67.963
dmcs_async_rsrl 2.465 35.590 74.554
dmcs_async_rsr2 4.126 38.565 60.837
dmcs_async_rsr3 2.480 24.968 67.191
dmcs_async_rsr4 2.483 22.706 70.022

800.0

3200 1 i [| MPI Probe
- Lapi Poll Time [MPI Receive

Header Handler Time

280.0 | Completion Handler Time

Delay Queue Check Time

Delay Queue Msg Removal Timp 600.0
2400 Delay Queue Msg Insertion Tim b

Lookup User Handler

200.0

400.0
160.0

Time (usec)
Time (usec)

1200

200.0

S LLLl | —

76 76 76 512 2K 8K 44 512 2K 8K
Message Size (bytes) Mesage Size (bytes)
(a) LAPI Implementation (b) MPI Implementation

Figure 6. Breakdown of time spent in dmcspoll() in the (a) LAPI implementation and (b)
MPI implementation. The bar-charts (from left to right) depict the time spend for receiving
dmes_asyncrsrX and dmes_async_rsrN with X € {0,1,4} and N € {512, 2K, 8K } bytes, respectively.

Guaranteed Quality Delaunay Triangulation (GQDT): The algorithm for this
application was described in Section 2.1. The performance of the 3-dimensional Parallel GQDT
depends heavily upon efficient communication for the computation of Delaunay cavities which
contain tetrahedra owned by more than one processor. Cavities are constructed by a distributed
breadth-first search algorithm over the mesh to locate every tetrahedron which contains the
newly inserted point (say p) in its circumsphere and which violates the Delaunay property.
The communication is one-to-many because the processor containing the newly inserted point

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

DATA MOVEMENT AND CONTROL SUBSTRATE 21

e

Table V. Percent of distributed cavities and the average number of distributed cavities,
per processor.

Size Min. (%) | Avg. (%) | Max. (%) | Avg. #
0.5M Elements 12 19 26 1720
1M Elements 12 19 31 3705
2M Elements 15 18 22 7415

Table VI. Performance data from parallel adaptive mesh generation on two to sixteen

processors, generating one to eight million tets. Total execution time (in seconds) with the

DMCS and MPI overheads are shown. All tests run on Sun Ultra 5 296Mhz nodes running
Solaris connected by 100 Mb/s Fast Ethernet.

DMCS Owverhead MPI Overhead
P | # Tets | Time | MIN | AVE | MAX | MIN | AVE | MAX
2 1M 162 | .1023 | .1028 | .1034 | 20.53 | 20.63 | 20.73
4 1M 95 .0848 | .0960 | .1127 | 22.13 | 22.60 | 23.40
4 2M 185 | .1428 | .1542 | .1769 | 37.45 | 38.50 | 40.18
8 1M 61 .6790 | .0874 | .1150 | 19.70 | 21.66 | 24.39
8 2M 111 .1024 | .1351 | .1850 | 32.00 | 35.82 | 40.90
8 4M 208 | .1430 | .2055 | .2886 | 49.71 | 57.38 | 67.16
16 1M 40 3785 | .6863 | .8575 | 19.32 | 27.04 | 29.89
16 2M 71 .0665 | .1060 | .1312 | 28.44 | 30.75 | 34.02
16 4M 128 .0974 | .1642 | .2066 | 44.45 | 49.23 | 57.23
16 &M 240 | .1670 | .2662 | .3768 | 76.02 | 82.78 | 91.59

p may send many messages to other processors containing tetrahedra violating the Delaunay
condition; it is unpredictable because it is not known a priory where these tetrahedra are.
Table V shows the minimum, average, and maximum percent of distributed cavities, over
16 processors for a half, one, and two million elements. The last column depicts the average
number of distributed cavities per processor. On average, each distributed cavity sends fourteen
messages. Therefore, the overhead introduced by inefficient communication is substantial.
Table VI shows different mesh runs for 2, 4, 8 and 16 nodes (Sun Ultra 5 296 Mhz machines
running Solaris) connected by 100 Mb/s Fast Ethernet. The size of the meshes varies from one
million tetrahedra to eight million tetrahedra. The total execution time is measured in seconds.
The DMCS overhead as well as the MPI overhead are measured in seconds and the minimum
(MIN), average (AVE), and maximum (MAX) overhead per run are listed. The DMCS latency
over the MPI overhead on average varies from 0.5% (one million elements generated in two
nodes) to 2.5% (one million elements generated in 16 nodes). The maximum DMCS overhead

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7

Prepared using cpeauth.cls

22 K. BARKER ET AL %

Table VII. Percolation time and overhead for a single object. Tests run on Sun Ultra 5
333Mhz machines running Solaris connected by 100 Mb/s Fast Ethernet.

Object Size | Total | DMCS Overhead
32 Bytes 0.6 3.1e-02
512 Bytes 1.1 6.2e-02
8192 Bytes 1.3 7.2e-02
32768 Bytes | 1.8 8.9e-02
65536 Bytes | 2.0 9.6e-02

over the total execution time is between less than 0.1% and 1.7%. Also, it is apparent from
these data that the communication overhead is a clear source of imbalance.

Multi-Layer Runtime System: This runtime system was described in Section 2.2. We
evaluate the impact of the DMCS overhead upon the MRTS [2]. In this test, we migrate a
single object (it can be a subregion or a block of a large matrix) through the entire percolation
cycle, with the runtime system executing on two processors contained within two different
machines. The percolation cycle begins with reading the data object from disk, and injecting
it into the cycle. The Initiator Module writes a Mobile Object (MO) into the local data buffer,
and inserts a token referring to the MO into a parallel heap which is used for scheduling work
at the Computing Engine layer. Next, the Assembler Module, which also executes on the Data
Server processor, moves the data into the Computing Engine layer of the runtime system. In
the third stage, the Scheduler, is responsible for executing the computation pending for the
percolating data. This is the only stage of the cycle which executes on the Computing Engine
processors. Finally, the Terminator is responsible for retiring the data which has just finished
percolating and writing it back to disk. This finishes a single cycle through the MRTS system.
We examine the time required to complete the cycle for objects of three different sizes. The
handlers executed for each data parcel does nothing, and therefore does not contribute to the
overall runtime. Table VII shows that the DMCS overhead is about 0.2% of the total time it
takes to percolate a single object.

Network Sort: We have implemented two versions of a parallel network sorting algorithm,
one which migrates objects after each stage of the sorting algorithm (mobile netsort) and one
which does not (static netsort). Both the static and mobile netsort routines are communication
intensive kernels and are good tests of DMCS. The static netsort implementation begins by
creating a number of integers that we wish to sort, and randomly assigning them to processors
in the parallel system. We then move through a series of steps, where each integer is compared
with its "neighbor” and exchanged if necessary, moving the integers with lower values toward
one end of the array and integers with higher values toward the other. The aspect that makes
this application parallel lies in the fact that the array exists across all processors, and an
integers neighbor may lie on another processor. By the end of this process, the integers
in the array are in sorted order. The second implementation uses this same algorithm, but

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

% DATA MOVEMENT AND CONTROL SUBSTRATE 23

Table VIII. Static netsort times in secs for a Linux and Solaris cluster of workstations
using MPI (LAM). Tests run on Intel PIIT 1Ghz machines running Linux and Sun Ultra 5
296 Mhz machines running Solaris. Both cluster use 100 Mb/s Fast Ethernet.

Linux Cluster Solaris Cluster
Processors | Total | MPI Time | DMCS Overh. | Total | MPI Time | DMCS Overh.
2 Procs 4.010 3.225 0.141e-1 9.451 7.228 0.287e-1
4 Procs 5.716 3.312 0.191e-1 25.920 13.222 0.432e-1
8 Procs 65.756 41.744 0.384 62.871 43.717 0.411e-1

Table IX. Mobile netsort times in secs for a Linux and Solaris cluster of workstations
using MPI (LAM). Tests run on Intel PIIT 1Ghz machines running Linux and Sun Ultra 5
296Mhz machines running Solaris. Both clusters use 100 Mb/s Fast Ethernet.

Linux Cluster Solaris Cluster
Processors | Total | MPI Time | DMCS Overh | Total | MPI Time | DMCS Overh
2 Procs 21.209 4.377 0.222e-1 176.405 23.167 0.592e-1
4 Procs 19.161 4.361 0.263e-1 160.671 20.302 0.45%e-1
8 Procs 22.989 7.158 0.220e-1 159.220 24.562 0.549e-1

migrates the integers to new, random processors after each comparison, thereby continually
redistributing the array. Tables VIII and IX depict the MPI and DMCS overheads which is
varies from 0.04% to 0.9%. The DMCS and MPI overheads are higher on the Solaris cluster
because the nodes are much slower.

6. Lessons from DMCS implementations

The DMCS API reached its current form after being used and critiqued for the past four years.
It has also been influenced by the PORTS consortium meetings in the mid 1990s, the Generic
Active Messages API [20], Tulip [3] and Nexus [21].

DMCS originally provided an API based on the concept of the global pointer. A global pointer
was defined by a local pointer and a DMCS contezt. The DMCS context was a unique integer
identifier that was assigned at initialization time to each DMCS processor or context. Remote
data were then accessed through a global pointer. This approach is elegant and familiar to
the application programmer, but has certain disadvantages for adaptive applications. The first
disadvantage is that the access of remote data depended on the ability to determine unique
context numbers. In cases where dynamic resource management is required, this approach
needed major revisions. The second disadvantage is that for adaptive applications, the global

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

24 K. BARKER ET AL %

pointers need to be maintained by the application. This is due to data migration and dynamic
load balancing. This left us with two choices: either let the application maintain global pointers,
which would add complexity to the application, or augment DMCS to maintain global pointers,
which would increase DMCS’s complexity and thus complicate its maintenance. For this reason,
we separated data movement and control from global pointer functionality and developed a new
layer on top of DMCS called the Mobile Object Layer (MOL) which supports global pointers
in the context of data migration [15]. Application developers can choose to use DMCS without
having to use the MOL.

Asynchronous and non-blocking message passing can be much more efficient than
synchronous communication. In earlier versions of DMCS, data movement routines like get
and put were asynchronous and used acknowledgement variables to determine the state of
data transfers. For example, a get operation transferring data from a source specified by a
global pointer to a destination specified by a local pointer would set an acknowledgement
variable when that transfer operation was complete. To use an acknowledgement variable,
the application had to first request one using the routine dmcs_newack(), which would return
a new acknowledgement variable. This could then be used as a handle to perform various
operations. For example, dmes_testack() checked if the acknowledgement variable had been
set, and returned immediately.

Although the use of acknowledgement variables provided a very flexible method for signaling
the completion of data transfer operations, it ultimately proved to be somewhat confusing to
application developers. The lessons we learned from this implementation of DMCS allowed
us to develop the current API, which defines simple and clear semantics. Currently, instead
of requiring the user to request and test acknowledgement variables, we explicitly provide
synchronous and asynchronous versions of the API functions. Such a method has proven to
be easier to understand and use correctly by application developers, while not reducing the
functionality provided by DMCS. Also, with the addition of Put-and-op and Get-and-op, the
semantics of the earlier versions can be retained, but in a much more concise and easily
understood manner.

7. Conclusions and Future Work

We have described the design and implementation of a Data Movement and Control Substrate
for network-based, homogeneous communication within a single multiprocessor or tightly
couple workstations and PCs. DMCS implements a one-sided communication APT for message
passing. The DMCS system serves three objectives: (i) it isolates large-scale and expensive
parallel applications from vendor-specific communication subsystems at the cost of small
overhead, less than 3% when MPI is used as an underline communication layer and less than
10% when LAPI is used, (ii) it is flexible for adaptive applications that require many low-
latency small messages, and (iii) finally, DMCS is easy to understand and port by non-experts.
We believe that DMCS can be integrated in large-scale environments and be part of codes that
expected to have along life-time.

Our recent experience from porting a parallel mesh generator that was developed on a
Unix cluster to a Windows 2000 cluster suggests that even if MPI is used as an underline

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

% DATA MOVEMENT AND CONTROL SUBSTRATE 25

communication layer, portability is not automatic. Different MPI implementations incorporate
different optimizations that impact the correctness and performance of the applications
substantially. We have found that some MPI implementations make assumptions that improve
MPI performance but might lead to programming that increases application complexity. Our
experience suggests that DMCS is the best layer to absorb all complexity that relates to
the implementation of communication and execution model. In this case DMCS is used as
a “buffer” to these subtle differences in various MPI implementations and it guarantees
correctness and portability of large parallel codes.

The current DMCS version is not fault-tolerant and it does not allow dynamic resource
allocation. The next version will support a multi-threaded communication model to allow
integration of adaptive simulations with visualization and other I/O devices. It will be ported
on top of VIA for PCs and Windows 2000, and it will permit dynamic processor allocation; it
will also use a fault-tolerant communication system.

Acknowledgments Many colleagues and experts during the last five years contributed in
this work and we are thankful to all. Induprakas Kodukula for his valuable contributions
during the first implementation of the PORTS API. Pete Beckman, Ian Foster, Dennis Gannon,
Matthew Haines, L. V. Kale, Carl Kesselman, Piyush Mehrotra, and Steve Tuecke for very
productive and alive discussions in the mid 90’s on the PORTS API and implementation issues.
Chi-Chao Chang, Grzegorz Czajkowski, Chris Hawblitzel, and Thorsten von Eicken for very
helpful insight for the implementation of Active Messages on the SP-2 machine. Finally, IBM’s
Research Program and Marc Snir for helping Prof. Chrisochoides in his effort to acquire a
small but extremely useful for this project SP machine. Finally, the anonymous referees who
with their suggestions helped to improve the presentation of this paper.

REFERENCES

1. C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, . Yu, and W. Zwaenepoel TreadMarks:
Shared Memory Computing on Networks of Workstations IEEE Computer, Vol. 29, No. 2, pp. 18-28,
February 1996

2. Kevin Barker and Nikos Chrisochoides Multi-Layer Runtime System, To be submitted to Concurrency
Practice and Ezperience, Spring 2002.

3. Pete Beckman and Dennis Gannon, Tulip: Parallel Run-time Support System for pC++,
http://www.extreme.indiana.edu.

4. A. Belguelin, J. Dongarra, A. Geist, R. Manchek, S. Otto, and J. Walpore, PVM: Experiences, current
status and future direction. Supercomputing’93 Proceedings, pp 765-6.

5. Angelos Bilas and Edward Felten, Fast RPC on the SHRIMP Virtual Memory Mapped Network Interface,
Journal of Parallel and Distributed Computing, Vol.40, No. 1, pp 138-146, 1997.

6. N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N. Seizovic, and W. Su. Myrinet: A
Gigabit-per-second Local Area Network. IEEE Micro, 15(1):29-36, February 1995.

7. L. Bouge, J. Mehaut, and R. Namyst. MADELEINE: an efficient and portable communication interface
for rpc-based multithreaded environments. In Proc. of the 1998 Conf. on Parallel Architectures and
Compilation Techniques, PACT’98, pages 240-247, Paris, France, 1998.

8. A. Bowyer. Computing Dirichlet Tessellations. The Computer Journal, Vol. 24, No. 2, pp 162-166, 1981.

9. Ralph M. Butler, and Ewing L. Lusk, User’s Guide to p4 Parallel Programming System Oct 1992,
Mathematics and Computer Science division, Argonne National Laboratory.

10. Bruce Carter, Chuin-Shan Chen, L. Paul Chew, Nikos Chrisochoides, Guang R. Gao, Gerd Heber, Antony
R. Ingraffea, Roland Krause, Chris Myers, Démian Nave, Keshav Pingali, Paul Stodghill, Stephen Vavasis,

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

26 K. BARKER ET AL

Paul A. Wawrzynek. Parallel FEM Simulation of Crack Propagation — Challenges, Status, Lecture Notes
in Computer Science 1800, pp. 443-449, Springer-Verlag 2000.

11. B. Chamberlain, S. Choi and L. Snyder, 1997. IRONMAN: An Architecture Independent Communication
Interface for Parallel Computers, University of Washington TR UW-CSE-97-04-04.

12. Paul Chew, Nikos Chrisochoides, Guang Gao, Tony Ingrafea, Keshav Pingali, and Steve Vavasis, Crack
Propagation on Teraflops Computers, unpublished manuscript, Cornell University 1997. NSF Proposal.
13. Chichao Chang, Grzegorz Czajkowski, Chris Hawblitzell and Thorsten von Eicken, Low-latency

communication on the IBM risc system/6000 SP. Supercomputing 96 Proceedings.

14. Nikos Chrisochoides, Induprakas Kodukula, and Keshav Pingali Data Movement and Control Substrate for
parallel scientific computing, Workshop on Communication and Architectural Support for Network-based
Parallel Computing, February 1997.

15. Nikos Chrisochoides, Kevin Barker, Démian Nave, and Chris Hawblitzel Mobile Object Layer: A Runtime
Substrate for Parallel Adaptive and Irregular Computations. Advances in Engineering Software, Vol 31
(8-9), pp. 621-637, August, 2000.

16. Nikos Chrisochoides and Démian Nave, Parallel guaranteed-quality h-refinement and mesh generation p
and hp Finite Element Methods: International Journal for Numerical Methods in Engineering, (Submitted,
2001)

17. David C. DiNucci. Cooperative Data Sharing: A Layered Approach to an Architecture-Independent
Message-Passing Interface, In Proceedings of the Second MPI Developer’s Conference, Notre Dame, July
1996, IEEE, pp. 58-65.

18. DMCS Homepage: http://www.cs.wm.edu/pes/software/dmcs/dmcs.html

19. Emulex Corporation http://www.emulex.com

20. Thorsten von Eicken, Davin E. Culler, Seth Cooper Goldstein, and Klaus Erik Schauser, Active Messages:
a mechanism for integrated communication and computation Proceedings of the 19th International
Symposium on Computer Architecture, ACM Press, May 1992.

21. Ian Foster, Carl Kesselman and Steven Tuecke, The NEXUS approach to integrating multithreading and
communication, Argonne National Laboratory, MCS-P494-0195.

22. Matthew Haines, David Cronk, and Piyush Mehrotra, On the design of Chant : A talking threads
package, NASA CR-194908 ICASE Report No. 94-25, Institute for Computer Applications in Science
and Engineering Mail Stop 132C, NASA Langley Research Center Hampton, VA 23681-0001, April 1994.

23. IBM Corp; Understanding and using the communication Lowlevel Application Programming Interface
(LAPI). In IBM Parallel System Support Programs for AIX Administration Guide, GC233897 -04. 1997.
(Available at http://ppdbooks.pok.ibm.com:80/cgibin /bookmgr/bookmgr.cmd/BOOKS /sspad230/9.1).

24. LAM Team, The University of Notre Dame, LAM/MPI Parallel Computing http://www.mpi.nd.edu/lam/

25. B. Lewis and D. J. Berg, Multithreaded Programming with Pthreads, Prentice Hall, 1998.

26. Ewing Lusk, et. al., Argonne National Laboratory, MPI-2: Extensions to the Message-Passing Interface

27. MPI Forum (1997), Message-Passing Interface Standard 1.0 and 2.0,
http://www.mcs.anl.gov/mpi/index.html

28. B. Nichols, D. Buttlar and J. P. Farrell, Pthreads Programming, O’Reilly, 1996.

29. J. Nieplocha, B. Carpenter, ARMCI: A Portable Remote Memory Copy Library for Distributed Array
Libraries and Compiler Run-time Systems, Proc. RTSPP IPPS/SDP’99, 1999.

30. Portable Runtime System (PORTS) consortium,
http://www.cs.uoregon.edu/research /paracomp/ports/

31. A Proposal for PORTS Level 1 Communication Routines, http://www.cs.uoregon.edu/research/paracomp/ports

32. RS6000 Group, International Buisness Machines, IBM Parallel Environment for AIX - MPI
http://qpsf.edu.au/software /ppe.html

33. G. Shah, J. Nieplocha, J. Mirza, C. Kim, R. Harrison, R.K. Govindaraju, K. Gildea, P. DiNicola, and C.
Bender; Performance and experience with LAPI: a new high performance communication library for the
IBM RS/6000 SP. In Proceedings of the International Parallel Processing Symposium, IPPS 98, pages
260-266, 1998.

34. J. Shewchuk, Delaunay refinement mesh generation, Ph.D. thesis, School of Computer Science, Carnegie
Mellon University, May 1997, Available as CMU Tech Report CMU-CS-97-137.

35. ClusterController AE Scheduling Software, MPI Software Technology, Inc. http://www.mpi-
softtech.com/products/cluster_controller/default.asp

36. Sun MPI Group, Sun Microsystems, Sun HPC Cluster Tools 3.1
http://www.sun.com/software/hpc/overview.html

37. Watson, D., Computing the n-dimensional Delaunay tessellation with applications to Voronoi polytopes,
The Computer Journal, Vol. 24, No. 2, pp 167-172, 1981.

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2002; 00:1-7
Prepared using cpeauth.cls

