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Abstract

We have a prospect that Geofem get good parallel performance on various com-
puter architecture by the research which has been made  in GeoFEM team. In this
research, we focus a target to performance with a single processor, and common
data structure / coding manner to make GeoFEM running high performance on
various computer architecture was researched.

<Test coding for Solver Part of the structure and the fluid analysis code>
Data structure and coding manner was evaluated on scalar/vector/pseudo vector
architecture. A new data structure and a new direct access manner was intro-
duced in the fluid analysis solver. As a result, 21% performance for peak perfor-
mance was obtained on pseudo vector architecture. And We got as good perfor-
mance as the pseudo-vector execution performance in scalar execution. 25% per-
formance for peak performance was obtained on vector architecture.

A new direct access manner was introduced in the structure code solver.
As a result, 27% performance for peak performance was obtained on pseudo vec-
tor architecture. 34% performance for peak performance was obtained on vector
architecture.

<Test Code for Matrix Assemble Part of the structure analysis code>
 Coding of removing dependency was finished and performance was evaluated
on vector/scalar machine.  736.8MFlops was obtained at matrix assembling proc-
ess on SX-4.  900.7MFlops was obtained at whole test Code on SX-4, and
2.06GFlops was obtained on VPP5000 (peak : 9.6GFlops). 124MFlops was ob-
tained at matrix assembling process on Alpha system (Alpha 21164 533MHz).

1. Introduction

The Science and Technology Agency, Japan has begun an Earth Simulator project from the fiscal
year of 1997 for predicting various Earth phenomena through the simulation of virtual Earth
placed in a supercomputer. The specific research topics of the project are as follows:
  1) Development of a high performance massively parallel processing computer: 'Earth Simula-
tor' ( 40 Tflops / Peak Performance, 10 TB Memory )
  2) Modelling of atmospheric and oceanic field phenomena and high-resolution simulations
  3) Modelling and simulation of solid earth field phenomena
  4) Development of large-scale parallel software for the Earth Simulator.
GeoFEM deals with the topics 3) and 4) in the above, and is planned to develop the system in two
phases as:
Phase I : GeoGEM/Tiger (1997-1998) : Multi-purpose parallel finite element software, which
may be applied to various fields in engineering and sciences as well as becoming the basis for the
solid earth simulator to be developed in Phase II.
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Phase II : GeoFEM/Snake (1999-2001) : A software system optimized for 'Earth Simulator' and
specialized for the simulation of solid earth phenomena such as mantle-core convection, buildup
of tectonic stress, deformation of plates and seismic wave propagation.

Now, various computer architecture exist in the world. The Earth simulator is mainly tar-
get machine for GeoFEM, moreover GeoFEM is assumed to running on various computers in
Multi-purpose parallel finite element software. It is the best for this assumption that "one codes"
runs in high performance on various computer architecture, but generally, suitable programming
is demanded from those architecture in order to get high execution performance on the architec-
ture of each.
To change data structure and coding into every architecture boosts trouble of development and
trouble of maintenance, and loses convenience of the users.

We are targeting GeoFEM which is finite element method simulation code for Unstruc-
tured grid, and we are researching common data structure / coding manner to make GeoFEM
running high performance on various computer architecture. Both the parallel performance and
the single  processor performance  have to be good, to get GeoFEM a good total performance.

In 1998, very large scale linear elastic problem was solved by GeoFEM on University To-
kyo's Hitachi SR2201 using 1,000 processors[1]. In this research, GeoFEM has got at good parallel
performance. Linear Solver of GeoFEM has attained good performance on SMP parallel comput-
er in recent Nakejima's research[2]. We have a prospect that Geofem get good parallel perfor-
mance on various computer architecture from these research. Therefore, in this research, we focus
a target to performance with a single processor of GeoFEM, and we researched common data
structure / coding manner to make GeoFEM running high performance on various computer ar-
chitecture .

2. strategy

GeoFEM is constructed by the structure analysis code and the fluid analysis code. Each code can
be roughly divided into two parts. First part, is calculates the coefficient of the composition
equation ( Matrix Assemble Part ). Second part, is solves the system of linear equation ( Solver
Part ).
Matrix having 4 area as shown in below is got (Table 1). Our research is approached to 4 areas
depicting below in order to achieve a purpose.

                        | Matrix        |              |
                        | Assemble part | Solver part  |
------------------------+---------------+--------------+
structure analysis code |       1       |       2      |
------------------------+---------------+--------------+
fluid analysis code     |       3       |       4      |
------------------------+---------------+--------------+

Table 1 Target Area in This Research

GeoFEM Test Code which has similar GeoFEM Matrix Assemble process and GeoFEM
Solver (about area 1 and area 2) have been made.  Real GeoFEM code have been used about area
3 and area 4. In the structure analysis code, 85% in all operation count is occupied by operation
count of solver part. The remaining 15% are occupied by operation count of Matrix Assemble
Part. In the fluid analysis code, 91% in all CPUTIME is occupied by solver part. The remaining
9% is occupied by Matrix Assemble Part.

We decided advancing the research by the following priority sequence because of Solver
Part is important in both the structure analysis code and the fluid analysis code.
-Solver Part of the structure analysis code and the fluid analysis code
-Matrix Assemble Part of the structure analysis code
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-Matrix Assemble Part of the fluid analysis code
The progress of the each researching items is shown below.

-Solver Part of the structure analysis code and the fluid analysis code
 Data structure and coding manner was evaluated on the scalar/vector/pseudo vector ar-
chitecture, and this result will be shown in this paper.
-Matrix Assemble Part of the structure analysis code
 A coding of removing dependency was finished and performance was evaluated on vec-
tor/scalar machine.  This result is shown in this paper. But evaluation of data structure and coding
manner wasn't finished. It is next problem.
-Matrix Assemble Part of the fluid analysis code
 We do not start it yet and it is next problem.

3. Evaluation Result of GeoFEM Linear Solver

3.1 Dependency of Data

Data dependency gives big influence when we think about performance on a single processor.
Now, almost processor is pipelined, therefore efficiently using pipeline is important things for
both architecture of the scalar machine and the vector machine.
I exemplify good use of efficiency of a pipeline. An addition pipeline consists of four following
stage as example.

C: Compare of exponent part
S: Shift of Mantissa part
A: Addition
N: Normalization

Movement of a pipeline is shown in a Figure below when there are dependency between
array elements. Pipelines can not process concurrently among array element,  when there are de-
pendency between array elements.

 Movement of a pipeline is shown in a Figure below when there are no dependency between array
elements.
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The pipelines can processes concurrently among array element,  when there are no depen-
dency between array elements. Removing dependency between array elements is important to use
of efficiency of a pipeline.

3.2 Outline of The GeoFEM Linear Solver

The GeoFEM Linear Solver is parallel iterative solver having characteristic as below[2].
-Localized Preconditioning[2]

-Distributed data structures by node-based partitioning with overlapping elements at partition in-
terfaces[2]

-Cyclic Multicolor on Hyperplane/RCM[2]

-DJDS(Descending-order Jagged Diadonal Storage) re-ordering[2] [3]

In case of Solver of the finite element method code using Unstructured Grid, usually dependency
of loop data is generated in main calculating loop. Cyclic Multicolor Hyperplane/RCM Manner
and DJDS Re-Ordering Manner were introduced in GeoFEM to remove dependency of loop data
and to run with high performance on the vector machine.
                                               
3.3 Cost Analysis

Result of the cost analysis for solver part / Matrix Assemble Part of both the structure analysis
and fluid analysis is shown in Table 2.
Solver Part is important in both the structure analysis code and the fluid analysis code.

+---------------------+-------------------+-------------------+
|                     | Fluid Analysis    |Structure Analysis |
|                     |     (CPUTIME)     |(operation count)  |
+---------------------+-------------------+-------------------+
|Solver Part          |       91.2%       |       84.7%       |
+---------------------+-------------------+-------------------+
|Matrix Assemble Part |        8.8%       |       15.3%       |
+---------------------+-------------------+-------------------+

Table 2  Result of Cost Analysis

In Solver Part of the fluid analysis code, cost of the CPUTIME (96.8%) is concentrated to
4 processes depicted in Table 3. Trend of this result concentrating to 4 processes is applied to the
Structure Analysis Code too.

-----------------------------------------------------
process(1)  forward substitution         14.6
process(2)  backward substitution        14.5
process(3)  Matrix-Vector Product(lower) 12.3
process(4)  Matrix-Vector Product(upper) 12.3
            others                              1.8
-----------------------------------------------------
                                         53.7   1.8

Table 3 Cost Analysis of the Fluid Analysis Solver

3.4 Model Coding

4 processes being depicted in chapter 3.3 have almost same coding. Example of coding for the
Fluid Analysis Code is shown in Fig.1.
Example of coding for the Structure Analysis Code is shown in Fig.2.
In Fig.1 and Fig.2, array:W having index:kk in right hand side of equation in innermost loop is
accessed by indirect access manner.



5

In Fig.1, arrays except W having index:kk is accessed by direct access manner.This coding is
Matrix-Vector product among Matrix having 1*1 elements and Vector having 1 elements.
In Fig.2, arrays except W having index:kk is accessed by constant intervals access manner.This
coding is Matrix-Vector product among  Matrix having 3*3 elements and Vector having 3 ele-
ments.
Model coding of Fig.3 was made by modeling from coding of Fig.1.
Model coding of Fig.4 was made by modeling from coding of Fig.2.
Access manner of each based coding is modeled as both coding Fig.3 and Fig.4.

3.5 Pseudo Vector Architecture

In this study, We used Hitachi SR8000 system that is the 128-node system in the Computing
Center, University of Tokyo. SR8000 system is a machine of pseudo vector architecture, and
SR8000 system has function of scalar machine as is Software-Pipelining. Software-Pipelining
make object code to be modeled at Fig.5(b). A object code of Fig.5(a) depict not being Software-
Pipelining. Effective pipelining process for element of array will be possible by Software-
Pipelining after removing dependency between array elements. SR8000 system has function of
pseudo-vector. The function of pseudo-vector has function of pre-load and pre-fetch(Fig.6).

In SR8000 system, each processor has 128 floating-registers to be possible to use as
Vector-Resister. The function of pre-load loads directly data from memory to floating-registers
without using cache. Load latency can be hidden by loading the data before using loaded data.
The function of pre-load will usually be applied for indirect accessed array. The function of pre-
fetch fetches data from memory to cache before using data and Load latency can be hidden. The
function of pre-fetch will usually be applied for direct accessed array.

              do iv= 1, NVECT
        iv0= IVECT(iv-1)
        do  j= 1, NLhyp(iv)
          iS= INL(NL*(iv-1)+j-1)
          iE= INL(NL*(iv-1)+j  )
          do i= iv0+1, iv0+iE-iS
             k= i+iS - iv0
            kk= IAL(k)
            W(i,Z)= W(i,Z) - AL(k) * W(kk,Z)
          enddo
        enddo
        ........
      enddo

Fig.1 Coding of forward substitution for the Fluid Analysis Code
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        do iv= 1, NVECT
        iv0= IVECT(iv-1)
        do  j= 1, NLhyp(iv)
          iS= INL(NL*(iv-1)+j-1)
          iE= INL(NL*(iv-1)+j  )
          do i= iv0+1, iv0+iE-iS
             k= i+iS - iv0
            kk= IAL(k)
            Zm2= W(3*kk-2,Z)
            Zm1= W(3*kk-1,Z)
            Zm0= W(3*kk  ,Z)
            W(3*i-2,Z)= W(3*i-2,Z) - AL(9*k-8)*Zm2 - AL(9*k-7)*Zm1      &
     &                                             - AL(9*k-6)*Zm0
            W(3*i-1,Z)= W(3*i-1,Z) - AL(9*k-5)*Zm2 - AL(9*k-4)*Zm1      &
     &                                             - AL(9*k-3)*Zm0
            W(3*i  ,Z)= W(3*i  ,Z) - AL(9*k-2)*Zm2 - AL(9*k-1)*Zm1      &
     &                                             - AL(9*k  )*Zm0
          enddo
        enddo
        ...........
      enddo

Fig.2 Coding of forward substitution for the Structure Analysis Code

      do j=1,1000
      do i=1,1000
        a(i) = a(i) + b(1000*(j-1)+i)*a(1000+N(i))
      enddo
      enddo

Fig.3 Model coding of solver for the Fluid Analysis Code

      do j=1,1000
      do i=1,1000
            k = i
           kk = N0(k)
          Zm2 = a(3*kk-2)
          Zm1 = a(3*kk-1)
          Zm0 = a(3*kk  )
          a(3*i-2)= a(3*i-2) - b(9*k-8)*Zm2 - b(9*k-7)*Zm1      &
     &                                      - b(9*k-6)*Zm0
          a(3*i-1)= a(3*i-1) - b(9*k-5)*Zm2 - b(9*k-4)*Zm1      &
     &                                      - b(9*k-3)*Zm0
          a(3*i  )= a(3*i  ) - b(9*k-2)*Zm2 - b(9*k-1)*Zm1      &
     &                                      - b(9*k  )*Zm0
      enddo
      enddo

Fig.4 Model coding of solver for the Structure Analysis Code

Fig.5(a) Case of not  Software Pipelining

Fig.5(b) Case of   Software Pipelining
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Fig.6 Preload and Prefetch
    

3.6 Performance Factor

Performance of Model-Coding being depicted in Fig.2 is 68MFlops and this performance is cor-
responding to performance of real coding almost. Next, coding of Fig.7 was made from coding of
Fig2 to change a accessing manner of array:a from indirect access manner to direct access man-
ner. Performance improved to 520MFlops in Fig.7 by changing a accessing manner.

      do j=1,1000
      do i=1,1000
        a(i) = a(i) + b(1000*(j-1)+i)*a(1000+i)
      enddo
      enddo

Fig.7 Model Coding of Dilect Access Manner

Performance factor improving from 68MFlops to 520MFlops was shown by compiler message
etc. as below.
-outer loop expansion (8 times)
-To change a accessing manner of array:a to direct access manner
We will be got a more performance improvement by reducing load/store latency about outer loop
expansion. Original coding in example is shown as below.

      do i=1,1000
      do j=1,1000
        y(i) = y(i) + a(i,j)*x(j)
      enddo
      enddo

Improved coding in example is shown as below.

      do is=1,1000,10
      do j=1,1000
        y(is  ) = y(is  ) + a(is  ,j)*x(j)
        y(is+1) = y(is+1) + a(is+1,j)*x(j)
        .......
        y(is+9) = y(is+9) + a(is+9,j)*x(j)
      enddo
      enddo

Memory

Registar

 Arithmetic Pipeline

cache
128KB

Preload Prefetch
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Original coding has 2 load operation and 2 floating operation, and a ratio of load/store operation
and floating operation is 2/2. Improved coding has 11 load operation and 20 floating operation,
and a ratio of load/store operation and floating operation is 11/20. We will be able to get good
performance in case of loop having small load/store operation in comparison with floating opera-
tion.

Next, coding of Fig.8 was made from coding of  Fig.7 by exchanging array:a and array:b
in coding of Fig.7. Performance changed for the worse to 140MFlops from 520MFlops in Fig.8.
A reason changing for the worse was shown by compiler message etc. It was a failure of software
pipelining although the pseudo vector process was success.

We understood that the performance factor is 4 items discussing in this chapter, in addi-
tion to being pseudo vectorizetion explaining in chapter 3.5. The performance factors are shown
in below.

(1) The loop is to be pseudo vectorization.
(2) The loop is to be software pipelining.
(3) The loop is to be outer loop expansion.
(4) The loop has small load/store latency.
(5) The array in the loop is accessed at direct access manner.

3.7 Evaluation of Performance for Model loops of the Fluid Analysis Code

Both (1) and (2) of performance factor, explained in chapter 3.6, was implemented to the model
coding of Fig.3 . A new model coding implementing both (3) and (4) of performance factor was
made. This coding is implemented outer loop expansion.  And, We exchanged data structure of
array:b to get good effect of prefetch. A new data structure is shown in Fig.9.

            Original                            New

Fig.9  Data Structure of Original PDJDS/CM-RCM and New Data Structure[2]
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A new model coding is shown in Fig.10.

      do j=1,1000,10
      do i=1,1000
        a(i) = a(i) + b(10*(i-1)+1)*a(N0(10*(i-1)+1)) &
     &              + b(10*(i-1)+2)*a(N0(10*(i-1)+2)) &
     &              + b(10*(i-1)+3)*a(N0(10*(i-1)+3)) &
     &              + b(10*(i-1)+4)*a(N0(10*(i-1)+4)) &
     &              + b(10*(i-1)+5)*a(N0(10*(i-1)+5)) &
     &              + b(10*(i-1)+6)*a(N0(10*(i-1)+6)) &
     &              + b(10*(i-1)+7)*a(N0(10*(i-1)+7)) &
     &              + b(10*(i-1)+8)*a(N0(10*(i-1)+8)) &
     &              + b(10*(i-1)+9)*a(N0(10*(i-1)+9)) &
     &              + b(10*(i-1)+10)*a(N0(10*(i-1)+10))
      enddo
      enddo

Fig.10 Model Coding of Outer Loop Expansion and Reducing Load/Store Latency

Model coding of Fig.3 has 4 load/store operation and 2 floating operation, and a ratio of
load/store operation and floating operation is 4/2. Model coding Fig.10 has 22 load operation and
20 floating operation, and a ratio of load/store operation and floating operation is 22/20. Moreo-
ver, load/store operation is more smaller by using prefetch fetching many data in a one fetch op-
eration. These fetch operation is possible, because element of array:b is referred at continuity or-
der in model coding Fig.10. The performance improved to 174MFlops from 68MFlops in Fig.10.
That result is depicted in Table 4[B].

A new model coding implementing (5) of performance factor explained in chapter 3.6 was
made.  Direct access manner for array:a was used in this new coding in addition to used perfor-
mance factors in coding of Fig.10. As shown in chapter 3.3, cost of the solver part is concentrated
to 4 processes depicted in below.

(a)  forward substitution
(b)  backward substitution
(c)  Matrix-Vector Product(lower)
(d)  Matrix-Vector Product(upper)

Same list array is used for accessing array:a in indirect access manner in both (a) and (c) proc-
esses. Same situation occurs on (b)(d) processes. That is to perform 4 processes by using 2 list
array. Therefore, these 4 processes are performed at high performance by reordering array:a to 2
temporary array at using 2 list array. This new coding is shown in Fig.11.
Coding of Fig.11(a) is the reordering process for array:a, and coding of Fig.11(b) is the main cal-
culating process. The main calculating processes are applied direct access manner.

The performance of  82Moperation/sec was got for reordering process, the performance of
547MFlops was got for main calculating process, and the total performance of 211Mflops was
got. That result is depicted in Table 4[C].

      do j=1,1000,5
      do m=1,10
      do i=1,100
        kk = 500*(m-1)+5*i-5
        x1(kk+1) = a(N0(kk+1))
        x1(kk+2) = a(N0(kk+2))
        x1(kk+3) = a(N0(kk+3))
        x1(kk+4) = a(N0(kk+4))
        x1(kk+5) = a(N0(kk+5))
      enddo
      enddo
      enddo

Fig.11(a) Model Coding of  Direct Access (Reordering Process)
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      do j=1,1000,5
      do i=1,1000
        kk = 5*(i-1)
        kk1=kk+1
        kk2=kk+2
        kk3=kk+3
        kk4=kk+4
        kk5=kk+5
        a(i) = a(i) + b(kk1)*x1(kk1) &
     &              + b(kk2)*x1(kk2) &
     &              + b(kk3)*x1(kk3) &
     &              + b(kk4)*x1(kk4) &
     &              + b(kk5)*x1(kk5)
      enddo
      enddo

Fig.11(b) Model Coding of  Direct Access (Main Calculating Process)

Each processor (not each node) has 1 Gflops peak performance in the SR8000 system. In previ-
ous discussion, 21% performance was got for peak performance on pseudo vector architecture.

Next, 3 cases depicted in below was performed to measuring performance on the scalar
architecture. That result is depicted in Table 4.
-scalar execution with compiler option Oss on SR8000 system (Table 4[D])
-scalar execution with compiler option opt3 on SR8000 system (Table 4[E])
-scalar execution on Alpha system (Alpha 21164 533MHz) (Table 4[F])

Software pipelining was probably used in case[D],  and was not probably used in both
case[E] and case[F].   We could get as good performance as the pseudo-vector execution perfor-
mance in scalar execution with software pipelining.

                                [A]     [B]      [C]      [D]      [E]      [F]
                               Fig.3   Fig.10   Fig.11   Fig.11   Fig.11   Fig.11
 ----------------------------------------------------------------------------------
  (1) pseudo vectorization       o        o        o        x        x        x
  (2) software pipelining        o        o        o        o        x        x
  (3) outer loop expansion       x        o        o        o        o        o
  (4) load/store latency         x        o        o        o        o        o
  (5) direct access              x        x        o        o        o        o
 ----------------------------------------------------------------------------------
      performance (MFlops)      68       174      211      225      63       109
                              [A] base model coding on SR8000
                              [B] pseudo vector with software pipelining on SR8000
                              [C] pseudo vector with software pipelining on SR8000
                              [D] scalar with software pipelining on SR8000
                              [E] scalar without software pipelining on SR8000
                              [F] scalar without software pipelining on Alpha system

Table 4 Performance for Model loops of the fluid analysis code on Pseudo Vector and Scalar Ar-
chi.

Next, model coding of both Fig.3 and Fig.11 was performed on Fujitsu VPP5000 being vector
machine that each processor has 9.6 Gflops peak performance.
That result is depicted in Table 5.
We could get 25% performance for peak performance on single processor of VPP5000.
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                                [A]     [C]
                               Fig.3   Fig.11
 -----------------------------------------------
  (3) outer loop expansion       x        o
  (4) load/store latency         x        o
  (5) direct access              x        o
 -----------------------------------------------
      performance (MFlops)     1405     2381

Table 5 Performance for Model loops of the fluid analysis code on Vector Archi.

I summarize a result of discussion in this chapter.
- A new data structure depicted in Fig.9 was introduced to get good effect of prefetch.
- A new direct access manner using reordered array was introduced.
-21% performance for peak performance was got on pseudo vector architecture after applying
both new data structure and new direct access manner.
- We got as good performance as the pseudo-vector execution performance in scalar execution
with software pipelining.
-25% performance for peak performance was got on vector architecture after applying both new
data structure and new direct access manner.

3.8 Evaluation of Performance for Model loops of Solid analysis code

Both (1) and (2) of performance factor, explained in chapter 3.6, was implemented to the model
coding of Fig.4. A new model coding implementing both (3) and (5) of performance factor was
made as in the fluid analysis code.  The performance factor of (4) wasn’t implemented because of
being able to get good performance in case[C] without implementing performance factor (4). Im-
plementing (4) is a next problem. This new coding is shown in Fig.12.

      do j=1,1000
      do i=1,1000
        k = i
        kk = N0(k)
        x2(i) = a(3*kk-2)
        x1(i) = a(3*kk-1)
        x0(i) = a(3*kk  )
      enddo
      enddo

Fig.12(a) Model Coding of  Direct Access (Reordering Process)

      do j=1,1000
      do i=1,1000
      k=i
          a(3*i-2)= a(3*i-2) - b(9*k-8)*x2(i) - b(9*k-7)*x1(i)      &
     &                                        - b(9*k-6)*x0(i)
          a(3*i-1)= a(3*i-1) - b(9*k-5)*x2(i) - b(9*k-4)*x1(i)      &
     &                                        - b(9*k-3)*x0(i)
          a(3*i  )= a(3*i  ) - b(9*k-2)*x2(i) - b(9*k-1)*x1(i)      &
     &                                        - b(9*k  )*x0(i)
      enddo
      enddo

Fig.12(b) Model Coding of  Direct Access (Main Calculating Process)
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Coding of Fig.12(a) is the reordering process for array:a, and coding of Fig.12(b) is the main cal-
culating process. The performance of 122M operation/sec for reordering process was got,  the
performance of 335MFlops was got for main calculating process, and the total performance of
273Mflops was got. That result is depicted in Table 6[C].  In previous discussion, 27% perfor-
mance for peak performance was got on pseudo vector architecture.

Next, 2 cases depicted in below were performed to measuring performance on the scaler
architecture. That result is depicted in Table 6.

-scalar execution with compiler option Oss on SR8000 system (Table 6[D])
-scalar execution on Alpha system (Alpha 21164 533MHz) (Table 6[F])

Software pipelining was probably used in case[D],  and was not probably used in case[F].   We
could not get as good performance as the pseudo-vector execution performance in scaler execu-
tion because of no implementing performance factor (4).

                                [A]      [C]      [D]      [F]
                               Fig.4   Fig.12   Fig.12   Fig.12
 ----------------------------------------------------------------
  (1) pseudo vectorization       o        o        x        x
  (2) software pipelining        o        o        o        x
  (3) outer loop expansion       x        o        o        o
  (4) load/store latency         x        x        x        x
  (5) direct access              x        o        o        o
 ----------------------------------------------------------------
      performance (MFlops)      177      273      163      140
                              [A] base model coding on SR8000
                              [C] pseudo vector with software pipelining on SR8000
                              [D] scalar with software pipelining on SR8000
                              [F] scalar without software pipelining on Alpha system

Table 6 Performance for Model loops of the Structure analysis code on Pseudo Vector and Scalar
Archi.

Next, model coding of both Fig.4 and Fig.12 were performed on Fujitsu VPP5000. That result is
depicted in Table 5.
34% performance for peak performance was got on single processor of VPP5000.

                                [A]     [C]
                               Fig.4   Fig.12
 -----------------------------------------------
  (3) outer loop expansion       x        o
  (4) load/store latency         x        x
  (5) direct access              x        o
 -----------------------------------------------
      performance (MFlops)     2658     3276

Table 7 Performance for Model loops of the Structure analysis code on Vector Archi.

I summarize a result of discussion in this chapter.
- A new direct access manner using reordered array was introduced.
- 27% performance for peak performance was got on pseudo vector architecture after applying
new direct access manner.
- We could not get as good performance as the performance of the fluid analysis solver in scalar
execution.
- Getting a good performance is expected by implementing performance factor (4) in scalar exe-
cution.
- 34% performance for peak performance was got on vector architecture after applying new

direct access manner.
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4. Matrix Assemble Part of the Structure Analysis Code.

4.1 Outline of Original code of Matrix assemble part
  
Loop structure of matrix assemble part for original code is shown in Fig.13.

Fig.13 Loop structure of matrix assemble part
                         for original code

                                                                             Fig.14 Loop structure of matrix assemble part
                                                                                                      for tuned code

The outermost 3 loops are 'typewriter scanned' elements loops. 'typewriter scan' is a rectangular
sweep for the nested loops consecutively. Jacobian calculating process and element stiffness ma-
trix calculating process are inside the outermost 3 loops. The element stiffness matrix calculating
process assembles whole stiffness matrix.  This process is constructed from 2 loops which have 8
elements for each loop. This 8 means number of node for hexahedral element. Innermost 3 loops
corresponds to integral calculation for each local Coordinates of element.

4.2 Optimization Manner

Strategy for Optimization Manner is loop exchange putting a element loop into innermost loop
for getting long vector length.  If a elements loop is single loop, a processes of adding up numeri-
cal value to same node is produced.  This process causes dependency of data for a elements loop.
The elements loop was divided into some small loops of groups having no recursive reference.
Moreover, each groups having no recursive reference were divided into some loops for saving the
memory storage of jacobian calculation results.  Elements loop was divided finally into 3
loops ,to do dividing for loops of above 2 times. Loop Structure is described in Fig.14.

Outermost loop is a first element loop.  Next second loop is a second element loop.
Both the jacobian calculating process and the element stiffness matrix calculating process were
put into a second loop.  In the jacobian calculating process, A third element loop was put into 3
loops for integral calculation.  In the element stiffness matrix calculating process, outer loop is 2

do kk1= 1, NZ
do jj1= 1, NY
do ii1= 1, NX
|-jacobian calculate
do ie= 1, 8
do je= 1, 8
do kpn= 1, 2
do jpn= 1, 2
do ipn= 1, 2
|-stiffness matrix calculate
enddo
enddo
enddo
enddo
enddo
enddo
enddo
enddo

do loer = 1,50
do lpn = 1,numlp+1
do kp=1,2
do jp=1,2
do ip=1,2
do ijk = 1,llnum
|-jacobian calculate
enddo
enddo
enddo
enddo
do ie= 1, 8
do je= 1, 8
do kpn= 1, 2
do ijk = 1,llnum
|-stiffness matrix calculate
enddo
do ijk = 1,llnum
|-stiffness matrix calculate
enddo
enddo
enddo
enddo
enddo
enddo
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loops (8X8) assembling whole stiffness matrix.  A loop of integral calculating for ζ  coordinate
was put into a outer loop and a third element loop was put into a loop of integral calculating forζ .
In a third loop of elements, 2 loops having each 2 elements for integral calculating for ηξ −  co-
ordinates were replaced 4 (=2*2) lines operations.

4.3 Problem definision
Test problem definition is shown in below.
-Elastic Stracture Analysis for Cube Shape
-50000 Elements
-164000 DOF

4.4 Performance
Performance and operation counts of each process is depicted in Fig.15. CPUtime/FLOPS of ma-
trix assembling process was 28.8sec/53.3MFlops (SX-4 /peak : 2GFlops ) before tuning, and
2.09sec/736.8MFlops(same machine) after tuning.
CPUtime/FLOPS of whole test Code was 11.18sec/900.7MFlops(same machine).
4.88sec/2.06GFlops was attained on VPP5000 (peak : 9.6GFlops).

Dec SX-4 VPP5000
Process

Oparation
Count(Flop) Cputime Mflops Cputime Mflops Cputime Mflops

Bounbary condition
Matrix Assemble

Solver Pre Process
1.54G

0.54
11.85
0.07

123.6
0.19
1.73
0.17

736.8
0.04
0.76
0.11

1692.3

Solver 8.53G 197.10 43.3 9.09 938.4 3.97 2148.6

Total 10.07G 209.56 48.1 11.18 900.7 4.88 2063.5

                             Table8  Performance and Operation Counts of Each Process

 5. Conclusion and Further Study

 We have a prospect that Geofem get good parallel performance on various computer architecture
by the research which has been made  in GeoFEM team. In this research, we focus a target to per-
formance with a single processor, and common data structure / coding manner to make GeoFEM
running high performance on various computer architecture was researched.
We decided advancing the research by the following priority sequence.

(1)Solver Part of the structure analysis code and the fluid analysis code
(2)Matrix Assemble Part of the structure analysis code
(3)Matrix Assemble Part of the fluid analysis code

In this paper, I reported as below for each item on the priority sequence.

(1)Solver Part of the structure analysis code and the fluid analysis code
 Data structure and coding manner was evaluated on scalar/vector/pseudo vector architecture. A
new data structure and a new direct access manner was introduced in the fluid analysis solver. As
a result, 21% performance for peak performance was obtained on pseudo vector architecture. And
We got as good performance as the pseudo-vector execution performance in scalar execution.
25% performance for peak performance was obtained on vector architecture.
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A new direct access manner was introduced in the structure code solver. As a result, 27%
performance for peak performance was obtained on pseudo vector architecture. We could not get
as good performance as the performance of the fluid analysis solver in scalar execution. But We
expect getting a good performance by implementing a new data structure in scalar execution.
34% performance for peak performance was obtained on vector architecture.

My next work is to implement a new data structure for the structure analysis solver and to
implement a new data structure and a new direct access manner for real GeoFEM code.

(2)Matrix Assemble Part of the structure analysis code
 Coding of removing dependency was finished and performance was evaluated on vector/scaler
machine. 736.8MFlops was obtained at matrix assembling process on SX-4.  900.7MFlops was
obtained at whole test Code on SX-4, and 2.06GFlops was obtained on VPP5000 (peak :
9.6GFlops). 124MFlops was obtained at matrix assembling process on Alpha system(Alpha
21164 533MHz).

Evaluation of data structure and coding manner wasn't finished, and it is next my works.

(3)Matrix Assemble Part of the fluid analysis code
 I do not start it yet and it is next my works.
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