
1

Automatic Refactoring by Simulation of Multiple Inheritance in Java

Douglas Lyon, Ph.D.

Chair, Computer Engineering Dept.

Fairfield University, Fairfield CT 06430

lyon@docjava.com

The Perfect bureaucrat is the man
who manages to make no decisions

and escapes all responsibility.

– Justin Brooks Atkinson

Summary

This paper shows a technique that enables the generation of proxy classes in an

automatic manner. The model and implementation extends production programming

to support fast and automatic prototyping of proxies and interfaces able to simulate

multiple inheritance and refactor legacy systems, even when faced with missing

source code. Advantages of the automatic synthesis of a proxy class include:

compile-time type checking, speed of execution, automatic disambiguation (name

space collision resolution) and ease of maintenance.

The approach generates Java source that does method forwarding and creates

interfaces as a means to achieve polymorphism. Disambiguation can be automatic,

semi-automatic or manual. The forwarding code (i.e., proxy) evolves into an

adapter as the delegates change their specification. This protects client classes from

change. The interface and proxy code are generated automatically via reflection.

This type of simulation of multiple inheritance was previously available only to

Java programmers who performed manual delegation or who made use of dynamic

proxies. The technique has been applied at a major aerospace corporation.
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1. Introduction

Refactoring is defined as “changing a system to improve its internal structure

without altering its external behavior”. Often we are faced with legacy code that has

to be refactored. Refactoring is typically done in order to improve some feature,

such as design or readability. Refactoring is a key approach for improving object-

oriented software systems [Tichelaar]. Sometimes the code has no source available

and/or the design is poor. Sometimes a large number of dependencies between

classes can complicate analysis [Korman]. While consulting for one aircraft

manufacturer we were faced with Java code written by FORTRAN programmers

(dubbed JavaTran). Over time, maintenance changed the original program structure

and specifications. Additionally, the specifications had not been maintained. This is

a common problem in industry [Postema].

According to one definition, delegation uses a receiving instance that forwards

messages (or invocations) to its delegate(s). This is sometimes called a consultation

[Kniesel]. Variations on this theme give rise to several of the so-called design

patterns. For example, if methods are forwarded without change to the interface,

then you have an example of the proxy pattern. If you simplify the interface with a

subset of methods to a set of delegates, then you have a facade pattern. If you

compensate for changes (i.e., deprecations) in the delegates, and keep the client

classes seeing the same contract, then you have the adapter pattern. If you add

responsibilities to the proxy class, then you have the decorator pattern [Gamma

1995]. Thus, we define static delegation as a compile-time type-safe message

forwarding from a proxy class to some delegate(s).

Compare this to the definition given to use by Lieberman [Lie 1986]. With

Lieberman-delegation the communications pattern is decided at run-time. This is
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rather more flexible than the static delegation, so we define it as dynamic

delegation. Thus, compile-time checks are not performed and the message

forwarding is not type-safe. In JDK1.3 dynamic delegation is more automatic (i.e.,

it is Lieberman-style). Using the JDK 1.3 version of dynamic delegation you build

a proxy object from the reflection API.

Our goal was to refactor the code in a type-safe way, without having to rewrite it. It

is well known that improper refactoring can break subtle properties in a system. As

a result, refactoring is generally followed by a testing phase [Katoaka]. To

eliminate the testing phase after refactoring we have created an automatic means of

generating proxy classes. These proxy classes are like toolkits that provide access

to domain-specific frameworks [Gamma 1995]. The result is a stable interface to a

large collection of methods in a single proxy class, rather than a weak coupling to

many instances of several different classes. Since old code is unchanged (and even

unneeded!) in our system, the new code can be treated as a facade for interfacing to

the legacy code. Initially we wrote the proxies manually using a process we call

manual static delegation.  In manual static delegation, an instance is passed to a

proxy class as a parameter. A programmer writes wrapper code that delegates to the

contained instance. The code that contains the wrapper code is called the proxy

class. The code that contains the implementation code is called the delegate. For

example:
final class Movable {

int x = 0;
int y = 0;

public void move(int _x, int _y) {
x = _x;
y = _y;

}
}

If we want to add a feature to the Movable class we might subclass it. However,

this is prevented because the class is final. We might be tempted to modify the
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Movable class, however, source code might not be available. For example,

suppose we want a MovableMammal:
class Mammal {

public boolean isHairy() {
return true;

}
}

Our manually written delegation code follows:
public class MovableMammal {

Mammal m;
Movable mm;

MovableMammal(Mammal _m, Movable _mm) {
m = _m;
mm = _mm;

}

public void move(int x, int y) {
mm.move(x,y);

}
public void isHairy() {
return m.isHairy();

}
}

The automatic static proxy delegation generates code, like the MovableMammal

class, automatically.

There are several alternatives to automatic proxy delegation for reusing

implementations. For example, we can:

1. Deepen the subclass for processing data. This is the solution I took with

Image Processing in Java [Lyon 1999]. Each chapter built another

subclass until the classes were 9 levels deep.  Subclassing is not always

the best way to extend the functionality of a class. While subclassing is

an object-oriented design technique, lack of multiple inheritance keeps

Java from scaling this approach to large programs. Another approach is

called delegation.
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2. Delegation: Keep adding references to helper classes that can process the

data, then delegate to the other classes for the implementation. Imagine

if you needed to run a country. All requests from the citizens go to the

president. Then the president makes a phone call, and delegates the

request to the right person. The president acts in the role of the proxy

class, dispatching to the correct implementor of a task. Delegation has

long been thought of as a generalization of inheritance (a point of view

with which there is disagreement) [Aksit 1991] [Bracha].

3. Multiple Inheritance: The exclusion of multiple inheritance from Java  is a

design decision that forces people into doing what is good for them.

This is exactly what Stroustrup says that he tried to avoid in the design

decisions that he made when creating C++ [Stro 1994]. Grady Booch

has said that “Multiple inheritance is like a parachute; you don’t need it

very often, but when you do it is essential” [Booch 1991]. In contrast it

has also been said that multiple inheritance is an inessential

programming idiom [Compagnoni]. The multiple inheritance debates

appear to be devoid of solid data. Programmers that use Java are

innocent victims of the design decision to leave out multiple-inheritance

[Stro 1987].

Generally, inheritance enables shared behavior. Some have argued that subtyping

(i.e, the multiple-inheritance of interfaces in Java) is not inheritance. In fact, our

approach divorced inheritance from subtyping creating new proxy classes with new

interfaces. There is even disagreement on the appropriate semantics for multiple

inheritance  [Bracha] [Compagnoni]. Stroustrup say that multiple inheritance is the

ability of a class to have more than one base class (super class). Thus multiple-

inheritance of interfaces is not multiple-inheritance in the Stroustrup sense [Sto

1987].

Our system is like the JigSaw system of Bracha in that it has rigorous semantics,

base upon a denotional model of delegation [Bracha]. We decouple proxy
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delegation from subtyping (unlike the Lieberman-style of delegation). By extending

an existing language with a new API to obtain several benefits:

1. An upwardly compatible extension.

2. Realistic performance.

3. A practically useful tool.

4. Polymorphism is obtained by implementing synthesized interfaces.

5. Inheritance is restricted to subtypes only.

6. Name collisions are resolved by topological sorting or programmer

interaction.

It has been asserted in the past that refactoring will also be language dependent

because it must understand the language of the programs that it is manipulating. I

shall show that this is generally untrue. The semi-automatic static proxy delegation

system does not use Java source. This approach can be used in any language with a

reflection API [Johnson].

2. Delegation vs. Multiple Inheritance

Multiple inheritance is a hotly debated language feature [Tempero]. Multiple

inheritance gives us code reuse and polymorphism. Delegation enables code-reuse

without polymorphism. The uncertainties that can arise from the use of multiple-

inheritance of implementation have been cited as the rationale for leaving this

language feature out of Java [Arnold 1998]. Yet, for some reason, inheritance

seems to be more popular than delegation. It has been suggested that one reason for

this might be that in multiple inheritance, classes transparently inherit operations

from their superclasses. Synthesizing delegations automatically reduces the

possibility of introducing errors and should encourage programmers to use

delegation more [Johnson].
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Both delegation and inheritance are mechanisms for extending a design [Coad]. For

example, if multiple inheritance of implementations existed in Java, our

MovableMammal might be written like this:
public class MovableMammal extends Movable, Mammal {
}

This would work using the multiple-inheritance model of C++. Such a model has

been shown to have several disadvantages. For example:

1. Subclasses must inherit only a single implementation from a super class.

2. The topological sorting of the super-classes have been cited as a fruitful

source of bugs [Arnold 1996].

3. Inheritance compromises the benefits of encapsulation [Coad].

4. Inheritance hierarchy changes are unsafe [Snyder].

5. Even in a single-inheritance type language like Java, conflicts between

multiple parents are not reported. Ambiguity resolution has long been

known as a problem with inheritance [Kniesel].

6. Taxonomically organized data has become automatically associated with

object-oriented programming [Cardelli].

Some have said that multiple inheritance is hard to implement, expensive to run and

complicates a programming language [Cardelli]. These conjectures are shown to be

generally untrue by Stroustrup [Stro 1987].

Multiple inheritance provides for subtyping. It is this feature that the interface

mechanism of Java embraces by providing multiple inheritance of specification

without implementation.  Thus an interface x is a subtype of interface y if x is a

descendant of y. This also works for classes, in Java, but such relationships are

subject to only single-inheritance.

Systems, like Kiev, extend the Java language so that it has multiple inheritance

<http://www.forestro.com/kiev/kiev.html>. Sorry to say, that makes for a rather

non-standard and unportable solution (as opposed to the one presented here). The
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LAVA language also extends Java to provide for delegation.  Kniesel says that

current implementations of LAVA have an efficiency that is unacceptable [Kniesel

98] [Kniesel 99]. Fisher and Mitchell provide a new delegation-based language

[Fisher]. Sorry to say, the language is untyped and therefore has the unsoundness

of any dynamic delegation system. The primary advantage of the Fisher-Mitchell

system appears to be in resolving method name conflicts at compile-time

(something that most multiple-inheritance systems fail to do).

Reverse engineering programs, such as Lackwit, are able to discover inheritance

relationships with greater ease than composition associations [O’Callahan]. That is

because the inheritance association implies a specialization semantic.

Specialization is as legitimate an object-oriented design technique as composition or

aggregation. For example; is polluted water a kind of water, or is it water that has

pollution in it? Or do we say that polluted water is made of water and pollution?

That is, do we use aggregation, composition or specialization to model polluted

water? Since all three representations are legitimate models of polluted water,

depending on the application, all should be permitted.

On the other hand, specialization is often an inadequate way of modeling

associations [Frank]. For example, roles in a multiple-inheritance structure may

change. This is the notion of changing roles. For example, an insurance company

sees the children of clients as dependents in its software system. However, after the

children grow up they can change from dependents to clients. In a static multiple

inheritance relationship, role changing is not easy. This is a failure to model

dynamic evolution of the world [Kniesel]. Thus, in the example of the role, we

delegate to role instances that represent kinds of roles that a person may have.

Frank suggests the association of acts-as be used for various kinds of roles. For

example, a person acts-as a student [Frank].
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Delegation has been cited as a mechanism to obtain implementation inheritance via

composition [Lie 1986], [Jz 1991]. Delegation was introduced in a prototype-based

object model by Lieberman in 1986 [Lie 1986]. Lieberman indicated that delegation

is considered safer than inheritance because it forces the programmer to select

which method to use when identical methods are available in two delegate classes.

Thus, any means of synthesizing code that contains methods with identical

signatures, will cause syntax errors. These errors require the programmer to think

about which method to use, rather than use automatic mechanisms based on

topological sorting of the super classes. Topological sorting (as in C++ and

ZetaLisp) has been shown to be a fruitful source of bugs in multiple-inheritance

type languages. This is why it has been omitted from languages like Modula-3,

Objective C and Java [Har] [Cox].

We are motivated to automate the gathering of the implementations from a collection

of instances and place them into a proxy class. This is called message forwarding

and is a kind of implementation sharing mechanism [Kniesel]. Experts have

disagreed on this point, saying that delegation is a form of class-inheritance (since

the execution context must be passed to the delegate). I take the opposite view, as

class-inheritance type of sharing of context involves name sharing, property

sharing and method sharing. Sharing via delegation is instance sharing. The

semantics of instance sharing enable a control of the coupling between instances.

This provides a mechanism for reuse without introducing uncontrolled cohesion

(which increases brittleness in the code) [Bardou].

Delegation has the disadvantage that:

1. The computational context must be passed to the delegate.

2. There is no straightforward way for the delegate to refer back to the

delegating object [Viega].

3. The proxy cannot override the delegate methods automatically (that

requires programmer intervention).

4. The proxy class is coupled to the delegates.
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With JDK 1.3, there is a new technique called dynamic proxies [Sun 2000].

Dynamic proxies have all the disadvantages of delegation and:

5. They are harder to understand than more static software.

6. Dynamic delegation is slower than static delegation.

7. The design has a counterintuitive class structure [Korman]

8. Type-safe dynamic delegation is impossible [Kniesel 98].

Point 8 requires some discussion. Dynamic proxies do not give you compile-time

checking of unresolved messages. In contrast, static delegation does provide

compile-time checking of unresolved messages. This is a critical difference. Even

multiple-inheritance will compile-time check unresolved messages. Thus, in the

spectrum of type-safety, we have, in order of most-safe first:

1. Static delegation

2. Multiple-inheritance

3. Dynamic proxy classes

The multiple-inheritance is less type-safe than the static delegation because method

ambiguity is typically resolved, without warning, at compile time. Thus, some

unexpected behavior can result. We enable automatic disambiguation in the proxy

class by virtue of topological sorting. However, this is only one option. We also

enable a programmer selection via a GUI so that disambiguation can occur in a

semi-automatic manner. Finally, we can also output ambiguous code so that the

programmer can resolve the ambiguities at compile-time. The last technique is

probably the least reliable method, since the programmer is in the code synthesis

loop.

Kniesel has defined delegation as having automatic method forwarding (i.e.,

Lieberman delegation). We prefer to use the term dynamic delegation. The static

method forwarding (which Kniesel says is not “true” delegation) is what I define as

static delegation [Kniesel 99] [Kniesel 01]. Static delegation is type-safe, dynamic
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delegation is not. The methods invoked remain the same, but the change in

behavior comes from a change in implementation.

Stroustrup tried an implementation of dynamic delegation in C++. He reported that

every user of the delegation mechanism “suffered serious bugs and confusion”. He

says that the primary reasons are that functions in the proxy do not override

functions in the delegate and functions in the delegate can not get back to the proxy

(i.e., the this is in a different context). Stroustrup mentions a solution, by manually

forwarding a request to another object (i.e., static delegation) [Stro 1994].

The static delegation we propose is able to alter its behavior in a type-safe way, at

run-time. To show that semi-automatic static proxy delegation will change the

behavior, depending on the instance of the delegate, one need only to make use of

polymorphic delegates. A proxy that interfaces to a numerical computing toolkit,

for example, could take an instance that defines a function. Naturally, the toolkit

would be useless if it only worked for a single function. A different function will

cause different behavior in the toolkit. Yet the function always conforms to an

interface that requires a double precision number on input and output. Thus, our

system is a type-safe example of proxy delegation.

Manual delegation has the disadvantage that:

1. Tedious wrappers need to be written for each method.

2. Manually writing forwarding methods is error-prone.

3. Programmers write arbitrary code in a forwarding method. This can give

an object an inconsistent interface.

4. Programmers must decide which message subset must be forwarded.

Automatic proxy delegation overcomes these problems.

1. The delegation synthesis does not generate arbitrary code.

2. The interface to the instances remains consistent.
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3. The delegation is subject to in-line expansion and is more efficient than

multiple inheritance.

4. The mechanism for forwarding is obvious and easy to understand.

5. The proxy is coupled to the delegate in a more controlled manner than

automatic dynamic delegation.

6. Classes that use the proxy are presented with a more stable interface than

the proxy class. For example, a method may become deprecated, but

changes need only be seen in the proxy class, not its clients.

The additional advantage is that we can lower the cost of software maintenance and

improve reusability of the code.

Problems that remain unsolved by automatic static proxy delegation include:

1. Programmers can write arbitrary code in a forwarding method.

2. There is no straightforward way for the delegate to refer back to the

delegating object [Viega].

3. Programmers could limit the forwarding message subset (i.e., make the

proxy into a facade).

4. The computational context must still be passed to the delegate [Kniesel].

5. The proxy class is fragile. If the interface to the delegate changes, the

forwarding method in the proxy must change [Kniesel 1998].

An additional step, the compilation of generated code, is required with static proxy

delegation (automatic or manual). This compilation step disambiguates. In

comparison, dynamic proxy classes generate error at run time. We favor compile-

time errors over runtime errors, and so find our technique superior in this regard.

Semi-automatic synthesis of delegation code addresses the time-consuming and

error-prone draw-back of manual delegation. It is also easier to understand. The

basic issue is that a balance must be struck between code reuse and the fragility that

arises from coupling, a measure of component interdependency. This balance is
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obtained by good object-oriented design (and is hard to automate!). We follow

some basic rules, suggested by Stroustrup when implementing C++ classes, for the

synthesis of our proxy classes:

1. Ambiguities are illegal.

2. Only public methods are available

3. The methods are all public in the proxy class.

4. Subtyping is done with interfaces, not proxies.

5. Both proxy classes and interfaces are synthesized automatically.

6. Type checking is static.

7. Ambiguity resolution is static (i.e., done at code synthesis time).

When ambiguities arise, the synthesizer resolves them using either topological

sorting or by interacting with the programmer. Thus the code is synthesized

without ambiguities. If ambiguities existed in the output code, it would cause a

syntax error. Our code, once compiled, will guarantee that we will never get

messages like “can’t find method” [Wand].

Multiple inheritance of interfaces enables the use of polymorphism just like multiple

inheritance of classes. In Java, interfaces are used as a means to achieve

polymorphism. Typically, the interfaces are coded manual, and as they change, so

too must the implementing classes. I call this the fragile interface problem. It is

generally solved by adding new interfaces, and new classes, without altering old

ones. The problem with this approach is that the new interface cannot make old

methods more restrictive in their access. Even worse, as we elect to shift our code

to the new interface, often we are performing maintenance, in parallel, on identical

implementations. We solve the problem of implementation reuse by automating the

proxy class generation. We solve the problem of creating the new interfaces (and

detecting name collisions) using the reflection API. This enables the automatic

synthesis of interfaces based on sample instances and allows us to achieve

polymorphism. For example, the following code was generated automatically:
interface MammalMovableStub extends
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MammalStub, MovableStub {
}
 interface MammalStub {

public boolean isHairy();
 }
 interface MovableStub {

public void move(int v0,int v1);
 }

There is a trade-off between using a pure proxy and a hybrid proxy, that obtains

some of the methods from the single-inheritance model of Java. There are several

difficulties with this, for example; a change in the constructor in the proxy class

will require that all the constructors in the super class be repeated.

For example, consider the RunButton, a class that knows how to run itself, using

the command pattern [Gamma 95]:
package gui;

import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public abstract class RunButton extends
        JButton implements ActionListener, Runnable {
        public RunButton(String label) {
               this(label,null);
        }
        public RunButton(String l, Icon i) {
                super(l,i);
                addActionListener(this);
        }
        public RunButton(Icon i) {
               this(null,i);;
        }
        public RunButton() {
                this(null,null);
        }
        public void actionPerformed(ActionEvent e) {
                run();
        }
        public static void main(String args[]) {
        ClosableJFrame cf = new ClosableJFrame("Run Button");
        Container c = cf.getContentPane();
        c.add(new RunButton("OK") {
        public void run() {
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        System.out.println("I am
running!");

        }
        }
        );
        }
}

Now we see, from the above example, that adding the single method of

addActionListener to just one element of the constructor causes all the constructors

to be repeated. While use of the RunButton is now more elegant, there is no clean

divorce between subtyping and implementation. The single inheritance model does

not scale well. Even worse, name conflicts are resolved in silence by the single

inheritance mechanism in Java. Thus, the exact method to be invoked is no longer

statically known when the code is compiled [Bracha]. Our goal is to provide an

alternative for eliminating the naming conflicts, and divorce the subtyping and

implementation inheritance. In section 4 we show how to add methods and change

usage by creating a new proxy-decorator class.

3. Related work

Tools for refactoring code automatically are not new [Opdy92b], [Opdy93a],

[John93b]. Language independent tools for refactoring code are not new either

[Tichelaar]. Even the use of explicit and parametrical bindings to create type-safe

inheritance is not new [Hauck].

However, in the literature that we have reviewed, we have yet to find a means for

automatically creating the proxy classes shown in this paper. In addition, the tools

that we have found for refactoring code are like the Elbereth system in that they

require source code [Korman]. Other source code based tools for automatic

refactoring include the Smalltalk Refactoring Browser [Roberts], the IntelliJ

Renamer (http://www.intellij.com), which supports renaming of identifiers and the

Xref-Speller (http://www.xref-tech.com/speller/) which supports set refactorings.

The Daikon invariant detector reads source code and depends on instrumentation of
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the source code for full function (http://sdg.lcs.mit.edu/~mernst/daikon/). None of

the afore mentioned tools automate proxy class synthesis. This is also true for the

class composition proposed by Harrison and Ossher [Harrison]. Our technique

does not require any source code, but our technique can still generate it.

Our technique for static delegation requires that every instance be passed to a

proxy-class, along with its execution context. Thus a programmer’s updates in the

protocol for communicating the means to pass parameters will have to be updated in

the proxy class. This is the solution I took in Java Digital Signal Processing [Lyon

1998]. The trouble is, the updates for the interfaces to the delegates may change.

This requires proxy class maintenance.

When the proxy protects the client from changes in the delegate specifications, the

proxy is making use of the adapter pattern. If additional responsibilities are added

to the wrappers around the delegates, we are using the decorator pattern [Gamma

1995]. Once manual additions are made to the proxy class, it can no longer be

regenerated automatically without a loss of the changes. Thus, adding additional

responsibilities to an instance of a proxy should probably be left to a new,

decorator class. Similarly, if a totally new interface is needed in the proxy class, a

new adapter class should be constructed. If a sub-set of methods is needed to

simplify the subsystem use, then a facade class should be created, to interface to the

proxy class. It is generally poor design to make the proxy both the facade, adapter

and decorator (though this is likely to be the case, as the code evolves over time).

When a language, like Java, lacks multiple inheritance, we can only rely upon

single inheritance or delegation as a means toward code reuse. The drawback of

delegation is the constant updating of the proxy code needed to communicate the

computing context to the delegate. Our means of automating the synthesis of

delegation code is like the pre-processor approach of the Jamie system used by

[Viega]. A problem with Jamie is that it extends the language by creating a macro-

preprocessor. Aside from JSP technology, Java has no macros. This enables
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symbolic debuggers to work directly with source code that has been seen by (and

perhaps, written by) humans.

Jamie provides a means for performing dynamic delegation. This is inherently less

efficient that static multiple inheritance and static multiple inheritance is less efficient

(and less safe) than static delegation. Our technique of semi-automatic static proxy

delegation enables inlining of code so that invocations are expanded, something

Jamie and the dynamic proxy classes of Jdk 1.3 cannot do.

The use of reflection to automatically generate static delegation code, even if the

original source code is unavailable, is new. This can assist in the creation of

facades and toolkits [Gamma 1995].

4. A Real-example

In this section we describe an example of the Proxy class that is generated by the

DelegateSynthesizer and the ReflectUtil class. The effect is to alter the interface to

the delegates so that it is simpler to use, without having to change any of the

existing code. For example, in order to use the ReflectUtil and the

DelegateSynthesizer in the past, we would write:
public static void main(String args[]) {
DelegateSynthesizer ds = new DelegateSynthesizer();
ReflectUtil ru = new ReflectUtil(ds);
ds.add(new java.util.Vector());
ds.process();
System.out.println(

ds.getClassString());
}

Now we write:
public static void main(String args[]) {
Proxy p = new Proxy();
p.add(new Vector());
p.process();
System.out.println(

p.getClassString());
}



18

The Proxy class contains all the methods of the ReflectUtil class and the

DelegateSynthsizer class, with a different constructor than either of the two

delegates. The constructor was coded by hand, and the class was renamed. Other

than that, the code output by:
public static void main(String args[]) {
DelegateSynthesizer ds = new DelegateSynthesizer();
ReflectUtil ru = new ReflectUtil(ds);
ds.add(ds);
ds.add(ru);
ds.process();
System.out.println(

ds.getClassString());
}

was all that was required to construct the Proxy class. We are now able to get an

automatically generated interface, called the ProxyStub by executing:
public static void main(String args[]) {
Proxy p = new Proxy();
p.add(p);
p.process();
System.out.println(p.getInterfaces());

}

This enables us to obtain the multiple-inheritance of typing that we would otherwise

have missed if we used only delegation. The Proxy class can now implement the

ProxyStub. In fact, the methods of any number of instances can be folded into a

synthesized interface.

5. The Delegate Synthesizer

This section details the implementation of the automatic proxy code synthesis via

reflection. Reflection enables a listing of methods and their signatures. These are

used to forward invocations to the delegates contained by a proxy class.  I call this

static proxy delegation, in order to differentiate it from the dynamic proxy classes

that have been introduced in JDK 1.3 [Sun 2000].
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The DelegateSynthesizer class generates Java source code that automatically

wrappers all the invocations to a list of delegate instances. As an example, consider

the programmer who establishes a set of classes based on mammals and humans:
class Mammal {

public boolean isHairy() {
return true;
}

}
class Human extends Mammal {

public String toString() {
return "human";

}
}

This seems like standard stuff. A Human is a kind of Mammal. As a result, the

extends shows a sub-classification of the Mammal class. Also, we recognize that

the cardinality of the set of all mammals is smaller than the set of all humans. Thus,

extends represents a kind of knowledge about taxonomic hierarchies.

Suppose we want graphics in our system. We define a new class called Movable:
class Movable {

int x = 0;
int y = 0;

public void move(int _x, int _y) {
x = _x;
y = _y;

}
}

To add features to the Movable class, we create the Graphics class:
class Graphic extends Movable {

public void erase() {
move(-1,-1);

}
}

The sub-classification of Mammal has a different intention than the extension of the

Movable class. We only extended Movable to inherit an implementation, not to

describe a taxonomy!
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In order to obtain a graphic-human (i.e., a class that represents a human that can be

drawn) we require delegation. To invoke the DelegateSynthesizer we write:
Vector v = new Vector();
v.addElement(new Human());
v.addElement(new Graphic());
DelegateSynthesizer ds = new DelegateSynthesizer(v);
ds.print();

The output follows:
// automatically generated by the DelegateSynthesizer
public class HumanGraphic {

// constructor:
public HumanGraphic(

Human _human,
Graphic _graphic){
human = _human;
graphic = _graphic;

}

 Human human;
public java.lang.String toString(){
return human.toString();

}
public boolean isHairy(){
return human.isHairy();

}
 Graphic graphic;

public void move(int v0,int v1){
graphic.move(v0,v1);

}
public void erase(){
graphic.erase();

}
}

Thus, the HumanGraphic class has all the public methods in both the Human class

and the Graphic class.

Several policy decisions were made during the generation of the proxy class. First,

it was decided that only public methods would be exposed using this technique.

Second it was decided that the base java.lang.Object class should be eliminated

from the generated proxy class. Thus, no member variables are made visible in the



21

generated proxy class. Also, any native, abstract, or final modifiers are removed.

Finally, any static declarations are redeclared to be dynamic, since an instance of

the delegate is required for the proxy to work.

5.1. Implementation of the DelegationSynthesizer

The implementation of the DelegationSynthesizer was filled with special cases of

various string manipulation and reflection routines. The goal is to provide support

for a GUI that enables the programmer to disambiguate conflicting method

signatures. Figure 5.1-1 shows an image of a GUI that enables the programmer to

disambiguate conflicting method names using a manual selection technique.
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Figure 5.1-1. The Disambiguation Dialog

The disambiguation dialog will generate a proxy class using either topological

sorting or manual selection. In fact, if the preference is toward manual selection,

there is no need for a GUI at all (we can let the process work automatically). If the

programmer would like to select the methods to be used, some sort of GUI eases

the process.
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Several string manipulation procedures are used to simplify the presentation of

instances and methods. For example, to strip the package name from a string we

use:
public static String stripPackageName(String s) {
int index = s.lastIndexOf('.');
if (index == -1) return s;
index++;
return s.substring(index);

}

Proper naming is also required. For example the default string representation of the

name of an array of classes is:
[Ljava.lang.Class

To get the type name to look like an array, we use:
public static String getTypeName(Class type) {

if (! type.isArray())
return type.getName();

Class cl = type;
int dimensions = 0;
while (cl.isArray()) {
    dimensions++;
    cl = cl.getComponentType();
}
StringBuffer sb = new StringBuffer();
sb.append(cl.getName());

for (int i = 0; i < dimensions; i++)
    sb.append("[]");

return sb.toString();
}

This yields types like:
 java.lang.Class[]

To get the parameters for a method we use:
public String getParameters(Method m) {
StringBuffer sb = new StringBuffer("");
Class[] params = m.getParameterTypes(); // avoid clone

    for (int j = 0; j < params.length; j++) {
sb.append(
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getTypeName(params[j])+ " v"+j);
if (j < (params.length - 1))

    sb.append(",");
}
return sb.toString();

}

This allows for multiple parameters with synthesized variable names, like:
public java.lang.reflect.Method getMethod(

java.lang.String v0,java.lang.Class[] v1){
return class.getMethod(v0,v1);

}

To get the parameters for a lengthy delegation constructor we use:
public String getConstructorParameters() {
StringBuffer sb = new StringBuffer("\n\t");
for (int i=0; i < instanceList.size(); i++) {

ReflectUtil ru = new ReflectUtil(
instanceList.elementAt(i));

String instanceName =

stripPackageName(ru.getClassName()).toLowerCase();
sb.append(ru.getClassName()

+ " _"
+ instanceName

);
if (i < instanceList.size() - 1)

sb.append(",\n\t");
}
return sb.toString();

}

This allows us to get the parameters of a constructor formed from the Class class

and the ReflectUtil class:
// constructor:
public ClassReflectUtil(

java.lang.Class _class,
ReflectUtil _reflectutil){
class = _class;
reflectutil = _reflectutil;

}

The constructors’ body is obtained using:
private String getConstructorBody() {
StringBuffer sb = new StringBuffer("\n\t");
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for (int i=0; i < instanceList.size(); i++) {
ReflectUtil ru = new ReflectUtil(

instanceList.elementAt(i));
String instanceName =

stripPackageName(ru.getClassName()).toLowerCase();
sb.append(

instanceName
+ " = _"
+ instanceName
+ ";"

);
if (i < instanceList.size() - 1)

sb.append("\n\t");
}
return sb.toString();

}

5.2. The DelegateSynthesizer

The code for the DelegateSynthesizer follows:
1.    import java.lang.reflect.*;
2.    import java.util.*;
3.
4.    public class DelegateSynthesizer {
5.      private String className = "";
6.      private String methodList = "";
7.      private Vector instanceList ;
8.

The Vector holds a list of instances that are processed during the construction.
9.      public DelegateSynthesizer(Vector _instanceList) {
10.         instanceList = _instanceList;
11.         for (int i=0; i < instanceList.size(); i++)
12.             processInstance(instanceList.elementAt(i));
13.     }
14.

The getConstructorParameters returns a string that will pass in the instances to be

used for the delegation. The instance names are formulated by taking the class

names, converting them to lower case and prepending them with an “_” character.
15.     public String getConstructorParameters() {
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16.         StringBuffer sb = new StringBuffer("\n\t");
17.         for (int i=0; i < instanceList.size(); i++) {
18.             ReflectUtil ru = new ReflectUtil(
19.                 instanceList.elementAt(i));
20.             String instanceName =
21.

stripPackageName(ru.getClassName()).toLowerCase();
22.             sb.append(ru.getClassName()
23.                 + " _"
24.                 + instanceName
25.             );
26.             if (i < instanceList.size() - 1)
27.                 sb.append(",\n\t");
28.         }
29.         return sb.toString();
30.     }

The getConstructorBody performs a series of operations so that the delegates are

internally held by the synthesized class. The member variable names are formulated

by using the class names, without the package prefix, after conversion to lower

case.
31.     private String getConstructorBody() {
32.         StringBuffer sb = new StringBuffer("\n\t");
33.         for (int i=0; i < instanceList.size(); i++) {
34.             ReflectUtil ru = new ReflectUtil(
35.                 instanceList.elementAt(i));
36.             String instanceName =
37.

stripPackageName(ru.getClassName()).toLowerCase();
38.             sb.append(
39.                 instanceName
40.                 + " = _"
41.                 + instanceName
42.                 + ";"
43.             );
44.             if (i < instanceList.size() - 1)
45.                 sb.append("\n\t");
46.         }
47.         return sb.toString();
48.     }
49.

The processInstance is invoked by the constructor. It synthesizes the proxy class

using a name that concatenates the class names, without the package names.
50.     private void processInstance(Object o) {



27

51.         ReflectUtil ru = new ReflectUtil(o);
52.         String cn = stripPackageName(ru.getClassName());
53.         String instanceName = cn.toLowerCase();
54.         className = className +
55.             stripPackageName(cn);
56.         Method m[] = ru.getAllMethods();
57.         methodList = methodList
58.             + " "+ ru.getClassName() +" "+ instanceName +

";\n"
59.             + getMethodList(m,instanceName);
60.     }

The getMethodList uses an array of methods to create the Java code needed to

delegate to an instance.
61.     public String getMethodList(Method m[],String

instanceName) {
62.         String s = "";
63.         for (int i=0; i < m.length; i++)
64.             s = s + getMethodDeclaration(m[i],

instanceName) + "\n";
65.         return s;
66.     }

The getMethodDeclaration works on public methods. The declaration makes use of

parameters and an instance that is to serve as the delegate for the implementation of

the method.
67.     public String getMethodDeclaration(Method m, String

instanceName) {
68.         if (isPublic(m))
69.             return "\t"
70.                 + "public" // strip out other modifiers.
71.                 + " "
72.                 + getReturnType(m)
73.                 + " "
74.                 + m.getName()
75.                 + "("
76.                 + getParameters(m)
77.                 + "){\n\t"
78.                 + getInvocation(m,instanceName)
79.                 + "\t}";
80.         return "";
81.     }
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The getReturnType uses reflection to obtain the type of the return. It then uses

getTypeName to map that type into a string. The string papers over the string

normally returned to make it Java compatible.
82.     public static String getReturnType(Method m) {
83.         return  getTypeName(m.getReturnType());
84.     }
85.

The isReturningVoid method returns true if the method, indeed, returns void.
86.     public static boolean isReturningVoid(Method m) {
87.         return getReturnType(m).startsWith("void");
88.     }

The getModifiers method returns a string of all the modifiers (i.e.,public static

abstract, etc.).
89.     public static String getModifiers(Method m) {
90.         return Modifier.toString(m.getModifiers());
91.     }

When formulating the delegation, we must not return in the body of the delegation

method, if the method returns void. Thus, we get a string that represents an

optional return:
92.     private String getOptionalReturn(Method m) {
93.         if (isReturningVoid(m)) return "";
94.         return "return ";
95.     }

The getInvocation class synthesizes a series of variables, v0, v1, v2... which are

used when formulating the delegation.
96.     private String getInvocation(Method m, String

instanceName) {
97.         StringBuffer sb = new StringBuffer(
98.             "\t"
99.             + getOptionalReturn(m)
100.                    + instanceName
101.                    + "."
102.                    + m.getName()
103.                    + "("
104.                );
105.                Class[] params = m.getParameterTypes();
106.
107.                for (int j=0; j < params.length; j++) {
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108.                    sb.append("v"+j);
109.                    if (j < (params.length - 1))
110.                        sb.append(",");
111.                }
112.                sb.append(");\n");
113.                return sb.toString();
114.            }

The getParameters method is used by the getMethodDeclaration to obtain the

arguments to the proxy classes’ presentation to the outside word. If you wanted to

add exception handling by finding out what exceptions are thrown in a given

method, this is a place to add it.
115.            public String getParameters(Method m) {
116.                StringBuffer sb = new StringBuffer("");
117.                Class[] params = m.getParameterTypes();
// avoid clone
118.                for (int j = 0; j < params.length; j++) {
119.                    sb.append(
120.                        getTypeName(params[j])+ " v"+j);
121.                    if (j < (params.length - 1))
122.                        sb.append(",");
123.                }
124.                return sb.toString();
125.            }
126.

The getTypeName is a helper method that maps the type into a name that can be

compiled by Java. The work occurs when the type is not an array.
127.            public static String

getTypeName(Class type) {
128.
129.                if (! type.isArray())
130.                    return type.getName();
131.
132.                Class cl = type;
133.                int dimensions = 0;
134.                while (cl.isArray()) {
135.                    dimensions++;
136.                    cl = cl.getComponentType();
137.                }
138.                StringBuffer sb = new StringBuffer();
139.                sb.append(cl.getName());
140.
141.                for (int i = 0; i < dimensions; i++)
142.                    sb.append("[]");
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143.
144.                return sb.toString();
145.            }
146.
147.

The isPublic method is used to determine if a method will be used for delegation.

The policy is that only public methods will be available for delegation. If you

wanted to change this policy, you could create an isPublicOrDefault method. This

would return true if default visibility were to be passed to delegates. This might be

used to transform methods with default visibility into public methods for inter-

package communication via a facade. See Section 1.4 for more information about

facades.
148.            public static boolean isPublic(Method m) {
149.                return
150.                 Modifier.toString(

m.getModifiers()).startsWith("public");
151.            }

We lop off the package name to create instance names for the delegates. This is

done via a simple string manipulation. A more robust approach might be used that

senses if the resulting string, when converted to lower-case, results in a reserved

word. In such cases, a simple alteration to the string is in order and this might be a

good place to do it.
152.            public static String stripPackageName(String

s) {
153.                int index = s.lastIndexOf('.');
154.                if (index == -1) return s;
155.                index++;
156.                return s.substring(index);
157.            }

The first pass, performed during construction, instantiates a series of member

variables in the DelegateSynthesizer. These variables are used to permit the creation

of the constructor body. If this code were to be optimized, it would be to transform

it into a single pass process. As it is, speed is not a factor.
158.            private String getConstructor() {
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159.                // public className(class1
_class1Instance, class2 _class2Instance...) {

160.                //    class1Instance = _class1Instance;
161.                //  class2Instance = _class2Instance;
162.                //}
163.                return "\n// constructor: \npublic "
164.                    + className
165.                    + "("
166.                    + getConstructorParameters()
167.                    +"){"
168.                    + getConstructorBody()
169.                    + "\n}\n\n";
170.            }

The getClassString method is the top-level means for generating the proxy class. If

the output is to be retargetted to a live, on-line, compiler, or a swing interface, or a

file, this would be the method to call. It can easily be wrappered so that the code

generated can be redirected.
171.            public String getClassString() {
172.                return
173.  "// automatically generated by the DelegateSynthesizer"
174.                    +"\npublic class "
175.                    + className
176.                    + " {\n"
177.                    + getConstructor()
178.                    + methodList
179.                    + "}\n";
180.            }
181.            public void print() {
182.                print(getClassString());
183.            }
184.            private void print(Object o) {
185.                System.out.println(o);
186.            }
187.
188.

The following code example generates a proxy for the

DelegateSynthesizerReflectUtil class. This class combines the public methods of

both classes. Thus the DelegateSynthesizer can generate delegates for itself.
189.            public static void main(String args[]) {
190.                Vector v = new Vector();
191.                v.addElement(

new DelegateSynthesizer(v).getClass());
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192.                v.addElement(new ReflectUtil(v));
193.                v.addElement(new DelegateSynthesizer(v));
194.                DelegateSynthesizer ds =

new DelegateSynthesizer(v);
195.                ds.print();
196.            }
197.    }

6. Conclusions

We have reviewed different techniques for adding features to classes. We discussed

using language extension to add delegation, language extension to add multiple

inheritance, API extension to add delegation and API extension to add manual

delegation. Approaches that use language extension fail for pragmatic reasons (lack

of compatible tools, slow adoption, slow code, etc.). Approaches that use API

extension are easier to deploy, in general, since they work with existing

frameworks.

There are two basic kinds of delegation, dynamic and static. The dynamic

delegation works at run-time and makes type safety impossible. The static

delegation works at compile time and is generally type-safe. There are two kinds of

static delegation, manual and automatic. The manual delegation requires

programmers to generate method forwarding code. A process that is both error-

prone and tedious. The automatic static delegation has been shown to be an easy to

deploy technique that gives programmers the freedom to generate large proxy

classes that are both type-safe and easy to understand.

The automatic synthesis of proxy class technique makes modification of the method

forwarding mechanics trivial. It also isolates client code from changes in the

interfaces in the delegates (called the adapter pattern). The adapter controls the

brittleness of a subsystem from propagating to client classes. As changes (i.e.,

deprecations) are introduced into an API, the rest of the system can remain

unchanged. The synthesis technique shown here allows for incrementally checking
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the synthesized code in an interactive system. It also allows for the resolution of

ambiguity using topological sorting in an automatic fashion.

There are several problems with the automatic delegation code generated from

reflection. Exception handling will have to be explicitly supported, if desired,

inside of the delegate method. It was not clear that the throws clause should be

added to the methods that throw exceptions, or if they should be handled locally.

As a result, this was left to the programmer.

Any methods that are commonly held in two or more delegate instances will have a

name-space conflict. It is not clear how to automatically resolve these conflicts. If

we use topological sorting, like C++ does, we may have the same fruitful source of

bugs that C++ has. As a result, we have adopted a policy that programmers’ must

decide how to resolve conflicting method names. This is not easy. For example, if

the code generated removed duplicate method declaration, what would be a

reasonable policy to use? Suppose that a Human knows how to print itself, using a

print statement. Suppose that the Graphic class has a print statement. It might be

reasonable to print both delegates. On the other hand, suppose both have a toString

method. In that case, it might be reasonable to concatenate the toString results from

both instances. Thus, the programmer must intervene to correct the duplication of

method signatures.

If the name of a class has an upper-case version of a reserved word (like the class

Class), then the delegate synthesizer will generate code that will fail to compile.

That is because it is not smart enough to know the reserved word when it sees one.

Aside from making the code smarter, a simple replace-string (executed by the

programmer) will fix the problem.

The facade design pattern creates a single class that communicates with a collection

of related classes. For example, ReflectUtil, Class, DelegationSynthesizer are all

related to introspection. The DelegationSynthesizer can be used to create a proxy



34

class that delegates to itself, and the ReflectUtil and Class classes. Client instances

need only be aware of the new ReflectUtilClassDelegationSynthesizer. This

protects the clients from changes in the API (i.e., deprecation). It can also shield

the clients from the complexity of using the individual classes. This is particularly

true if the programmer takes care to simplify the constructor of the facade. This also

prevents knowledge of the order of construction from being required in the client

classes. If the specification changes on the delegate, and the proxy alters the

forwarding methods to protect the client classes from the change, then the proxy

ceases to be a simple proxy. The proxy becomes an example of the adapter pattern,

stabilizing the interface  seen by the clients [Gamma 1995].

The approach to delegation using static binding enables inlining of code. The

inlining optimizes the code by eliminating the forwarding methods, when possible,

by the compiler. Thus static delegation does not suffer from performance

degradation, like dynamic delegation does.

In brief:

1. Dynamic delegation is more automatic than static delegation.

2. Dynamic delegation is not type-safe, but static delegation is.

3. Automatic static delegation is almost as automatic as dynamic delegation,

and just as type safe as static delegation.

The choid between static and dyanmic typing is like the choice between safety and

flexibility. [Agesen].

Multiple-inheritance is not an option in Java. The following are some heuristics for

the use of the approach outline in this paper:

If polymorphism is needed, then use the automatically generated interface

stubs, that our API provides.

If proxies are needed, then use our API for generating proxies.

If source code is unavailable, there may be little other choice.
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If source code is available, refactoring by hand may lead to better code, but

may have an effect on a large number of client classes and require

testing.

If many programmers require a stable interface, then use the automatically

generated interface stubs, and create a facade for a contract that enables

control and use of the subsystem.

Use the proxy to reuse the implementations. In the case where the contracts

shift in the delegates, allow the facade to become an adapter-facade-

proxy, in order to protect your clients.

Deepening subclasses in order to add features is a fast way to create poor code that

is very fragile. It is a poor way to introduce sub-typing. Only use subclasses if the

class theoretic approach is appropriate to the domain, and then only if the

taxonomic hierarchy is unlikely to change.

7. Future Work

In the future we would like to expand the DelegateSynthesizer so that methods that

require exception handling are thrown in the proxy class.

It would improve the generated code if the DelegateSynthesizer  if it included the

Javadoc from the delegate’s method in its output code. This would enable a

preservation of the input documentation. Unfortunately, access to the source code

would be required for this to work.

A proxy class helps to isolate a system from deprecations in the delegate methods.

Sun’s repeated introduction of deprecation into its API’s has become epidemic and

is a topic of future research.
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