
Local Supercomputing Training in the Computational

Sciences Using National Centers

Floyd B. Hanson, University of Illinois at Chicago

Abstract

Local training for high performance computing using remote national supercomputing centers is

di�erent from training at the centers themselves. The local site computing and communication

resources are a fraction of those at the national centers. However, training at the local site has

the potential of training more computational science and engineering students in high performance

computing by including those who are unable to travel to the national center for training. The

experience gained from supercomputing courses and workshops in the last seventeen years at the

University of Illinois at Chicago is described. These courses serve as the kernel in the program for

training computational science and engineering students. Many training techniques, such as the

essential local user's guides and starter problems, that would be portable to other local sites are

illustrated. Training techniques are continually evolving to keep up with rapid changes in super-

computing. An essential feature of this program is the use of real supercomputer time on several

supercomputer platforms.

Keywords: High performance computer training, Supercomputing education, Computational

sciences.

1 Introduction

High performance computing education is important for keeping up with the rapid changes in

computing environments. The training of computational science and engineering students in the

most advanced supercomputers makes it less likely that their training will become quickly obsolete

as with conventional computer training. Rapid changes in supercomputing causes concern for some,

yet supercomputing remains with us although changed in character, provided we accept the notion

that the term supercomputing refers to the most powerful computing environments at the current

time. Preparation in high performance computation is preparation for the future of computation.

The problem is that most universities and colleges do not have on-site supercomputer fa-

cilities and only a small fraction of the infrastructure. The computational environment for remote

access at these institutions to the national or state supercomputer centers may not be up to the

quality of the computing environment for access at the centers. In additional, while the the remote

centers may have excellent training facilities, many students lack the mobility, both in �nances and

time, to travel to the remote center for training. Thus, local supercomputing training is important

for making the educational bene�ts and computational power of supercomputers available to large

numbers of students with only electronic access to remote national and state centers. This paper is

designed to share practical supercomputer training advice gained from a long experience to other

1



Local Supercomputer Training 2

local instructors in hope of reducing the burden of local training. The goal is to give the local stu-

dents local supercomputing training comparable to the resource rich national centers using limited

resources.

The University of Illinois at Chicago has pioneered local use of remote national supercom-

puter centers to train its computer science, applied science and engineering graduate students in the

use of available highest performing computers to solve the large problems of computational science.

The training has been at two levels, Introduction to Supercomputing [6] and Workshop Program on

Scienti�c Supercomputing [5]. Starting in the 1985 academic year, the students of the introductory

course have done group projects on massively parallel processors and vectorizing supercomputers.

For the 1987 academic year, N. Sabelli with the author conceived of the UIC Workshop

Program on Scienti�c Supercomputing [5], the second level. Recently, due to program down-sizing

at the University of Illinois, the workshop has been scaled down from full-time to multi-hour

workshop course and is currently merged with the introductory course, maintaining a good part of

the kernel of the original workshop. The workshop di�ered from the introductory course in that the

graduate students had to bring a thesis or other computational science and engineering research

problem along with code needing optimization, topics include a far wider range of computer topics

than the course, and outside experts are brought in to lecture. The workshop course served as the

advanced course to follow the introduction to supercomputing course. We have made signi�cant

changes for both introductory and workshop courses in course structure and contents since our

earlier reports [6, 5], along with corresponding signi�cant advances in supercomputing.

An objective is to train students in the use of supercomputers and other high performance

computers, in order to keep their computer training at the leading edge. Other objectives are to

give students background for solving large computational science research problems, and developing

new parallel algorithms. The long range goal is to make the students better prepared for future

advances in high performance computing.

A very early version of this paper was presented at the February 1994 DOE High Per-

formance Computing Education Conference in Albuquerque on the panel Laboratory and Center

Educational Training E�orts. The following sections describe the current introductory supercom-

puting course, the supercomputing workshop and related topics for the purpose of communicating

the Chicago experience to others who are implementing a similar local supercomputing training

courses.

2 Introductory Supercomputing Course Description

The introductory supercomputer course covers both theoretical developments and practical appli-

cations. For practical applications, real access to supercomputers and other advanced computers

is obviously essential. Almost all all theoretical algorithms have to be modi�ed for implementation

on advanced architecture computers to gain optimal performance. Loops or statements may have

to be reordered and data structures altered, so that data dependencies are minimized and load

balancing of processors is maximized. Also, the selection of the best algorithm usually depends on

the critical properties of the application and of the hardware.

Access to several advanced machine architectures greatly enhances the learning experience,

by providing a comparison of architectures and performance. One of the best way to understand

one supercomputer is to learn about another platform. Recent o�erings have used Cray Y-MP,

C90, T3D, T90 and T3E, as well as Connection Machine CM-5. The average enrollment has been

about 16 students according the �nal grade count.

MCS 572 Introduction to Supercomputing is a one semester course that is intended to entry-



Local Supercomputer Training 3

level give graduate students of the University of Illinois at Chicago a broad background in advanced

computing, and to prepare them for the diversity of computing environments that now exist.

All o�erings of this course, from the 1986 academic year to the present, were based on

many journal articles, books, and the our own research experience in advanced computing. The

students were mainly evaluated on their performance on theoretical homework, individual computer

assignments, and major group project reports, as well as their presentation to the class. Over

the years, the students completed advanced group computer projects on the Argonne National

Laboratory Encore MULTIMAX, Alliant FX/8 and IBM SP2 parallel computers, on the NCSA

Cray X-MP/48, Cray Y-MP4/64, Cray 2S, Connection Machine CM-2, and Connection Machine

CM-5, on the PSC Cray C90 and Cray T3D, and on the SDSC Cray T90 and T3E.

Perhaps, the best way to describe the course contents is to list a recent course semester

syllabus:

Introduction to Supercomputing Course Syllabus (Abbreviated)

Catalog description: Introduction to supercomputing on vector, parallel and massively par-

allel processors; architectural comparisons, parallel algorithms, vectorization techniques, paral-

lelization techniques, actual implementation on real machines (Cray super vector and massively

parallel processors).

Prerequisites: MCS 471 Numerical Analysis or MCS 571 Numerical Methods for Partial Dif-

ferential Equations or consent of the instructor. Graduate standing.

Semester Credit hours: 4

List of Topics Hours.

� Introduction to advanced scienti�c computing. 3 hours.

� Comparison of serial, parallel and vector architectures. 3 hours.

� Performance measures and models of performance. 3 hours.

� Pure parallel algorithms and data dependencies. 3 hours.

� Optimal code design. 3 hours.

� Loop optimization by reformulation. 6 hours.

� Code implementation on vectorizing supercomputers (eg, Cray T90). 5 hours.

� Code implementation on massively parallel processor (eg, T3E). 4 hours.

� Parallel programming interfaces (eg, MPI, PVM). 6 hours.

� Code implementation on hybrid and distributed parallel processors. 3 hours.

� Block decomposition and iteration methods. 6 hours.

� Total. 45 hours.

Required Texts:

� F. B. Hanson, A Real Introduction to Supercomputing, in \Proc. Supercomputing '90",

pp. 376-385, Nov. 1990.

� F. B. Hanson, "MCS572 UIC Cray User's Local Guide to NPACI-SDSC Cray T90 Vector

Multiprocessor and T3E Massively Parallel Processor, v. 14, http://www.math.uic.edu-

/�hanson/crayguide.html, Fall 2000.

� J. J. Dongarra, I. S. Du�, D. C. Sorensen and H. A. van der Vorst, Numerical Linear

Algebra for High-Performance Computers, SIAM, 1998.

The following discussion will selectively focus on some of the topics covered in this course.



Local Supercomputer Training 4

2.1 Texts

One di�culty in teaching MCS572 Introduction to Supercomputing is the choice of a text or texts,

especially when real supercomputers are used. There are a super number of books available on high

performance computing, parallel processing, and related issues. However, most of these references

are either over-specialized, too theoretical, or out of date. The rapid changes in supercomputing

technology cause many of the supercomputing references to quickly become out-of-date, espe-

cially if there is a strong emphasis on a small set of real machines. Although no single text was

used in this course, if we had to choose one text for the Introduction to Supercomputing course,

some possible choices that cover a broad range of supercomputing topics are Dongarra et al. [1],

Levesque and Williamson [10], Golub and Ortega [3], Hwang [9], Ortega [11], and Quinn [13].

However, many of the other references have been used for particular topics. World Wide Web

(WWW) links to many on-line web hypertexts are given on the class home page at the web address

http://www.math.uic.edu/�hanson/sylm572.html and a much more extensive list of supplementary

references is given at http://www.math.uic.edu/�hanson/superrefs.html.

2.2 Architecture

Our introductory course starts out with the basic architectural elements of serial, vector, shared

and distributed memory parallel, and vector multiprocessor machines [9]. We believe it is impor-

tant students have a good mental image of what is happening to data and instruction 
ow between

memory, processing units and registers. Otherwise, students will have di�culty in understanding

parallel and vector optimization techniques later in the course. We supplement the Flynn's simple

computer classi�cation (SISD, SIMD and MIMD) [9] by how real complications modify the classi�-

cation, such as vector registers, vector operations, pipelining, bus communication networks, shared

memory and distributed memory. Also, an early explanation that asymptotic pipeline speed-up is

the number of pipeline stages [9] provides motivation for less than ideal vector speed-up found in

practice.

2.3 Performance Models

The discussion of performance models is also helpful, because they give simply understood charac-

terizations of the power of supercomputers. The simplest model is the classical Amdahl Law for a

parallel processor,

Tp = [1� �+ �=p] � T1; (1)

where the execution or CPU time on p parallel processors depends on the parallel fraction � and is

proportional to the time on one processor T1, which should be the time for the best serial algorithm.

This model assumes that the parallel work can be ideally divided over the p parallel processors and

leads to Amdahl's law for the saturation of the speed-up Sp = T1=Tp at the level 1=(1 � �) in the

massively parallel processor limit p �!1, i.e., that parallelization was limited. An analogous law

holds for vectorization. The de�ciency with this law is that it is too simplistic and is no match

for either the complexity of supercomputers or the size of applications that are implemented on

current supercomputers. Indeed, one principal 
aw in Amdahl's law is that the parallel fraction

is not constant, but also depends on the problem size, � = �(N), and as computers become more

super, computational users are apt to solve larger problems than they had been able to solve before.

A modi�cation [7] of Amdahl's law for problem size, where the major parallel work is in

loops of nest depth m with N iterations in each loop of the nest, leads to the formula

Tp = � � [K0 +Km �N
m=p]; (2)



Local Supercomputer Training 5

where � is some time scale, K0 is a measure of scalar or non-loop work and Km is a measure of loop

nest work. Comparison of (2) and Amdahl's model (1) leads to the nearly ideal parallel fraction

�(N) = 1�
K0

K0 +KmNm
�! 1; (3)

in the large problem limit N �!1, a limit not represented in the original Amdahl's law. E�cient

use of supercomputers requires large problems.

Another useful modi�cation of Amdahl's law is for linear parallel overhead

Tp = [1� �+ �=p] � T1 + � � (p� 1); (4)

developed as a model of the 20-processor Encore Multimax parallel computer performance to con-

vince students that they needed to run larger problems to get the bene�t of parallel processing.

A Unix fork command was used to generate parallel processes and a performance evaluation mea-

surement indicated that the cost was linear for each new process. The speedup for this model has

a maximum at p� =
p
�T1=� , so that as p ! +1, the speedup decays to zero. Hence, if the

student's work load, T1, is su�ciently small, a slow-down occurs for a su�ciently large number of

processors, and the student sees no bene�t in parallel processing, but the model demonstrates that

Supercomputers Need Super Problems. The model and the story behind it always works for new

students and prepares them to think beyond the toy problem homework assignments of regular

classes.

Hockney's [8] asymptotic performance measures are another procedure for avoiding Am-

dahlian size dependence insensitivity and are used in the Top 500 Supercomputer Sites fhttp:-

//www.top500.org/g. The question of size dependence is also related to scaled speed-up ideas used

by Gustafson and co-workers [4] in the �rst Bell award paper. Scaled speed-up is based on the idea

that is the inverse of Amdahl's, in that users do not keep their problem sizes constant (i.e., keep

T1(N) �xed), but increase their problem size N to keep their turn around time, i.e., Tp, constant

as computer power increases. Also, scaled speed-up implies that speed-up may be computed by

replacing T1(N) by r times the time on a N=r fraction of the problem, since a single Massively

Parallel Processor CPU cannot compute the whole problem.

2.4 Supercomputer Precision

Another feature that may have been overlooked in some supercomputing courses is numerical pre-

cision, but is not as important as it was in the past due to a near uniform adoption of IEEE 
oating

point standards [12] (See also http://www.math.uic.edu/ hanson/mcs471/FloatingPointRep.html).

At a more basic level is the di�erence in numerical representation was found in bit-oriented arith-

metic such as on Cray or IEEE systems and byte-oriented arithmetic of IBM main-frames or similar

systems. This lead to bad judgment and confusion for beginners, especially for such things as stop-

ping criteria or the comparison of results and timings from di�erent machines. The IBM 32-bit

Fortran77 byte-oriented single-precision arithmetic uses 3 bytes (24 bits) for the decimal fraction

and 1 byte for the exponent and sign in hexadecimal (base 16) representation. However, IBM

64-bit, byte-oriented, double precision arithmetic uses 7 bytes for the fraction and the same 1 byte

for the exponent and signs. Byte-oriented double precision is more than double.

Bit-oriented arithmetic comes in several 
avors. On its vector supercomputers, Cray uses

64 bits for its single precision, with 48 bits for the fraction and 16 bits for the exponent and sign,

but uses 128 bits for its double precision with 96 bits for the fraction and 32 bits for the exponent

and sign, i.e., authentic double precision. IEEE Precision is also bit-oriented and is used on many



Local Supercomputer Training 6

recent machines including Cray massively parallel processors, but single and double precision are

roughly half of the corresponding precision on Cray vector machines. The IEEE Precision [12]

comes with several new concepts such as Not a Number (NaN), rounding to even, INFINITY and

gradual under
ow to zero that may confuse new users. Most vendors have pledged to adopt the

IEEE Precision standard.

These di�erences show up in the truncation errors. For internal arithmetic, the default

truncation, contrary to popular opinion, has usually been chopping or rounding down, unless a

di�erent type of rounding is requested, such as in output. However, the IEEE Precision standard

uses rounding to even. The features of these precision types are summarized in Table 1. The last

Table 1: SuperComputer Precision:

Floating Point Precision Machine Equivalent

Precision base digits Epsilon Decimal

Type b p b1�p Precision

IBM Single 16 6 0.95e-06 07.02

IBM Double 16 14 0.22e-15 16.65

IBM Quad 16 28 0.31e-32 33.51

Cray Single 2 48 0.71e-14 14.45

Cray Double 2 96 0.25e-28 29.59

CM & IEEE Single 2 24 0.12e-06 07.92

CM & IEEE Double 2 53 0.22e-15 16.65

Sun Sparc 2 53 0.22e-15 16.65

VAX D Float 2 56 0.28e-16 17.56

column gives the equivalent decimal precision which corresponds to the e�ective number of decimal

digits (p10) if the decimal machine epsilon (101�p10) were equal to the machine epsilon (b1�d) in

the internal machine base (b). From this table, the di�erent precision types can be summarized as

ibm-sgl<ieee-sgl�cray-sgl<ibm-dbl=ieee-dbl�cray-dbl<ibm-quad

2.5 Data Dependencies

The topic of data dependencies is of the utmost importance for parallel and vector optimization

of code. Wolfe's [14] monograph gives a current description of dependencies, and a multitude of

other optimization techniques. A useful observation about reducing data dependencies and anti-

dependencies, in order to optimize code performance, is that the dependencies or anti-dependencies

that inhibit vectorization are usually the same ones that inhibit parallelization. Thus a good

instructional technique is to treat vectorization as a primitive kind of parallelization, avoiding most

of the arti�cial historical distinctions.

2.6 Fortran Extensions

Many Fortran compilers for advanced computers, such as the Crays and the Connection Machine

accept Fortran 90 array notation extensions. These extensions not only simplify the supercomputer

programmer's coding tasks but, more importantly, facilitate the automatic optimizing compiler



Local Supercomputer Training 7

recognition of optimizable array constructs. Making sure that each statement in a potentially

vectorizable loop is a vector or array statement in the loop's index will maximize the performance

in a powerful vectorizing compiler such as those on a Cray. Use of array notation and collecting

like-size statements together is an e�ective optimization technique.

In the CM-5 Connection Machine multi-faceted, massively data parallel processor, only

Fortran 90 statements (especially array statements) are computed on the CM-5 processing nodes;

otherwise statements are computed on the single processor, control nodes.

While the principal programming language of most supercomputers was once Fortran, the

C language is now more prevalent especially for computer science majors, although engineering

majors not in computer science still prefer Fortran. During the fall of 1995, the number of C

language projects became comparable to the number of Fortran projects. We have been making

an e�ort to have a bilingual approach in our lectures in the past several years.

In addition, a short crash course in the Unix operating system may be necessary if the class

is not Unix conversant, although most engineering majors are likely to be knowledgeable about

Unix.

2.7 Memory Management

There are many other topics that depend on what other 
avor the supercomputer course will

take. Related to principle of memory reference locality [9] is the principle of locality of reference

for automatic code compiler optimizations. The optimizing compiler will likely optimize only a

relatively small segment of code, and the compiler will not be too aware of values initialized very

far from the target segment. We �nd the special case of cache-based e�ects no longer seems very

relevant since the disappearance of cache-based parallel machines like the Alliant.

If Cray vector computers are used, the chaining of pipelines together can be discussed as

well as the overlapping of pipelines associated with di�erent operations or multiple pipelines [9].

Also, the notion of division of memory into banks or other segments will be helpful in explaining

memory con
icts [9] and extended dimension techniques. The discussion of gather and scatter in

hardware is useful for explaining how the Cray Y-MP can e�ciently handle data movement from

and to array with subscripts of subscripts for arguments.

On the Connection Machines memory layout also corresponds to processor layout, so that

performance will depend heavily upon how arrays are mapped to the processors which hold the

distributed memory. On the CM-5, the local memory is actually held by the Vector Units attached

to the local processing nodes and thus the Vector Units play a major role in memory management.

2.8 Message Passing Communication

A major change in the Fall 1995 semester was that we included message passing architectures

and programming into the introductory course. The current prevalence of distributed memory

processors meant we no longer could avoid message passing in supercomputing. We obtained access

to the PSC Cray T3D and the CTC IBM SP2 massively parallel processors. We used PVM (Parallel

Virtual Machine) for the T3D, since that was the best supported parallel message passing language

on that machine at the time. Implementation was di�cult and time consuming due to lack of

adequate tutorial documentation and working, up to date examples for classes. Current massively

parallel processing projects on the Cray T3E have used MPI (Message Passing Interface). We

have learned to expect some failed plans when teaching an experimental supercomputing course. It

should be noted that our supercomputing center proposals resulted in more machine power than we

had anticipated: three 512 node massively parallel processors (T3D, CM-5 and SP2) in addition to



Local Supercomputer Training 8

the 16 vector processors on the C90. Currently, we have our own adequate documentation examples

online to make message passing work for class projects.

2.9 Loop Optimizations

There are many bene�ts in reformulating programming loops (cf., [10] for examples and original

citations). One loop optimization technique is reordering nested loops for linear algebra constructs

in a column-oriented Fortran environment. Another bene�cial technique is the unrolling of loops

in Fortran for pipelined machines where some data can be retained in vector registers. Block

decomposition or strip-mining of loops can be helpful, but in many situations it can actually be

less e�cient due to greater e�ciency in automatic optimization or to interference from memory

con
icts. Bene�ts depend on the character and size of both problem and hardware and need to be

tested for each situation.

For particular machines, knowledge of the compiler loop optimization model is important,

because most of the potential optimizations are found in iterated DO-loops. Compilers will also

write the contents of subroutines at the place of the subroutine call to save on subroutine overhead

using a procedure called in-lining. Since parallelization or multi-tasking on the Cray vector multi-

processors tends to be costly, loop optimization on these machines is primarily the vectorization of

the most inner loop, where most of the loop nest work should be concentrated. On the Cray and

Connection Machine, compiler directives can, under appropriate circumstances, force optimization

where automatic optimization does not work. Loop optimization became less important as smarter

optimizing compilers did more of the optimization automatically.

One systemic problem in teaching optimization was that most students were trained to write

modular code as in C and C++, hindering optimization and a good amount e�ort was needed to

make them understand the extra overhead in modular programming with automatic optimization.

of e�ort

2.10 Code Tuning by the Compiler Model Method

Automatic optimizing compilers work on a principle of locality, in that the current program step

depends on neighboring steps or references. Understanding the model under which the machine

compiler optimizes code can help the user to enhance the performance by restructuring the code so

that the optimizable code is transparent to the compiler. Tuning code to the machine optimization

model might be called the Compiler Model Method and result in extra speed-ups over untuned code.

In the introductory supercomputing class, we use a starter problem consisting of about a

dozen poorly optimizable (e.g., \dusty deck") loops is assigned on the current Cray supercomputer.

The purpose of the problem is for the students to develop optimization skills by integrating class

techniques, before they tackle larger group projects. Thus, concentrating the beginner's learning

on a smaller, concrete problem and wasting less time on the more signi�cant assignment. The

grade on this problem is roughly inversely proportional to the CPU time the tuned, optimized

loops take, provided that the �nal storage of the original, untuned, automatically optimized code

remains unchanged and that no work is removed out of the main timing loop.

The results for the best user CPU timings on a single processor of the current Cray super-

computer over almost a decade and a half are given in Figure 1.

Results have varied considerably, but hand optimization still achieves several thousand times

speed-up on top of automatic optimization of the untuned code, beyond the expected bene�t from

automatic parallelization or vectorization. However, there has been a signi�cant change from about

3000-8000 times improvement on the Cray X-MP to about 2000 on the Cray Y-MP and successors,



Local Supercomputer Training 9

1986 1988 1990 1992 1994 1996 1998 2000
1000

2000

3000

4000

5000

6000

7000

8000

9000
Class Starter Problem History

Year

C
ra

y 
T

un
ed

 C
od

e 
Sp

ee
d−

U
p

XMP

XMP

XMP

XMP

YMP

YMP

Cray2
YMP

C90

C90

C90

T90

T90

Figure 1: History of the best speed ups for the class Cray starter problem, with the nominal Cray

vector model indicated.

the C90 and T90, likely due to improvement in automatic compiling that came with the Y-MP.

The last jump in speed-up for the T90, was due to a computer science student who was extremely

capable of unraveling recurrences. The full starter problem code is too long to present here in its

entirety, but almost all the work load is in the loop nest (n = 200) given below:

do 60 i=1,n

do 60 j=1,n

do 60 k=1,n

d1(i,j) = d1(i,j) + d2(i,j) + d3(i,j)

do 60 L = 1, 5

60 d3(i,L) = d2(i,L)*d1(i,L)

The best times were obtained by students who were able to solve the complex recurrence in this

loop nest, and these times were essentially reduced to the noise of the timer. Bear in mind that

this is very extreme example, but means that signi�cant gains can be made by hand tuning code

on top of automatic optimization, just as new parallel algorithms may lead to advances comparable

to advances in hardware.

2.11 Group Projects

We have observed that group projects appeared to reduce the amount of computer resources needed

by the students and improves shared learning. We require group projects to be big enough to be



Local Supercomputer Training 10

a realistic test of the target supercomputing systems, but small enough so as not to interfere with

the professional research conducted on the systems.

In general, these group projects have been very successful. The majority of the projects have

involved testing for optimal performance for numerical linear algebra algorithms, computational

statistics, scienti�c visualization and scienti�c applications.
A list of the group student projects follows, with short descriptions, for this one semester

and Connection Machine projects only. MCS 572 Connection Machine Group Projects, Fall

1993

1. C. Barnes and J. Goldman, A Parallel Implementation of Progressive Radiosity on the CM-5 (This

computer graphics project, concerned the computation of graphical light interaction using the radiosity

method modi�ed for progressive re�nement, also comparing CM-5 performance with and without

Vector Units to Y-MP performance).

2. S. Ginjupalli, Solving a Set of Linear Equations using Gaussian Elimination (Implementation of For-

ward Gaussian with scaling, pivoting and back substitution along with the LU decomposition in CM

Fortran on the CM-5)

3. R. Jimenez, Supercomputing Computation: A Statistical Application (Investigates di�erent data lay-

outs for basic statistical analysis including �2 test of �tness, �nding strong dependence on the number

of rows used in the data decomposition, with performance results for both NCSA Y-MP/4 and CM-5)

4. R. Kandallu, Cray Y-MP vs. CM-5 Using the Starter Problem (Explored the class Cray starter problem

on both the Y-MP and CM-5, but was unable to optimize the code so that the CM-5 was competitive).

5. M. E. Papka and T. M. Roy, Marching Cubes Revisited (Implementation of Lorensen and Cline's

Marching Cubes algorithm for generating graphical surfaces of constant value using the CM-5 CMMD

message-passing communication library, NCSA's Data Transfer Mechanism with comparisons to SGI

Onyx, Cray Y-MP/464 and CM-5 with C* implementations; CMMD performs much better than the

C* version on the CM-5 and other implementations).

6. J. J. Westman, A Survey of Square Matrix Multiplication Methods on the CM-5 (Investigates many

di�erent implementations of square matrix multiplication on the CM-5; Cannon's algorithm was the

fastest, followed closely by the built-in MATMUL function, while DOTPRODUCT and other loop

reordering techniques performed poorly).

7. Q.-L. Zhang, J.-J. Chen and Z.-X. Zhao, Testing the CMF Random Number Generator `CMF-Random'

on the NCSA Connection Machine CM-5 (Test of CMF random function using basic statistical mo-

ments up to the third).

8. Z.-H. Zhang, Iterative Methods on the CM (Comparison of CM-2 and CM-5 implementation of Fortran

90 shifting code for Laplace's equation generalized to a more general parabolic equation for the 
ow

with drift as a simpli�ed mode of 2-dimensional uniform 
ow over a circular cylinder and coupled with

the corresponding parabolic equation for conduction of heat).

The graphical visualization projects were the highlight of the projects and some of the

students were simultaneously preparing for exhibits at Supercomputing '93 and Supercomputing

'95, while taking the introductory class.

3 Supercomputing Workshop Description

For more advanced and intensive instruction in supercomputing, we have a workshop course called

MSC573-EECS574 Workshop Program on Scienti�c Supercomputing, which was formally a full

time program called the UIC Workshop Program on Scienti�c Supercomputing [5]. In the former

program graduate students spent full time for one term in the workshop and were rewarded with

a research assistantship. Now, with state universities down-sizing programs, the workshop was



Local Supercomputer Training 11

converted to a multi-hour course administered by the mathematics department and cross-listed

the electrical engineering department. Students still must bring a computational research problem

to the workshop course. Much of the computational science and engineering thrust of our local

training comes from these student research problems, which have ranged from chemical reactors to

NASA projects.

The Fall 1993 students of the workshop course had access to the Cray Y-MP4/464 at NCSA,

the CM-2 as well as CM-5 at NCSA and the ES9000 at CTC. We had six students with about two

consistent visitors during the this �rst term as a multi-hour class.

The high performance computing content remains basically the same in the workshop course

as in the program, but some of the more general education e�orts in computer science concepts

no longer �t within the time constraints. The topical semester course syllabus gives the current

contents:
Supercomputing Workshop Course Syllabus

Catalog description: Intensive laboratory immersion in supercomputing; working with existing com-

puter programs to improve their performance by scalar, vector and parallel optimization; techniques

of compilation, pro�ling, debugging under CMS and Unix. Required co-registration of 8 hours thesis

research or special projects in participant's department.

Prerequisites: Graduate standing; MCS 572 Introduction to Supercomputing is encouraged as a pre-

requisite; Consent of instructor; Appropriate research project approved by instructor and student's

advisor.

Semester Credit hours: 4

List of Topics Hours

� What is Scienti�c Supercomputing? 1 hours.

� Introduction to Supercomputer Architectures & Operating Systems 4 hours.

� Special Supercomputer Architectures: Cray, IBM, CM, experimental 4 hours.

� Operating Environments: VM/CMS, Unix/UNICOS/AIX 3 hours.

� Software Design (including timing and debugging) 9 hours.

� Code Optimization (Scalar, Vector, Parallel, Input/Output) 18 hours.

� Numerical Considerations and Libraries 7 hours.

� Graphics 7 hours.

� Communications and Networks 2 hours.

� Distributed Computing 2 hours.

� Basic Procedures 13 hours.

� Controllers, Batch, and Background 4 hours.

� Introduction to NSFnet 1 hours.

� Introduction to Assembler 2 hours.

� Symbolic Computation 1 hours.

� Total. 78 hours.

Required Texts: There are no required texts. Many readings in the literature are recommended

during the term. Vendor's manuals, local user guides and training material are provided.

Visiting lectures during Fall 1993 talked about computer memory management, Unix op-

erating systems, Cray Supercomputers, Connection Machine CM-5 and automatic di�erentiation

tools. Also very well received, master supercomputer designers like Seymour Cray, Danny Hillis

and Guy Steele were brought to the workshop in video (University Video Communications).

Much of the material of the course MCS572 Introduction of Supercomputing was quickly

reviewed using overhead transparencies, such as the material mentioned in the previous section.

However, in the workshop, we spent more time on production oriented Unix tools like make�les,



Local Supercomputer Training 12

on optimization examples in both Cray and C, and on performance analysis tools like Flowtrace,

Perfview and the X-Window oriented ATexpert (Autotasking Expert System) for the Cray. Cray

training optimization manuals were extremely useful for these extra topics. One exceptional student

even published a paper expanded from a workshop research project in IEEE Computer Magazine.

4 Local User's Guides to Overcome Limited Center Documenta-

tion and Communications Problems

We produced local user's guides that greatly expedited student access to the Crays, Connection

Machines and several earlier parallel processors. National center and vendor guides or manuals are

generally much too large, very operating system oriented, and too segmented for use in a single

term of a supercomputing class. Most critically, they do not tell a beginning student the practical,

basic things he or she needs to know to merely run a simple test program, while including much

material that the ordinary user does not need to know. The concise local guide is essential for the

e�cient training of entry-level students. The need for a local guide illustrates the critical di�erence

in local training versus national center training. The local guides expedite the process of getting

students knowledgeable enough to begin running applications early. However, center documents

serve as valuable, authoritative background resources.

E�ective instruction in supercomputing requires that supercomputing operating systems and

the communications system interfaces must be made as transparent as possible. The time spent on

supercomputing optimization must be maximized, while that on system details must be minimized.

A brief, self-contained and hands-on local user's guide is needed that goes from the local session

to the remote supercomputer, illustrated by real examples and minimal command dictionaries.

Our guides allow students to concentrate on code optimization with minimal systems problems,

and prepares them for �nding more advanced information if needed. For example, the current

local guides along with their web addresses are MCS572 UIC Cray User's Local Guide to NPACI

Cray T90 Vector Multiprocessor and T3E Massively Parallel Processor, Version 14.00 fhttp:-

//www.math.uic.edu/�hanson/crayguide.htmlg give basic details for the UIC user to directly access

to the Cray machines at SDSC, using sample sessions via high-speed network links. This includes

�le transfer between NPACI/SDSC and UIC via FTP. Also, included are sample program execution

steps. A contents list for the 2000 version of the Cray user's local guide is given below:

Abbreviated User-Guide Table of Contents

1. Introduction.

2. T90 Overview.

3. T3E Overview.

4. Supercomputer Centers Overview.

5. Background References.

6. Annotated NPACI Cray T90 Sample Session.

7. Annotated NPACI Cray T3E Sample Session.

8. ftp File Transfers between NPACI/Crays/UNICOS and UIC.

9. Execution of T90 Cray FORTRAN90 (f90) or Cray C.

10. Modi�cations for C: Compile and Execution with C.

11. Unix and UNICOS Command Dictionaries.

12. UNICOS Network Queueing System (NQS).



Local Supercomputer Training 13

13. The ex Editor.

14. The vi Editor.

15. Interrupts Dictionaries for Telnet and Unix.

16. T90 Fortran90 and other Extensions.

17. MPI Message Passing Programming on Crays.

18. PVM Message Passing Programming on Crays.

19. Cray T90 f90 and cc Timing Utility Functions.

The Cray local guide and their contents will not be given here, but are available at the above

web address. These guides have to be signi�cantly revised for each o�ering, because of operating

system, hardware and compiler changes have occurred in the previous year, e.g., the inclusion of

message passing machines in 1995 or the non-Cray supercomputers that will be used in the next

o�ering.

Communication di�culties make the use of local guides essential. Usually there are relatively

few problems when communicating between similar computing systems, such as Unix to Unix.

However, when there are communication incompatibilities, remote center documentation is usually

of little help. Now many students are conversant with Unix, but in the earlier days introductory

Unix tutorials were needed. Also communications problems were major problems due to early Unix

and IBM incompatibilities, another signi�cant di�erence between local and national center training.

The local guide is thus essential for describing the empirical characteristics of the communication

systems truncations that do not behave as expected. Since communications and other problems

continually arise, we have found that keeping in close e-mail contact with students is essential to

keep the amount of time students spend on system problems reasonable.

5 Other Supercomputing Courses and On-Line Web Documents

In recent years much documentation has become available on the World Wide Web accessible

through a web browser. We have placed a large amount of our own documentation and a large num-

ber of links to useful external documentation on the class home page fhttp://www.math.uic.edu-

/�hanson/sylm572.htmlg. These web links include related on-line web courses, hardware and

software information, supplementary texts, additional supercomputing literature. Of course these

links lead to even more supercomputing information. An example of software information linked

are tutorials, guides and texts on MPI message passing package. Hardware information includes

documentation on Crays, Connection Machines and other machines.

However, one of the most important kinds of information contained via web links is on-line

material for supercomputing and parallel processing courses elsewhere. We will limit our discussion

of related course to these on-line materials since they are usually updated annually and freely

available to supercomputing students, whereas supercomputing texts quickly become stale and may

be too expensive for many state university students. A selection of texts are given in the References,

and many more are given on the class home page. The on-line course material allow instructors

and students to �nd a wealth of information and to permit a free choice of material closer the

interest of the class and individual student. This shared information certainly has the bene�t of a

global education project. In addition to our own introductory and workshop course notes available

on the class home-page previously cited, there are several other courses with on-line material

that merit mentioning. The most extensive endeavor is the Computational Science Education

Project (CSEP) fhttp://csep1.phy.ornl.gov/csep.htmlg sponsored by the U. S. DOE and written

by a multitude of authors. Some pertinent topics in supercomputing are Numerical Linear Algebra,



Local Supercomputer Training 14

Fortran 90, Monte Carlo Methods, Scienti�c Visualization, Tutorials for Parallel Platforms, and

Computer Architecture. Demmel of Berkeley has made material available for cs267 Applications of

Parallel Computers fhttp://HTTP.CS.Berkeley.EDU/�demmel/cs267/g, covering similar topics

in parallel processing, but with a strong integration of the numerical linear algebra packages of

LAPACK and ScaLAPACK into the course. During Spring 1996, Demmel's course is being co-

taught in part with Edelman of MIT via a coast to coast, high speed video link. The MIT course

is 18.337 Parallel Scienti�c Computing fhttp://web.mit.edu/18.337/g covers parallel processing,

multipole methods, linear algebra including sparsity and PDE related applications, with extra

emphasis on graph and geometric algorithms. Another available web course, CS4676 http://www-

ugrad.cs.colorado.edu/%7Ecsci4576/g, is by Jessup and co-teachers at Colorado in Boulder. This

course is aimed at undergraduates, but the material is usable at higher levels, containing many

tutorials and lab manuals on parallel computing and associated computer tools such as scienti�c

visualization and Unix, as well as computational science applications.

The computational science and engineering applications vary widely depending on the local

instructional environment. There is a large amount of material in many 
avors available on the

World Wide Web and supercomputing time available at the cost of a short proposal to the national

or state centers that an instructor can use to help create a local supercomputing class.

6 Conclusions

The experience we gained as graduate students and faculty from these o�erings of the course and

workshop have been invaluable. The courses have been essential in keeping the computational

science and engineering students abreast of new advances in computer architecture. We �nd they

help to greatly extend the time the students' training remains viable, because the courses are at

the leading edge of technology. They also have help students to further their thesis research. The

local training also extends the outreach of the national supercomputer centers at much less cost

than visiting the center for training.

We �nd the principal disadvantage in teaching Introduction to Supercomputing and Work-

shop Program on Scienti�c Supercomputing is that it takes a super amount of e�ort on the instruc-

tor's part. A major problem is that supercomputing material has to be signi�cantly updated each

year for major system changes. Another major problem in not supercomputing itself, but the com-

munications di�culties in accessing remote supercomputing sites from a large sample of student

computing environments. The communications problem would be lessened greatly if a generous

number of Unix workstations with good communications properties were available at the local site.

Our purpose for this paper is to pass on su�cient practical advice on supercomputing as

an aide to others who wish to run similar local training courses. The great value is training future

generations of students for future generations of computer systems, keeping both students and

instructors on the leading edge.

Acknowledgments

Our project has been generously supported in part over the years by Argonne National Laboratory

Advanced Computing Research Facility, University of Illinois National Center for Supercomputing

Applications, Cornell National Supercomputing Center, Pittsburgh Supercomputer Center and the

San Diego Supercomputing Center (SDSC/NPACI). The workshop has received direct support

from IBM, Cray, Thinking Machines and other vendors. The workshop program has been locally

supported Computer Center and more recently by the Department of Mathematics, Statistics, and



Local Supercomputer Training 15

Computer Science as well as the UIC Laboratory for Advanced Computing. This project has been

indirectly supported by the National Science Foundation under Grants DMS 88-0699, 91-02343, 93-

01107, 96-26692 and 99-73231 via knowledge transfer from my sponsored supercomputing research

experience to my classes.

References

[1] J. J. Dongarra, I. S. Du�, D. C. Sorensen and H. A. van der Vorst, Numerical Linear Algebra

for High-Performance Computers, SIAM, Philadelphia, 1998.

[2] L. D. Fosdick, E. R. Jessup, C. J. C. Schauble, G. Domik, An Introduction to High-Performance

Scienti�c Computing, MIT Press, 1996.

[3] G. Golub and J. M. Ortega, Scienti�c Computing: An Introduction with Parallel Computing,

Academic Press, Orlando, FL, 1993.

[4] J. L. Gustafson, G. R. Montry and R. E. Benner, \Development of Parallel Methods for a

1024-processor hypercube," SIAM J. Sci. Stat. Comp., vol. 9, no. 4, Jul. 1988, pp. 609-638.

[5] F. Hanson, T. Moher, N. Sabelli and A. Solem, \A Training Program for Scienti�c Supercom-

puting Users," in Proceedings of Supercomputing '88, Nov. 1988, pp. 342-349.

[6] F. B. Hanson, \A Real Introduction to Supercomputing: A User Training Course," in Pro-

ceedings of Supercomputing '90, Nov. 1990, pp. 376-385.

[7] F. B. Hanson, \Computational dynamic programming on a vector multiprocessor," IEEE

Trans. Automatic Control, vol. 36(4), pp. 507-511, April 1991.

[8] R. W. Hockney and C. R. Jesshope, Parallel Computers 2, Taylor-Francis, Philadelphia, 1988.

[9] K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, Programmability,

McGraw-Hill, New York, 1993.

[10] J. M. Levesque and J. W. Williamson, A Guidebook to FORTRAN on Supercomputers, Aca-

demic Press, New York, Dec. 1988.

[11] J. M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems, Plenum, New

York, 1988.

[12] D. A. Patterson and J. L. Hennessy, Computer Architecture: A Quantitative Approach, Morgan

Kaufmann Publishers, San Mateo, CA, 1990.

[13] M. J. Quinn, Designing E�cient Algorithms for Parallel Computers, McGraw-Hill, New York,

1987.

[14] M. Wolfe, Optimizing Supercompilers for Supercomputers, MIT Press, Cambridge, MA, 1989.


