INC.[image: image1.jpg]

[image: image2.jpg]

[image: image3.png]

Anabas Web Services Collaboration Framework

Architecture and Features

A Unified Framework Supporting The Sharing Of Distributed Objects Synchronously or Asynchronously

Draft
26 January 2002

The Collaborative Applications and Technology Trend
3
Business Case
3
Technology Trends
3
Conclusion:
4
An Example of Collaborative Applications -- Collaboration In Gaming
5
Definitions
5
Resource:
5
URI
5
Content Objects:
5
Meta-Data Objects:
5
Services:
6
System Services
6
Application Services
6
Authoring:
6
Rendering:
7
Resource Management:
7
Content Management
7
Learning Management:
7
Synchronous and Asynchronous Learning:
7
Real-time sessions:
7
Shared Event Collaboration Model
7
Shared Display Collaboration Model
7
State of the Art
8
Prevalent Problems In Data Management Systems In General
8
There are no deployed solutions that support rich meta-data.
8
There are no deployed solutions that support a pervasive object based resource architecture.
8
Too tightly integrates resources, renderings, and management services.
8
Lack of semantic definition of web service methods and application meta-data handicaps interoperability
8
Database technology has not kept up with the Object Web
8
Anabas AXO Architecture
9
Anabas XML Objects (AXO) Core
10
Web Services: Manipulating the AXO core
12
AXO Service Architecture
12
XML Described Methods As A Part of the AXO Tree
12
Object Abilities
12
AXO Generic Services
13
Reporting Service
13
Notification Service
13
Work Flow Service
13
Access Control Service
13
Import/Export Services: Mapping To and From Other Data Formats
14
Customer Customization
14
Versioning Service
14
Rendering Service
14
Separation of Authoring, Content Management, Learning Management, Rendering.
15
Event or Message Bus
16
References
17

The Collaborative Applications and Technology Trend

Business Case

There is a growing need for live workgroup collaboration solutions that can readily accommodate the distributed and fast paced nature of contemporary business, where knowledge workers need to collaborate with one another in real time for effectiveness and efficiency. Business professionals require a comprehensive suite of collaboration tools within a user-oriented collaboration environment to expedite work-related activities ranging from ad hoc meetings to formally structured interactive events that support business processes.

An application area of live workgroup collaboration is in collaborative product development. In order to meet the need to improve the speed and the quality of the product development process, manufacturers must increasingly outsource design and manufacturing. Live synchronous online collaboration provides benefits not only in cost and time saving from traveling but also flexibility in application sharing, presentation, brainstorming, and collaborative annotation.

(1) Current collaboration models are sometimes real-time and sometimes self-paced. The choice in methodology depends on maturity of learners, custom in a particular field and technology limitations in the field. Most fields could beneficially use both approaches if the technology allowed

(2) Collaboration Management is technically quite elegant but is complex due to variety of different real-world constraints (legacy database schema etc.) Examples:

· Need HR management integration

· Need content integration

(3) One needs to address all parts of the complete “Content Authoring => Content Management => Collaboration management” process in a unified framework; where content could be anything from design schematics to specification documents to training material.

(4) The system components needed for collaboration can be used in many areas, which requires shared information – either synchronously or asynchronously. Examples included crisis management, gaming, and collaborative engineering or more generally collaborative product design, production and marketing. Workflow systems typically are built around asynchronous collaboration – this is an area, which is less advanced than elearning in adopting modern concepts such as XML and Web Services. Even more simply, seminars and briefings have been a staple for collaboration technology.

(5) All examples have some collection of information with some way to produce and manage it. The information is arranged as a set of objects with organizations setting interoperable standards. In a modern parlance, the information is delivered by a Web Service, which either filters (processes) the output of other Web Services or acts as a wrapper for some primary source of information such as a file system or a database. Portals present information to the user and allow the user to manipulate it. Collaboration involves sharing information.

Technology Trends

(1) Increasing computer performance enables different optimizations than in the past – optimize for re-use and flexibility not efficiency. XML is a good example – it is universal, interoperable and easy to use.

(2) “End-to-end stovepipes” are being replaced an increasingly modular approach whose latest realization with web services is illustrated in fig. 1. This is actually not new in fundamental concept as a Web Service is just a “distributed object” whose interfaces are defined in XML and which is hosted on a Web Server. This particular Object formulation has important advantages over other approaches such as CORBA or Java. The popularity of the Web Service approach is illustrated by its adoption by Microsoft (as an underpinning of .net), IBM, Sun and other vendors; searching Amazon for books on XML, two out of the top 5 are on Web Services.

· Web Services can be deployed universally;

· XML interfaces are best object interface both because of XML’s characteristics and because all application and system data-structures are being (will be) defined in XML;

· Finally Web Services form a component model with visual interfaces through portals and design patterns embodied by XML structures.

(3) Web Services do not necessarily imply existing object models will go away

· Java is one of the best technologies for building a Web service

· [image: image1.jpg]WSDL (Web Services Definition Language – the XML specification of Web services) has a built-in binding to SOAP/HTTP (XML transport) but also allows one to bind to other protocols such as RMI (Java’s natural transport). XML is used to define interfaces in WSDL but this XML can be “virtual” and communication between Web services can be implemented in whatever way is convenient.

(4) “Raw Data” in fig.1 includes existing databases (e.g. student data from a HR database), sales data, sensors in manufacturing plants etc. These are mapped into uniform XML form appropriate for each field.

(5) Rendering is typified by transforming “Knowledge” into a form suitable to view. There are new rendering formats like XHTML and SVG which if adopted would allow powerful client side processing (through the W3C document object model). Currently however most user interfaces are implemented with less standardized interfaces: HTML or custom Windows displays.

(6) Collaboration involves sharing objects and as the approach to distributed objects gets more powerful and more pervasive, collaboration systems must change and have the opportunity to offer greater capability

(7) Peer to peer networking offers new approaches to collaboration that should be built into new collaborative environments

(8) In a later white paper we will describe the implications of this architecture for an event subsystem capable of supporting collaborative environments in both peer-to-peer and more conventional mode. Events include state update of shared objects, email, workflow requests and meta-data information nuggets.

(9) In summary:

In our architecture,

· Everything is a Web Object

· Every service is a Web Service

· All interfaces are defined in XML

· Program in Java

Conclusion:

We are in a period of rapid change with new technologies and new architectural principles. Existing commercial products need major reworking to exploit and support these developments. It is not reasonable for a start-up to develop a complete “operating system for the web”. However it is possible to develop an enabling framework consistent with emerging architecture and tools. This framework will provide necessary interfaces for different functions (e.g. authoring, management, workflow, portals, real-time synchronous delivery) and added value to make the system components collaborative. No other existing systems offer such capabilities.

An Example of Collaborative Applications -- Collaboration In Gaming

The Anabas Collaboration framework is well suited to several applications in the gaming field including design, training and collaborative play. In design and training, one needs the array of basic tools -- conferencing, chat, instant messenger and scratchpad (whiteboard). One also needs to share the components of the game: scripts, images, video which will be produced with a variety of applications. Shared display with associated annotation
supports the needed broad range of applications.

In addition one would deploy shared export model to directly share multi-media streams with less overhead than shared display -- this would share a link to a common multimedia server. More advanced users could want specialized shared browsers such as for SVG -- a new scalable graphics format adopted by Adobe and other authoring package vendors.

In collaborative game playing, one would use basic collaborative tools and a new "Multimedia Game as a Web Service Model"; here one shares the XML specifications of control data and uses a shared server for streaming data. This would suggest a new approach to game design with XML interfaces for non performance intensive interfaces. The advantages of a Web service architecture would be profound. It would allow integration of multiple games and design of add-on products which added filters to the input and output of games within the open XML standards.

Definitions

Resource:

Everything with a digital signature is a resource. Content objects are resources, meta-data objects are resources; services are resources In the Anabas approach, all resources have a URI specified in the XML meta-data for the resource.

URI

A URI is the Universal Resource Identifier used to identify a resource. It has the familiar form something://foo/bar/yack/…/leaf. A URI is often distinct from the URL (location) of a resource.

Content Objects:

The basic material defining the application – web pages are content objects as are CAD drawings. In the eLearning environment, the lesson materials (questions, images, paragraphs, …) are content objects. Content is normally authored by traditional content authoring tools such as Macromedia Dreamweaver, Microsoft Word, Adobe Photoshop and used in instruction. Many applications will use e-mail content objects
Meta-Data Objects:

Nuggets of information holding meta-data about resources. Meta-data objects are supported for all resources – including content objects and services. Some examples of meta-data in eLearning are as follows:

· People
A person is a resource that can be described by a set of meta-data fields such as first name, last name, title, address, …

· Learning information such as grades
Grade = 90.5%.

· Lesson Plans
These use a subset of lesson meta-data such as pre-requisite, completion conditions.

· Bibliographic material such as books, curricula
These have at least the Dublin Core (Author, Title etc.) meta-data and in IMS/ADL standards substantially more meta-data

· Electronic mail
These have well known meta-data such as To, From, Subject and Delivery-Date. These are converted from the From:expert@anabas.com format to equivalent XML.

Note that both content objects and meta-object models can be instantiated as files and need to be managed. We do not assume that the meta-data for an object is attached directly to it. For instance for a web-page object, one could store the meta-data in HTML header but in general, the meta-data is stored separately and points to the web page by a URI. E-mail stores much of its meta-data in the same file as its content (body of e-mail)

Services:

Operations that accept sets of resources as input and return new or changed resources. In the Web Service (WSDL) framework, the input and output are messages on ports with an XML structure defining the original and changed resources.

System Services

Security – Permit or Disallow access to resources

Search – find resources and/or their meta-data.

Reporting – Creating a statistical view of a resource tree.

Storage – Storage management of resources

Rendering – User interface view of resources

Collaboration – Sharing resources

Work Flow – Control of messages that trigger changes on resource state

Versioning – Version management of resources

Notification – The mechanism by which subscribers are notified of interesting change on resources

…

Application Services

Assessment – Managing sets of question resources and a user’s interaction with them.

Learning Plan Advisor - Managing sets of resources (often referring to content) and a user’s navigation path through them.

Certification – Managing a user’s history of interaction with eLearning resources.

Registration & Enrollment – Managing a user’s access to various eLearning resources.

Homework Submittal – Managing a user’s ability to add homework resources under specific course resources.

Scoring – Assigning and collecting grades

…
Authoring:

The development of content or meta-data. Most authoring tools develop content and at least offers the ability to also author meta-data. For example, Microsoft Word is primarily a content authoring tool but also allow the author to enter meta-data such as Title, Subject, … in the File => Properties menu.
Rendering:

A visual representation of content, meta-data or Web Services output for the benefit of people. Commonly these are user interfaces. Recent rendering standards of importance are XHTML and SVG. Portals build a component model of rendering where one collects multiple renderings of several information resources.

Resource Management:

The set of basic services and the associate user interface accessing these services that manage resources. These services manage resources independent of the semantics of the resources (For example, the access control service doesn’t care if the resource is an assessment or real time session. It performs the same operation on all). By inference, these resources have minimal meta-data such as Dublin core. Resource Management includes Content management described below. As XML tools mature, we expect that these tasks will become easier.

For example UDDI can manage the registration and look-up of Web Services but similar tools do not yet exist for general resources.

Content Management

Management of all entities stored as files. This includes editing and creation of both curricula material and meta-data objects.

Learning Management:

The set of services and the associated user interfaces accessing these services that manage resources according to their semantics. Linking of grades to learning plans, linking of questions to grades...linking all of these resources together in some meaningful fashion for learning. All application specific meta-data for learning is managed at this level. These services often generate structures and new resources that are rich in application specific meta-data.

Synchronous and Asynchronous Learning:

Asynchronous Learning is self paced learning. Synchronous Learning is interactive, people to people in real-time.

Real-time sessions:

Real-time virtual classroom session and their recordings.

Shared Event Collaboration Model

Basic approach for synchronizing the rendering of objects for different clients. Collaborating clients receive events specifying either that state or change of state of the object. This can be done at any stage in the pipeline from the original object to the “master client”.

Shared Display Collaboration Model

The special case of shared event collaboration where the events record changes in the frame buffer gotten from rendering the object on the “master client”.

State of the Art

Prevalent Problems In Data Management Systems In General

There are no deployed solutions that support rich meta-data.

Without rich meta-data, operations such as search, categorization and knowledge management is very difficult. Because meta-data is rich in structure, it is much more effective manage data by using meta-data rather than the raw content. Existing systems are very lacking in their support for rich meta-data. Collaboration also benefits from rich meta-data as the sharing of an object is obviously easier if you know more about it.

There are no deployed solutions that support a pervasive object based resource architecture.

Extensibility and modularity has always been the big advantages of object oriented programming. Without a pervasive object based resource architecture, extensions to the system will be difficult.

Too tightly integrates resources, renderings, and management services.

Current systems tend to lack a clear abstraction or model, which severely limits their future expandability and compatibility. It is useful to separate these 3 concepts and allow extensions in all 3 dimensions. The following examples illustrates the need for this separation:

Example 1: Resources

New resources are always being defined would like to be integrated into the system. For example, LMS may want to manage physical classroom represented by a resource. It may want to manage physical eLearning material that needs to be checked out and checked in the future.

Example 2: Renderings

New renderings are always desired of a given resource. We’ve already seen this in customizations and portals where user or organization specific rendering of a particular resource is desirable.

Example 3: Management Services

Management service capability is always needed and more and more functionality is often added. This is independent of resource types. For example, workflow, resource versioning, budgeting are desirable to LMS systems on the same set of resources. Without a clear separate and a service extension model, this becomes very difficult and rewrites are common.

Lack of semantic definition of web service methods and application meta-data handicaps interoperability

This issue will probably be addressed by the new W3C working group in Web Services

Database technology has not kept up with the Object Web

· Modern architectures like fig. 1 separate the user and persistent storage view of a resource. This contradicts the client server view supported by traditional database query engines.

· Further all resources have a rich object structure not easily represented in database Schema

· Searching a mix of XML meta-data and unstructured data is not supported. Search engines do the latter and XML databases the former. These are currently not integrated.

Anabas AXO Architecture

The Anabas AXO architecture provides the “unifying” core to seamlessly integrate all aspects collaborative applications with a simple yet powerful extension model to support future needs. We will examine some core aspects of the AXO architecture and its flexibility.

Figure 3 illustrates domain-specific application services for eLearning applications that a Learning Management System normally would provide. Other domain-specific application services could be for Gaming Management System or Video on Demand Management Systems.

[image: image2.jpg]

Anabas XML Objects (AXO) Core

The AXO Core is designed around simple unifying ideas that enable it to support all aspects of collaboration – synchronous and asynchronous – and several different applications. It serves as the fundamental backbone for the Anabas enabling framework on which we build all of Anabas’ eLearning and collaboration technology. Without this “unifying equation”, a total eLearning and collaboration solution will not be possible.

All resources are organized in a familiar tree-like fashion

The eLearning context of resources is implicit in the AXO tree. For example, a lesson object that is below a course object implies that this lesson is part of the course. This simple and natural way of organizing objects lends itself well to applying real world scenarios into the system and extending it to support new eLearning processes and requirements. As every resource has a URI, one can link across the tree for structures that are more general than a simple hierarchy. This generalizes traditional file systems with hierarchical organization augmented by symbolic links. XML hierarchies are significantly more powerful than file systems because every entity has meta-data describing itself and its links to others. This implies that as AXO systems grow, they will exhibit properties like those postulated for the Semantic web.

Resources are Data, Knowledge and Services

The AXO hierarchy includes all resources in the system – namely resources include services and application or system objects. This is possible as services are defined in XML – whether they be external web applications or internal methods such as those to calculate a grade by summing all scorable objects for a particular course and user. A method or Web service is “just” a nugget of active XML, which does local or remote computing to generate its answer.

All Resources have URI’s

URI’s label resources specified as part of the AXO meta-data. This implies the hierarchical structure described above. The organization of resources by their URI generalizes the directory view of web resources in Google.

All objects occur once in the AXO Tree but can be used in many places by being linked via their URI; furthermore, objects can references external content such as web pages and images. This allows arbitrary linking of objects to create new semantically rich relationship within the AXO Tree.

This allows extension in tree structure semantics easily

Examples:

· Adding organizational hierarchy management to the system is adding the concept of a new Employer/Employee link.

· Supporting course pre-requisites is simply adding a new pre-requisite link.

· Supporting grading is simply a linking a user to a question or a test where the score meta-data is stored within the link.

All resources represent a real world concept, process, or entity.

Fundamental resources include services like “register”, “grade”, “submit homework” and objects like User, Course, Lesson. This is common to object oriented design; however, carefully crafting the right object model is key to ensuring compatibility with standards and other systems. eLearning is a sufficiently well defined problem that this can be achieved. Here we exploit the comprehensive work of ADL AICC and IMS, which has cataloged a large number of the objects needed in eLearning. Note their work does not currently build in concepts like Web services and we have generalized their client-server model to a modern multi-tier structure.

All Resources are specified in XML with in the AXO Tree.

All resources are specified in XML within the AXO Tree. This allows every object to be transformed, managed, and processed using standards XML based technologies and leverages many XML based solutions and features into the system.

Use of XML as a common data interchange format means integration and extensions to the system is easy and immediate.

Examples:

· Adding extra meta-data fields to a user for a particular industry is simply extending the XML schema.

· Display user objects can use standard XML rendering technologies such as XSL.

· Web page is content that is referenced by a corresponding object in the AXO Tree. The object contains meta-data for the web page and can be linked from other locations from the AXO Tree (in a different context for instance).

What is meta-data?

There is a blurry line between data and meta-data. For instance an email message can be recorded entirely in the XML AXO structure with the message body as “just a <body>” element value. However another message may have all or part of the body as a (binary) attachment. AXO supports information stored in the AXO tree which can be indexed and searched using typical XML database techniques. In addition “raw information” can be referenced from the AXO tree – either tightly as in XML (SOAP) attachments or loosely as a web, CORBA or other external link.

AXO is a Distributed System
The object and hierarchy can be distributed and linked by the AXO message based middleware allowing heterogeneous environments to interoperate. A change notification to the AXO core is published as a message for interested parties (web services) to trigger processing on. This concept adds additional flexibility to the model to accommodate new eLearning processes.

Examples:

· Workflow can be modeled in the system as listen to events (such as registration) and then triggering e-mail notifications.

· Personal learning agents can be modeled using this by subscribing to interested events in different sections of the AXO Tree and being notified.

Web Services: Manipulating the AXO core

AXO Service Architecture

With a clear model for representing objects and processes in eLearning, we now focus on operations upon these objects to complete the picture. Various services offering critical functionality, such as security and workflow, can be easily added on top of the AXO core in a generic fashion via web services. These services manipulate objects and links in AXO.

New web service interface technologies, such as WSDL, subsume older distributed object and component models such as CORBA and are defined in XML. This allows us to even more clearly integrate the support of arbitrary number of web services on top of the AXO core.

XML Described Methods As A Part of the AXO Tree

Web services are set of distributed methods defined in XML but implemented in a fashion optimized for each service. A web service is nothing more than a set of XML described methods bound under a particular branch of the AXO tree. This branch is the entry point to the web service. This simple yet powerful model, which leverages XML in all aspects, allows extension of services by simply adding new bindings to AXO.

For example, Grades parts of the AXO Tree can have a sub-branch Grades/Statistics/Average which is an XML method description for calculating the average of the grades tree.

Examples:

· The Assessment system service that may exist in the AXO Tree under /Root/Services/Assessment may have a method Grade which is an XML specified method. Upon invocation, with the appropriate parameters, this method will create the grade link between the specified user and specified assessment object in the AXO tree.

· The Reporting service may bind to the Statistics methods under the Grades/Statistics portion of the AXO Tree. Under this portion, the Average method is bound as an XML method descriptor. When invoked, this method will operate on the grades branch to calculate the average of all scores.

Some Observations:
· System services can belong in the services section of the AXO Tree but linked elsewhere.

· A web service is a sub tree; new XML described methods are bound under the web service tree.

· Traditional event based systems (Including collaboration systems) are offering web services where method description is encapsulated in the event).
Object Abilities

Resources can have “abilities” which are equivalent in some sense to application specific types for the objects. For example, the “Scorable” ability property describes that the Learning Performance Service can be applied to “Grade” those objects, which are defined to be scorable. The “ACL” (access control) ability property describes that the ACL services can be applied to a resource. Such an ability can be inherited by all children of this node. So a “Company” object may have an “ACL” folder containing “ACL” ability objects. The ACL service would manage this sub-tree and restrict service method invocation based on the meta-data contained within the “ACL” ability properties.

AXO Generic Services

Now, we give examples of several services that offer key functionality for eLearning and other AXO applications. Examples are given for collaborative eLearning applications.

Reporting Service

The reporting service defines a method by which different views of the AXO collection of resources can be taken and a set of statistical functions can be performed on a view. These views are normally akin to Excel worksheet format with rows and columns of data and the reporting functions are defined as internal WSDL methods. This generic data collection mechanism allows a wide variety of statistical calculations and graphical representation of the AXO resources. The reports are typical generated from the AXO meta-data and link out to external documents. This is analogous to the way news portals present information. The basic report contains headline, reporter, abstract etc. and another window displays the full data. AXO uses the same internal technology (RDF Site Summary RSS) as many portals to capture summary data and link to original sources.

eLearning Example:

If you wanted to find out the average enrollment rate for courses that offered between 6/1/2001 and 12/1/2001, it is simply constructing 2 views:

(a) Column view where all course objects under a particular organization in the hierarchy with start dates greater than 6/1/2001 and end date less than 12/1/2001 are listed.

(b) Row view where the number of registration objects under each course is summed.

Once this table view is constructed, interesting statistical and reporting can take place.

Notification Service

This service alerts either people or other services about needed actions. Currently users are notified by email with technology that corresponds to an XML message in SOAP format in AXO. AXO converts between email syntax (RFC822) and XML schema and supports SMTP (RFC821) transport in its event subsystem. An AXO proxy acts as a gateway between JMS and e-mail.

Work Flow Service

Work flow services often perform AXO tree transformations upon receiving interesting change notifications. It uses the notification services to handle event notifications. Since the AXO core changes are published on the integrated event bus mechanism to promote distributed access, once an interesting change occurs, interested work flow services can modify the AXO core. This is implemented as an XML control script (a WSDL internal method) that invokes the notification service as necessary

eLearning Example:

· In publishing eLearning objects, often times, it goes through various stages: development => approval => staging => production. Development normally ends in adding a new version of the content to the system. This would result in the adding of equivalent AXO objects in the content section of the AXO core hierarchy. In turn, an event is generated which is trapped by the content publishing work flow service. It then could send out e-mail to reviewers. Once the reviewer approves, this would change the state of the content to “APPROVED”; again this would trigger the content publishing workflow service to take action by moving the content object into the staging area of the AXO hierarchy. This entire staging process can be encapsulated within special workflow web services.

Access Control Service

The hierarchical organization structure lends well to doing access control on AXO. Various common operations on an object can be defined and access control lists can be setup. The service would setup access control lists under each object to be controlled for instance as a sub node. This sub node would have a list of children, each corresponding to an operation that can be performed on the object.

Roles are defined essentially a initial set of rights to perform certain operations under a specified branch of the tree. These roles are managed within the access control system. A user object can be assigned one or more roles. When a user tries to perform an operation on an object within the tree, access control lists are checked and the operation is granted or denied.

Other services may setup access control for their own operation via the setupOperation() method in the access control service and can check the permissions via isAllowed() method of the access control service.

eLearning Example:

Instructors would have permission to edit a course whereas a student does not. The access control service would first setup under the course object a property called “ACL” and bind the “Edit” operation ability into it. It will also bind under the instructor object’s “ACL” property an access object for “Edit” that restricts it to the course object’s location (linked to the course object node). To edit the course or any sub branch of the course, the user’s “ACL” property is checked to see if it has an “Edit” ability that corresponds to the course branch or higher.

Import/Export Services: Mapping To and From Other Data Formats

Various import/export services can be easily constructed as straight forward mapping of the AXO XML objects into or out of other data formats. Standard XML transformation tools and technology can be used.

eLearning Example:

Supporting standards such as AICC/IMS/SCORM becomes extremely easy. Not only that, since these standards are ever evolving, update support is straightforwardly modifying the mapping. No core components need to be changed.

Customer Customization

The import/export capability is important in deploying the Anabas system. Imagine one wishes to deploy the Anabas solution as a custom package supporting a particular application but interfacing with many different sites. Each site will have relevant existing (legacy) information stored in disparate forms. Our model (figure 1) establishes an AXO extension to represent the logical structure of the global application. This we can call AAF – Anabas Application (specific) Framework. Then for each legacy site, one maps the raw data from this site to the AAF which is then mapped itself into Anabas AXO core resources. This multi-level mapping process greatly reduces deployment costs of AXO.

Versioning Service

Since all objects have an XML equivalent and are stored in a hierarchical fashion, standard version control techniques on text based files can be used. Retrieval of any version of any object within the AXO core is very straight forward. AXO stores versioning history as meta-data properties defined for all AXO objects. When the Apache Slide project has full support for versioning, we will integrate this powerful interface to WebDAV with AXO.

eLearning Example:

Often times, learning management systems need to manage elearning resources as well. These learning objects go through a normal publishing process where versioning is a critical component. The AXO core holds meta-data that corresponds to these external resources and the versioning service handles all versioning (of content and XML files) generically. Combining this capability with other services such as workflow and access control, a full content management solution can be built.

Rendering Service

Rendering service can display any resource within the AXO tree. It also offers template based layout of multiple rendering using state of the art web based rendering technologies. It manages a list of rendering methods that are categorized under the rendering service by the object type and dimension. So the user object type would have 1 or more rendering methods under it. Each rendering method outputs the properly display format (for example, HTML, Crystal report graphs, …)

Example:

· The output of reporting service is a table of data which can be fed into the rendering service for display as a graph. The proper rendering methods can be found by looking under the appropriate object type/dimension sub branch of the rendering service.

· A user can be rendered by looking under the “User” folder of the rendering service’s rendering methods. Within the available methods, there could be multiple user renders: for instance one that displays as a web page as read only, and one that offers editing capabilities.

We intend to switch to Apache Jetspeed as the default rendering engine for the Anabas system. This uses Java Server Pages (JSP) and incorporates the Apache Velocity template engine. It allows elegant customization of the portal through their portlet concept. Our experience has shown that Jetspeed provides a portal (client-side) component model that matches well to a middleware Web Service based component model. In addition we expect to support a growing number of custom renderings – each with their own shared export collaboration model. Initially HTML (basic web pages), JSP and SVG (Scalable Vector Graphics) will be supported. Note that rendering is viewed hierarchically; portal technology (Jetspeed) manages page components; each component is rendered in a potentially separate fashion. The collaboration is supported at the portal level in shared display mode and at the component level in shared export.

Separation of Authoring, Content Management, Learning Management, Rendering.

Although AXO is an integrating framework, it does not offer a monolithic solution. Rather it identifies the key capabilities and builds XML Interfaces to allow the capabilities to interoperate. This allows a customer to take advantages of advances in one sector and further to customize a given capability to their needs. AXO is a loose integration framework and as described above separates authoring, content management (treating resources as documents), learning management (treating resources within an application context) and rendering (customized display for each user).

Event or Message Bus

[image: image3.png][image: image4.emf]etc.

XML WS to WS Interfaces

(Virtual) XML Knowledge (User) Interface

Rendering to XML Display Format

Clients

(Virtual) XML Data Interface

Raw Data

Raw

Resources

Raw Data

WS WS

Web Service (WS)

WS

WS WS WS

WS WS

 The Anabas AXO model considers a distributed system as a set of resources linked by an event subsystem or bus. We do not distinguish messages and events here; events are viewed as time-stamped messages. Resources in the Anabas AXO model are treated uniformly to support the peer-to-peer model and are servers (host Web Services), clients (user interfaces) and raw resources supplying data. The event cloud in figure 4 supports a publish-subscribe model which is currently implemented by either a single instance or cluster of JMS servers. JMS – the Java Message Service – is an industry standard with several robust commercial implementations. Peer-to-peer functionality is achieved using a system like JXTA from Sun Microsystems or the more advanced Narada environment from Indiana which interpolates between JMS and JXTA. The event structure is specified in XML and this includes “topic objects” which link publishers and subscribers. The XML Schema for events is built on the same AXOS framework used for all resources in the anabas environment. Events extend the basic AXOS schema to handle topics and use the generic time-stamp, versioning and naming facilities.

In figure 5, we show the Web Service model supported by Anabas. The constraints of collaboration systems originally drove us to design a powerful uniform underlying event model but the same approach can be used for Web Services as these are defined in terms of input and output ports for the same style of XML messages already supported by Anabas. As we have abstracted message or event delivery as a service we can build new capabilities into this as extensions of the publish-subscribe mechanism. As an example, filtering shown in figure 5, is used to support hand-held clients by customizing the rendering version of an Object for the small format of a PDA.

References

1] IMS Global Learning Consortium Distributed Object standards for elearning http://www.imsglobal.org/

2] ADL (DoD Advanced Distributed Learning) SCORM (Shareable Content Object Reference Model) Initiative. http://www.adlnet.org

3] AICC - Aviation Industry CBT Committee at http://www.aicc.org/

4] Business Process Management Systems http://www.ebpml.org/
5] The Workflow Management Coalition http://www.wfmc.org/

6] Anabas eLearning and Collaboration Environment http://www.anabas.com

7] Centra Collaboration Environment. http://www.centra.com.

8] Interwise Enterprise Communication Platform http://www.interwise.com/

9] Placeware Collaboration Environment. http://www.placeware.com.

10] WebEx Collaboration Environment. http://www.webex.com.

11] Groove Networks peer-to-peer Collaboration environment http://www.groove.net

12] Event Structure and Architecture underlying Anabas Design. This also briefly describes the Narada event broker approach http://grids.ucs.indiana.edu/ptliupages/publications/iccs.pdf

13] JXTA Peer-to-peer computing project http://www.jxta.org

14] Description of PDA Access built as a research project on Anabas infrastructure http://grids.ucs.indiana.edu/ptliupages/publications/pdasummary.pdf

15] Description of Fox’s experience with new curricula and the value of distance education http://grids.ucs.indiana.edu/ptliupages/publications/Internetics2.pdf

16] Description of research collaborative portal built on top of Anabas http://grids.ucs.indiana.edu/ptliupages/publications/erdcgarnet.pdf

17] Review of Collaborative Tools May 2001 http://grids.ucs.indiana.edu/ptliupages/publications/CollabReviewmay09-01.pdf

18] SOAP standards for web messages http://www.w3c.org/TR/2001/WD-soap12-part0-20011217/. Note SOAP originally had a broader role in distributed object protocols. Now SOAP is a message syntax and Web Services are the W3C approach to distributed objects.

19] W3C Web Services Activity http://www.w3c.org/2002/ws/. Note this activity now subsumes the work on XML protocols including SOAP.

20] Semantic Web from W3C to describe self organizing Intelligence from meta-data enhanced resources. http://www.w3.org/2001/sw/
21] Berners-Lee, T., Hendler, J., and Lassila, O., "The Semantic Web," Scientific American, May2001.

22] RDF Site Summary (RSS) 1.0 XML News item technology http://purl.org/rss/1.0/spec

23] Simple Mail Transfer Protocol RFC821 http://www.ietf.org/rfc/rfc0821.txt

24] Electronic mail ARPA Internet standard RFC822 http://www.w3.org/Protocols/rfc822/rfc822.txt

25] Web-based Distributed Authoring and Versioning extensions to HTTP http://www.webdav.org/. Distributed authoring is IETF RFC 2518 and further IETF standards are expected to cover other WebDAV capabilities.

26] Apache Jakarta Slide project is an Open Source support for WebDAV – http://jakarta.apache.org/slide/index.html

27] Apache Jakarta Jetspeed is an Open Source implementation of an Enterprise Information Portal, using Java and XML http://jakarta.apache.org/Jetspeed/site/index.html

28] Apache Jakarta Velocity is an Open Source web page template engine http://jakarta.apache.org/velocity/index.html

29] W3C 2D Scalable Vector Graphics Standard SVG http://www.w3.org/TR/SVG/

30] Collection of presentations, papers and reports on distance education as seen by Geoffrey Fox, http://grids.ucs.indiana.edu/ptliupages/publications/disted/

31] D. Bernhold et al. (Fox’s research group at Syracuse University) Reflections on Three Years of Network-Based Distance Education, http://grids.ucs.indiana.edu/ptliupages/publications/disted/erdctraining00.pdf. This was final summary of experience in DoD training and education using TangoInteractive.
32] Argonne National Laboratory Access Grid. http://www.mcs.anl.gov/fl/accessgrid

Figure 3: Anabas AXO architecture applied to eLearning

Figure 5: Communication Model showing Sub-services of the Anabas Event Service

� EMBED PowerPoint.Slide.8 ���

Figure 1: Web Services Architecture

Figure 4 Peer Resources Linked by an event broker subsystem

� EMBED PowerPoint.Slide.8 ���

[image: image5.emf]Database

Database

Event

Broker

Event

Broker

Event

Broker

Event

Broker

[image: image6.png]

 Anabas, Inc. Confidential

Page 17 of 17

[image: image7.png]

[image: image8.emf]Database

Database

Event

Broker

Event

Broker

Event

Broker

Event

Broker

[image: image9.png]Destination
Source Matching

Web (Virtual) Web
Service 1 Queue Service 2

WSDL WSDL
Ports Ports

[image: image10.emf]External Data Applications Renderings

Model Services

AXO Core

•Tree Based

•Resources

•Links

Mappings

Learning

Management

System

Document

Management

System

Conferencing

Management

System

Access Control

Reporting

Versioning

WorkFlow

Search

Notification

HRMS

Content

Other

LMS

…

Storage

Rendering

Collaboration

Learning Path Manager

Extensible

Certificate Manager

Assessment Manager

System Services Application Services

Extensible

[image: image11.emf]etc.

XML WS to WS Interfaces

(Virtual) XML Knowledge (User) Interface

Rendering to XML Display Format

Clients

(Virtual) XML Data Interface

Raw Data

Raw

Resources

Raw Data

WS WS

Web Service (WS)

WS

WS WS WS

WS WS

_1073570391.ppt

Database

Database

Event

Broker

Event

Broker

Event

Broker

Event

Broker

Meet the Web browsing,
Paim Computing?® platform

g, wireless phone.

MOITIND093A 3910V AV

_1073654609.ppt

etc.

XML WS to WS Interfaces

(Virtual) XML Knowledge (User) Interface

Rendering to XML Display Format

Clients

Web Service (WS)

WS

(Virtual) XML Data Interface

Raw Data

Raw

Resources

Raw Data

WS

WS

WS

WS

WS

WS

WS

_1035977594.psd

