Statement of work

The Indiana University research team will provide work product in the following areas to the joint Crane-EG&G-IU-Purdue Knowledge Projection project:

System and software architecture, Human/Machine Interaction (HMI), Collaborative technologies and tools, Concept Maps (CM), Case Based Reasoning (CBR), and general tasks. Work in each area to be accomplished with FY2002 funding is described in the following sections.

A. System and software architecture

Indiana University is responsible for developing an integration plan for the KP project. This includes developing a global software architecture (technologies and standards) for developing and interconnecting system and software components provided by all participants of the project, and making sure that the proposed system (functional) architecture for the project can be implemented with the elements of the software architecture.

A.1. XML virtual layer, filters, and metadata management tools (Lead: Fox)
Rationale
The critical mapping between the proposed knowledge management system and existing information sources is the XML virtual layer. The layer is termed virtual because it is specified in XML but can be realized using different technologies if needed for performance or other reasons. XML is rapidly becoming the universal way of specifying all data structures with the introduction of XML Schema, which are capable of describing rather general objects. XML offers a wide range of tools and can be linked both to traditional databases and through approaches like Castor to sophisticated middleware. Castor allows you to define data structures in XML and map the Schema into Java classes and the XML Data instances into Java objects. We will build our XML layer on top of a base system GXOS (General Xml Object Specification) built at IU for related applications. GXOS supports a general hierarchical collection of objects, labeled with URI’s (Universal Resource Indicators) and having the basic meta-data (Name, Date, Relationships, Versioning etc.) needed for most uses. GXOS is used for events in our collaborative environment Garnet, reporting in the Online Knowledge Center being built for the DoD HPCMO (http://judi.ucs.indiana.edu:2000/okcportal/index.jsp) and with training extensions (IMS and DoD’s ADL) in our prototype learning management system. This base GXOS Schema is extended for particular application areas with either new or existing Schema. This needs to done carefully so as to minimize the time needed to integrate new capabilities and we will we use our substantial experience to produce extensible designs.

After defining interfaces in XML, we need to implement the linkage between the middleware and the data sources with required performance and functionality; one needs not only to store and retrieve information across the XML Interface but also to efficiently search the repositories. Mapping XML search techniques such as XQUERY to conventional database queries is not understood in general. Further there currently appear to be no good tools that integrate XML, database and free text search. This area will be one research area as implement current best practice. As the term “virtual” implies, one may need to “compile” an XML Interface into different forms to realize system goals. Here we will follow the example of WSDL – the Web Service standard – where one is able to define abstract systems interfaces and then map into different transport protocols by different bindings. Thus one can specify interfaces in XML and use a simple default SOAP (Simple Object Access Protocol) over HTTP implementation. However higher performance implementations like RMI can be added where needed without changes to the architecture or application interfaces.

Tasks
The first task is to develop the XML Schema representations of databases and any other data sources in the system. Simulations can be viewed as a data source and interfaces to all computational tasks will be included. We also need to develop access and search mechanisms for objects in specific databases. This will greatly simplify later design tasks and will support a level of automation that agents will need in order to function. Database schema can be automatically converted into XML schema, to which can be added procedural references, also in XML, using WSDL. Each class of data object to be used by the Knowledge Management system will need an XML interface with possibly custom implementations. Managing the many Schema needed in this project with ongoing controlled update and extension is not trivial. We will enhance new techniques we are developing for this task. We expect the technology in the areas of search and access to evolve rapidly during the project and be a major research focus.

A.2. Middleware services (Leads: Fox, Bramley)

Rationale
The key to the proposed system’s modularity is through the middleware services layer. This layer is the collection of common services needed by many components of the system such as basic messaging, authentication and authorization. Middleware services for the proposed system need to operate in a variety of contexts ranging from an isolated sailor working off-line on a ship out of touch with the shore to a context in which a software agent working on behalf of an ISEA can correlate information from many shore-based data bases simultaneously. We expect that the core middleware software will be written in Java as experience has shown this to be reliable and have access to a rich selection of basic distributed system services. We will use commercial best practice with simplifications where needed to get early results. For instance rather than use Enterprise Javabeans (EJB) for a component model, we will initial use a simpler Java and XML model. We have found EJB’s robust but difficult to deploy with complexities that are not needed initially. Further although EJB’s have a clear model for integration with databases, we see that it is not so clear for our chosen XML back-end. Apache server technology; Tomcat, Servlets, JetSpeed, JSP, Slide etc. are reliable and efficient. As discussed in the previous section, we will adopt a Web Service approach where possible for encapsulating system and application services. We will use Java XML parsers (Indiana has developed one of the fastest such packages) and Castor to integrate Java with XML automatically. This will also give us EJB (when needed) and database linkage. We will need capabities to manage the stream of events and messages in the system. This is needed for both our approach to workflow and for collaboration. We have good experience with JMS – the Java Message Service and we have developed a novel system Narada that has a more general model that interpolates between JMS in one operating condition and JXTA (a leading P2P approach) at another. Java has been linked to the Grid services especially those for security and we will make use of this community technology. For security, we can support both Kerberos and Public Key (PKI) approaches and we see PKI as the preferred solution if consistent with project constraints.

Tasks
During the first year of the project the following essential middleware services will be developed either by identifying appropriate existing commercial or community solutions or by developing/customizing new software:

· Authentication

· User authorization

· Collaboration tool services

a. VTC. Here we will explore using the multiple Access Grid nodes available in the Indiana environment as well as commercial (e.g. Polycom or PictureTel) systems. We expect over the next year that through collaborations we have with leading experts in this field, to develop a Web service based controller for VTC and data sharing. We expect to use the open SIP (the new VTC control) standard.

b. Application sharing using shared display and the simplest shared export (see following section for discussion of collaboration technologies)

c. Chat and whiteboard

· Messaging between software components (publish/subscribe) using JMS or Narada

· Workflow support system based on messaging. Here we will follow the XML standards of WfMC (The workflow Management Coalition)

· Annotation and session recording

Requirements for the following additional services will be determined:

· Role-based authorization

· Smart card integration with authentication and authorization

In following years, we will look at the use of handheld devices and peer-to-peer technology and its impact on the middleware. Hand-held devices need simple protocols and the peer-to-peer approach requires the middleware to be distributed and not centralized as is normal for systems like JMS. Our Narada technology supports this distributed middleware. As discussed, we will also upgrade the core technology using Enterprise Java bean or equivalent technology. We may need special Middleware to accommodate particular existing resources. One good example is CORBA – an Industry standard distributed object model. We recommend XML and Java for new subsystems but it is quite likely that there will be need for CORBA support in “legacy” systems. We will treat this in our uniform XML model and provide an XML/Java wrapper to any CORBA subsystems.

A.3. Query Agent architecture and specific agents (Lead: Plale)
Rationale
This task addresses the problem of information retrieval to aid diagnosis and repair of shipboard equipment malfunctions. The key element in a solution is that the level of expertise of the sailor guides the selection of appropriate material. A shipboard information retrieval system for the Knowledge Projection project must address the following requirements:

– The information exists in multiple repositories where a repository can be a relational database, flat files, a data mining service, or an on-shore data facility,

– Bandwidth of the shipboard LAN is limited and must be conserved,

– The information must match the requestor’s level of expertise, and

– The information delivered to the sailor must be relevant to the current problem.

That is, the sailor’s workstation cannot be burdened with the computational overhead of filtering unneeded information, nor can the shipboard LAN be saddled with the unnecessary bandwidth needs.

We express the information retrieval problem as that of query request/response to/from distributed, heterogeneous data sources. The sailor’s level of expertise, in this context can naturally be expressed as one of the query’s decision criteria. The response to the query contains the relevant information that aids the user in diagnosis.

Our earlier work addresses querying over heterogeneous data streams. Data streams, which can also be called information streams, are collections of event channels, and events or time stamped information about an application or computational resource. At any time t, an event channel contains the events currently in transit from supplier to one or more consumers. As part of our research into managing data streams, we have developed a system for creating portable, autonomous executable entities (similar in concept to “agents”) that continuously evaluate queries on-the-fly over streams of data. The query agents are selectively placed in data streams at the data source, recipient, or at points between. The query agents can combine two or more data streams, selectively extract information from data streams, and transform the information (e.g., decrypt a message, or render the information into a format suitable for viewing).

A shipboard information retrieval service modeled as autonomous query agents introduces interesting research challenges:

1. Due to the low bandwidth requirement, the autonomous query engines must be quiescent except when servicing a request. That is, information must be pulled from the data sources when needed. The more bandwidth consumptive version commonly in use is a push model where events are generated at the sources and pushed to consumers irrespective of need.

2. The data sources are heterogeneous with the major implication that when a query engine receives a request (query), it cannot assume that the event stream it needs to fulfill the query is already available, and obtainable simply by subscribing to the right event channels. On the contrary, the agent must actively seek to activate the data sources for the specific data streams at their sources, and specify selection criteria.

One solution to querying heterogeneous data sources is query rewrite, which is frequently employed in distributed databases and data warehouses to rewrite a query as component queries that are distributed to the sources. We envision instead an agent that will analyze a query to determine the source and selection criteria, then use that information to “turn on” appropriate data streams. Sources push their results in response to a request, and the full query is evaluated at the query agent in order to utilize the efficient multi-stream joins and materialized views provided by the agent. Once the agent has gathered information sufficient to answer the query, which it has been buffering, it presents the results as a single materialized view to the user.

Tasks
In fulfillment of this task, IU will extend the dQUOB data streams system to perform under the shipboard constraints of information tailoring dependent on user, minimized bandwidth, and distributed and heterogeneous data sources.
A.4. Semantic analysis and indexing (Lead: McMullen)

Rationale
A potentially useful means for acquiring new information about existing topics and to discover new topics in a corpus of text is to apply semantic analysis techniques. At the most basic level this might amount to indexing new text against a set of known terms, e.g. the set of terms and relationships in a concept map. More detailed analyses might include finding new terms using latent semantic indexing which then can be filtered and added to the knowledge domain map by human experts.

Task
The Indiana University team will track current research in semantic analysis and indexing of text corpora. As appropriate, techniques based on semantic analysis and indexing will be added to the knowledge acquisition framework.

Particular emphasis will be placed on tracking the efforts of standards bodies, including the W3C Semantic Web program, DAML OIL extensions and the XML implementation of Resource Description Framework (RDF). An example of an early target of opportunity would be to define in DAML-OIL a reference ontology for annotations added to the system by users.

B. Human/Machine interaction

B.1. Requirements analysis (User and task analysis) (Lead: McMullen)
This task identifies current practices, available data, possible improvements in business processes and availability of knowledge through careful study of the people and processes related to maintenance of the supported systems. The user and task analysis will provide a basis for modeling data and processes, and for understanding what technologies may be used off the shelf and which will need to be developed. If processes cannot be adequately modeled by COTS software systems new software and systems will need to be developed.

Rationale

The overall purpose of this project is to improve the efficiency of diagnostic and maintenance activities across the fleet and fleet support organizations by bringing knowledge obtained from analyzing fault-repair data, human experts, engineering information, and training in “real time” to the personnel engaged at the point of diagnosis and maintenance. An important first step to improving the current situation by the application of information technology is a clear and complete understanding of current practice, particularly with respect to workflow, systems, roles and skill levels of individuals and organizations, and the location and nature of available data. In addition, an assessment of the quality of available data with respect to use in factor analysis or sensitivity studies (underlying data mining exercises) will indicate the degree to which data quality assurance is needed in the final product and the probable effectiveness of proposed data mining and reasoning approaches based on current data.

A critical aspect of the telemaintenance system is the point at which people (sailors, ISEAs, logistics personnel, maintenance and repair technicians, and engineers) interface with the system. The interfaces presented to them should provide appropriate, meaningful and actionable information that will direct diagnostic and maintenance activities in real-time. Design of these interfaces and the functionality of the system as a whole depends on an understanding of the users in terms of their physical, perceptual, cognitive and social processing of information in context. Without addressing these issues at the outset, any resulting design is likely to suffer significant and costly usability problems downstream. The results of this user and task analysis phase can then be used to inform the construction of data models and use scenarios, guide the selection of diagnostic algorithms, determine key usability variables, and shape the content and functionality of the interfaces that will be used.

This part of the project will lay the foundation for design of the diagnostic support systems and their interfaces, and will develop a framework for user-centered design and assessment.

Tasks

During the user and task analysis phase we will work with Navy and EG&G experts to determine the following attributes and processes for the systems for which diagnostic and maintenance assistants will be developed:

· stakeholders and users (individually and organizationally),

· user skill level requirements and training needs,

· maintenance and repair tasks,

· information required to perform these tasks,

· the range of conditions (physical and organizational) under which these tasks may be performed,

· technology support necessary for the completion of tasks

· opportunities for new technological support,

· workflow processes between users and information systems,

· inputs and outputs for these workflows.

· potential sources of breakdown in workflow

Also during this phase of the project assessments of the quality of information in the data in the Trouble/Failure Report database, and the quality assurance processes for this data will be made with respect to projected use of the data in mining and case-based reasoning applications to be developed. Results from these analyses will be classified as general or specific to the target system to guide future development efforts.

The User and Task analyses will be used to:

· Determine how currently available information sources (manuals, personal experience, experts and historical records) are used to perform diagnostic, repair and maintenance functions, and their relative importance to a successful repair outcome

· Find the fulcrum points where information technology can be best applied to improve maintenance and repair operations and maintenance training

· Develop use scenarios for the proposed diagnostic and maintenance assistants

· Develop prototypes for the interfaces to the diagnostic and maintenance assistants

· Establish initial operational usability requirements for hardware and software to be tested against.

B.2. Role based and personalizable human interfaces (Leads: Bramley, McMullen)
Rationale

The software environment we envision for implementing the user interfaces is a componentized, modular framework providing tracking, logging, and guidance for maintenance and repair tasks. The framework will provide user interaction on a range of platforms, primarily laptops and workstations, but also including palm-tops and PDAs. Software component technology will allow the framework to be dynamically adjustable for users with varying levels of training, for different delivery platforms, and will allow real-time addition of new or modified repair and maintenance modules to the framework. Each component will provide a part of the total functionality and can communicate with other components both in the interface and processes elsewhere on remote servers.

The component approach to be used here results in software systems that are easy to maintain, upgrade and extend and interfaces that are field customizable for new users or new applications.

Functionality in the framework as a whole:

· component based

· components can be written in any language (C, C++, Java, etc.)

· components can be embedded in web browsers or used in stand-alone applications

· components and framework can be executed without network connectivity for “stand-alone” applications, and can save their internal state

· distributed, multi-platform (Unixes and Windows in particular)

· secure inter-component communication

· components are network-aware with respect to bandwidth and latency, and can provide bandwidth allocation functions

Use of different versions of the same component will allow use- and context-dependent customization of functionality without changing how the component is used programmatically.

Within the framework there will be a number of components described below from which the following interfaces will be built:

· The sailor diagnostic framework – “on-site” repair

· The consultant diagnostic framework – off-site consulting

· The logistical/supply framework – interface to requisition processing

A central feature of the sailor’s interface is a case-based reasoning tool (discussed in more detail in the “Case-based Reasoning” task description) to develop, present and manage repair scenarios with on-site and remote repair personnel. Additionally the multimedia catalog of manuals and training material to be prepared by Purdue will be available as a component in the framework and the library information presented will be windowed to correspond to the current state of the repair or maintenance session.

Session control will be provided and all personnel who “log in” to a particular session will be included in the final TFR report. The interface can be customized for each user’s preferences and skill level, and other requirements for the session.

The framework is platform-aware and components for interacting with the diagnostic and maintenance system will be able to represent their information in a manner compatible with the platform they are running on (laptop, palmtop, etc.) Components are “plug and play” with published interfaces allowing the framework to select appropriate components and interaction capabilities depending on the delivery platform, user skill levels, and other requirements. Components can also be added or upgraded without changing existing applications.
Objectives

Based on task analysis, use scenarios, and available data (as identified by EG&G) provide an initial functional and visual design for the “sailor” diagnostic interface for each system for which a diagnostic system will be developed. During the “System Design” phase efforts will be focused on generating the component framework and developing the diagnostic reasoning algorithms. The functionality proposed below will be examined in the light of the results of the User and Task analysis and the environmental scan conducted by EG&G. Prototypes will be developed from a revised functionality list and will be evaluated by users and stakeholders in a later step.

Functionality needed in the sailor diagnostic framework:
1. Diagnostic system

a. Diagnostic assistant – provides a front end for the diagnostic component. This will provide textual, graphical and/or spoken instructions to the sailor effecting maintenance or repair actions.

b. Diagnostic component – implements the diagnostic algorithm and reports state to the session recorder and the logistical component. The diagnostic algorithm will be driven by case-based reasoning using prior repair, maintenance, and inspection information. The diagnostic component will allow “speculative” operation to explore the space of possible solutions.

c. Session recorder - This component records all technician and machine generated events and activities in the diagnostic process for playback by consulting engineers. At the completion of the diagnosis and repair this information can be added to the pool of information used by the CBR diagnostic engine. The session recorder monitors the quality and completeness of data entered by the user.

d. Logistical component – as the diagnostic algorithm proceeds the logistical component tracks what assemblies and subassemblies are in the union of the unknown-condition and faulty sets. For each element in the set it determines the location of the nearest replacement, cost to obtain the replacement in time and total dollars. This information can be used in real-time by the diagnostic component if optimizations such as shortest time-to-repair or lowest cost-to-repair is needed.

e. Report generator – this component reduces the set of diagnostic actions to the effective set and prepares and enters a Trouble/Failure report.

2. Information library (hyperlinked and indexed content provided by Purdue)

a. View vendor design manuals (in machine readable form)

b. Vendor maintenance manuals

c. Vendor repair manuals

d. Vendor training media

e. Annotation capabilities for all content

f. Trouble/Failure Report database query

g. Parts availability and requisition

h. View notes and comments entered as field engineering changes to the documentation

3. Collaboration system

a. Secure video teleconferencing (multiple participants and multiple cameras per participant)

b. Audio and video recording

c. Instrument sharing (for o’scope or DVM measurements, or test port connections to a diagnostic computer)

d. Application sharing

e. Diagnostic session playback

Functionality needed by consulting technicians and engineers:

1. Collaboration system (as above)

2. Information system

a. functions per above

b. Edit and enter field engineering changes to documentation

3. Diagnostic system monitor

a. Examine current state of the diagnostic assistant for the problem at hand

b. Take control of the diagnostic assistant for this problem

c. Modify the state of the diagnostic assistant to add or remove test steps or change prior inputs

d. Functions per the diagnostic component above

Functionality needed to handle casualty replacements (ship and shore stakeholders in logistics and supply chain):

1. Parts locator component – provides location, stock level and time-to-ship information for replacement parts

2. CASREP/Requisition component – Interface between the diagnostic framework and the current requisition system.

Considerable emphasis will be put on the design of the diagnostic component with respect to the reasoning engine and its sensitivity to incorrect data from human input and database contents.

Based on the system design, component framework and delivery platforms determined in prior tasks the functionality described above and refined through user evaluation of prototypes will be implemented. It is expected that continuous refinement of the design in general and in detail will proceed as each functional component is developed and fit into the framework.

· The Diagnostic component framework with support for network- and platform-aware components

· Diagnostic assistant interactive case-based-reasoning component to direct repairs

· Collaboration components for remote consultation and information sharing

· Logistical components to assist requisition personnel

· Diagnostic framework protocol – application specific SOAP extensions for inter-component communication

Research objectives
There are a number of research problems associated with the component framework proposed here, chief among which are security and network awareness. Security issues to be investigated include code integrity assurance and network security for communication between components. Network awareness refers to a component’s ability to adjust its behavior to available bandwidth and quality of service, and choosing between available services based on “network proximity”.

C. Collaborative technologies and tools

C.1. Collaboration tools (Lead: Fox)

Rationale
A key problem solving strategy in the proposed system is providing access to experts at a distance. This can be done synchronously, in real time using such techniques as video and audio teleconferencing, whiteboards, text chat, and application sharing, or asynchronously through e-mail, or threaded discussion groups. We have successfully integrated synchronous and asynchronous collaboration in our Garnet system using a single XML event model built around commercial Java Message Service. This integration allows common services – archive, replay, search – and common XML specified data sources to be shared either in real-time or in the sailor’s own time. One key question is network performance. The simplest and most general application sharing comes from the shared display approach – here the events shared between the collaborating clients represent the (compressed) change in the display (frame-buffer) of the shared application. This can be very bandwidth intensive and there are alternatives. In the shared export model, one aims at sharing only those applications that export to a particular display model and you build a specialized shared update event model for this model. For documents and visualizations, shared HTML, SVG (Scalable Vector Graphics) and PDF are some of the interesting possibilities. Typically shared event collaboration is much lower bandwidth as one shares not the display but the change in document specification. One can get particularly low bandwidth with replicated resources. If the documents to be shared are present on shore and on a ship, then one need just share the URL specifying the page and fetch the document from the local cache with negligible shore—ship network traffic. Sharing mouse positions, scrolling etc so the document and center of attention are both shared, can refine this.

Another active area of collaboration research is support of heterogeneous clients and Garnet supports collaborative sessions between hand-held and conventional clients. There are obvious applications of such capability where the hand-held is used in areas where larger clients are not convenient.

We will use our substantial expertise to identify the needed collaboration tools and techniques and to choose between commercial and academic solutions.

Tasks
During the first year of this project we will identify the possible collaboration tools that can be integrated into the overall proposed architecture. We will pay attention to requirements such as bandwidth discussed above. Another key requirement is that the tools chosen can leave a record of how they were used as a means of capturing knowledge from interactions between novices and experts. These session recording and annotation requirements may limit the usability of COTS solutions. This capability is built into Garnet using XML update events. However current commercial tools like NetMeeting, WebEx, Centra, Placeware, and Interwise are very powerful with high performance shared display capabilities. A mix of our research with commercial systems may prove best matched to the project requirements.

Initially the following types of synchronous collaboration tools will be identified or developed:

· Video and audio teleconferencing

· Shared whiteboard

· Text chat (and instant messaging)

· Application sharing by both shared display and shared export.

The following types of asynchronous collaboration tools will be identified or developed:

· E-mail

· Threaded discussions

· Instant messaging integration into other signaling systems like paging and voice mail

· Shared persistent workspaces

We will look carefully at both network requirements and the need for supporting heterogeneous clients. Further we will evaluate the use of systems like Garnet whose XML based event architecture will integrate with the project middleware and allow the collaborative session data to be processed with all the tools developed by the project.

D. Concept Maps and Case Based Reasoning

D.1. Diagnostic recommender (Lead: Leake)

D.2. Case-based reasoning maintenance tools
D.3. Concept mapping tools for knowledge capture and learning

Rationale

This task addresses the problems of (1) supporting sailors or engineers by providing timely, on-point, useful knowledge to support their diagnostic processes, and (2) capturing experiences for future use. A central problem with expert systems and diagnostic trees is that they do not reflect changing users or varying uses, may become outdated, and do not support the sailor’s learning. To deal with these problems we propose to include in the system a case-based reasoning tool to develop, present and manage repair scenarios with on-site and remote repair personnel. This CBR tool will draw on databases provided by the Purdue data-mining task and other existing databases (e.g. Trouble-Failure Reports).

Case-based reasoning is an approach to knowledge management that incorporates knowledge capture, reasoning by remembering, and explanation by example. CBR permits the use of new observations immediately without distillation into rules (diagnostic procedures are an emergent property of the case base, which can also be mined for explicit rules), and exceptions can be stored with “normal” cases.

Effective use of diagnostic knowledge depends on presenting that knowledge in a comprehensible form; effective capture depends on representing it in a form that can be generated efficiently by experts. This task will address both these needs by integrating CBR and concept mapping. Concept maps are graphical representations of elements of a domain and their relationships. They can be used to organize all types of activities on the domain including browsing, directed learning, and diagnosis. New knowledge can be incorporated easily as a new concept or as case information under an existing concept. Integrating case-based reasoning with concept mapping will provide tools for flexible, comprehensible knowledge representations, and powerful procedures for accessing that knowledge when it is needed.

Tasks

· Develop concept maps from the information from user studies

· Develop a case-based reasoning component to drive maintenance actions by supporting two types of retrieval:

· Retrieval of prior cases

· Retrieval of concept maps

· Integrate the CBR and concept map components into the user interface and the overall system architecture

E. General Tasks

E.1. First Year (October 2002) demonstration planning and development
Indiana University will work with Crane and Purdue during the initial months of the project to develop and refine a set of functions to be demonstrated at the end of the first year of funding, most likely sometime in October of 2002.

E.2. Testbed development and operation
A key component of the integration plan is the development of a testbed facility. The testbed will consist of two sets of shipboard and land-based hardware, one to operate as an external evaluation and demonstration rig and the other to be a preliminary integration test rig. The evaluation testbed will hold the latest working versions of the system software and data, and will be available for user testing and demonstrations. The integration testbed will be used to test new additions to the system software and to verify their integration with existing components.

In addition to the eval and integration parts of the testbed IU and Purdue will maintain identical hardware testbeds “in-house”. Crane/EG&G will purchase, install and maintain the testbed at Crane and the mirror testbeds at IU and Purdue.

Tasks

· Specify hardware and software platforms for the integration and evaluation testbeds at Crane. Two additional copies of this configuration will also be purchased for installation at IU and Purdue.

· Develop procedures for software and hardware configuration control in the Crane testbed, including installing new components in the integration testbed and for moving tested and proven components from the integration to the evaluation/demo testbed.

· Develop and maintain regression testing procedures used in the integration testbed.

