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Diffractive processes are considered from both s–channel and t–channel points of
view. Soft and hard diffractive processes are discussed. An importance of unitarity
(shadowing) effects for a relation between hard diffraction at HERA and Tevatron
is emphasized. A model, which takes into account unitarity effects is developed for
to predict interaction of high–energy virtual photons with nucleons. It is shown
that this model gives a good description of HERA data on both total γ∗p total
cross section and diffractive dissociation of virtual photons in a broad region of
Q2. Diffractive production of jets in hadronic interactions is investigated and an
important role of unitarization effects is emphasized. It is shown how to describe
the CDF data on diffractive jet production at Tevatron using an information on
distribution of partons in the pomeron from HERA experiments. Double–pomeron
production of jets at Tevatron shows a clear violation of factorization and is in a
good agreement with our prediction.
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1 Introduction

This review paper on diffractive processes is devoted to a memory of Misha
Marinov. I has met Misha 40 years ago when I started to visit ITEP as
a student of I.Ya.Pomeranchuk. I was always impressed by his very serious
and deep style of thinking. He tried to understand all subtleties in the field
of high–energy physics. His deep knowledge of many complicated problems
in our field was well known and highly appreciated by physicists of ITEP.
Misha had a great pedagogical talent which unfortunately was not used to full
strength. Only once we asked him to give lectures on path integral methods.
These lectures became a basis for his famous review on this subject. In 60-ies
many people in ITEP including Misha were interested in high–energy hadronic
interactions. The theoretical approach based on Regge theory was very popular
at that time. Misha Marinov has investigated scattering of particles with spins
at high energies. I learned a lot on this subject from his papers and discussions
with him. At present there is a revival of interest to Regge approach mostly
due to successful applications of this method to deep–inelastic scattering in the
small–x region, studied experimentally at HERA and theoretical investigation
of the role of Regge singularities in QCD.

Investigation of diffractive scattering of hadrons gives an important infor-
mation on structure of hadrons and mechanisms of their interactions. There
are two complementary points of view to these processes.

The s–channel view of diffraction

It is well known that an absorption of an initial wave due to many inelastic
channels leads by unitarity to diffractive elastic scattering. At high energies
lifetimes of hadronic fluctuations are large τ ∼ E/m2 and hadronic constituents
can undergo elastic scattering . This process leads to diffraction dissociation
of hadrons. An elegant interpretation of diffraction dissociation in terms of
eigenstates of diffractive part of S-matrix has been given by Good and Walker.1

Consider the states φk which diagonalize the diffractive part of the T matrix.
Such eigenstates of diffraction only undergo elastic scattering. Let us denote
the orthogonal matrix which diagonalizes Im T by C, so that

Im T = CFCT with 〈φk|F |φj〉 = Fj δjk. (1)

Now consider the diffractive dissociation of an arbitrary incoming state

|i〉 =
∑

k

Cik |φk〉. (2)
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The elastic scattering amplitude for this state satisfies

〈i|Im T |i〉 =
∑

k

|Cik|2 Fk = 〈F 〉, (3)

where Fk ≡ 〈φk|F |φk〉 and where the brackets of 〈F 〉 mean the average of
F over the initial probability distribution of diffractive eigenstates. After the
diffractive scattering described by Tfi, the final state |f〉 will, in general, be a
different superposition of eigenstates than those of |i〉 shown in (2). At high
energies one can neglect by the real parts of the diffractive amplitudes, then
for cross sections at a given impact parameter b we have

dσtot

d2b
= 2 Im〈i|T |i〉 = 2

∑
k

|Cik|2 Fk = 2〈F 〉

dσel

d2b
= |〈i|T |i〉|2 =

(∑
k

|Cik|2 Fk

)2

= 〈F 〉2 (4)

dσel + SD

d2b
=

∑
k

|〈φk|T |i〉|2 =
∑

k

|Cik|2 F 2
k = 〈F 2〉.

It follows that the cross section for the single diffractive dissociation of a proton,

dσSD

d2b
= 〈F 2〉 − 〈F 〉2, (5)

is given by the statistical dispersion in the absorption probabilities of the
diffractive eigenstates.

Note that if all the components φk of the incoming diffractive state |i〉
were absorbed equally then the diffracted superposition would be proportional
to the incident one and the inelastic diffraction would be zero. Thus if, at very
high energies, the amplitudes Fk at small impact parameters are equal to the
black disk limit, Fk = 1, then diffractive production will be equal to zero in
this impact parameter domain and so will only occur in the peripheral b region.
This behaviour takes place in pp (and pp̄) interactions at Tevatron energies.

Let us consider as an example just two diffractive channels2,3,4 (say, p,N∗),
and assume, for simplicity, that the elastic scattering amplitudes for these two
channels are equal. Then the T matrix has the form

Im T = 1 − e−Ω/2, (6)

where the eikonal matrix Ω has elements

Ωfi
f ′i′ = Ω0 ωfi ωf ′i′ . (7)
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The individual ω matrices, which correspond to transitions from the two in-
coming hadrons, each have the form

ω =

(
1 γ

γ 1

)
. (8)

The parameter γ(s, b) determines the ratio of the inelastic to elastic transitions.
The overall coupling Ω0 is also a function of the energy

√
s and the impact

parameter b.
With the above form of ω, the diffractive eigenstates are

|φ1〉 =
1√
2

(|p〉 + |N∗〉) , |φ2〉 =
1√
2

(|p〉 − |N∗〉) . (9)

In this basis, the eikonal has the diagonal form

Ωmn
m′n′ = Ω0 rmn rm′n′ , (10)

where m,n = φ1, φ2 and

r =

(
1 + γ 0

0 1 − γ

)
. (11)

In the case where γ is close to unity, γ = 1− ε, one of the eigenvalues is small.

The t–channel point of view on diffraction

The t–channel approach is based on the Regge model for diffractive processes.
Regge poles have been introduced in particle physics in the beginning of 60-
ies5,6 and up to present time are widely used for description of high-energy
interactions of hadrons and nuclei. Regge approach establishes an important
connection between high energy scattering and spectrum of particles and res-
onances. In this approach diffractive processes are mediated by an exchange
by the pomeron (P ) – the leading Regge pole with vacuum quantum numbers.
The pomeron plays a role of an exchanged ”particle” and gives factorizable
contributions to scattering amplitudes. In impact parameter space Regge am-
plitude has asymptotically gaussian form. This contradicts to a peripheral
form for inelastic diffraction, which follows from unitarity in the s-channel pic-
ture. However in the Regge theory it is necessary to take into account not
only Regge poles but also Regge cuts, which corresspond to exchange by sev-
eral Regge poles in the t-channel. These contributions restore unitarity of the
theory and for inelastic diffraction they lead to a peripheral form of impact
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Figure 1: Diagrams for diffractive production of hadrons in the Regge pole model.

parameter distributions and allow to understand an energy dependence of the
corresponding cross sections.

For all diffractive processes (Fig. 1) there is a large rapidity gap between
groups of produced particles. For example for single diffraction dissociation
there is a gap between the particle 1′ and the rest system of hadrons. This
rapidity gap ∆y ≈ ln(1/1 − x), where x the xF for hadron 1′ . A mass
of diffractively excited state at large s can be large. The only condition for
diffraction dissociation is si � s.

The cross section for inclusive single diffraction dissociation in the Regge
pole model can be written in the following form

d2σ

dξ2dt
=

(g11(t))2

16π
|Gp(ξ′, t)|2σ(tot)

P2 (ξ2, t) (12)

where ξ2 ≡ ln(s2/s0), ξ′ = ln(s/s2) and Gp(ξ′, t) = η(αp(t))exp[(αp(t) − 1)ξ′]
is the pomeron Green function. The quantity σ

(tot)
P2 (ξ2, t) can be considered as

the pomeron–particle total interaction cross section.7 Note that this quantity
is not directly observable one and it is defined by its relation to the diffraction
production cross section, Eq. (12). This definition is useful however because at
large s2 this cross section has the same Regge behavior as usual cross sections

σ
(tot)
P2 (s2, t) =

∑
k

gk
22(0)rαk

PP (t)
(

s2

s0

)αk(0)−1

(13)

where the rαk

PP (t) is the triple–reggeon vertex , which describes coupling of two
pomerons to reggeon αk.
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Figure 2: Triple–Regge diagram.

In this kinematical region s � s2 � m2 the inclusive diffractive cross
section is described by the triple–Regge diagrams (Fig. 2)and has the form

f1 =
∑

k

Gk(t)(1 − x)αk(0)−2αP (t)(
s

s0
)αk(0)−1 (14)

The pomeron–proton total cross section and triple–Regge vertices rP
PP , rf

PP

have been determined from analysis of experimental data on diffractive pro-
duction of particles in hadronic collisions (see review8).

2 Small-x physics

An interesting class of diffractive processes is studied in deep inelastic scatter-
ing (DIS) at small values of the Bjorken variable x . They became especially
actual due to recent experimental investigation of the small-x region at HERA
accelerator.

Experiments at HERA have found two extremely important properties of
small-x physics : a fast increase of parton densities as x decreases9,10 and
the existence of substantial diffractive production in deep inelastic scattering
(DIS).11,12

In the paper13 it was suggested that the increase of the effective inter-
cept of the pomeron, αeff = 1 + ∆eff , as Q2 increases from zero to several
GeV2 is mostly due to a decrease of shadowing effects with increasing Q2.
A parametrization of the Q2 dependence of ∆eff such that ∆eff ≈ 0.1 for
Q2 ≈ 0 (as in soft hadronic interactions) and ∆eff ≈ 0.2 (bare pomeron in-
tercept) for Q2 of the order of a few GeV2, gives a good description13,14 of all
existing data on γ∗p total cross-sections in the region of Q2 ≤ 5÷10 GeV2. At
larger Q2 effects due to QCD evolution become important. Using the above
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parametrization as the initial condition in the QCD evolution equation, it is
possible to describe the data in the whole region of Q2 studied at HERA.13,15

In the reggeon approach there are good reasons to believe that the fast
increase of the σ

(tot)
γ∗p with energy in the HERA energy range will change to a

softer increase at much higher energies. This is due to multi–pomeron effects,
which are related to shadowing in highly dense systems of partons - with even-
tual “saturation” of densities. This problem was investigated recently in our
paper,18 where reggeon approach was applied to the processes of diffractive γ∗p
interaction.

In the reggeon calculus16 the amount of rescatterings is closely related
to diffractive production. AGK-cutting rules17 allow to calculate the cross-
section of inelastic diffraction if contributions of multi–pomeron exchanges to
the elastic scattering amplitude are known. Thus, it is very important for
self-consistency of theoretical models to describe not only total cross sections,
but, simultaneously, inelastic diffraction. In particular in the reggeon calculus
the variation of ∆eff with Q2 is related to the corresponding variation of the
ratio of diffractive to total cross sections.

In the paper18 an explicit model for the contribution of rescatterings was
constructed which leads to the pattern of energy behavior of σ

(tot)
γ∗p (W 2, Q2) for

different Q2 described above. Moreover, it allows to describe simultaneously
diffraction production by real and virtual photons. In this model it is possible
to study quantitatively a regime of ”saturation” of parton densities.

Let us discuss briefly the qualitative picture of diffractive dissociation of a
highly virtual photon at high energies. It is convenient to discuss this process
in the lab. frame, where the quark–gluon fluctuations of a photon live a long
time ∼ 1/x (Ioffe time19). A virtual photon fluctuates first to qq̄ pair. There
are two different types of configurations of such pair, depending on transverse
distance between quarks (or k⊥).
a) Small size configurations with k2

⊥ ∼ Q2. These small dipoles (r ∼ 1/k⊥ ∼
1/Q) have a small (∼ r2) total interaction cross section with the proton.
b) Large size configurations with r ∼ 1/ΛQCD and k⊥ ∼ ΛQCD � Q. They
have a large total interaction cross section, but contribute with a small phase
space at large Q2, because these configurations are kinematically possible only
if the fraction of longitudinal momentum carried by one of the quarks is very
small x1 ∼ k2

⊥/Q2 � 1. This configuration corresponds to the ”aligned jet”,
introduced by Bjorken and Kogut.20

Both configurations lead to the same behaviour of σ
(tot)
γ∗p ∼ 1/Q2, but they

behave differently in the process of the diffraction dissociation of a virtual
photon.21,22 The cross section of such a process is proportional to a square
of modulus of the corresponding diffractive amplitude and for a small size
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configuration it is small (∼ 1/Q4). For large size configurations a smallness
is only due to the phase space and the inclusive cross section for diffractive
dissociation of a virtual photon decreases as 1/Q2, i.e. in the same way as the
total cross section. This is true only for the total inclusive diffractive cross
section, where characteristic masses of produced states are M2 ∼ Q2. For
exclusive channels with fixed mass (for example production of vector mesons)
situation is different and these cross sections decrease faster than 1/Q2 at large
Q2.

Inclusive diffractive production of very large masses (M2 � Q2) can be
described in the first approximation by triple–Regge diagrams.23 From the
point of view of the quark-gluon fluctuation of the fast photon triple–pomeron
contribution corresponds to diffractive scattering of very slow (presumably
gluonic) parton, which has a small virtuality.

The model18 uses the picture of diffraction dissociation of a virtual photon
outlined above and is a natural generalization of models used for the descrip-
tion of high-energy hadronic interactions. The interaction of the small size
component in the wave function of a virtual photon is calculated using QCD
perturbation theory.

The main parameter of the model – intercept of the pomeron was fixed
from a phenomenological study of hadronic interactions24 (∆P = 0.2) and was
found to give a good description of γ∗p-interactions in a broad range of Q2

(0 ≤ Q2 < 10 GeV 2). Another important parameter of the theory, the triple–
pomeron vertex, obtained from a fit to the data (r(0)

PPP /gP
pp(0) ≈ 0.1) is also in

a reasonable agreement with the analysis of soft hadronic interactions.24,23 The
model describes experimental data on the structure function F2 and diffrac-
tive structure function F

(3)
2D quite well (Figs. 3, 4). It can be used to predict

structure functions and partonic distributions at higher energies or smaller x.

Investigation of the Q2-dependence of diffraction dissociation of a highly
virtual photon gives a possibility to determine a distribution of gluons in the
pomeron.12,23,25 It turns out that contrary to the proton case both distributions
of quarks and gluons inside the pomeron are rather hard. This indicates to
an important contrubution of ”valence” gluons in the pomeron. It should be
noted however that the form of the distribution of gluons in the pomeron is
not well known at present. This is partly due to systematic differences in
Q2 dependence of diffractive structure functions of H1 and ZEUS (for recent
discussion of these points see26).
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Figure 3: Structure function F2 as a function of x for different values of Q2 compared with
experimental data. Dashed lines denote small distance contributions and dotted lines – large
distance ones.
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Figure 4: The diffractive structure function xP F
D(3)
2 as a function of xP = x/β for fixed

values of Q2 and β = Q2/(Q2 + M2).
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Shadowing effects for nuclear structure functions

A study of the shadowing effects for structure functions of nuclei in the small
x region provides a stringent test of the reggeon approach to small–x problem.
The shadowing effects are enhanced for nuclei (∼ A1/3) and lead to deviations
from A1 behaviour for structure functions of nuclei. Glauber–Gribov27,28 ap-
proach to interactions of particles with nuclei gives a possibility to calculate
rescattering corrections for interaction of a virtual photon with a nucleus in
terms of diffractive interaction of a photon with a nucleon, which was discussed
above.

A contribution of a double rescattering term to the σγ∗A is directly ex-
pressed in terms of the differential cross section for a diffraction dissociation
of a virtual photon in γ∗N -interactions

σ(2) =−4π

∫
d2b T 2

A(b)
∫

dM2
dσDD

γ∗N (t = 0)
dM2dt

FA(tmin) (15)

where FA(tmin) = exp(R2
Atmin/3), tmin ≈ −m2

Nx2
P , and TA(b) is the nuclear

profile function (
∫

d2bTA(b) = A).
Higher order rescatterings are model dependent and in the generalized

Schwimmer model29 we obtain in the region of small x

F2A/F2N =
∫

d2b
TA(b)

1 + F (x,Q2)TA(b)
(16)

with

F (x,Q2) = 4π
∫

dM2
dσDD

γ∗N (t = 0)
dM2dt

FA(tmin)
σγ∗N (x,Q2)

.

Theoretical predictions,30 based on Eq. (16) and the model for diffraction
dissociation of Ref. 23 are in a very good agreement with NMC-data on nuclear
structure functions at very small x.31 I believe that this appraoch gives reliable
predictions for nuclear shadowing effects in the region of smaller x not yet
studied experimentally. This region will play an important role in dynamics of
heavy ions collisions at super–high (LHC) energies.

3 Hard diffraction in hadronic interactions

Diffractive production of large mass states, which include hard subprocesses,
has been studied recently in high–energy hadronic interactions. Most of the
results have been obtained at Tevatron where diffractive production of jets,
W-bosons, heavy quarks and heavy quarkonia was observed.32,33,34
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The most interesting results were obtained for diffractive dijet production.
These observations, coupled with the diffractive measurements by H112 and
ZEUS11 at HERA, offer the opportunity to explore the relation between hard
diffraction at HERA and Tevatron. The processes are shown schematically
in Fig. 5, in the absence of rescattering corrections. Without rescattering

M2j

j

p

p
p

β

x1

PI

(a)

TEVATRON HERA

γ

p
p

β

Q2

PI

(b)

Figure 5: Schematic diagrams for diffractive dijet production at the Tevatron and for diffrac-
tive deep icelastic scattering at HERA.

corrections the cross section for diffractive dijet production , integrated over t,
may be written as

σ =
∑
i,j

∫
FP (ξ)fP

i (β,E2
T )fp

j (x1, E
2
T )σ̂dβdx1, (17)

where σ̂ is the cross section to produce dijets from partons carrying longitudinal
momentum fractions x1 and β of the proton and pomeron respectively. It was
found32,34 that calculation of the cross section, based on this factorized formula
with diffractive structure functions obtained from HERA data, leads to a large
discrepancy with the CDF measurements both in the normalization and in
the shape of the observed distribution. Even taking into account uncertainties
in gluonic distribution of the pomeron discussed above the calculation lies
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about a factor of 10 above the data. A fast increase of the cross section
for β → 0 observed at Tevatron differs strongly from predictions of models
based on HERA data. The last result is difficult to understand in the models
which take into account an extra suppression in hadronic interactions (”survival
probability”35) due to rescatterings in the eikonal approximation.36,37

This problem was considered in Ref. 38. It was emphasized that a large
cross section for single diffraction dissociation in hadronic collisions indicate
to a large dispersion of eigen cross sections for diagonal states. It was as-
sumed that the sea quarks and gluons mainly occur in large size configurations
of the incident proton and thus have large cross sections, while the valence
quarks occupy predominantly small–size configurations and are absorbed with
substantially smaller cross sections.

In such a two-channel model the survival probability of the gaps can be
written as follows

|S|2 =

∫
d2b

(|Mv|2e−Ωv(s,b) + |Msea|2e−Ωsea(s,b)
)∫

d2b (|Mv|2 + |Msea|2) , (18)

where Mv,sea are the probability amplitudes (in impact parameter space) of
the hard diffractive process corresponding to the valence quark and to the sea
quarks and gluons respectively. The functions Ωi can be parametrized in the
form

Ωi = Ki

(gP
pp)

2(s/s0)∆

4πB
e−b2/4B , (19)

with i = v, sea, and where the slope of the pomeron amplitude is

B = 1
2B0 + α′ ln(s/s0), (20)

with s0 = 1 GeV2. We take Kv = 1 − γ and Ksea = 1 + γ, consistent with
the simple physical model introduced above. The value of the parameters
gP

pp, B0,∆ and α′ were determined in a two-channel global description of the
total, elastic differential and soft diffraction cross sections,4 in which the pa-
rameter γ was fixed to be 0.4.

In this model the soft rescattering effects (Ωi �= 0) of the model based on
(18) modify the β distribution of the dijet process in a characteristic way. First
note that the CDF measurements cover a narrow ξ interval, 0.035 ≤ ξ ≤ 0.095,
and hence that the invariant mass squared of the diffractively produced state,
M2 = ξs, remains close to the average value 2 × 105 GeV2. Also the mass
squared of the produced dijet system

M2
jj = x1βM2, (21)
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does not change much compared to its average value of 1.2× 103 GeV2. Thus
x1β � 0.006 and so for β ≥ 0.3 we have x1 ≤ 0.02, whereas for β ∼ 0.03 we
have x1 ∼ 0.2. Therefore for large β (small x1) sea quarks and gluons will give
the dominant contribution, while for small β the valence quarks play an impor-
tant role. Hence the survival probability should increase as x1 increases and β
decreases. Results of calculations based on this model (Fig. 6) are in a good
agreement with CDF data both in magnitude and form of β distribution.38

In particular an anomalously strong increase of this distribution as β → 0
is reasonably described. This calculation of diffractive dijet production illus-

PS / PLB

A quark / gluon

Fjj(β)

β

D

I

II

I

II(Small / Large σabs)

Figure 6: The predictions for diffractive dijet production at the Tevatron, obtained from two
alternative sets of ‘HERA’diffractive parton distributions , compared with the CDF data.32

The upper two curves correspond to the neglect of rescattering corrections, whereas the
lower four curves show the effect of including these corrections in two models A(continuous
curves) and model B (dashed curves) for the diffractive eigenstates (see Ref. 38).

trates a crucial ingredient necessary in the description of rapidity gap processes.
Namely that the survival probability of a gap can depend on x1 of the partons
of the proton . This leads to many experimental consequences for processes
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with rapidity gaps.38

Double–pomeron jet production

The process of particle production by double–pomeron exchange process (DPE)
gives an important new information on mechanism of diffraction at high en-
ergies. Production of dijets with two large rapidity gaps gaps (xp and xp̄ are
close to 1) has been observed at Tevatron.34 Comparison of cross section of
this process (σjj

DP ) with cross section of jet production in the process of sin-
gle diffraction dissociation (σjj

SD) and in ordinary inelastic events (σjj
in) allows

to study factorization properties of inelastic diffractive processes. The ratio
σjj

SD/σjj
in can be written as:

R1 ≡ σjj
SD

σjj
in

=
FP (ξ)fP

g (β)
fp

g (x)
S2

1 , (22)

where S2
1 is the ”survival probability” for single diffraction dissociation. For

simplicity I consider only contribution of gluons. Account of quarks is straight-
forward.

The ratio of jet production in double–pomeron process to those for single
one has the form

R2 ≡ σjj
DP

σjj
SD

=
FP (ξ1)fP

g (β1)
fp

g (x1)
S2

2

S2
1

, (23)

where S2
2 is the ”survival” probability for DPE.

So the ratio R1/R2 for the situation when ξ = ξ1, β = β1 (x = x1) is equal
to

R ≡ R1

R2
=

(S2
1)2

S2
2

(24)

For a single Regge pole exchange (S2
i = 1) R = 1 and thus deviations

of R from unity signals a breakdown of the factorization. With account of
absorption S2

1 = 0.1, S2
2 = 0.05 at Tevatron energies.4 So from Eq. (8) it

follows that we can expect R ≈ 0.2 at these energies. Recent results of CDF
show that R = 0.19± 0.07 in a good agreement with theoretical expectation.39

This result shows that factorization is strongly violated in inelastic diffractive
processes.

4 Conclusions

A study of diffractive processes provides an important information on interplay
of soft and hard mechanisms in high energy interactions of hadrons. A new field
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of hard diffractive processes give possibility to study not only partonic content
of the pomeron but also cross sections for absorption of different partonic
configurations of the proton. The theory of supercritical pomeron with the
intercept αP (0) ≈ 1.2 , which takes into account multi–pomeron exchanges
gives a unified description of diffractive processes both for small–x DIS and
hadronic interactions at high energies.
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