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Foreword
What Minuit is intended to do.

Minuit is conceived as a tool to find the minimum value of a multi-parameter function and analyze
the shape of the function around the minimum. The principal application is foreseen for statistical
analysis, working on chisquare or log-likelihood functions, to compute the best-fit parameter values and
uncertainties, including correlations between the parameters. It is especially suited to handle difficult
problems, including those which may require guidance in order to find the correct solution.

What Minuit is not intended to do.

Although Minuit will of course solve easy problems faster than complicated ones, it is not intended for
the repeated solution of identically parametrized problems (such as track fitting in a detector) where a
specialized program will in general be much more efficient.

Further remarks.

Thismanual consists of three parts:

(1) A reference guide explaining the concepts and how to use Minuit for maximum benefit.
(2) A tutorial about function minimization
(3) A tutotial on the interpretation of the error of the parameters given by Minuit

In thismanual examples are inmonotype face and stringsto beinput by the user are underlined. In
the index the page where aroutine is defined isin bold, page numbers where aroutineis referenced are
in normal type. In the description of the routines a * following the name of a parameter indicates that
thisis an output parameter. If another * precedes a parameter in the calling sequence, the parameter in
question isboth an input and output parameter.

This document has been produced using LATEX[1] with the cernman style file, developed at CERN. A
PostScript file minuit . ps, containing a complete printable version of this manual, can be obtained at
CERN by anonymous ftp as follows (commands to be typed by the user are underlined):

ftp asisOl.cern.ch

Trying 128.141.8.104...

Connected to asisOl.cern.ch.

220 asisO01 FTP server (Sun0S 4.1) ready.

Name (asisOl:username): anonymous

Password: your mailaddress
ftp> cd doc/cernlib

ftp> get minuit.ps

ftp> quit
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Chapter 1: Minuit Basic Concepts.

1.1 The Organization of Minuit.

The Minuit package acts on a multiparameter Fortran function to which we give the generic name FCN,
although the actual name may be chosen by the user. This function must be defined and supplied by the
user (or by an intermediate program such as HBOOK][2] or PAW[3], in case Minuit is being used under
the control of such an intermediate program). The value of FCN will in general depend on one or more
variable parameters whose meaning is defined by the user (or by the intermediate program), but whose
trial values are determined by Minuit according to what the user requests should be doneto FCN (usually
minimize it).

To take a simple example, suppose the problem isto fit a polynomial through a set of data points. Then
the user would write an FCN which calculates the chisquare between a polynomial and the data; the
variable parameters of FCN would be the coefficients of the polynomials. Using Minuit commands, the
user would request Minuit to minimize FCN with respect to the parameters, that is, find those values of
the coefficients which give the lowest value of chisquare.

The user must therefore supply, in addition to the function to be analyzed, a set of commands to instruct
Minuit what analysisis wanted. The commands may be givenin several different forms:

— Asadatafile, corresponding to the traditional “data cards’, for batch processing;
— Typed in at execution time at aterminal, for interactive running;

— Coded in Fortran in the calling program, which allows looping, conditional execution, and all the
other possibilitiesof Fortran, but not interactivity, sinceit must be compiled before execution. This
is sometimes known as running Minuit in “slave mode’. HBOOK and PAW use Minuit in this

way.

It isalso possible to mix any of the above forms, for example starting off afit with a standard command
file, then turning it over to the interactive user for the final command steps.

1.2 Internal and External Parameters.

Each of the parametersto FCN is defined by the user as belonging to one of the following types:

Freely variable: allowed to take on any value.

Variable with limits:  allowed to vary only between two limits specified by the user.

Fixed: originaly defined as variable, but now taking on only the value the parameter
had at the moment it was fixed, or a value later assigned by the user.

Constant: taking on only one value as specified by the user.

Undefined: never defined by user.

The user, in FCN, must of course be able to “see” al types of defined parameters, and he therefore has
accesstowhat we call the external parameter list, that is, the parameters as he defined them. On the other
hand, theinternal Minuit minimizing routines only want to “ see” variable parameters without limits, and
so they have access only to the internal parameter list which is created from the external list by the
following transformation:

(1) Squeeze out all parameters that are not variable.

3



4 Chapter 1. Minuit Basic Concepts.

(2) Transform al variable parameters with limits, so that the transformed parameter can vary without
limits. (Seethenext sectionfor detail sconcerning thistransformation.) Becausethistransformation
isnon-linear, it is recommended to avoid putting limits on parameters where they are not needed.

As an example, suppose that the user has defined the following parameters:

— Parameter 1, constant.

— Parameter 3, freely variable.

— Parameter 10, variable with limits.
— Parameter 11, constant.

— Parameter 22, freely variable.

— All others undefined.

Then the internal parameter list would be asfollows:

— Internal parameter 1 = external parameter 3.
— Internal parameter 2 = external parameter 10, transformed appropriately.
— Interna parameter 3 = external parameter 22.

In the above example, Minuit considersthat the number of external parametersis 22 (the highest external
parameter number defined), and the number of internal parameters is 3. The latter number is passed
as NPAR to FCN. Thisis the number which determines, for example, the size of the error matrix of the
parameters, since only variable parameters have errors.

An important feature of Minuit is that parameters are allowed to change types during a Minuit run.
Several Minuit commands are available to make variable parameters fixed and vice-versa; to impose,
change, or remove limitsfrom variable parameters; and even to define completely new parameters at any
time during arun. In addition, some Minuit routines (notably the MINOS error analysis) cause one or
more variable parameters to be temporarily fixed during the calculation. Therefore, the correspondence
between external and internal parameter listsisin general a dynamic one, and the value of NPAR is not
necessarily constant.

1.2.1 The transformation for parameters with limits.

For variable parameters with limits, Minuit uses the foll owing transformation:

P, = arcsin (2 PZXt__aa — 1) P, =a+ b 5 a (sin Py + 1)

so that theinternal value P;,; can take on any value, whilethe external value P.,; can take onvaluesonly
between the lower limit & and the upper limit 5. Since the transformation is necessarily non-linear, it
would transform anice linear problem into a nasty non-linear one, which isthe reason why limits should
be avoided if not necessary. In addition, the transformation does require some computer time, so it lows
down the computation a little bit, and more importantly, it introduces additional numerical inaccuracy
into the problem in addition to what is introduced in the numerical calculation of the FCN value. The
effects of non-linearity and numerical roundoff both become more important as the external value gets
closer to one of the limits (expressed as the distance to nearest limit divided by distance between limits).
The user must therefore be aware of thefact that, for example, if he putslimitsof (0, 10'°) on aparameter,
then the values 0.0 and 1.0 will be indistinguishable to the accuracy of most machines.
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The transformation also affects the parameter error matrix, of course, so Minuit does a transformation
of the error matrix (and the “parabolic” parameter errors) when there are parameter limits. Users
should however redlize that the transformation is only a linear approximation, and that it cannot give a
meaningful result if one or more parametersisvery closeto alimit, where 8 P, /0 P.,; ~ 0. Therefore,
it is recommended that:

— Limitson variable parameters should be used only when needed in order to prevent the parameter
from taking on unphysical values.

— When a satisfactory minimum has been found using limits, the limits should then be removed if
possible, in order to perform or re-perform the error analysiswithout limits.

Further discussion of the effects of parameter limits may be found in the last chapter.
1.3 Minuit Strategy.

At many placesin the analysisof the user function, Minuit must decide whether to be “safe” and waste a
few function callsin order to know whereitis, or to be“fast” and attempt to get the requested resultswith
the fewest possible calls at a certain risk of not obtaining the precision desired by the user. In order to
allow the user to influence these decisions, thereisan internal Minuit parameter ISTRAT which can be set
by the user through the command SET STRategy. Inthecurrent release, thisparameter can take on three
integer values (0, 1, 2), and the default valueis 1. Value O indicates to Minuit that it should economize
function calls; it isintended for cases where there are many variable parameters and/or the function takes
along time to calculate and/or the user is not interested in very precise values for parameter errors. On
the other hand, the value 2 indicatesthat Minuit isallowed to waste function callsin order to be sure that
all values are precise; it isintended for cases where the function is evaluated in a very short time and/or
where the parameter errors must be calcul ated reliably

1.4 Parameter Errors.

Minuit is usually used to find the “best” values of a set of parameters, where “best” is defined as those
values which minimize agiven function, FCN. The width of the function minimum, or more generally, the
shape of the function in some neighbourhood of the minimum, gives information about the uncertainty
in the best parameter values, often called by physiciststhe parameter errors. An important feature of
Minuit isthat it offers several toolsto analyze the parameter errors.

1.4.1 FCN Normalization and the ERRor definition.

Whatever method is used to cal cul atethe parameter errors, they will depend ontheoverall (multiplicative)
normalization of FCN, in the sensethat if the value of FCN is everywhere multiplied by a constant 3, then
the errors will be decreased by a factor /3. Additive constants do not change the parameter errors, but
may imply a different goodness-of-fit confidence level.

Assuming that the user knows what the normalization of his FCN means, and also that heisinterested in
parameter errors, the SET ERRordef command allows him to define what he means by one “error”, in
terms of thechangein FCN valuewhich should be caused by changing one parameter by one“error”. If the
FCN isthe usual chisquare function (defined below), then ERRordef should be set to 1.0 (thedefault value
anyway) if the user wants the usual one-standard-deviation errors. If FCN is a negative-log-likelihood
function, then the one-standard-deviation value for ERRORDEF is0.5. If FCN is a chisquare, but the user
wants two-standard-deviation errors, then ERRORDEF should be = 4.0, etc.
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Note that in the usual case where Minuit is being used to perform a fit to some experimenta data, the
parameter errors will be proportional to the uncertainty in the data, and therefore meaningful parameter
errors cannot be obtained unless the measurement errors of the data are known. In the common case of a
least-squaresfit, FCN is usually defined as a chisguare:

K@) =3, fepo) - ) O;)Z_ c) (11)

where a is the vector of free parameters being fitted, and the o; are the uncertaintiesin the individual
measurements e;. If these uncertainties are not known, and are simply left out of the calculation, then
thefit may still have meaning, but not the quantitative values of the resulting parameter errors. (Only the
relative errors of different parameters with respect to each other may be meaningful.)

If the o, are all overestimated by a factor 3, then the resulting parameter errors from the fit will be
overestimated by the same factor 3.

1.4.2 The Error Matrix.

The Minuit processors MIGRAD and HESSE normally produce an error matrix. This matrix isthe inverse
of the matrix of second derivatives of FCN, transformed if necessary into external coordinate space’,
and multiplied by the square root of ERRORDEF. Therefore, errors based on the Minuit error matrix take
account of all the parameter correlations, but not the non-linearities. That is, from the error matrix alone,
two-standard-deviation errors are always exactly twice as big as one-standard-deviation errors.

When the error matrix has been calculated (for example by the successful execution of a command
MIGrad or HESse) then the parameter errors printed by Minuit are the sguare roots of the diagonal
elements of thismatrix. The commandsSHOw COVariance and SHOw CORrelations allow the user to
see the off-diagonal elementsaswell. Thecommand SHOw EIGenvalues causes Minuitto calculateand
print out the eigenvalues of the error matrix, which should al be positiveif the matrix is positive-definite
(see below on Migrad and positive-definiteness).

The effect of correlations on the individual parameter errors can be seen as follows. When parameter
N is FIXed, Minuit inverts the error matrix, removes the row and column corresponding to parameter
N, and re-inverts the result. The effect on the errors of the other parameters will in general be to make
them smaller, since the component due to the uncertainty in parameter N has now been removed. (In the
limit that a given parameter is uncorrelated with parameter N, its error will not change when parameter
N isfixed.) However the procedure is not reversible, since Minuit forgets the original error matrix, so if
parameter N isthen RELeased, the error matrix is considered as unknown and has to be recal cul ated with
appropriate commands.

1.4.3 MINOS Errors.

The Minuit processor MINOS was probably thefirst, and may still betheonly, generally available program
to calculate parameter errors taking into account both parameter correlations and non-linearities. The
MINOS error intervalsare in general assymmetric, and may be expensive to calculate, especidly if there
are alot of free parameters and the problem is very non-linear.

!Theinternal error matrix maintained by Minuit is transformed for the user into external coordinates, but the numbering
of rows and columnsis of course still according to internal parameter numbering, since one does not want rows and columns
corresponding to parameters which are not variable. The transformation therefore affects only parameters with limits; if there
areno limits, internal and external error matrices are the same.
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MINOS can only operate after a good minimum has already been found, and the error matrix has been
calculated, so the MINOS command will normally follow a MIGRAD command. The MINOS error for a
given parameter is defined as the change in the value of that parameter which causes F’ to increase by
the amount UP, where F” isthe minimum of FCN with respect to al other free parameters, and UP isthe
ERRordef value specified by the user (default = 1.).

The agorithm for finding the positive and negative MINOS errors for parameter N consists of varying
parameter N, each time minimizing FCN with respect to all the other NPAR-1 variable parameters, to find
numerically the two values of parameter N for which the minimum of FCN takes on the values FMIN+UP,
where FMIN isthe minimum of FCN with respect to all NPAR parameters. In order to make the procedure
as fast as possible, MINOS uses the error matrix to predict the values of al parameters at the various
sub-minimawhich it will haveto find in the course of the calculation, and in the limit that the problem is
nearly linear, the predictions of MINOS will be nearly exact, requiring very few iterations. On the other
hand, when the problem is very non-linear (i.e., FCN is far from a quadratic function of its parameters),
that is precisely the situation when MINOS is needed in order to indicate the correct parameter errors.

1.4.4 Contour Plotting

Minuit currently offers two very different procedures for finding FCN contours. They will be identified
by the corresponding command names. CONtour and MNContour.

1.4.4.1 CONtour

This procedure is designed for alineprinter or alphanumeric terminal as output device, and givesa static
picture of FCN as function of the two parameters specified by the user, that is, al the other variable
parameters (if any) are considered as temporarily fixed at their current values. First a range is chosen,
by default two current standard deviations on either side of the current best value of each of the two
parameters, and agrid sizenischosen, by default 25 by 25 positionsfor the full range of each parameter.
Contour zero is defined as the current best function value F,;, (presumably the minimum), and then the
i*® contour is defined as where FCN has the value F.;, + 32 + UP. The procedure then simply evaluates
FCN at the four corners of each of the n? grid positions (which makes (n + 1)? evaluations) to determine
whether the i*® contour passes through it. The method, although not very efficient or precise, is very
robust, and capable of revealing unexpected multiple valleys.

1.4.4.2 MNContour

The contour calculated by MNContour is dynamic, in the sense that it represents the minimum of FCN
with respect to all the other NPAR-2 parameters (if any). In statistical terms, this means that MNContour
takes account of the correlations between the two parameters being plotted, and al the other variable
parameters, using a procedure analogous to that of MINGS. (If thisfeature is not wanted, then the other
parameters must be FIXed before callingMNContour.) MNContour providestheactual coordinatesof the
points around the contour, suitable for plotting with a graphics routine or by hand. The pointsare given
in counter-clockwise order around the contour. Only one contour is cal culated per command (or Fortran
call), andthelevel is Fy,;, + UP. where UP isthe ERRordef specified by the user, or 1.0 by default. The
number of pointsto be calculated is chosen by the user (Default is 20 for the data-driven mode.). Asa
by-product, MNContour providesthe MINOS errors of the two parametersin question, since these are just
the extreme points of the contour (Use SHOw MINos to see them). In command-driven mode, a rough
(alphanumeric, not graphic) plot of the pointsisgiven (if PRIntlevel> 0) and the numerical values of
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the coordinates are printed (if PRIntlevel> 1). In Fortran-callable mode, the user gets Fortran access
to the vector of point coordinates through SUBROUTINE MNCONT.



Chapter 2: Minuit Installation.
2.1 Minuit Releases.

Minuit has been extensively revised in 1989, but the usage is largely compatible with that of older
versions which have been in use since before 1970. Users familiar with older releases, who have not yet
used releases from 1989 or later, must however read thismanual, in order to adapt to the few changesas
well asto discover the new features and easier ways of using old features, such as free-field input.

2.2 Minuit Versions.

The programisentirely in standard portable Fortran 77, and requires no external subroutinesexcept those
defined as part of the Fortran 77 standard and onelogical function INTRAC . The only difference between
versionsfor different computers, apart from INTRAC, isthe floating point precision (see heading below).

As with previous releases, Minuit does not use a memory manager. This makes it easy to install and
independent of other programs, but has the disadvantage that both the memory occupation and the
maximum problem size (number of parameters) are fixed at compilation time. The old solution to this
problem, which consisted of providing “long” and “short” versions, has proved to be somewhat clumsy
and anyway insufficient for really exceptional users, so it has been abandoned in favour of a single
“standard” version.

The currently” standard” version of Minuit will handle functions of up to 100 parameters, of which not
more than 50 can be variable at onetime. Because of the use of the PARAMETER statement in the Fortran
source, redimensioning for larger (or smaller) versions is very easy (although it will help to have a
source code manager or a good editor to propagate the modified PARAMETER statement through all the
subroutines, and of course it implies recompilation). The definition of what is “standard” may well
change in the light of experience (it was 35 instead of 50 variable parameters for release 89.05), and it is
likely that different installationswill wish to define it differently according to their own applications. In
any case, the dimensions used at compilation time are printed in the program header at execution time,
and the program is of course protected against the user trying to define too many parameters. The user
who finds that the version available to him istoo small (or too big) must try to convince his computer
manager to change the installation default or to provide an additional special version, or else he must
obtain the source and recompile his own version.

2.3 Interference with Other Packages

The new Minuit has been designedto interfere aslittle as possiblewith other programs or packages which
may be loaded at the same time. Thusit uses no memory manager or other external subroutines (except
LOGICAL FUNCTION INTRAC), al itsown subroutine names start with the lettersMN (except Minuit and
the user written routines), all COMMON block names start with the characters MN7, and the user should not
need to use explicitly any Minuit COMMON blocks.

In addition, more than one different functions can be minimized in the same execution module, provided
the functions have different names, and provided one minimization and error analysis is completely
finished before the next one begins.

' INTRAC is available from the CERN Program Library for all common computers, and in the worst case can be replaced by
aLOGICAL FUNCTIONreturningavaueof .TRUE. or .FALSE. depending onwhether or not Minuit isbeing usedinteractively.

9
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2.4 Floating-point Precision

Itisrecommended for most applicationsto use 64-bit floating point precision, or the nearest equivalent on
any particular machine. Thismeansthat the standard Minuitinstalled on Vax, IBM and Unix workstations
will normally betheDOUBLE PRECISION version,whileonCDCandCrayitwill beSINGLE PRECISION.

The arguments of the user’s FCN must of course correspond in type to the declarations compiled into
the Minuit version being used. The same is true of course for al floating-point arguments to any
Minuit routines called directly by the user in Fortran-callable mode. Furthermore, Minuit detects at
execution time the precision with which it was compiled, and expects that the calculations inside FCN
will be performed approximately to the same accuracy. (This accuracy iscalled EPSMAC and is printed
in the header produced by Minuit when it begins execution.) If the user fools Minuit by using a double
precision version but making internal FCN or FUTIL computationsin singleprecision, Minuitwill interpret
roundoff noise as significant and will usualy either fail to find a minimum, or give incorrect values for
the parameter errors. It is therefore recommended, when using double precision (REAL*8) Minuit, to
make sure al computations in FCN and FUTIL (if used), as well as all subroutines called by FCN and
FUTIL, are REAL*8, by including the appropriate IMPLICIT declarationsin FCN and all user subroutines
called by FCN. If for some reason the computations cannot be done to a precision comparable with that
expected by Minuit, the user mustinform Minuit of this situation with the SET EPS command.

Although 64-bit precision is recommended in general, the new Minuit is so careful to use all available
precision that in many cases, 32 bits will in fact be enough. It is therefore possible now to envisage
in some situations (for example on microcomputers or when memory is severely limited, or if 64-bit
arithmetic is very slow) the use of Minuit with 32- or 36-bit precision. With reduced precision, the user
may find that certain features sensitive to first and second differences (HESse, MINOs, MNContour) do
not work properly, in which case the calculations must be performed in higher precision.



Chapter 3: How to Use Minuit
3.1 The Function FCN.

The user must always supply a Fortran subroutine which calculates the function value to be minimized
or analyzed.

CALL FCN (NPAR,GRAD,FVAL,XVAL,IFLAG,FUTIL)

Input parameters

NPAR number of currently variable parameters.
XVAL vector of (constant and variabl€) parameters.
IFLAG Indicates what isto be calculated (see example below).

FUTIL Name of utilitary routine (if needed, it must be declared EXTERNAL and provided by the user).
Output parameters

FVAL The calculated function value.

GRAD The (optional) vector of first derivatives).

Note that when Minuit is being used through an intermediate package such as HBOOK or PAW, then the
FCN may be supplied by the this package.

| Example of FCN routine

SUBROUTINE FCN(NPAR,GRAD,FVAL,XVAL,IFLAG,FUTIL)

IMPLICIT DOUBLE PRECISION (A-H,0-Z) ! for 32-bit machines
DIMENSION GRAD (%) ,XVAL(*)
EXTERNAL FUTIL ! (if needed and supplied by user)
C_
IF (IFLAG .EQ. 1) THEN
C read input data,
C calculate any necessary constants, etc.
ENDIF
IF (IFLAG .EQ. 2) THEN
C calculate GRAD, the first derivatives of FVAL
¢ (this is optional)
ENDIF
C Always calculate the value of the function, FVAL,
C which is usually a chisquare or log likelihood.
C Optionally, calculation of FVAL may involve
FTHEO = FUTIL(....)
C It is responsability of user to pass
C any parameter values needed by FUTIL,
¢ either through arguments, or in a COMMON block
IF (IFLAG .EQ. 3) THEN
C will come here only after the fit is finished.
C Perform any final calculations, output fitted data, etc.
ENDIF
RETURN
END

The name of the subroutine may be chosen freely (in documentation we give it the generic name FCN)
and must be declared EXTERNAL in the user’s program which calls Minuit (in data-driven mode) or calls

11
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Minuit subroutines (in Fortran-callable mode). The meaning of the parameters XVAL is of course defined
by the user, who uses the values of those parameters to calculate his function value. The starting values
must be specified by the user (either by supplying parameter definitions from a file, or typing them
a the terminal, in data-driven mode; or by calling subroutine MNPARM in Fortran-callable mode), and
later values are determined by Minuit as it searches for the minimum or performs whatever analysisis
requested by the user. FUTIL represents the name of afunction or subroutinewhich may be defined and
supplied by the user and called from FCN. If the user does not use the FUTIL feature, the last argument
may be given as zero, but if used, the name of FUTIL must be declared EXTERNAL and a subprogram of
that name must be supplied at loading time.

It ispossible, by giving them different names, to analyze several different FCNsin onejob. However, one
analysismust be completed before the next is started. In order to avoid interference between the analyses
of two different FCNs, the user should call Minuit (in data-driven mode) or MNINIT (in Fortran-callable
mode) each time anew FCN isto be studied.

3.2 Running Minuit in Data-driven Mode.

Minuit can be run in two different modes. Data-driven mode means that the user drives Minuit with
data, either typed interactively from aterminal or from a datafile in batch; and Fortran-callable mode
means that Minuit is driven directly from Fortran subroutine calls, without data. To some extent, the
two modes may also be mixed. This section describes the first mode, and is valid for both interactive
and batch running. The differences between interactive and batch are described in a separate subsection
below.

In data-driven mode, the user must supply, in addition to the subroutine FCN, a main program which
includes the following statements (the statements in upper case are required, those given in lower case
are optional):

| Example of main program when using Minuit in data driven mode

EXTERNAL FCHN

external futil

call mintio(ird, iwr,isav)
CALL MINUIT(FCN,futil)

The name of FCN may be chosen freely, and is communicated to Minuit as its first argument. FUTIL is
the generic name of a function or subroutinewhich the user may optionally call from FCN, and if he does
call such aroutine, he must declare it external and communicate its name to Minuit aswell. If FUTIL is
not used, then the second argument may be put equal to 0, and need not be declared EXTERNAL; if FUTIL
is declared EXTERNAL, it must be suppliedin the loading process.
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CALL MINTIO  (IREAD,IWRITE,ISAVE)

Action: The purpose of MINTIO isto communicate to Minuit the I/O units.

Input parameters

IREAD Fortran unit number for reading (default 5).
IWRITE  Fortran unit number for writing (default 6).
Isave Fortran unit number for saving (default 7).

If the default values are acceptable, then it is not necessary to call MINTIO. Itisthe user’s responsibility
that the 1/0O unitsare properly opened for the appropriate operations.

Note

In data-driven mode, that iswith CALL MINUIT, you should not call MNINIT, since Minuit takes care of
all initialization. To change unit numbers, call MINTIO0 before callingMINUIT.

In order that control returns to the user program after CALL MINUIT, the last command in the corre-
sponding Data Block should be RETURN. If the last command iSEXIT or STOP, then Minuit will executea
Fortran STOP, and if the last command isEND, Minuit will read a new Data Block from the current input
unit.

3.2.1 Data to drive Minuit

In data-driven mode, either interactively or in batch, Minuit reads the following data provided by the
user:

— Title: (astring of 50 characters or less) which can be chosen freely by the user, to help identify
thejob.

— Parameter definitions: for each parameter one record giving:

(1) The parameter number. Thisisthe index in the array XVAL by which the user function FCN
will access the value of the parameter.

(2) The parameter name. A string of ten characters to help the user in reading the Minuit
output.

(3) The starting value of the parameter.

(4) The starting step size,or expected uncertainty in this parameter, if it is to be a variable
parameter. Otherwise blank or zero if the value is to be constant.

Optiona The lower bound (limit) below which the parameter value must not vary.
Optional The upper bound (limit) above which the parameter value must not vary.

Normally the user should not specify limits on the parameters, that is both should be left blank.
If one limit is specified, then BOTH must be specified. The properties of limits are explained
elsewherein this document.

The format of the parameter definitions may be either fixed-field (each item in a field of width
ten columns), or in free-field format. In the free-field format, items are separated by blanks or
one comma, and the parameter name must be given between single quotes. The program assumes
free-field format if it finds two single quotesin the line. Parameter names will be blank-padded or
truncated to be ten characters long.
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— A blank record: indicatesthe end of parameter definitions.

— If the user FCN reads input data from the same input stream as the Minuit data (the default stream
iISUNIT 5), thentheFCN data should appear here.

— Minuit commands: these specify actionswhich should be performed by Minuit. Commands must
not contain leading or embedded blanks, but may be truncated to three characters, and may be
givenin upper or lower case. Some commands have numerical arguments, and these may be given
in free-field format, separated by blank(s) or one commat. The list of recognized commands is
given and explained below. The command HELP causes Minuit to write to the output stream a list
of currently recognized commands. The command HELP SHOw liststhe available SET and SHOw
commands.

Any or al of the above data read by Minuit can reside on one or more different files, and Minuit can be
instructed to switch to reading a different file with the SET INPUT command. Optionally, thetitle record
may be preceeded by arecord beginning with the charactersSET TITLE, and the parameter definitions
may be preceeded by a record beginning with the characters PARAMETERS. It isin fact recommended
alwaysto include these optional records when preparing adatafile, since the file can then be read at any
time (not just at the beginning of a Minuit run) and will always be interpreted correctly by Minuit.

| Example of a typical Minuit data set |

SET TITLE

Fit to time distribution of K decays, Expt NA94
PARAMETERS

1 ’Real(X)’ 0. .1

2 ’Imag(X)’ 0. .1

5 ’Delta M’ .535 .01

10 ’K Short LT’ .892

11 ’K Long LT’ 518.3

fix 5
migrad

set print 0
minos
restore
migrad
minos

fix 5

set param 5 0.535
contour 1 2
stop

3.2.2 Batch and interactive running.

In its initialization phase, Minuit attempts to determine whether or not it is running interactively, by
calling the logical function INTRAC, a routine in the CERN Program Library which can be provided for
all commonly used computers. For our purposes, we define “ running interactively” as meaning that input
is coming from aterminal under the control of an intelligent being, able to make decisions based on the

!In older versions of Minuit, there was a special format for the MINOs command, when specifying alist of parameters; the
new Minuit reads the MINOs command with the same free-field format as the other commands, so if parameter numbers are
specified, they must now be separated by a blank or comma.
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output he receives at the terminal. It isnot always easy for INTRAC to know whether thisisthe case, so,
depending on your operating system, Minuit can be fooled in certain cases. When this happens, the user
can aways overridethe beliefsof INTRAC with the commandsSET BATch and SET INTeractive. The
command SHOw INTeractive informsthe user of the current mode.

According to whether or not it believes it is running interactively, Minuit behaves differently in the
following ways:

— If interactive, the user is prompted before each datarecord is read.

— If interactive, Minuit recovers from many error conditions and prompts the user to enter correct
data or to specify additional required input. If the same error conditions occur in batch mode,
the program either exits (if no corrective action seems possible) or ignores the incorrect data (for
example, acommand it cannot interpret) and continues.

— The default page size for output is a typical terminal dimension (80 by 24) if interactive, and a
typical printed page size (120 by 56) if batch, but these can be overridden with the commands SET
WIDth and SET LINes.

When an interactive user requests Minuit to read further input from an external file (the SET INPut
command), then further input is considered to be temporarily in batch mode, until input reverts to the
primary input stream.

3.3 Running Minuit in Fortran-callable mode.

Thefollowing Minuit subroutinesare provided in order to allow the user to communicate with Minuit and
perform all Minuit functions (define parameters, execute commands, etc.) directly from Fortran through
subroutine calls. In the following list of subroutines, output arguments are indicated by appending a star
* to its name. It should also be noted that for the Double Precision version of Minuit (recommended
for al 32-bit machines such as IBM, Vax, Unix workstations, etc.), all the REAL arguments given below
must be declared DOUBLE PRECISION.

3.3.1 Initialize Minuit

CALL MNINIT  (IRD,IWR,ISAV)

Input parameters:

IRD Unit number for input to Minuit.

IWR Unit number for output from Minuit.

ISAV Unit number for use of the SAVE command.

3.3.2 Specify atitle for a problen

CALL MNSETI (CTITLE)

Input parameter:
CTITLE Character string of up to 50 characters containing an identification text for the present job or
fit.



16 Chapter 3. How to Use Minuit

3.3.3 Define a paramete

CALL MNPARM  (NUM,CHNAM,STVAL,STEP,BND1,BND2,IERFLG*)

Input parameters:

NUM Parameter number as referenced by user in FCN.

CHNAM  Character string of up to 10 characters containing the name which the user assigned to the
given parameter.

STVAL  Starting value

STEP Starting step size or approximate parameter error.

BND1 Lower bound (limit) on parameter value, if any (see below).

BND2 Upper bound (limit) on parameter value, if any (see below).

Output parameter:

IERFLG Error return code: 0 if noerror, >0 if request failed.

If BND1=BND2=0., then the parameter is considered unbounded, which isrecommended unlesslimitsare
needed to make things behave well.

3.3.4 Execute a Minuit commant

CALL MNEXCM  (FCN,CHCOM,ARGLIS,NARG,IERFLG,FUTIL)

Input parameters:

FCN Name fo the function being analyzed (to be declared EXTERNAL)

CHCOM  Character string containing the name of the Minuit command to be executed (see below).

ARGLIS Array of dimension MAXARG, containing the numeric arguments to the command (if any),

NARG Number of arguments specified (NARG<MAXARG),

FUTIL  Name fo afunction called by FCN (or =0 if not used). If used this function must be declared
EXTERNAL.

Output parameter:

IERFLG Error return code: 0 if the command was executed normally, >0 otherwise.

Executing a command by calling MNEXCM has exactly the same effect as reading the same command in
data-driven mode, except that a few commands would make no sense and are not available in Fortran-
callable mode (e.g. SET INPUT). The other difference is that control always returns to the calling
routine from MNEXCM, even after commands END, EXIT, and STOP.

3.3.5 Getthe current value of a parameter

Thisroutineisthe inverse of MNPARM and can for instance be used after a fit.

CALL MNPOUT  (NUM,CHNAM*,VAL*,ERROR#*,BND1#*,BND2%*,IVARBL*)

Input parameter:

NUM Parameter number as referenced by user in FCN and about which information isrequired.

Output parameters:

CHNAM  Character string of up to 10 characters containing the name which the user assigned to the
given parameter.
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VAL Current parameter value (fitted value if fit has converged),
ERROR  Current estimate of parameter uncertainty (or zero if constant)
BND1 Lower limit on parameter value, if any (otherwise zero).
BND2 Upper limit on parameter value, if any (otherwise zero).

IVARBL Internal parameter number if parameter isvariable, or zeroif parameter isconstant, or negative
if parameter is undefined.

3.3.6 Getthe current status of minimizatior

CALL MNSTAT (FMIN*,FEDM*,ERRDEF*,NPARI#*,NPARX*,ISTAT*)

Output parameters:

FMIN The best function value found so far

FEDM The estimated vertical distance remaining to minimum
ERRDEF Thevalue of UP defining parameter uncertainties

NPARI  Thenumber of currently variable parameters

NPARX  Thehighest (external) parameter number defined by user
ISTAT A statusinteger indicating how good is the covariance matrix:
Not calculated at all

Diagonal approximation only, not accurate

Full matrix, but forced positive-definite

Full accurate covariance matrix (After MIGRAD, thisis the indication of normal conver-
gence.)

w N =, O

3.3.7 Getthe current value of the covariance matri

CALL MNEMAT  (EMAT*,NDIM)

Input parameter:

NDIM Integer variable specifying the number of rows and columns the suer has reserved in EMAT
to store the matrix elements. NDIM should be at least as large as the number of parameters
variable at the time of the call, otherwise the user will get only part of the full matrix.

Output parameter:

EMAT Array declared as DIMENSION EMAT(NDIM,NDIM) which isto be filled with the (external)
covariance matrix.

3.3.8 Access current parameter error

CALL MNERRS (NUM,EPLUS* ,EMINUS* ,EPARAB* ,GLOBCC*)

Input parameter:

NUM Parameter number. If NUM>O0, thisis taken to be an external parameter number; if NUM<O, it is
the negative of an internal parameter number.

Output parameters:

EPLUS  The positive MINOS error of parameter NUM.

EMINUS The negative MINOS error (a negative number).
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EPARAB The*“parabolic” parameter error, from the error matrix.

GLOBCC The global correlation coefficient for parameter NUM. Thisis a number between zero and one
which gives the correlation between parameter NUM and that linear combination of all other
parameters which is most strongly correlated with NUM.

Notethat thiscall doesnot cause theerrorsto becalculated, it merely returnsthecurrent existingvalues. If
any of the requested values has not been cal culated, or has been destroyed (for example, by aredefinition
of parameter values) MNERRS returns a value of zero for that argument. Thus the call to MNERRS will
normally follow the execution of commands MIGRAD, HESSE, MNContour, and/or MINOS.

3.3.9 Find a function contour with the MNContour method

CALL MNCONT  (FCN,NUM1,NUM2,NPT,XPT*,YPT* NFOUND*,FUTIL)

Input parameters:

FCN Name of the function being treated (to be declared EXTERNAL)

NUM1/2 Parameter numbers with respect to which the contour is to be determined (external).

NPT The number of pointsrequired on the contour (>4).

FUTIL  Name of afunction called by FCN (or =0 if not used). If used thisfunction must be declared
EXTERNAL.

Output parameters:

XPT Array of x-coordinates of contour pointswith values for parameter NUM1. It must be declared
withaDIMENSION XPT(NPT).

YPT Array of y-coordinates of contour pointswith values for parameter NUM2. It must be declared

withaDIMENSION YPT(NPT).

NFOUND Thenumber of pointsactually found on the contour. If all goeswell, thiswill be equal to NPT,
but it can be negative (if the input arguments are not valid), or zero if less than four points
have been found, or lessthan NPT if the program could not find NPT points.

Notethat alternatively MNContour can becalculated by calling MNEXCM toissuetheMNContour command,
but then the user does not have Fortran access to the actua point coordinatesXPT and YPT.

3.3.10 Switch to command-reading mode

Thisfacility can be useful when one wantsto continue interactively.

CALL MNINTR  (FCN,FUTIL)

Input parameters:

FCN Name of the function being treated (to be declared EXTERNAL)
FUTIL  Name of afunction called by FCN (or =0 if not used). If used this function must be declared
EXTERNAL.

Thecall toMNINTR will cause Minuit to read commands from theunit IRD (originally specified by the user
inhiscall toMNINIT, IRD isusually 5 by default, whichinturnisusually theterminal by default). Minuit
then reads and executes commands until it encounters a command END, EXIT, RETurn, or STOP, or an
end-of-file on input (or an unrecoverable error condition whilereading or trying to execute a command),
in which case control returns to the program which called MNINTR.
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In data-driven mode, Minuit accepts commands in the following format:

command <argl> [arg2] etc.

commandOne of the commands listed below,
<argi> Numerical valuesof required arguments, if any.
[argi] ] Numerical values of optional arguments, if any.

The arguments (if any) are separated from each other and from the command by one or more blanks or
a comma. Commands may be given in upper or lower case, and may be abbreviated, usualy to three
characters. The shortest recognized abbreviations are indicated by the capitalized part of the commands
listed below. Examples of valid commands are:

SET INPUT 21

migrad

mig 500

SET LIMITS 14 -1.0,1.0
contours 1 2

MINOS 500 1,3,5,21,22

In Fortran-callable mode, all the same commands (with a few obvious exceptions as indicated) can be
executed by passing the command-string and arguments to Minuit in a CALL MNEXCM statement.

List of Minuit commands

CALl <iflag>

Instructs Minuit to call subroutine FCN with the value of IFLAG=<iflag>. (The actual name of the
subroutine called is that given by the user in his call to Minuit or MNEXCM; the name given in this
command is not used.) If <iflag> > 5, Minuit assumes that a new problem is being redefined, and it
forgets the previous best value of the function, covariance matrix, etc. This command can be used to
instruct theuser functionto read new input data, recal cul ate constants, or otherwise modify the cal culation
of thefunction.

CLEar

Resets all parameter names and values to undefined. Must normally be followed by a PARameters
command or equivalent, in order to define parameter values.

CONtour <paril> <par2> [devs] [ngrid]

Instructs Minuit to trace contour lines of the user function with respect to the two parameters whose
external numbers are <par1> and <par2>. Other variable parameters of the function, if any, will have
their valuesfixed at the current valuesduring the contour tracing. Theoptional parameter [devs] (default
value 2.) givesthe number of standard deviationsin each parameter which should lie entirely within the
plotting area. Optional parameter [ngrid] (default value 25 unless page size is too small) determines
the resolution of the plot, i.e. the number of rows and columns of the grid at which the function will be
evaluated. [See also MNContour.]
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END

Signalsthe end of adatablock (i.e., the end of afit), and impliesthat execution should continue, because
another Data Block follows. A Data Block is a set of Minuit data consisting of (1) A Title, (2) One or
more Parameter Definitions, (3) A blank line, and (4) A set of Minuit Commands. The END command
is used when more than one Data Block is to be used with the same FCN function. CALL FCNThe END
command first causes Minuit to issue a CALL FCN with IFLAG=3, in order to allow FCN to perform any
calcul ations associated with thefinal fitted parameter values, unlessaCALL FCN 3 command has already
been executed at the current FCN value. The obsolete command END RETurn isthe same asthe RETURN
command.

EXIT

Signalsthe end of execution. TheEXIT command first causes Minuit toissueaCALL FCN with IFLAG=3,
in order to allow FCN to perform any calculations associated with the final fitted parameter values, unless
aCALL FCN 3 command has already been executed at the current FCN value. Then it executes a Fortran
STOP.

FIX <parno> [parno] ... [parno]

Causes parameter(s) <parno> to be removed from the list of variable parameters, and their value(s) will
remain constant during subsequent minimizations, etc., until another command changes their value(s) or
status.

HELP [SET] [SHOw]

Causes Minuit to list the available commands. The list of SET and SHOw commands must be requested
separately.
HESse [maxcalls]

Instructs Minuit to calculate, by finite differences, the Hessian or error matrix. That is, it calculates
the full matrix of second derivatives of the function with respect to the currently variable parameters,
and invertsit, printing out the resulting error matrix. The optional argument [maxcalls] specifiesthe
(approximate) maximum number of function calls after which the calculation will be stopped.

IMProve [maxcalls]

If a previous minimization has converged, and the current values of the parameters therefore correspond
to alocal minimum of the function, this command requests a search for additional distinct local minima.
The optional argument [maxcalls] specifiesthe (approximate) maximum number of function calls after
which the calculation will be stopped.

MIGrad [maxcalls] [tolerance]

Causes minimization of the function by the method of Migrad, the most efficient and complete single
method, recommended for general functions (see also MINImize). The minimization produces as
a by-product the error matrix of the parameters, which is usually reliable unless warning messages are
produced. Theoptional argument [maxcalls] specifiesthe (approximate) maximum number of function
calls after which the calculation will be stopped even if it has not yet converged. The optional argument
[tolerance] specifiesrequired tolerance on the function value at the minimum. The default tolerance
is0. 1, and the minimization will stop when the estimated vertical distance to the minimum (EDM) isless
than 0.001* [tolerance] *UP (See SET ERR).
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MINImize [maxcalls] [tolerancel]

Causes minimization of the function by the method of Migrad, asdoestheMIGrad command, but switches
to the SIMplex method if Migrad fails to converge. Arguments are asfor MIGrad. Note that command
requires four characters to be unambiguouswith MINOs.

MINOs [maxcalls] [parno] [parno]

CausesaMinoserror analysisto be performed on the parameters whose numbers [parno] are specified.
If none are specified, Minos errors are calculated for al variable parameters. Minos errors may be
expensive to calculate, but are very reliable since they take account of non-linearitiesin the problem
as well as parameter correlations, and are in general asymmetric. The optional argument [maxcalls]
specifies the (approximate) maximum number of function calls per parameter requested after which
the calculation will be stopped for that parameter.

MNContour <parl> <par2> [npts]

Calculates one function contour of FCN with respect to parameters par1 and par2, with FCN minimized
always with respect to all other NPAR-2 variable parameters (if any). Minuit will try to find npts points
on the contour (default 20). If only two parameters are variable at thetime, it is not necessary to specify
their numbers. To calculate more than one contour, it is necessary to SET ERR to the appropriate value
and issue the MContour command for each contour desired.

RELease <parno> [parno] ... [parno]

If <parno> is the number of a previousdly variable parameter which has been fixed by a command:
FIX <parno>, thenthat parameter will return to variable status. Otherwise awarning messageis printed
and the command is ignored. Note that this command operates only on parameters which were at one
time variable and have been FIXed. It cannot make constant parameters variable; that must be done by
redefining the parameter with a PARameters command.

REStore [code]

If no [code] is specified, thiscommand restores all previousy FIXed parameters to variable status. If
[code]=1, then only the last parameter FIXed isrestored to variable status. If code is neither zero nor
one, the command isignored.

RETurn

Signals the end of a data block, and instructs Minuit to return to the program which called it. The
RETurn command first causes Minuitto CALL FCN with IFLAG=3, in order to allow FCN to perform any
calculations associated with thefinal fitted parameter values, unlessaCALL FCN 3 command has already
been executed at the current FCN value. Then it executes a Fortran RETURN.

SAVe

Causes the current parameter valuesto be saved on afile in such aformat that they can beread in again
as Minuit parameter definitions. If the covariance matrix exists, it is also output in such aformat. The
unit number is by default 7, or that specified by the user in his call to MINTIO or MNINIT. The user is
responsible for opening the file previous to issuing the SAVE command (except where this can be done
interactively).
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SCAn [parno] [numpts] [from] [tol

Scans the value of the user function by varying parameter number [parno], leaving all other parameters
fixed at the current value. If [parno] isnot specified, all variable parameters are scanned in sequence.
The number of points [numpts] in the scan is 40 by default, and cannot exceed 100. The range of the
scan is by default 2 standard deviationson each side of the current best value, but can be specified asfrom
[from] to [to]. After each scan, if a new minimum is found, the best parameter values are retained
as start values for future scans or minimizations. The curve resulting from each scan is plotted on the
output unit in order to show the approximate behaviour of the function. This command is not intended
for minimization, but is sometimes useful for debugging the user function or finding areasonabl e starting
point.

SEEk [maxcalls] [devs]

CausesaMonte Carlo minimization of thefunction, by choosing random valuesof thevariable parameters,
chosen uniformly over a hypercube centered at the current best value. The region size is by default 3
standard deviations on each side, but can be changed by specifying the value of [devs].

SET BATch
Informs Minuit that it is running in batch mode.
SET EPSmachine <accuracy>

Informs Minuit that therelative floating point arithmetic precisionis<accuracy>. Minuit determinesthe
nominal precisionitself, but the SET EPS command can be used to override Minuit’s own determination,
when the user knows that the FCN function value is not calculated to the nomina machine accuracy.
Typical values of <accuracy> are between 10~° and 10~ 4,

SET ERRordef <up>

Sets the value of UP (default value= 1.), defining parameter errors. Minuit defines parameter errors as
the change in parameter value required to change the function value by UP. Normally, for chisgquared fits
UP=1, and for negativelog likelihood, UP=0. 5.

SET GRAdient [force]

Informs Minuit that the user function is prepared to calculate its own first derivatives and return their
values in the array GRAD when IFLAG=2 (see specification of the function FCN). If [force] is not
specified, Minuit will calculate the FCN derivatives by finite differences at the current point and compare
with the user’s calculation at that point, accepting the user’s values only if they agree. If [forcel=1,
Minuit does not do its own derivative calculation, and uses the derivatives calculated in FCN.

SETINPut [unitno] [filename]

Causes Minuit, in data-driven mode only, to read subsequent commands (or parameter definitionsor title)
from adifferentinputfile. If no [unitno] isspecified, reading revertsto the previousinput file, assuming
that there was one. If [unitno] is specified, and that unit has not been opened, then Minuit attempts to
open thefile [filename] if anameis specified. If running in interactive mode and [filename] iSnot
specified and [unitno] isnot opened, Minuit prompts the user to enter afile name. If the word REWIND
is added to the command (note: no blanks between INPUT and REWIND), the file is rewound before
reading. Note that this command isimplemented in standard Fortran 77 and the results may depend on

the operating system; for example, if a filenameis given under VM/CMS, it must be preceeded by a slash.



SET INTeractive
Informs Minuit that it is running interactively.
SET LIMits  [parno] [lolim] [uplim]

Allows the user to change the limits on one or all parameters. If no arguments are specified, al limits
are removed from al parameters. If [parno] alone is specified, limits are removed from parameter
[parno]. If al arguments are specified, then parameter [parno] will be bounded between [1olim]
and [uplim]. Limitscan be specified in either order, Minuit will take the smaller as [1o01im] and the
larger as [uplim]. However, if [1olim] isequal to [uplim], an error condition results.

SET LINesperpage

Sets the number of lines that Minuit thinks will fit on one page of output. The default value is 24 for
interactive mode and 56 for batch.

SET NOGradient

Theinverse of SET GRAdient, instructs Minuit not to use the first derivatives calculated by the user in
FCN.

SET NOWarnings

Supresses Minuit warning messages. SET WARnings isthe default.
SET OUTputfile <unitno>

Instructs Minuit to write further output to unit <unitno>.
SET PAGethrow <integer>

Setsthe carriage control character for “new page” to <integer>. Thusthevalue 1 producesanew page,
and 0 produces a blank line, on some output devices (see TOPofpage command).

SET PARameter <parno> <value>

Sets the value of parameter <parno> to <value>. The parameter in question may be variable, fixed, or
constant, but must be defined.

SET PRIntout <level>

Sets the print level, determining how much output Minuit will produce. The allowed values and their
meanings are displayed after aSHOw PRInt command, and are currently <level>=:

no output except from SHOW commands

minimum output (no starting values or intermediate results)
default value, normal output

additional output giving intermediate results.

maximum output, showing progress of minimizations.

W N = O =

Note: See asothe SET WARnings command.
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SET RANdomgenerator <seed>

Sets the seed of the random number generator used in SEEk. Thiscan be any integer between 10 000 and
900 000 000, for example one which was output from a SHOw RANdom command of a previousrun.

SET STRategy <level>

Sets the strategy to be used in calculating first and second derivatives and in certain minimization
methods. In general, low values of <level> mean fewer function calls and high values mean more
reliable minimization. Currently allowed valuesare 0, 1 (default), and 2.

SET TITle

Informs Minuit that the next input line is to be considered the (new) title for thistask or sub-task. This
is for the convenience of the user in reading his output. This command is available only in data-driven
mode; in Fortran-callable mode use CALL MNSETT.

SET WARNings

Instructs Minuit to output warning messages when suspicious conditions arise which may indicate
unreliableresults. Thisisthe default.

SET WIDthpage
Informs Minuit of the output page width. Default values are 80 for interactive jobs and 120 for batch.
SHOw XXXX

All SET XXXX commands have acorresponding SHOw XXXX command. In addition, the SHOw commands
listed starting here have no corresponding SET command for obvious reasons. The full list of SHOw
commands is printed in response to the command HELP SHOw.

SHOw CORrelations
Cadlculates and printsthe parameter correlations from the error matrix.
SHOw COVariance
Prints the (external) covariance (error) matrix.
SHOw ElGenvalues
Calculates and printsthe eigenvalues of the covariance matrix.
SHOw FCNvalue
Prints the current value of FCN.
SIMplex [maxcalls] [tolerance]

Performs a function minimization using the simplex method of Nelder and Mead. Minimization termi-
nates either when the function has been called (approximately) [maxcalls] times, or when the estimated
vertical distance to minimum (EDM) is lessthan [tolerance]. The default value of [tolerance] is
0.1%UP (see SET ERR).
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STAndard

Causes Minuit to execute the Fortran instruction CALL STAND where STAND is a subroutine supplied by
the user.

STOP
Same asEXIT.
TOPofpage

Causes Minuit to write the character specified in a SET PAGethrow command (default = 1) to column
1 of the output file, which may or may not position your output medium to the top of a page depending
on the device and system. This command can be expected to work properly only for printed output,
unfortunately it does not solve the IBM terminal problem.



Chapter 5: How to get the right answer from Minuit.

The goal of Minuit — to be able to minimize and analyze parameter errors for all possible user functions
with any humber of variable parameters— isof courseimpossibleto realise, evenin principle, in afinite
amount of time. In practice, some assumptions must be made about the behaviour of the functionin order
to avoid evaluating it at all possible points. In this chapter we give some hints on how the user can help
Minuit to make the right assumptions.

5.1 Which Minimizer to Use.

One of the historically interesting advantages of Minuit is that it was probably the first minimization
program to offer the user achoice of several minimization algorithms. This could be taken as areflection
of thefact that none of the algorithmsknown at that time were good enough to be universal, so userswere
encouraged to find the one that worked best for them. Since then, algorithmshave improved considerably,
but Minuit still offers several, mostly so that old userswill not feel cheated, but also to help the occasional
user who does manage to defeat the best algorithms. Minuit currently offers five commands which can
be used to find a smaller function value, in addition to a few others, like MINOS and IMPROVE, which
will retain a smaller function value if they stumble on one unexpectedly (or, in the case of IMPROVE,
hopefully). The commands which can be used to minimize are:

5.1.1 MIGRAD

This is the best minimizer for nearly all functions. It is a variable-metric method with inexact line
search, a stable metric updating scheme, and checks for positive-definiteness. It will run faster if you
SET STRATEGY 0 and will be more reliable if you SET STRATEGY 2 (although the latter option may
not help much). Its main weaknessis that it depends heavily on knowledge of the first derivatives, and
fails miserably if they are very inaccurate. If first derivatives are a problem, they can be calculated
analytically inside FCN (see elsewherein thiswriteup) or if thisisnot feasible, the user can try toimprove
the accuracy of Minuit's numerical approximation by adjusting values using the SET EPS and/or SET
STRATEGY commands (see Floating Point Precision and SET STRATEGY).

5.1.2 MINIMIZE

Thisis equivaent to MIGRAD, except that if MIGRAD fails, it reverts to SIMPLEX and then calls MIGRAD
again. Thisiswhat the old MIGRAD command used to do, but it was removed from the MIGRAD command
so that userswould have a choice, and becauseit is seldom of any useto call SIMPLEX when MIGRAD has
failed (there are of course exceptions).

5.1.3 SCAN

Thisis not intended to minimize, and just scans the function, one parameter at atime. It does however
retain the best value after each scan, so it does some sort of highly primitive minimization.

5.1.4 SEEK

We have retained this Monte Carlo search mainly for sentimental reasons, even though the limited
experience with it islessthan spectacular. The method now incorporates a Metropolis algorithm which
aways moves the search region to be centred at a new minimum, and has probability e(~F/Fmin) of
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moving the search region to a higher point with function value F'. This gives it the theoretical ability
to jump through function barriers like a multidimensional quantum mechanical tunneler in search of
isolated minima, but it iswidely believed by at least half of the authors of Minuit that thisis unlikely to
work in practice (counterexamples are welcome) sinceit seemsto depend critically on choosing theright
average step size for the random jumps, and if you knew that, you wouldn’t need Minuit.

5.1.5 SIMPLEX

This genuine multidimensional minimization routine is usually much slower than MIGRAD, but it does
not use first derivatives, so it should not be so sensitive to the precision of the FCN calculations, and is
even rather robust with respect to gross fluctuationsin the function value. However, it gives no reliable
information about parameter errors, no information whatsoever about parameter correlations, and worst
of all cannot be expected to converge accurately to the minimum in afinitetime. Its estimate of EDM is
largely fantasy, so it would not even know if it did converge.

5.2 Floating point Precision

Minuit figures out at execution time the precision with which it was compiled, and assumes that FCN
provides about the same precision. That means not just the length of the numbers used and returned by
FCN, but the actual mathematical accuracy of the calculations. The section on Floating point Precisionin
Chapter One describeswhat to do if thisisnot the case.

5.3 Parameter Limits

Putting limits (absolute bounds) on the allowed values for a given parameter, causes Minuit to make a
non-linear transformation of its own internal parameter valuesto obtain the (external) parameter values
passed to FCN. To understand the adverse effects of limits, see “ The Transformation for Parameters with
Limits” in Chapter 1. Basically, the use of limits should be avoided unless needed to keep the parameter
inside a desired range.

If parameter limits are needed, in spite of the effects described in Chapter One, then the user should be
aware of the following techniquesto aleviate problems caused by limits:

5.3.1 Getting the Right Minimum with Limits.

If MIGRAD converges normally to a point where no parameter is near one of itslimits, then the existence
of limits has probably not prevented Minuit from finding the right minimum. On the other hand, if one
or more parameters is near itslimit at the minimum, this may be because the true minimum isindeed at
alimit, or it may be because the minimizer has become “blocked” at alimit. This may normally happen
only if the parameter is so close to alimit (internal value at an odd multiple of + % that Minuit prints a
warning to this effect when it printsthe parameter values.

The minimizer can become blocked at a limit, because at a limit the derivative seen by the minimizer
O0F /0P, iszero no matter what thereal derivative 8 F/0 P,y is.

8F  OF QP OF
3Pint B 3Pext 3Pint B 3Pext B

For a stepping method (like SIMPLEX) this seldom poses any problem, but a method based on derivatives
(MIGRAD) may become blocked at such a value. If this happens, it may be necessary to move the

0
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value of the parameter in question a significant distance from the limit (with SET PARam) and restart
the minimization, perhaps with that parameter fixed temporarily. We are investigating ways to induce
Minuit to extricate itself from such situations automatically, but it is not so obvious as it seems, and for
the moment must sometimes be done by hand.

5.3.2 Getting the right parameter errors with limits.

In the best case, where the minimum is far from any limits, Minuit will correctly transform the error
matrix, and the parameter errors it reports should be accurate and very close to those you would have
got without limits. In other cases (which should be more common, since otherwise you wouldn’t need
limits), the very meaning of parameter errors becomes problematic. Mathematically, since the limit is
an absolute constraint on the parameter, a parameter at its limit has no error, at least in one direction.
The error matrix, which can assign only symmetric errors, then becomes essentially meaningless. On
the other hand, the MINOS analysisis still meaningful, at least in principle, as long as MIGRAD (which
is caled internally by MINOS) does not get blocked at a limit. Unfortunately, the user has no control

over this aspect of the MINOS calculation, although it is possible to get enough printout from the MINOS

command to be able to determine whether the results are reliable or not.

5.4 Fixing and Releasing Parameters

When Minuit needs to be guided to the “right” minimum, often the best way to do thisis with the FIX
and RELEASE commands. That is, suppose you have a problem with ten free parameters, and when you
minimize with respect to all at once, Minuit goesto an unphysical solution characterized by an unphysical
or unwanted value of parameter number four. One way to avoid thisisto FIX parameter four at a“good”
value (not necessarily the best, since you presumably don’t know that yet), and minimize with respect to
the others. Then RELEASE 4 and minimize again. If the problem admitsa“good” physical solution, you
will normally find it thisway. If it doesn’t work, you may see what iswrong by the following sequence
(where xxx isthe expected physical value for parameter four):

SET PARAM 4 xxx
FIX 4

MIGRAD

RELEASE 4

SCAN 4

where the SCAN command gives you a picture of FCN as a function of parameter four alone, the others

being fixed at their current best values. If you suspect the difficulty is due to parameter five, then add the
command

CONTOUR 4 5
to see a two-dimensional picture.
5.5 Interpretation of Parameter Errors

There are two kinds of problems that can arise: The reliability of Minuit's error estimates, and their
statistical interpretation, assuming they are accurate.
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5.5.1 Statistical Interpretation.

For discussuion of basic concepts, such as the meaning of the elements of the error matrix, parabolic
versus MINOS errors, the appropriate value for UP (see SET ERRdef), and setting of exact confidence
levels, see (in order of increasing complexity and compl eteness):

— “Interpretation of the Errorson Parameters”, see Part 3 of thiswrite-up.
— “ Determining the Statistical Sgnificance of Experimental Results’ [4].
— “ Satigtical Methods in Experimental Physics’ [5].

5.5.2 The Reliability of Minuit Error Estimates.

Minuit always carries around its own current estimates of the parameter errors, which it will print out on
reguest, no matter how accurate they are at any given pointinthe execution. For example, at initialization,
these estimates are just the starting step sizes as specified by the user. After aMIGRAD or HESSE step, the
errors are usually quite accurate, unlessthere hasbeen a problem. Minuit, when it prints out error values,
also gives some indication of how reliable it thinks they are. For example, those marked > CURRENT
GUESS ERROR’ are only working values not to be believed, and > APPROXIMATE ERROR’ means that
they have been calculated but there is reason to believe that they may not be accurate. If no mitigating
adjective is given, then at least Minuit believesthe errors are accurate, although there is always a small
chance that Minuit has been fooled. Some visible signsthat Minuit may have been fooled are:

— Warning messages produced during the minimization or error analysis.

— Failureto find new minimum.

— Value of EDM too big. For a*“normal” minimization, after MIGRAD, the value of EDM is usually more
than three orders of magnitude smaller than UP (the SET ERRordef), unlessalooser tolerance has
been specified.

— Correlation coefficients exactly equal to zero, unless some parameters are knownto be uncorrel ated
with the others.

— Correlation coefficients very closeto one (greater than 0.99). Thisindicates both an exceptionally
difficult problem, and one which has been badly parametrized so that individual errors are not very
meaningful because they are so highly correlated.

— Parameter at limit. This condition, signalled by a Minuit warning message, may make both the
function minimum and parameter errors unreliable. See section 5.3.2, Getting the right parameter
errorswith limits.

The best way to be absolutely sure of the errors, isto use “independent” cal culations and compare them,
or compare the calculated errors with a picture of the function if possible. For example, if thereis only
one free parameter, the command SCAN allows the user to verify approximately the function curvature.
Similarly, if there are only two free parameters, use CONTOUR. To verify a full error matrix, compare
the results of MIGRAD with those (calculated afterward) by HESSE, which uses a different method. And
of course the most reliable and most expensive technique, which must be used if asymmetric errors are
required, isMINOS.
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5.6 Convergence in MIGRAD, and Positive-definiteness.

MIGRAD usesitscurrent estimate of the covariance matrix of the function to determine the current search
direction, since thisis the optimal strategy for quadratic functions and “physical” functions should be
quadratic in the neighbourhood of the minimum at least. The search directions determined by MIGRAD
are guaranteed to be downhill only if the covariance matrix is positive-definite, so in case this is not
true, it makes a positive-definite approximation by adding an appropriate constant along the diagonal
as determined by the eigenvalues of the matrix. Theoretically, the covariance matrix for a “physical”
function must be positive-definite at the minimum, althoughit may not be so for all pointsfar away from
the minimum, even for a well-determined physical problem. Therefore, if MIGRAD reports that it has
found a non-positive-definite covariance matrix, thismay be a sign of one or more of the following:

— A non-physical region. On itsway to the minimum, MIGRAD may have traversed aregion which
has unphysical behaviour, whichisof course not a serious problem aslong asit recovers and leaves
such aregion.

— An underdetermined problem. If the matrix is not positive-definite even at the minimum, this
may mean that the solution is not well-defined, for example that there are more unknowns than
there are data points, or that the parametrization of the fit contains a linear dependence. If thisis
the case, then Minuit (or any other program) cannot solve your problem uniquely, and the error
matrix will necessarily be largely meaningless, so the user must remove the underdeterminedness
by reformulating the parametrization. Minuit cannot do thisitself, but it can provide some hints
(contours, global correlation coefficients, eigenvalues) which can help the clever user to find out
what iswrong.

— Numerical inaccuracies. It is possible that the apparent lack of positive-definitenessisin fact
only due to excessive roundoff errors in numerical calculations, either in FCN or in Minuit. This
isunlikely in general, but becomes more likely if the number of free parametersis very large, or
if the parameters are badly scaled (not all of the same order of magnitude), and correlations are
also large. In any case, whether the non-positive-definitenessis rea or only numerical is largely
irrelevant, since in both cases the error matrix will be unreliable and the minimum suspicious.

5.7 Additional Trouble-shooting
When Minuit just doesn’'t work, some of the more common causes are:

— Precision mismatch. Make sure your FCN has been compiled with the same precision as the
version of Minuityou areusing. When usingDOUBLE PRECISION,itissafesttousethe IMPLICIT
declaration to make sure that everything is DOUBLE PRECISION, not just the arguments of FCN
but also the internal variables. Note that depending on the computer system used, floating-point
constantsmay be passed as single precision in subroutine arguments, even if thereisan IMPLICIT
DOUBLE PRECISION statement (which is strictly speaking correct since the IMPLICIT statement
refersonly to variables, not constants). Therefore, if constantsare used as arguments in subroutine
calls, they must be explicitly of theright precision (for example, on Apollo, even 0. isnot equal to
0.D0).

If the problem isonly one of precision, and not of word length mismatch, an appropriate SET EPS
command may fix it.

— Trivial bugs in FCN. The possibilitiesfor Fortran bugs are numerous. Probably the most common
among physicists inexperienced in Fortran is the confusion between REAL and INTEGER types,
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which you can sometimes get away with, but not always. [For example, if A and B are REAL
variables, the Fortran statement A = 2#B is not good programming, but happens to do what the
user probably intended, whereasthestatement A = B + 2/3 amost certainly will not do what the
user intended.] Minuit can spot some trivial bugsitself, and issues a warning when it detects an
unusual FCN behaviour. Such awarning should be taken serioudly.

Minuit also offers some tools (especially SCAN) which can help the user to find trivial bugs.

— Overwriting in a user routine. Overwriting most often occurs when setting the values of alocal
array or an array in COMMON, and elements outside the dimensions of the array are addressed. Most
computer systems do not detect this error unless you attempt to write into a protected area of
memory, and of course Minuitisalso helpless, especiadly if Minuit itself is being overwritten. The
symptoms of user overwriting may be almost anything, including unusual behaviour of Minuit
itself. The effects depend critically on where instructions and data are loaded in memory, so
they may change completely if the same program is recompiled with different compiler optionsor
reloaded in a different sequence, even though the compiler and loader are not at fault.

— Changing the values of input arguments.In subroutine FCN, for example, the arguments NPAR
and IFLAG, as well as the values of the parameters themselves, are only input to FCN and their
values should not be changed inside FCN. Minuit is now protected against thisin principle, since
the user only gets a copy of the value, not the actual address of the internal Minuit variable, but
still thisisa symptom of misunderstanding by the user.

If you really want to change the number of variable parameters, this must be done with commands
like FIX and RELEASE, by redefining parameters using command PARAMETER or CLEAR.
Similarly, if aparameter takes on an unwanted value, it will do no good to changeitsvalue inside
FCN: In the best case, Minuit won't see your improved value, and in the worst case, it will produce
unpredictableresults. To set a parameter to a certain value, use the command SET PARam, and to
keep it within certain bounds, use the command SET LIMits. If the parameter must obey more
complicated constraints, you must find a trick such as adding a penalty value to FCN outside of the
physical region, to force it back to where you want it.

— An ill-posed problem. For questions of parameter dependence, see the discussion above on
postive-definiteness. Other mathematical problems which can arise are: excessive numerical
roundoff — be especialy careful of exponential and factorial functionswhich get big very quickly
and lose accuracy; starting too far from the solution — the function may have unphysica
local minima, especialy at infinity in some variables; incorrect normalization — in likelihood
functions, the praobability distributions must be normalized or at least have an integral which is
independent of the values of the variable parameters.

— A bug in Minuit. Thisis extremely unlikely, but it did happen once. If a bug is suspected, and
all other possible causes can be eliminated, please try to save a copy of the input and output files,
listing of FCN, and other information that may be relevant, and send them to JAMES at CERNVM
or VXCERN : : JAMES or JAMES@QCERNAPO .CERN.CH.



Chapter 6: A complete example

We give here one full example of ared fit, performed first in batch data-driven mode, then the same fit
performed by Fortran calls.

6.1 A data-driven fit

The example job given here is set up for batch processing. The OPEN statements assign the input and
output files, and are somewhat computer-dependent (those given here are for aVax). On many systems,
it may be more convenient (or necessary) to perform the file assignments in JCL rather than from the
Fortran, but whatever the user decides, the files must be opened and the unit numbers communicated to
Minuit before the call to MINUIT.

The same job could be run interactively, in which case the input and output files would be assigned to the
terminal, and the “user’s data’ listed below, instead of coming from a file, would be typed in directly to
the terminal.

| The User’s main program |

PROGRAM DSDQ

EXTERNAL FCNKO

OPEN (UNIT=5,FILE=’DSDQ.DAT’,STATUS=’0LD’)

OPEN (UNIT=6,FILE=’DSDQ.0UT’,STATUS=’NEW’,FORM=’FORMATTED’)

cC CALL MINTIO(5,6,7) ! Not needed, default values
CALL MINUIT(FCNKO,O0) ! User routine is called FCNKO
STOP
END
| The User’'s FCN |

SUBROUTINE FCNKO(NPAR,GIN,F,X,IFLAG)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

REAL THPLUI, THMINI

DIMENSION X(*),GIN(%)

PARAMETER (MXBIN=50)

DIMENSION THPLU(MXBIN),THMIN(MXBIN),T(MXBIN),
+ EVTP (MXBIN) ,EVTM(MXBIN)

DATA NBINS,NEVTOT/ 30,250/

DATA (EVTP(IGOD),IGOD=1,30)

+ /11., 9., 13., 13., 17., 9., 1., 7., 8., 9.,
+ 6., 4., 6., 3., 7., 4., 7., 3., 8., 4.,
+ 6., 5., 7., 2., 7., 1., 4., 1., 4., 5./
DATA (EVTM(IGOD),IGOD=1,30)
+ /0., 0., 0., 0., 0., 0., 0., 0., 1., 1.,
+ 0., 2., 1., 4., 4., 2., 4., 2., 2., .
+ 2., 3., 7., 2., 3., 6., 2., 4., 1., 5./
c
XRE = X(1)
XIM = X(2)
DM = X(5)

GAMS = 1.0/X(10)
GAML = 1.0/X(11)
GAMLS = 0.5%(GAML+GAMS)
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6.1. A data-driven fit

IF (IFLAG .NE. 1) GO TO 300
C generate random data
STHPLU = 0.
STHMIN = 0.
DO 200 I= 1, NBINS
T(I) = 0.1+REAL(I)

TI = T(I)

EHALF = EXP(-TI*GAMLS)

TH = ((1.0-XRE)*%*2 + XIM##2) % EXP(-TI*GAML)
TH = TH + ((1.0+XRE)#**2 + XIM**2) * EXP(-TI*GAMS)
TH = TH - 4.0%XIM*SIN(DM*TI) * EHALF

STERM = 2.0#%(1.0-XRE##2-XIM**2)*C0S (DM*TI) * EHALF
THPLU(I) = TH + STERM
THMIN(I) = TH - STERM
STHPLU = STHPLU + THPLU(I)
STHMIN = STHMIN + THMIN(I)

200 CONTINUE
NEVPLU = REAL(NEVTOT) *(STHPLU/ (STHPLU+STHMIN) )
NEVMIN = REAL(NEVTOT)*(STHMIN/ (STHPLU+STHMIN) )
WRITE (6,°(A)’) °> LEPTONIC K ZERO DECAYS’
WRITE (6,’(A,3I10)’) *» PLUS, MINUS, TOTAL=’,NEVPLU,NEVMIN,NEVTOT
WRITE (6,’(A)’)

+ 0 TIME THEOR+ EXPTL+ THEOR- EXPTL-’
SEVTP = 0.

SEVTM = 0.

DO 250 I= 1, NBINS

THPLU(I) = THPLU(I)*REAL(NEVPLU) / STHPLU

THMIN(I) = THMIN(I)#REAL(NEVMIN) / STHMIN
THPLUI = THPLU(I)

Ccccce remove the CCC to generate random data
CCC CALL POISSN(THPLUI,NP,IERROR)
CCC EVTP(I) = NP

SEVTP = SEVTP + EVTP(I)
THMINI = THMIN(I)
cee CALL POISSN(THMINI,NM,IERROR)
cee EVIM(I) = NM
SEVTM = SEVTM + EVTM(I)
IF (IFLAG .NE. 4)
+ WRITE (6,’(1X,5G12.4)’) T(I),THPLU(I),EVTP(I),THMIN(I) ,EVTM(I)
250 CONTINUE
WRITE (6, ’(A,2F10.2)’) ’ DATA EVTS PLUS, MINUS=’, SEVTP,SEVTM

C calculate chisquare

300 CONTINUE
CHISQ = 0.
STHPLU = 0.
STHMIN = 0.
DO 400 I= 1, NBINS
TI = T(D
EHALF = EXP(-TI*GAMLS)
TH = ((1.0-XRE)*%*2 + XIM##2) % EXP(-TI*GAML)
TH = TH + ((1.0+XRE)#**2 + XIM**2) * EXP(-TI*GAMS)
TH = TH - 4.0*%XIM*SIN(DM*TI) * EHALF

STERM = 2.0%(1.0-XRE#*2-XIM**2)*C0S(DM*TI) * EHALF
THPLU(I) = TH + STERM

THMIN(I) TH - STERM

STHPLU = STHPLU + THPLU(I)

STHMIN = STHMIN + THMIN(I)
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400 CONTINUE

THP = 0.
THM = 0.
EVP = 0.
EVM = 0

IF (IFLAG .NE. 4) WRITE (6,’(1HO,10X,4,20X,4)’)
+ POSITIVE LEPTONS’,’NEGATIVE LEPTONS’

IF (IFLAG .NE. 4) WRITE (6,’(A,3X,4)")
+ ’ TIME THEOR EXPTL CHISQ’,
+ ’ TIME THEOR EXPTL CHISQ’

DO 450 I= 1, NBINS
THPLU(I) = THPLU(I)*SEVTP / STHPLU
THMIN(I) = THMIN(I)*SEVTM / STHMIN

THP = THP + THPLU(I)
THM = THM + THMIN(I)
EVP = EVP + EVTP(I)

EVM = EVM + EVTM(I)
C Sum over bins until at least four events found
IF (EVP .GT. 3.) THEN
CHI1 = (EVP-THP)#**2/EVP
CHISQ = CHISQ + CHI1
IF (IFLAG .NE. 4)

+ WRITE (6, (1X,4F9.3)’) T(I),THP,EVP,CHI1
THP = 0.
EVP = 0.

ENDIF

IF (EVM .GT. 3) THEN
CHI2 = (EVM-THM)**2/EVM
CHISQ = CHISQ + CHIZ2
IF (IFLAG .NE. 4)

+ WRITE (6,’ (42X,4F9.3)’) T(I),THM,EVM,CHI2

THM = 0.
EVM = 0.

ENDIF

450 CONTINUE

F = CHISQ

RETURN

END

| The user’s data to drive Minuit. |

set title

FIT DELTA S/ DELTA Q RULE TO LEPTONIC K ZERO DECAYS
parameters

1 ’Real(X)’ 0. .1

2 ’Imag(X)’ 0. .1

5 ’Delta M’ .535 .01

10 ’K Short LT’ .892

11 ’K Long LT’ 518.3

fix 6

nigr

print O

set print 0
minos
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restore

migrad

minos

set param 5 0.535
fix 5

contour 1 2

stop
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6.2 The same example in Fortran-callable mode.

The program below takes the place of the data in the above example.

| The User’s main program and subroutine

PROGRAM DSDQ

Minuit test case. Fortran-callable.

Fit randomly-generated leptonic KO decays to the
time distribution expected for interfering K1 and K2,
with free parameters Re(X), Im(X), DeltaM, and GammaS.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

EXTERNAL FCNKO

cC OPEN (UNIT=6,FILE="DSDQ.0UT’,STATUS=’NEW’,FORM=’FORMATTED’)
DIMENSION NPRM(5),VSTRT(5),STP(5),ARGLIS(10)
CHARACTER*10 PNAM(5)

Q.

DATA NPRM / 1 , 2 , 5 , 10 , 11 /
DATA PNAM /’Re(X)’, ’Im(X)’, ’Delta M’,’T Kshort’,’T Klong’/
DATA VSTRT/ ©0. , 0. , .535 , .892 , 518.3 /
DATA STP / 0.1, 0.1, 0.1 , 0. , 0. /
C Initialize Minuit, define I/0 unit numbers
CALL MNINIT(5,6,7)
C Define parameters, set initial values
ZERO = 0.

DO 11 I=1, 5
CALL MNPARM(NPRM(I),PNAM(I),VSTRT(I),STP(I),ZERO,ZERO,IERFLG)
IF (IERFLG .NE. 0) THEN
WRITE (6,°(A,I)’) ~’ UNABLE TO DEFINE PARAMETER NO.’,I
STOP
ENDIF
11 CONTINUE

CALL MNSETI(’Time Distribution of Leptonic KO Decays’)
c Request FCN to read in (or generate random) data (IFLAG=1)
ARGLIS(1) = 1.
CALL MNEXCM(FCNKO, ’>CALL FCN’, ARGLIS ,1,IERFLG)

ARGLIS(1) = 5.
CALL MNEXCM(FCNKO, FIX’, ARGLIS ,1,IERFLG)
ARGLIS(1) = 0.
CALL MNEXCM(FCNKO,’SET PRINT’, ARGLIS ,1,IERFLG)
CALL MNEXCM(FCNKO, MIGRAD’, ARGLIS ,0,IERFLG)
CALL MNEXCM(FCNKO, MINOS’, ARGLIS ,0,IERFLG)
CALL PRTERR
ARGLIS(1) = 5.
CALL MNEXCM(FCNKO, RELEASE’, ARGLIS ,1,IERFLG)
CALL MNEXCM(FCNKO, MIGRAD’, ARGLIS ,0,IERFLG)
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CALL MNEXCM(FCNKO, MINOS’, ARGLIS ,0,IERFLG)
ARGLIS(1) = 3.

CALL MNEXCM(FCNKO,’CALL FCN’, ARGLIS , 1,IERFLG)
CALL PRTERR

CALL MNEXCM(FCNKO,’STOP ’, 0,0,IERFLG)

STOP

END

SUBROUTINE PRTERR
C a little hand-made routine to print out parameter errors
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
C find out how many variable parameters there are
CALL MNSTAT(FMIN,FEDM,ERRDEF,NPARI ,NPARX,ISTAT)
C  and their errors
DO 50 I= 1, NPARI
CALL MNERRS(-I,EPLUS,EMINUS,EPARAB,GLOBCC)
WRITE (6,45) I,EPLUS,EMINUS,EPARAB,GLOBCC
45 FORMAT (5X,I5,4F12.6)
50 CONTINUE
RETURN
END

The FCN is exactly the same in Fortran-callable mode as in data-driven mode.
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Chapter 7: Introduction
7.1 The motivation

A large classof problemsin many different fields of research can be reduced to the problem of finding the
smallest value taken on by afunction of one or more variable parameters. Examples come from fieldsas
far apart asindustrial processing (minimization of production costsand general relativity (determination
of geodesics by minimizing the path length between two pointsin curved space-time). But the classic
example which occurs so often in scientific research isthe estimation of unknown parametersin atheory
by minimizing the difference (chi-square) between theory and experimental data. In all these examples,
the functionto be minimizedis of course determined by considerationsproper to the particular field being
investigated, which will not concern us in these lectures. Our aim isto study the mathematical problem
of minimization.

7.2 Minimization, maximization, and optimization

Although traditionally one speaks of function minimization, some authors refer to maximization. Of
course the two are entirely equivalent since one can be converted to the other by changing the sign of
the function. Thus the problems of minimizing chi-square, maximizing likelihood, minimizing cost, or
maximizing efficiency can al be considered as minimization (or maximization). To avoid committing
onesdlf, it is now fashionable to speak of optimization, to cover both cases. This unfortunately causes
confusion with optimization in control theory where the principal techniques are analytical (calculus of
variations) and hence bear little relationship to the numerical methods used in function minimization as
treated here.

To add to the confusion there is the term ‘programming’, which is aso used to mean minimization
(usually specified as linear programming, non-linear programming, or mathematical programming), a
historical usage dating from the time when programmersin the modern sense did not exist, and computer
users were not programming but coding.

Other terms used for minimization are extremization and hill-climbing. Since these can aso be used
to mean other things, the general conclusion is that in this field you can not tell a book from its title.
While waiting for general agreement as to what the subject should be called, we will stick to function
minimization.

7.3 Definition of the problem

Given afunction F(z), the general problem isto find the value of the variable or variablesz for which
the function F(z) takes on its smallest value. [As pointed out above, thisis entirely equivalent to finding
the = for which thefunction — F(z) takeson itslargest value, but for consistency wewill always consider
only minimization.] The rules of the game are the following:

i) The function F(z) isassumed not to be known analytically, but is specified by giving its value at any
point .

ii) Theallowed values of thevariable or variablesz may berestricted to acertain range, in which case one
speaks of constrained minimization. In these lectures we limit ourselves to the unconstrained problem.
iii) In some cases additional information about the function F' may be available, such as the numerical
values of the derivatives 0F /0z at any point 2. Such knowledge cannot in general be assumed, but
should be used when possible.
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iv) The function F(z) isrepeatedly evaluated at different pointsz until its minimum value is attained.
The method which finds the minimum (within a given tolerance) after the fewest function evaluationsis
the best. Occasionally other considerations may be important, such as the amount of storage required by
the method or theamount of computation required to implement the method, but normally the dominating
factor will be the time spent in evaluating the function.

7.4 Definition of a minimum

The theorems of elementary calculus tell us that the function F(z) must take on its smallest value at a
point where either:

i) al derivatives 0F /0z = 0 (astationary point), or

ii) some derivative 8 F// 9« does not exist (a cusp), or

iii) the point z is on the boundary of the allowed region (an edge point).

Althoughwe will sometimesfind it useful to consider pointssatisfying theabove properties, thisapproach
of considering essentially the analytic properties of the function is clearly not well adapted to the rules
of the game as outlined above. Indeed, when one considers that there may be any number of stationary
points, cusps, and edge points, all of which may bearbitrarily hard to find by simply sampling thefunction
value, the whole problem beginsto appear hopel ess unless some simplifying assumptions are made.

Theusual simplification consistsin abandoningthe attempt to find the global minimumand being satisfied
with alocal minimum. A local minimum may be defined as a point z,, where for al pointsz in some
neighbourhood around z, we have F(z) > F(zo).

Now the situation looks much brighter since the very definition of alocal minimum suggests a general
strategy for finding one: wevary « by small stepsin adirectionwhich causes F' to decrease, and continue
until F increasesin all allowed directions from some point z,. Thisdoes not yet tell us how to vary z,
but at least it suggests that a solution can be found.

In the lectures we will consider only unconstrained local minimization, unless otherwise stated. The
problem of global minimization will be treated in Section 6.

7.5 The shape of the function — Taylor’s series

With a view to making an intelligent minimizing method, it is of interest to consider what we might
reasonably expect about the behaviour of F. If F represents a physically meaningful function, we
would certainly expect all the derivatives of F' to exist everywherein the region of interest. Under these
conditionswe can write down the Taylor’s series expansion for F' about some point z ,, assuming for the
moment that = representsjust one variable:

F 1 0?°F

F(z) = F(z,) + ?9_13 N (z — 1) + 2 ?9;1;2 )
Although we do not know anything a priori about the domain of convergence of this series, we do know
that as the distance (z — «; ) becomes smaller, the higher order terms become less important, so that we
would expect that predictions based on the low-order terms should not be very wrong, at least for small
steps. Before considering these terms in more detail let us generalize the variable # to a vector of n
variables z. Then we have

(z — z,)> + ....

1
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where the matrix ¥V isdefined by G;; = 9*F/d=z;0z; and the gradient vector g isg; = 0F/dz;, all
derivatives being evaluated at z,. The T denotes transposition which turns a column vector into a row
vector. Note the difference between z; (the :** variable) and z; (the position vector at the point z).

Now the first term of the above seriesis constant, so it will not tell us much about where to look for a
minimum. The second term isproportional to the gradient g and tellsusinwhich direction thefunctionis
decreasing the fastest, but sinceitislinear in g, it does not predict aminimum and therefore does not tell

uswhat step sizeto take. Moreover, aswe approach theminimum g — 0 (if it exists) sowewill haveto
go further and consider the next term. Thethird, or quadratic term describes a parabolic behaviour and is
therefore the lowest term to predict a minimum. Unlike g we can expect Y to be roughly constant over
small regions, sinceit would be exactly constant if higher-order terms were zero.

We mention, in passing, one class of problemsin which the above analysiswould not hold at all. Thisis
inthefield known aslinear programming, which limitsitself to minimizing functionswhich are linear in
the parameters, subject to constraints which are also linear. A linear function can not have a minimum
in the sense described above (a stationary point) but must take on its minimum at a constraint boundary
(edge point). For such problems the description of the constraints therefore takes on greater importance
than the analysis of the function itself, and will not be considered in these lectures.

7.6 Non-existence of optimum in general

Although we will be studying and comparing different minimization algorithms (recipes), the reader
should be warned at the outset that in the strict sense of the rules of the game as stated in Section 1.3
above, wewill not be ableto show any algorithm to be superior to any other for all functions. In principle
at least, no matter how bad one algorithm is, or how good another, we can always find a function which
will be minimized faster by the bad method than by the good one. We should keep such essentialy
theoretical considerationsin mind, but should not be overly discouraged by them. In particular, certain
objective criteriawill emerge for comparing methods even though the principal criterion—minimization
speed—depends on the function. In the past there has in my opinion been an overemphasis on such
objective criteria in an attempt to find the ideal universal minimization algorithm. More recently, the
tendency is to adapt the algorithm to the function, even to the point of introducing a super-algorithm
which would choose a sub-algorithm appropriate to the function at hand. Such questions of global
strategy will be considered later.

The reader should a so be warned that in presenting particular algorithms| will often omit detailswhich
are unimportant to an understanding of the algorithm athough they may be crucial in actually making it
work. The original references should therefore be consulted before programming such algorithms.

7.7 The role of the computer

While our subject isessentially amathematical one, it has been so profoundly influenced by the existence
of high-speed electronic computers that it would certainly be unfair not to mention them here. Indeed,
real progressin the solving of large-scale practical problems has come only since the 1960's, although
much of the basic theory dates back to Newton'stime or even earlier. Thisis, of course, because of the
renewed interest in numerical minimization techniques for use on computers. As it is no longer even
thinkable to use these techniques for hand calculations, it is best to place ourselves immediately in the
computer context and to conceive of our function F'(z) rather as a subroutinewhich returnsavalue of F
(and perhaps some other information such as numerical values of derivatives) for given input values of
the arguments .



7.7. Therole of the computer 43

One unpleasant consequence of the computer-oriented approach is that we will often have to worry
about rounding-off errors in the function value due to the finite word length of digital computers. In
addition there may be problems of overflow or underflow. In areal program for minimization or analysis
general functions, all numerical operations must be protected against such numerical exceptions, and this
typically represents more than half of the computer code, sometimes nearly al of it.



Chapter 8: One-dimensional Minimization
8.1 Usefulness im-dimensional problems

We will first consider functions of just one variable, since some general problems can be seen more
easily in this smplest case and also because some n-variable algorithms contain steps which require
one-dimensional minimization. The one-variable problem is therefore both instructive and useful even
though our prime consideration will be that of more complex problems.

8.2 Grid search

The most elementary search technique consistsin choosing & equally spaced points within the range of
the parameter z, evaluating the function at each of the points, and retaining the lowest value found. If
the spacing between pointsis Az, one of the pointsis sure to be within Az /2 of the true minimum,
althoughin principleit may not be the point corresponding to the lowest value. Still, if the function does
not vary too wildly over the distances of the order of Az, one generally assumes that this method gives
the minimum within arange of about Az.

Of course the grid search method has some difficulties. It is not directly applicable to the usual case
where the range of z isinfinite. But in this case a simple remedy isto choose a reasonable range in the
middle of the allowed range, and later to shift the sampling range if the minimum comes out at an end
point.

The most serious objection to the grid method isits inefficiecy. Given the assumption that F* does not
vary too much over adistance of Az, many of the function evaluationsare certainly unnecessary, namely
those that are in regions where the function value is known to be large. In other words, the algorithm
takes no account of what it has learned about the function. This inefficiency becomes more striking, in
fact prohibitive, when extended to many variables.

On the other hand, this method has the prized virtues of extreme simplicity and absolute stability. It
always converges within the desired tolerance in aknown number of steps and is quiteinsensitiveto the
detailed behaviour of the function.

The efficiency of the grid method may be greatly improved by proceeding in several stages, using a
smaller range and smaller step size in each succeeding stage. In this way each stage takes account of
the least value found in the preceding stage, and the method can be said to converge in the usual sense
of increasing accuracy due to decreasing step size. In the next section we consider optimum ways to
arrange staging in order to obtain the fastest decrease in step size.

8.3 Fibonacci and golden section searches

In order to optimize the grid search, we want to minimize the number of function evaluations per stage,
compatible with maintaining a constant reduction of a factor ¢ in the step sizes at each stage. Thiswill
yield the fastest reduction in step size. One function evalution tellsus nothing about the possiblelocation
of a minimum, but as long as we restrict ourselves to local minimain a given range of @, two points
are sufficient as shown in fig. 1. If F(z,;) < F(z,), then there must be at least one local minimum
somewhereintherange 0 < z < z,. Now in thisnew range, we already have one point (z, ), so that a
further reduction in range is possible with only one new function evaluation, and the procedure can now
be continued with only one new evaluation per stage. It remains to be shown that this can be continued
indefinitely with a constant reduction in step size, and to calculate what that reduction will be. Clearly

44



8.3. Fibonacci and golden section searches 45

0 X1 X 1
Fig. 1
(o}
o
f«— 1-t —> <« 1- | QR T
0 Xy Xy 1 0 X3 Xq X3 1
<t 5 <— 12 5y
«~— bt 5 «——— 12 >y
Fig. 2 Fig. 3

we would get the maximum reduction on thefirst step if =, and z, were very close together, but we must
not forget that z, (or z,) will then be used for the next stage and should therefore be close to the middle
of thisnew interval aswell. Thesituationisillustrated in thefigs. 2 and 3, where the distancesindicated
are imposed by the symmetry of the intervals and the condition that the reduction in range must be a
factor of ¢ in each stage. The new range after evaluation of F'(z3) will bez; < = < z, and itslength
must be ¢2.

Thiswill be possiblesince thereisareal root to the equation:

2 = 1 -t
NS

t = ~ 0.616.
2

Since thisratio ¢ is known as the golden section, the minimization techniqueis called a golden section
search. If the number of stagesto be taken is known in advance, it is possible to improve very slightly
on this technique by using a Fibonacci search, as described for example in Kowalik and Osborne [1].
Although Fibonacci can be shown to be optimal (in a sense described below), the slight improvement
is probably not worth the added complication. The golden section search is optimal among agorithms
where the stopping point is not decided in advance.

The above techniquesare optimal only in the minimax sense, that isthey minimize the maximum number
of function evaluationsnecessary to obtain agiven accuracy. It might be called the pessimist’soptimality,
since in game theory it is the best strategy against an intelligent opponent who is trying to make you
lose. It should therefore be effective in minimizing pathological functions, but in more normal cases we
should expect other methods to be better. Such methods are described in the following sections.
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8.4 Quadratic interpolation and extrapolation

A more optimistic approach consistsin studying the expected behaviour of the function and then hoping
that the deviations of the real function from this behaviour are not too great. From the Taylor’s series
analysisof Section 1.5, it would be reasonabl eto proceed by assuming that thefunctionisnearly quadratic.
Since a parabolais determined by three points, this method requires the function to have been evaluated
for threedifferent valuesz,, z, and 5. It then predictsthe minimum to be at the minimum of the parabola
passing through these points. If the three function values are F;, F3, and F3, the predicted minimum is
at z4 given by

(z2 + @3)Fy (21 + 23)F> (z1 + @2)F3
(21 — @) (21 — z3) (23 — @1) (22 — 23) (zz — @1) (23 — 23)
F1 F, F,
2@ T 22) (31 —28) T (@2 F 28) (@2 — 23) T (s F 21) (w5 — 72)

Considerable simplification results when the three points are equally spaced, a distance d apart, in which
case:

Ty =

a:4:a:2—|—§ (Fl_Fz) .

2 (F, + F; — 2F))
Thefunctionisthen evaluated at z 4, this point replaces one of thefirst three, and anew point ispredicted,
again by quadratic interpolation using the new set of three points. The method terminates when the
predicted function value at some new point agrees with the actual value within a specified tolerance.
Thisalgorithm usually performs quite well when applied to easy (nearly quadratic) functions, but suffers
from a number of instabilitieswhich can be quite serious, asfollows:
i) At any step the three points may determine a parabola with a maximum rather than a minimum, in
which case the method diverges.
i) If the three pointslie nearly in a straight line, the algorithm takes an enormous step which may cause
numerical difficultiesas well as diverging.
iii) After each step there is a choice of which two of the three previous points to retain for the next
step. It isusually more convenient and logical to retain the most recent points, but this may also lead to
instabilitiesby throwing away the best points.
iv) Even without any of the above difficulties, the method may oscillate about the minimum instead of
converging toward it.
All the problems can be fixed by including checks and safeguards in the algorithm, but the remedies
always involve abandoning, at least temporarily, the quadratic interpolation step. The best remedy is
probably to reserve the method for well-behaved functions and to abandon it entirely as soon as trouble
arises. It is most often used as the last step in algorithms which depend principally on other methods,
since physical functionsare usually quite parabolic in the immediate vicinity of the minimum.
When derivatives of the function are available, variations of quadratic interpolation are possible, using
instead of three pointsto determine the parabola, either two function valuesand onefirst derivative, or the
function value and the first two derivatives at one point. These variationstend to be even more unstable
than the basic method, since they use information from fewer points.

8.5 The success-failure method

A good compromise between the stability of the grid search and the rapid convergence of quadratic
interpolation is found with the success-failure technique of Rosenbrock [2]. A start point z , and initial
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step size d are required, and the functionisevaluated at z, and z, + d. Thefirst step istermed a success
if F(zo + d) < F(20), otherwiseit isafailure. If itisafailure, d isreplaced by —3d, where g isa
contraction factor less than one, and the test is repeated. If it isasuccess, z, isreplaced by z, + d, d is
replaced by ad, where « is an expansion factor greater than one, and the test is repeated. The process
continues in thisway until the function values change by less than a specified amount, The numerical

values usually used for the expansion and contraction parametersarea ~ 3.0andg8 = 0.4.

An interesting feature of this method is that a local minimum is always bracketed whenever a success
is followed by a failure. When this happens, the middie one of the last three points is always lower
than the outer two, so that one isin afavourable position for trying a quadratic interpolation step. The
success-failure method, with one quadraticinterpol ation step each time a successisfollowed by afailure,
is probably the most effective one-dimensional techniquefor use on general functionsathoughin specia

cases other methods may be superior.



Chapter 9: Stepping Methods in many Variables
9.1 Grid searches and random searches

An excellent illustration of the enormousincreasein complexity in going to spaces of high dimensionality
is afforded by the grid search technique in many variables. In order to localize a minimum to 1% of the
range of one variable by thistechnique requires 100 function evaluations; in ten variables the number of
pointsrequired is 102°. Clearly we can forget about this method when more than one or two parameters
areinvolved.

Infact it isageneral rulein function minimization, as in function integration, that one should not expect
good one-dimensional techniquesto be good when extended to higher dimensionality. Experience with
integration suggests that a Monte Carlo search is more efficient than a grid search in many dimensions.
The Monte Carlo technique consistsin choosing pointsrandomly according to some distribution (usually
uniform or normal).

But even when these methods are refined by using variable search ranges, they prove far too slow for
general use and we must turn to more efficient techniques.

9.2 Single-parameter variation

Since the condition for a minimum which isa stationary point in » variables z; is the vanishing of all n
first derivatives0F/dz;, itisnatural to try to make each derivative vanish separately, one after the other.
Thisis the old method of single parameter variation, where one seeks a minimum with respect to one

variable at a time using one of the techniques described earlier. Of course when you have finished
minimizing with respect to «, you may no longer be at a minimum with respect to z,, so you generally
have to start all over again, but the process usually does converge, asillustrated for two variablesin fig.
4. Here the curves represent contours of equal function value, and the straight lines show the stepstaken
in minimizing F with respect to z,, then z,, then 2, etc. In this case the method converges nicely after
only four single-parameter minimizations.

Consider now the function represented by the contoursshownin fig. 5. Here the method proceeds much
more slowly because of the narrow valley. It till converges, but as the valley becomes narrower, the
convergence becomes arbitrarily slow.

Such behaviour in many dimensions causes thismethod to be generally considered as unacceptably slow.

Two of themore successful improvementsaimed at avoiding such behaviour are due to Hooke and Jeeves
[3] and Rosenbrock [2]. We discussthe latter below.

9.3 Rosenorock’s method

Rosenbrock’s algorithm [2] starts by performing single-parameter minimizations as above. Then when
one full cycle of all parameters has been completed, a new set of orthogonal axes is defined with one
axistaken asthe vector from the start point to end point of the cycle. Thisvector pointsin the direction
of previousover-all improvement and is expected to be a good direction for future improvement. Inthe
case of the narrow valley seen above, it should point more or less along the valley and avoid the zig-zag
behaviour. The next cycle of single-variable minimizationsis performed using multiples of the newly
defined axes as variables.

The Rosenbrock method generaly performs well, being quite stable and capable of following narrow
valleys, but as the number of variables increases, the efficiency drops, probably because the new axis
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defined by past improvement is the only ‘intelligent direction’ used in the next cycle. All the other
minimization directions are simply chosen orthogonal to thefirst one. Also, itstermina convergenceis
slow compared with the more ‘quadratic’ methods described in Section 4.

Another technique, that of Davies, Swann, and Campey [4] (unpublished, see Ref. 4) is similar to
Rosenbrock’s and will not be described here.

9.4 The simplex method

One of the most successful stepping methodsin many variablesisthat of Nelder and Mead [5], based on
the smplex. A simplex isan n-dimensional figure specified by giving itsn + 1 vertices. It isatriangle
in two dimensions, a tetrahedron in three, etc. The algorithm takes the name simplex because at each
step the information it carries about the function consists of itsvalues at » + 1 points. One can easily
visualize how the method works by considering the two-dimensional case asinfig. 6. The three starting
simplex points are somehow chosen (perhaps randomly) and the function is evaluated at each point. Let
the point Py bethat at which the function value is highest (worst) and P, that at whichitislowest. Let
P be the centre-of-mass of all pointsin the simplex except Py ; that is:

_ 1 n+1
P = — P, — P .

From the original simplex, anew simplex isformed by replacing Pz by abetter pointif possible. Thefirst
attempt to find a better point is made by reflecting Py with respectto P, producing P* = P + (P — Py).
If F(P*) < F(Pp), anew pointistried at P** = P + 2(P — Py). If F(P*) > F(Pg), anew point
istriedat P** = P — 1/2(P — Py). The best of the new points then replaces Py in the simplex for
the next step, unless none of them is better than Py . In the latter case, a whole new simplex isformed

around Pr,, with dimensionsreduced by a factor of 0.5.

Variations on the method are possible by using different contraction or expansion factors when search-
ing along the line from Py through P (dotted in diagram). Another interesting possibility is to at-
tempt a quadratic interpolation step along the dotted line whenever three points have been determined
(Py, P*, P**). However, one must be careful not to accept a point too closeto P, for then the simplex
collapsesinto aline (or in general a hyperplane of n — 1 dimensions) from which it can never recover.

The simplex agorithm, being designed always to take as big steps as possible, is rather insensitive to
shallow local minimaor fine structurein the function caused by rounding errors, stetistical errors (Monte
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Carlo output), etc. Another of its virtuesis that of requiring few function evaluations, usually one or
two per iteration. In addition, each searchiisin an ‘intelligent’ direction, pointing from the highest value
to the average of the lowest values. Compare this with Rosenbrock’s method, where really only the
principa axisisan ‘intelligent’ direction, and all other searches are for exploring along orthogonal axes
to determine a new principal axis.

A convenient convergence criterion for the simplex method is based on the difference F(Pg) — F(Py).
Theiterations are stopped when this difference islessthan a preset value. Asafinal step, the functionis
evaluated at P, which isoften slightly better than F(Py,).

In view of the danger mentioned above—of the simplex collapsing into a hyperplane of dimension
n — 1—ithasbeen suggestedto usen + 2 or more pointsrather than n + 1 at each step. | have tested
thisidea, which is equivalent to introducing a dummy parameter of which the function is independent,
and have always found the efficiency of the algorithm to decrease under these conditions.

9.5 Conjugate directions method

This method does not require information about the derivatives of the function, but the exploration
requires motivation Chapter 4, so it isdiscussedin 4.5.



Chapter 10: Gradient Methods
10.1 Calculating derivatives

I will call a gradient method any technique which uses information from a very small range of the
variables (i.e. essentialy derivatives) to predict good trial points relatively far away. This does not
necessarily mean that they follow the gradient, but only that the gradient, and perhaps higher derivatives,
are used or estimated.

It isof course possiblein most casesto calculate analytically the numerical values of the derivativesof a
function, just asitispossibleto calculate the value of thefunctionitseif. However, it isoften inconvenient
and dangerousif the algebrais complicated, so that very often we are faced with minimizing a function
for which no derivatives are provided. Since the most powerful algorithms discussed below require
derivatives, a general minimization program must be able to estimate the derivatives of the function by
finite differences.

A first derivative may be estimated from

Oz |, - d ’

where d isa‘small’ displacement. The error will be, to lowest order in the Taylor’s expansion,

d O*F

b ~ —- .
2 O2%|,,

It is therefore advantageous to make d as small as possible, but still large enough so that the rounding
error in the computation of F' does not become larger than the error introduced by é§. Since the second
derivatives may not be known, it may not be possible to find an optimum step-size d, so we may just
have to close our eyes and guess.

A much safer method would be to use points chosen symmetrically on either side of z, giving
Oz |, - 2d ’

for inthis case the error § vanishesto second order and the lowest order term is proportional to the third
derivative. A disadvantage of this method is that it requires 2n function calls to estimate the n first
derivatives, whereas the asymmetric steps require only n + 1 [or only n if F(z,) has to be evaluated
anyway]. An advantage of the symmetric steps method, however, isthat it gives the second derivatives
as aby-product [assuming F(z,) known]:

0°F  F(zo — d) + F(zo + d) — 2F(=o)

dz? d? ’
and from the relationship for the error § in the asymmetric method, a conservative upper limit of the
uncertainty in the first derivative results assuming at least that the symmetric formula gives a smaller
error than the asymmetric one. A complete treatment of step sizes is beyond the scope of these lectures
but can be found in a paper by Stewart [6].
The numerical evaluation of second derivativesisfacilitated by thefact that they should be approximately
constant over small regions, so that symmetrical stepsare usually not necessary. Unfortunately, however,
there are alot of second derivatives to evaluate; since they form asymmetricn x n matrix, there are
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n(n + 1)/2 independent components, requiring at least n(n — 1)/2 pointsin addition to those required
for the symmetric derivatives. For two parameters, a minimum point pattern is shown fig. 7. The odd
point (for the mixed second derivative) could have been chosen in any corner. The two-dimensional
diagram is somewhat misleading since for large n, the number of ‘odd points' is n timeslarger than the
number of ‘symmetric’ points.

10.2 Steepest descent

As soon as the function’sfirst derivatives are known, it is natural to follow the direction of the negative
gradient vector in seeking a minimum, since thisis the direction in which the function is decreasing the
fastest. Such a technique was used by Cauchy more than a century ago, and is the basis of what is now
known as the method of steepest descent.

This method consists of a series of one dimensional minimizations, each one along the direction of
local steepest descent (gradient) at the point where each search begins. Of course the direction of the
gradient is not constant along a line even for a general quadratic function, so we expect many iterations
to be necessary, but the method can be shown to converge for a quadratic function. Let us follow its
progress for a typical function whose contours are shown in fig. 8. We immediately see an unfortunate
property of the successive search directions: if each linear minimization is exact, successive searches
must be in orthogonal directions. In two dimensions, this yields steps which look just like the single
parameter variation method (fig. 5) with the axes rotated to line up with the gradient at the start point.
In many dimensions the situation is not quite so bad, but successive directions are still orthogona and
the algorithm cannot be considered acceptable. It isin fact easy to draw contours for a reasonably
well-behaved hypothetical function (fig. 9) where the direction to the minimum isjust perpendicular to
the gradient.

10.3 Newton’s method

It isclear that since a general quadratic function is determined by specifying its value, first derivatives,
and second derivativesat a point, it can be minimized in one step if and only if al thisinformation (or its
equivalent) istaken into account. Let uswriteaquadratic function as

1

F(z) = Flao) + g"(z — 20) + 5 (2 — 2))" G (z — zo),
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Fig. 9

where the gradient g is evaluated at 2, and the second derivative matirx G is a constant. Then the
minimum is given directly by

=z, -GClg=2- Vg,
where the inverse of the second derivative matrix isthe covariance matrix V .

Thisisthen the many-dimensional equivalent of quadratic interpolation discussed earlier, and it issubject
to the same sort of difficultieswhen applied as an iterative technique to general non-quadratic functions.
But let usfirst point out its good features:

i) the step sizeis no longer arbitrary, but is prescribed precisely by the method,;

ii) the step directions are no longer necessarily along the gradient vector but take account of parameter
correlations (narrow valleys or ridges) through the mixed second derivative terms.

In practice, however, themethod isunstable, essentially for thereasonsgivenin Section 2.4. In particular,
it diverges whenever the matrix G (or V ) is not positive-definite (see next section). In its unmodified
form the method is used only when the minimum is known to be very close or when the function is
known to be positive quadratic (for linear least squares). However, it isclearly a powerful technique and
isworth studying in some detail since all the most successful agorithmsare based on Newton-like steps,
as discussed below.

10.4 Positive-definite quadratic forms

We pause here briefly to consider the properties of quadratic forms useful for understanding the more
powerful gradient methods. In one dimension the descriptionis simple; ageneral quadratic form can be
written

1
F(z) = a 4 gz + §G1132,

where g = 0F/0z a2 =0, and G = 9*F/dz* also at « = 0. This function has a minimum if and
only if G > 0. If G =0, the minimum is at infinity, The minimum (if it exists) isat # = —g/G. When
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Fig. 10 Fig. 11

using a quadratic approximation to minimize a general non-linear function, it makes sense to take a step
toz = —g/G only if G > 0 since otherwise we step to a predicted maximum or to infinity. A possible
remedy if G < Oistotakeastepz = —g; thatis, to set G arbitrarily equal to unity so that the step will at
least be in the right direction although it will now have arbitrary length. Consideration of fig. 10 shows
that thisisthe only thing we can do unless more information is available, since the quadratic part of the
function is not convex or positive-definite at the point z .

These arguments may now be extended to many dimensionswhere g becomes the gradient vector g, and
G becomes the second derivative matrix G . Then the Newton steptoz = —G~'g makes sense only if
G (hence G—') is a positive-definite matrix, since only then does the quadratic form

Fz)=a+ g -2+ 2"V

N | =

have aminimum. If G issingular, the predicted minimum (or maximum) is not unique.

Unfortunately there is no simple way of telling, in general, if amatrix is positive-definite by inspecting
individual components, but we can at least state some of the many useful properties of such matrices.
Two necessary (but not sufficient) conditionsfor a (square, symmetric) matrix to be positive-definite are:
i) the diagonal elements must be positive (thisisin fact sufficient for al x 1 matrix);

ii) the off-diagonal elements must obey G, < G;Gjj -

[Properties (i) and (ii) together are sufficient for a2 x 2 matrix.] While the above conditionsare easy to
check, they are not in general sufficient. Some necessary and sufficient conditions are the following:

iii) All the eigenvalues of the matrix are positive. Thisis generally a rather difficult calculation and is
usually approximate.

iv) The determinants of all the upper left square submatrices (formed as indicated in the diagram in fig.
11) are positive. Thisis probably the easiest method.

v) Thescaar eTG e ispositivefor al vectorse Thisis usually taken asthe definition of a positive-definite
matrix, and explainswhy a positive-definite matrix yieldsaquadratic form with a minimum: the function
increasesin all directionsfrome = 0.

vi) Theinverse G- = V is positive-definite.
Now suppose that G ! is calculated for a Newton step and turns out to be non-positive-definite. In
analogy to the one dimensional case we would simply take G = I , the unit matrix, and the Newton
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step would become a steepest-descent step of arbitrary length, which is probably not so bad an idea and
isin fact often done. But we can do better by trying to make a positive-definitematrix whichisas‘ close'
as possible to the unacceptable G . Thisis done as follows: The matrix (G + A1 )~* isused instead
of G, where ) is greater than the largest negative eigenvalue of G . This requires a fair amount of
calculation and so isnot very convenient, but it is quite appealing since it amountsto taking a step which
isintermediate between a Newton step and a steepest-descent step (for large values of A the step becomes
short and in the direction of the gradient).

If we are willing to calculate eigenvectors as well as eigenvalues, the non-positive-definiteness can
be turned into an advantage, since the eigenvector corresponding to a negative eigenvalue indicates a
direction (or directions) in which the negative first derivative is increasing in magnitude rather than
decreasing. This suggests an especidly fruitful direction for a single-parameter-variation step which
should not only lead to a good decrease of the function value but should also lead more quickly to a
region of positive-definiteness.

Minimization methods based on variations of Newton’s method as suggested by the above considerations
are usually called quasi-Newton methods. Many such algorithmshave been published and some are quite
successful, but thefield is still open for new ideas.

The principa drawback of such techniques is the repeated evaluation and inversion of the second-
derivative matrix. The calculation of the second derivatives usually requires a rather long time, propor-
tional to 2, and the matrix inversion, although usually faster, increases with n like n®.

One of the most interesting results concerning quadratic forms is the basis of a collection of related
techniques described in the next sections, which do not require explicit repeated evaluationsof G .

10.5 Conjugate directions

The vectors d; and d; are said to be conjugate with respect to a positive-definite symmetric matrix 4 if

d?édeO for i£7.

If 4 istheunit matrix I , the conjugate vectors d, would be orthogonal, so conjugacy can be thought of
as a generalization of orthogonality. A set of n conjugate vectors span an n-dimensional space, and any
point in the space can therefore be expressed as a linear combination of n conjugate vectors.

Although the matrix 4 does not uniquely define a set of conjugate vectors, such a set can always be
constructed by a procedure similar to the Gram-Schmidt orthogonalization method. Let us start for
example with an arbitrary vector d,. Then the vector

dTAAd
— A _ 1N~ =1
d, = 44 TAd 4
can be seen to be conjugate to d, sincethe product d? 4 d, vanishesidentically. The process can then be
continued in the same way to construct a d, which will be conjugate to both ; and d,,, and so forth up
tod,.
Such vectors become interesting for minimization problems when they are conjugate with respect to the
hessian (second derivative) matrix G . In this case a theorem of Fletcher and Reeves [7] statesthat a
sequence of linear minimizationsin each of then conjugate directionswill minimize ageneral quadratic
function of n variables. That thisistrue can be seen quite easily asfollows. Let the quadratic function be

F(z) = F(0) + ¢"z + 2"

— G$
< 2—N—
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and the n directions d; be conjugate with respect to G :
T . .
i Gd =0, i#j.

Then the vectors z and g can be expressed as linear combinations
e = ) yd
g = ), ad,

%

so that the general quadratic becomes

F(z) = F(0) + (Z csz) (Z v;d ) + % (Z y,»gl?) 14 (Z nglj) :

Now if the last term above is regrouped as a double sum, the terms with ¢ # j drop out because of the
conjugacy condition, so that the whole expression can be simplified as

F(2) )+ 3 adldy b Y GG,

J
F(0) + Z (jyj + b;%)
J

where
by = Y ed d;
and
/ T
b d] Q d]

are constants. By expressing the quadratic in terms of y instead of  we have separated it into a sum of
independent one-parameter quadratic functions. A minimization with respect to y; (alinear minimization
along the direction d;) will therefore be independent of the minimizations along the other conjugate
directions, which demonstrates the validity of the theorem.

The above theorem tells us what is ‘wrong’ with the single-parameter-variation method: we should
be using conjugate directions rather than simply orthogonal axes. However, since the construction of
conjugate vectors seems to require knowledge of the hessian G , this does not yet help very much in
practice, for if weknew G (and g) we could minimize a quadratic immediately by means of Newton's
method, and would not need to use » linear minimizations.

The usefulness of conjugate directions comes from the fact that there are ways of determining such
directions implicitly, without first evaluating the entire hessian matrix G . Of course, by the time all
n conjugate directions are determined, by whatever method, information equivalent to the matrix G
must have been determined. However, by that time considerable minimization may already have been
performed, as in the method implied by the following theorem.

If 2, and z; are minimum pointsin two parallel subspaces, thenthedirectionz, — z,, isconjugateto any
vector which liesin either subspace. This can easily be seen in two dimensions asillustrated in fig. 12.
Since z, isaminimum along the direction d; the gradient of F' at 2, must be orthogonal to d; :

dclr(ﬂ + QQO) =0,
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Fig. 12

where g isthe gradientat z = 0. Similarly at z,
df(ﬂ +Ge) = 0.
Subtracting the above equations, the first terms drop out and we have:
dfg (z, —2) =0,

showingthat (z; — z,)isconjugatetod, .

Unfortunately, extending this algorithm to three dimensions requires three additional minimizations
in order that the third direction be conjugate to both of the first two, so that convergence for a genera
quadraticinn variablesisobtained only after n iterationsinvolvinginall n(n + 1)/2 linear minimizations.
Sincethisisjust the number of independent elementsin the second derivative matrix, we would be better
off for quadratic functions to calculate this matrix directly and avoid the linear searches. On the other
hand, for non-quadratic functions the conjugate directions method should be much more stable since it
proceeds by a series of linear searches in independent directions and still guarantees convergence in a
finite number of steps once a quadratic region is entered. In addition, this method has the advantage of
requiring neither first nor second derivativesof thefunction. (Strictly speaking, then, it should have been
discussed in Section 3 rather than in this section.)

A disadvantage of the algorithm described above isthat for each iteration, » minimizationsare performed
in direction d;, whilst only one is performed in direction d,. This undesirable asymmetry is largely
avoided in a variation due to Powell [8].

10.6 Conjugate gradients

When thefirst derivatives of the function are calculated, a somewhat more el egant method can be used,
known asthe method of conjugategradients[7]. Supposethat thefunction and itsgradient are evaluated
at two pointsz,, and z,, giving differences:

Az = z, — z,

Ag = g, — 4,
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Then if the function were quadratic with hessian ¥ we would have
Ag = G Az.
Any vector d, orthogonal to Ag would then be conjugateto Az:
di Ag = d7 G Az = 0,
which immediately suggests a method for obtaining conjugate directions without knowing G , based on

the change in gradient along a previous direction.

In the method of conjugate gradients, successive one-dimensional minimizations are performed along
conjugate directions with each direction being used only once per iteration. The first direction is taken
asd, = —g,, the steepest descent vector at z,,. Let the minimum along thisdirectionbe at z; wherethe
gradient is g, . Then the next search direction d, , which we want to be conjugate to d, must be a linear
combination of the only vectors we have at hand, namely:

The conjugacy conditionis
ngo = dfg (2, —25) =0

or
(_Qrf + bdg‘)gdo = (_Qrf - bgg')(& - 20) =0.

Sincez, isaminimum along direction d, = —g_, thedirectiong_ isorthogonal to the gradient at z, , so
that g7 g, = 0. We are then left with

b ==

so that the new conjugate directionis

T
9,9

- on ()
20 <0

This process can be continued to generate n directions, each one conjugate to all the others. It turns out
that the same simple formula holds for al the successive conjugate directions

T
95119
di+1 = _gi+1 + (M) dz

gy

10.7 Variable metric methods (VMM)

In analogy with themethodsof differential geometry and general relativity, it isconvenient to consider the
propertiesof the function F'(z) asbeinginfact propertiesof the space of thevariablesz. We have already
made some rudimentary use of thisidea when we generalized from the usual orthogonal coordinate axes
to a system defined by axes pointing in conjugate directions. We now wish to go further and be able to
express the properties of the function F’ geometrically as the properties of the non-Euclidean space of its
variables .
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The fundamental invariant in a non-Euclidean space is the squared distance element
ds® = d_mTé dz

where dz isadifferential coordinate displacement and 4 isthe covariant metric tensor which determines
all the properties of the space under consideration. When 4 isjust the unit matrix £ , the above formula
for ds? just expressesthe Pythagorean theorem for an n-dimensional Euclidean space. When off-diagonal

elements of 4 are non-zero and when the elements are allowed to vary as functions of z, a generalized
non-Euclidean space is generated.

Itiseasily verified that the second derivative (hessian) matrix G behavesunder coordinatetransformations
like a covariant tensor and we will identify it with the metric tensor of our space. Theinverse ¥V = G~
is acontravariant tensor and becomes the contravariant metric tensor. (For a discussion of covariant and
contravariant tensors, see for example chapter 10 of Ref. [9].) Thisimmediately enables usto construct
two scalar (invariant under coordinate transformations) quantities:

Q) ds* = &2"Gde

isthe square of the generalized distance between the point  and the point z + dz. When F isachisquare
function which is minimized to determine some best parameters z, then the physical meaning of the
generalized distance ds isjust the number of ‘standard deviations' z + dz isaway from . That is, the
use of the metric tensor ¥ enables us to scale the distance dz so that it comes out as a physically (or
statistically) meaningful invariant quantity instead of being expressed in arbitrary units (or a mixture of
arbitrary units!).

And b) p=4¢"Yyg

is twice the difference between the function value at the point where V' and the gradient ¢ are calculated
and the minimum of a quadratic form with hessian matrix G = V ~!. That is, p/2 is the expected
(vertical) distance to the minimum if the function F' were quadratic. This provides us with an important
scale-free convergence criterion for any method which provides approximationsto ¥ and g.

When the function F is quadratic, G is constant everywhere and, in the sense outlined above, thisis
equivalent to working in a space with a constant metric. For real non-linear functionswe expect higher-
order termsto be small but not negligible, so that we can think of workingin aspacewithaslowly-varying
metric tensor. Minimization methodsbased on thisapproach are known asvariablemetric methods. They
differ from the basic Newton-Raphson method in that the matrix G is not completely re-evaluated at
each iteration, but is assumed to be well approximated by taking the G of the previous iteration and
applying a correction based on new information from the current iteration. This correction is known as
the matrix updating formula, which in general differs from method to method.

Variable metric methods therefore proceed generally by the following steps:

i) A starting point z, isgiven, thegradient g | at that pointis calculated, and some approximation to G,
say Vo, isconstructed. The starting ¥, may be only the unit matrix, or it may actually be the inverse of
the full second derivative matrix.

ii) A stepistakentoz;, = z, — Yog,, which would be the minimum if F were quadratic and if ¥, were
the true covariance matrix. Since z, is not the position of the minimum in the general case, it isusual to
perform a linear search along this direction, finding the  which minimizes F(z, — a ¥ g,) In either
case |et the new point be called z; and let the gradient calculated at z, beg, .
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iii) Thematrix V is corrected using an updating formula of the form

Zl = 1{0 + ;t (ZO)@OaQUgOagl) .
Then g isreplaced by g , z, by @,, and ¥, by V1, and steps (ii) and (iii) are repeated until some
convergence criteria are satisfied.
The different methods differ chiefly in the choice of updating function [ , as described in the following
sections, and in the extent to which linear minimizationsare necessary. Lessimportant variationsinvolve

the starting approximation V , and various safeguards against ‘ unreasonable’ steps and non-positive-
definiteness as for the Newton techniques.

10.8 Davidon’s rank-two formula

Probably thefirst—and perhaps till the best—variable metric method was devel opedin 1959 by Davidon
and later published in simplified form in 1963 by Fletcher and Powell [10]. Davidon's updating formula
for the covariance matrix is the following:

T V T V
ZlIZO‘F% _Noﬂwo,
&y 1"
where the changesin position and gradient on the last step were
§ = Ly — Zg
and
T =9, — 9>

and YV, was the previous estimate of the covariance matrix. Thisis called a rank-two formula since the
correction Y, — ¥, isamatrix of rank two in the space of § and ¥ oy as can be seen directly by inspection
of theformula. B

One fundamental requirement of an updating formulais that the new matrix satisfies the relationship

&,

Vll =

~

sincey = @ ¢ for aquadratic with hessian G . It is easily seen that Davidon's formula satisfies this
requirement:

1{11 = |Yo + - ——

An unfortunate feature of the Davidon algorithm is the need to perform at each iteration a linear
minimization along the direction given by a Newton step, — V g¢. Thislinear search step is, however,
necessary in order to assure convergence for general functions. Fletcher and Powell show [10] that if the
starting approximationto V' ispositive-definite, then ¥ will remain positive-definiteafter all updatings,
but they have to use the fact that each iterationisalinear minimization, that is

97 Yoy, = 0.

It can be shown that this method is quadratically convergent, at most » iterations (n linear searches and
n gradient calculations) being required for an n-dimensional quadratic form.
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10.9 The rank-one formula

In an effort to avoid the linear minimizations required by Davidon’s algorithm, several workers have
independently devel oped an interesting updating formula of rank one. In this case Davidon in 1968 was
thefirst to publishan algorithm [11] based on theformula, and Powell [ 12] has summarized the properties
of thisformulaand of algorithms based on it

The rank-one updating is:
(& - l{ol)(é - ZOZ)T
7T(Q - l{ol) ’

Vi=VYo +

It can be shown [12] that thisis the only formulaof rank two (or less) for which not only ¥,y = & but:

where§; and y, arethestep and gradient changesat any previousiteration. Thisisknown asthehereditary
property, since V; can be said to inherit the fundamental property V' y = § with respect to all previous
iterations (up to n).

The hereditary property assures that after n iterations, V', will be the true covariance matrix if F is
guadratic, no matter what steps were taken (almost), so that if Newton steps are taken, convergence for
aquadratic function is assured after n iterations, without the need for linear minimizations.

In addition, the rank-oneformulais symmetric, in the sense that theexpressionfor V' intermsof Vgt is
the same asthat for ¥, intermsof ¥V, provided § and y areinterchanged. The meaning of thissymmetry
property will be discussed in the next section.

But, as nothing is perfect, so the elegance and mathematical beauty of the rank-one formula hide a
number of numerical and practical difficulties which can make it highly unstable when applied to a
general function. In particular, if the vector 4 happens to be orthogonal to the vector (6 — V7). the
denominator goes to zero in the updating formula, and an unbounded correction is possible. Since these
vectors may be orthogonal, even for a quadratic function, the problem of numerical instability isaserious
one.

Moreover, the matrices V', do not really converge to the true covariance matrix in the usual meaning
of the term convergence. Althoughitistruethat ¥, will be equal to the true covariance matrix at the
n** step for a quadratic function (barring numerical difficulties), the intermediate matrices ¥ may vary
wildly from step to step, so that on any particular iteration Y ; may be a rather poor approximation.
Thisis especially dangerous when the function is not quadratic, since the large corrections necessary in
later iterationswill generally not compensate properly the fluctuationsin early steps. Also, thereisno
guarantee that intermediate matrices will remain positive-definite, and hence no guarantee of areduction
inthevalue of F' at each step, even for aquadratic F.

All these difficulties can, of course, be overcome by programming enough safeguardsinto the algorithm,
but thiscan only be done at the expense of efficiency and sometimes only by abandoning temporarily the
updating formulaitself, which makes it |ose some of its appeal .

Different approaches are possible depending on whether it is considered important to maintain positive
definitenessasin the Davidon algorithm [11], or important not to abandon the exact rank-one formulaas
in Powell’s method [12].
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10.10 Fletcher’s unified approach to VMM

The existence of two different updating formulaswith very different properties generated alot of interest
in variable metric methods (VMM) during the years 1967-1971, since it showed VMM to be very
promising and left many questions unanswered, such as:

i) How can it be that the rank-one and rank-two formulas have such different properties? What is the
relationship between them?

ii) Isthere away to combine the best properties of both formulas?

iii) Arethere other good formulas? Isit possibleto define a class of ‘admissible’ formulas?

A certain understanding of the above problems has recently been made possible by the work of a number
of people. In particular, a paper by Fletcher [13] presents a unified approach to VMM, which will be
given here.

Recall that the rank-one equation is symmetrical (in a sense defined in Section 4.9), but as we shall now
see, the rank-two formula is not. Indeed the asymmetry suggests a way to construct a possible third

formula by taking the ‘mirror image’ of the rank-two formula. The basic idea is that a new formula
should satisfy the fundamental relationship

and therefore itsinverse should satisfy
v = Yi'e.
1

We can indeed write down the updating formulafor Y1 * which correspondsto the rank-two formulafor

Y.
8" 87 T
v o= (N - 1%)251 (N - %) + .
&y &y &y
Thismatrix ¥ can now be thought of asamappingfromé§ — v sincey = V;'é. If weinterchangey

and § inthe formula, it will then give amapping fromy — ¢, thereby producing a new updating formula
where Vv = §. Thenew dual formulawill be just

67 v6" 567
V. = _ = 1V I - = = .

If wetry thistrick with the rank-one formula, we just get the same rank-one formula back again, since it
is symmetric in thissense, or dual to itself. But with the rank-two formula, the process of inverting and
interchanging yieldsa new formula, also of rank-two, which isalso avalid updating formulain the sense
that it givesrise to aquadratically convergent VMM al gorithm.

Now we go further and consider the class of formulas which includes both rank-two and dual formulas
as special cases. Let usintroducethe notation

V., =T (Y, for the rank — two formula

and
V., = D (V) for the dual formula,

~ ~0

and consider the class of updating expressionsas introduced by Fletcher [13]:
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Yeo=0-0L +¢L),
where ¢ is some parameter which determines the exact formula. [Broyden [14], using a somewhat
different notation, has also considered the same class of formulas.]
It then turns out that the rank-one formulais also in this class, with

5’1'
(87y -

¢(rank — one) =

=2 ||

TZOZ) '

Having now constructed awide class of updating formulas, which infact includesall formulas known to
the author, it will prove interesting to consider their properties as a function of the generating parameter
¢. Probably the most important property, and the only one we will consider here, is that of monotonic
convergence of V' toward the true covariance matrix for a quadratic function. [Thisis called Property
1 in Fletcher's paper [13] which should be consulted for details of the definition and for theorems
concerning it.] The use of an updating formula with this property will guarantee an improvement in the
approximation V' at each iteration (for a quadratic function).

Any formula Y 4 with ¢ in the interval [0,1] possesses the monotonic convergence property. Such a
formulais said to belong to the convex class of formulas. For any V , with outsidetherange[0,1], there
exists some quadratic function for which ¥V diverges from the true covariance matrix.

From what we have aready seen about the rank-one formula, it is not surprising to find that it does not
belong to the convex class. Since ¥+ > 0 for any step which isan improvement, and sincey" Voy > 0
if V, ispositive-definite, it can be seen immediately from inspection of the equation for ¢(rank-one) that
it must either be lessthan zero or greater than one.

The above considerations lead Fletcher to propose a new agorithm [13] which is probably the most
elegant and powerful of any VMM algorithm. Basically, he usesthe general updating formula V', with
the value of ¢ chosen according to the following scheme: If ¢(rank-one) < 0, set ¢ = 0, corresponding
to the usua rank-two formula. If ¢(rank-one) > 1, set ¢ = 1, corresponding to the dual formula. In
this way, one aways uses a formula in the convex class, and chooses that one which is ‘closest’ to
the rank-one formula. It seems that the linear searches can then be eliminated and replaced simply by
Newton's steps, unless the function is highly non-quadratic. The latter condition can easily be detected
by comparing the actual improvement with the expected improvement at each iteration.



Chapter 11: Specialized Techniques

All the methods outlined so far in these lectures are of rather general applicability, the only assumption
being—for some methods—a predominantly quadratic behaviour in the immediate vicinity of the mini-
mum. In order to develop more powerful methods than those already presented, we will have to give up
some of this generality and exploit particular features of the functionsto be minimized. In this section
we discuss afew specialized techniqueswhich are still of rather wide applicability in the sense that most
functions of physical interest fall in one or more of these classes.

11.1 Chisquare minimization

Probably the most common application of minimization in scientific research isin least squares fitting,
where the function to be minimized is the sum of squares of deviations, between measured values and
predictions of amodel containing variable parameters:

Fe) = Y £e) = 3 <Y—7T<_>> ,

k=1 k=1 Tk

where Y;, and o, are measured values and errors, and Ty (z) are the values predicted by the model,
depending on some parameters z. Minimizing F' then yields best values (estimates) of the n parameters
z, based on K measurements Y with random errors o, where K must be greater than or equal to », and
is usually much greater than n.

Let usnow consider the second derivative matrix for F(z), expressed in terms of theindividual f(z):

0°F o 8 ,
B 8
N 3113, zk: 2fk 323J
_ Ofx 0k 0 fi

Intheabover.h.s., itisusual to makethe approximation that the second sum, involvingsecond derivatives,

issmall compared with the first term involving products of first derivatives. Thisis called linearization.

[Notethat it is the model T'(z) that is being linearized, not the function F(z).] In the important special

case of linear least squares, the second sum is exactly zero, so that F(z) is quadratic, and the whole
minimization problem reduces to the inversion of the above matrix §*F/dz;0; (i.e. the taking of one
Newton step).

In the more general case of non-linear least squares, the linearization approximation consistsin taking

9*F
3131'313]'

~ Z 23fk %
~ & 3113, 31}]"

This has the advantage of being easy to calculate and, moreover, it is always positive-definite (under
rather weak conditions such as the existence of the derivatives, and provided it isnon-singular). In fact
in many cases the use of the above approximation in computing Newton stepsis actually more effective
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than using the exact second derivative matrix because of the positive definiteness. Of course it must be
remembered that the covariance matrix obtained by inverting this approximate matrix does not in general
converge to the true covariance matrix even though the minimization based on it may converge to the
true minimum.

11.2 Likelihood maximization

Anincreasingly important alternativeto theleast squaresmethod in datafitting isthe method of maximum
likelihood. In this case the function to be minimized is of the form

k

ank

that is, asum of logarithms. Here again, an approximation for the second derivative matrix can be found
which involves only products of first derivatives:

9*F 0

323,’323j - 3113, 3—23] Z In fk
R L 3
N 3113, fk 323J

]_ 3fk 3fk 1 2 k
E 12 Oz, Oz, Ek: f Oz

As with least squares, we can neglect the second sum, involving second derivatives. In the case of
the likelihood function, the second derivatives of f are never exactly zero over any finite range (exactly
linear maximum likelihood does not exist, essentially because the likelihood function must be normalized
so that its integral over the space of measurements is independent of the parameters ). However, the
approximation

o*F Z 1 0fs 0fs
Oz;0z; - k2 Oz, 3:1:J

has the same advantages asin the non-linear |east squares case, namely speed of calculation and assured
positive-definiteness.



Chapter 12: Local and global Minima
12.1 The problem of multiple minima

All the methods presented so far have been designed to find alocal minimum, without any consideration
of whether or not other local minimaexist, or whether the minimum foundisactually theglobal minimum.
If the function has more than one local minimum, there is not even any guarantee that these methods
will find the minimum closest to the starting point, let aone the global minimum. In fact, it is usually
assumed, when using these algorithms, that the function is unimodal (has one minimum) in the region of
interest likely to be explored during the minimization.

Whenever the function may have more than one local minimum, new problems arise in addition to the
problem of local minimization. First of al, the user must decide what he wants to know about the
function. The following four possibilitiesare the most common and will be discussed here:

i) it issufficient to know the location of any one local minimum;

ii) only the global minimum is of interest;

iii) only one minimum is of interest (the ‘ physical solution’), but it need not be the global minimum; or
iv) al local minima, including the global one, must be found and catal ogued.

The first possibility, (i), is quite rare, but is easy to deal with, since any local minimization routine is
sufficient.

Possibility (ii) is much more common, particularly in system optimization where the cost must be the
smallest possible, not just small compared with other near-by solutions. Several methodsexist for finding
globa minima, of which two will be discussed in the next sections. All such methods suffer from the
absence of a stopping rule: even if the global minimum isfound thereisno way of recognizing it unless
the function is known to be bounded and has reached its lower bound.

Possibility (iii) often arises in scientific research where the approximate values of some parameters are
known in advance and one seeks a solution not too far from these values, corresponding to ‘the right
valley’ where the function may have several faraway valleyswhich may be deeper. The usual technique
for making sure of staying in the right valley isfirst to fix the approximately known parameters at their
assumed values and minimize with respect to all other variables, then starting from this point minimize
in the entire variable space.

Possibility (iv), of having to find and record all local minima, is the most difficult of all. It arises, for
example, in energy-dependent phase-shift analyseswhere all * solutions’ are recorded at each energy, and
a continuous set of solutions is sought, one at each energy, which have a smooth energy dependence.
Although the techniques described below may help in this problem, no exhaustive method isknownto the
author except for the prohibitive one of using many starting points equally spaced on an n-dimensional
grid.

12.2 The Gelfand algorithm

Relatively few minimization methods are specifically designed for non-local search in many parameters.
Probably the most successful of the ad hoc stepping methods is that of Gelfand [15]. It is non-local
because it provides a natural way to allow for function increases as well as decreases in any one step,
while tending generally to decrease the function value.

The procedure is as follows. From the starting point z,, a local minimization is begun (for example
along the gradient) until the function differences between steps become small (at the point a,). Then,
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Fig. 13

going back to the starting point, a ‘long’ random step is taken to the point 2, , and another rough local
minimizationis performed to reach the point g, (see figure above). Then the so-called * precipitous step’
is taken along a line from a, to a,, some distance past a, to z,. Then from z, another rough loca
minimization is performed, yielding a.,, and another precipitous step is taken from a, past a, to z, and
the search continuesin thisway.

The choice of the ‘precipitous step’ length is important in determining whether the method will ‘roll
over small ridges, but skirt a high mountain’, as its authors say it should. But no precise way is given,
except that * the choice of the length of the precipitous step is carried out experimentally (by trials) and it
constitutes an important charactistic of the function’.

Moreover, there is no stopping rule, since the method is essentially searching rather than converging.
In practice one usualy stops after a given length of computer time, but one would also stop if the
program went around in circles repeating itself (which is very possible but not so easy to detect) or if
a predetermined ‘ acceptably small’ function value was attained. This problem of stopping seems to be
common to al non-local minimization methods.

12.3 The Goldstein-Price method

Goldstein and Price [16] have proposed an elegant yet simple method for seeking other local minima
after one local minimum has been found It is based on a consideration of the analytic (Taylor series)
properties of the function. Let us assume that the function can be represented as a Taylor series about a
local minimum z, , where the first derivatives vanish:

F(z) = F(z), + %(@ — 2)'G(z —2;) + hit..

Now the higher terms (h.t.), involvingthird and higher derivatives, areimportant since thesearetheterms
that will giverise to other local minima. In fact, we seek away of transforming the function so that only
the higher terms remain. Such a transformed function is F; such that:

2(F(z) — F(z,))

Fi(zy,z) = (Q—@OTQ (z — ;)

=1+ ht..

By means of this transformation, we have ‘removed’ the minimum at z,, and the way is cleared to
search for other minima generated by the higher terms of the expansion about z,. The method therefore
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consists of seeking a local minimum of the function F; (It is required to know the second derivative
matrix G at the local minimum z,.) Since the quadratic form (z — z,)7G (z — z,) isaways positive
for positive-definite G , th efunction F; will become negative as soon as an improvement on z, isfound.
Then starting from thisimproved point, the original function F' can be minimized locally to yield a new,
improved local minimum of F'.

If the minimum value found for F; ispositive, then it may correspond to a new local minimum of F', but
not an improvement over z, .

In this case the procedure may be continued from this new point, forming a new function F’,, related to
Fy just as F; wasrelated to F'. Asusual, no stopping ruleis given by the theory.

The method seemsto work in practice, although experience withit islimited and no conditionsare known
under which it is guaranteed to work. It isappealing for reasons of its elegance and simplicity, and could
prove to be an important tool in global minimization.
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Appendix: Some sample Problems for Minimization Routines

We assemble here a collection of test problems found to be useful in verifying and comparing different
minimization routines. Many of these are standard functions upon which it has become conventional to
try al new methods, quoting the performance in the publication of the algorithm.

12.4 Rosenbrock’s curved valley

F(z,y) = 100(y — 2°)* + (1 — &)’
start point: F(-1.2,1.0) = 24.20
minimum: F(1.0,1.0) = 0.

Thisnarrow, parabolic valley is probably the best known of all test cases. Thefloor of the valley follows
approximately the parabolay = 2 + 1/200, indicated by the dashed linein fig. 14. In the cross-hatched
area abovethedashed line, the covariance matrix isnot positive-definite. On thedashed lineitissingular.
Stepping methods tend to perform at least as well as gradient methods for this function.

[Reference: Comput. J. 3, 175 (1960).]

12.5 Wood's function of four parameters

F(w,z,y,2z) = 100(z — w?)*> + (w — 1)* + 90(z — ¢*)*
+(1 - y)? 4+ 101z — 1)> + (z — 1)*)] + 19.8(z — 1)(z — 1)
start point: F(-3,-1,-3,-1) = 19192
minimum: F(1,1,1,1) = 0.

This is a fourth-degree polynomial which is reasonably well-behaved near the minimum, but in order
to get there one must cross a rather flat, four-dimensional ‘plateau’ which often causes minimization
algorithm to get ‘stuck’ far from the minimum. As such it is a particularly good test of convergence
criteria and simulates quite well a feature of many physical problemsin many variables where no good
starting approximation is known.

[Reference: Unpublished. See IBM Technical Report No. 320-2949.]

12.6 Powell's quartic function

F(w,z,y,z) = (w + 102)* + 5(y — Z2)* + (z — 2y)* + 10(w — 2)*
start point: F(3,-1,0,1) = 215
minimum; F(0,0,0,0) = 0.

Thisfunctionisdifficult becauseitsmatrix of second derivativesbecomes singular at the minimum. Near
the minimum thefunctionisgivenby (w 4+ 10z)? 4+ 5(y — 5)? which does not determine the minimum
uniquely.

[Reference: Comput. J. 5, 147 (1962).]
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Fig. 14

12.7 Fletcher and Powell’s helical valley

F(z,y,z) = 100{[z — 10¥(z,y)]" + (V2? + ¢* — 1)’} + 2

where 27¥(z,y) = arctan(y/z) forz >0
= rw+arctan(y/z) forz <0

start point: F(-1,0,0) = 2500

minimum: F(1,0,0) = 0.

F isdefined only for —0.25 < ¥ < 0.75.

Thisisacurved valley problem, similar to Rosenbrock’s, but in three dimensions.
[Reference: Comput. J. 6, 163 (1963).]
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12.8 Goldstein and Price function with four minima

Flz,y) = (1 + (z +y + 1)’+(19- 14z + 32° — 14y + 6zy + 3y°))
*(30 + (22 — 3y)** (18 — 32z + 122> + 48y — 36zy + 27y°))

local minima: F (12,08 =840
F (1802 =84
F (—0.6,—0.4)=30

global minimum: F(0,-1.0) =3.

Thisis an eighth-order polynomial in two variables which is well behaved near each minimum, but has
four local minima and is of course non-positive-definitein many regions. The saddle point between the
two lowest minimaoccurs at F(—0.4, —0.6) = 35, making this an interesting start point.

[Reference: Math. Comp. 25, 571 (1971).]

12.9 Goldstein and Price function with many minima

1 1
F(z,y) = exp{§ (2 + y* — 25)2} + sin*(4z — 3y) + 2 (22 + y — 10)°
global minimum: F(3,4) = 1.
Thisfunction has ‘many’ local minima.
[Reference: Math. Comp. 25, 571 (1971).]

12.10 Quadratic function in four parameters

1
F(z,y,z,w) = 0 (212% + 20y + 192° — l4zz — 20yz) + w?

minimum: F(0,0,0,0) = 0
covariance matrix: 4 1 2 0
1 53 0
2 3 6 0
0 0 01

Except for the reasonably strong parameter correlations, this function poses no special problem to any
minimization routine. But the author has found it useful in debugging programs based on quadratically
convergent methods, since these programs should minimize the function exactly in one iteration. It is
also used to check the calculation of the covariance matrix.

A variation consists of adding |z|® — 1 whenever |z| > 1, and similarly with the other variables. This
introduces in a reasonably smooth way terms which alter the quadratic behaviour far from the minimum
while leaving it unchanged inside the unit cube, thus providing a test for those methods which are
supposed to converge to the correct covariance matrix by updating.
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fﬂwﬁ

This function is designed to have a variable and possibly large number of parameters, and to resemble
functions encountered in actual practice rather than being contrived to be especially difficult. Each term
of F represents the squared difference between the true integral of a polynomial of degree ¢ and the
integral estimated by Chebyshev (equal-weight) quadrature on n points:

12.11 Chebyquad

S|

ﬂ@zi{[mww—

=1
where T;(z) are shifted Chebyshev polynomialsof degreei;

start point: z; = j/(n+1).

/01 P(z) da ~ % ﬁ: P(z;) .

j=1

The starting values correspond to equally spaced points z; which is not too far away from the solution.
Fletcher gives acomplete Algol-coded, procedure for thisfunction in the reference quoted bel ow.
[Reference: Comput. J. 8, 33 (1965).]

12.12 Trigonometric functions of Fletcher and Powell

2
F(Z) = Z {E, — Y (Aj; sin z; + By; cos a:J)} ,

n
=1 7j=1
where
n
Ei = Z (Az] sin Loy + B,] COSs $0j) .

j=1

B;; and A,; are random matrices composed of integers between -100 and 100; for j = 1, ..., n: zo; are
any random numbers, —r < zo; < 7;

start point: r; = 2o; + 0.14;,-7w<dj<7
minimum: F(Z =%, =0.

Thisisaset of functions of any number of variablesn, where the minimum is aways known in advance,
but where the problem can be changed by choosing different (random) values of the constants A;;, B,
and z,;. Thedifficulty can be varied by choosing larger starting deviationsé ;. In practice, most methods
find the ‘right’” minimum, correspondingto # = &, but there are usually many subsidiary minima.
[Reference: Comput. J. 6 163 (1963).]
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Chapter 13: Interpretation of the errors on parameters as given by Minuit

It often happensthat the sol ution of a minimization problem using Minuit isitself straightforward, but the
calculation or interpretation of the resulting parameter uncertaintiesis considerably more complicated.
The purpose of this chapter isto clarify the most commonly encountered difficulties in parameter error
determination. These difficulties may arise in connection with any fitting program, are discussed here
with Minuit terminol ogy.

The most common causes of misinterpretation may be grouped into three categories:

(1) Proper normalization of the user-supplied chi-squareor likelihood function, and appropriate ERROR
DEF.

(2) Non-linearitiesin the problem formulation, leading to different errors being cal culated by different
techniques, such asMIGRAD, HESSE and MINOS.

(3) Multiparameter error definition and interpretation.
All thesetopicsare discussed in some detail in Eadie et al.[5], which may be consulted for further details.
13.1 Function normalization andERROR DEF

In order to provide for full generality in the user-defined function value, the user is allowed to define a
normalization factor known internally as UP and defined by the Minuit user on an ERROR DEF command
card. The default value isone. The Minuit error on a parameter is defined as the change of parameter
which would produce a change of the function value equal to UP. Thisisthe most general way to define
the error, although in statisticsit is more usual to define it in terms of the second derivative of the x 2
function — with respect to the parameter in question. In the simplest linear case (when the function is
exactly parabolic at the minimum), the value UP=1. 0 correspondsto defining the error as the inverse of
the second derivative at the minimum. Thefact that Minuit definesthe error in terms of afunction change
does not mean that it always cal culates such a function change. Indeed it sometimes (HESSE) calculates
the second derivative matrix and invertsit, assuming a parabolic behaviour. Thisdistinctionis discussed
in section 13.2.

The purpose of defining errors by function changesis threefold:

(1) to preserveits meaning in the non-parabolic case (see section 13.2);

(2) to alow generality when the user-defined function is not a chi- square or likelihood, but has some
other origin;

(3) to dlow calculation not only of “one-standard deviation” errors, but also two or more standard
deviations, or more general ' confidenceregions’, especially inthe multiparameter case (see section
13.3).

13.1.1 Chi-square normalization

If the user’s function value F' is supposed to be a chisquare, it must of course be properly normalized.
That is, the “weights” must in fact correspond to the one-standard-deviation errors on the observations.
The most general expression for the chi-sgquare x isof the form (see [5], p.163):

xX* =Y (2 — yia))Vij(z; — y;(a))

4,3
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where z is the vector of observations, y(a) is the vector of fitted values (or theoretical expressions for
them) containing the variablefit parameters a, and V' istheinverse of the error matrix of the observations
z, also known as the covariance matrix of the observations.

Fortunately, in most real cases the observations z are statistically independent of each other (e.g., the
contentsof the binsof ahistogram, or measurements of pointson atrajectory), sothematrix V' isdiagonal
only. The expression for x? then simplifiesto the more familiar form:

(z: — yi(a))®
X' = Z e?
where €? is the inverse of the diagonal element of V, the square of the error on the corresponding
observation z. In the case where the z are integer numbers of events in an unweighted histogram, for

example, the e? are just equal to the x (or to they, see [5], pp.170-171).

The minimization of x? above is sometimes called weighted least squaresn which case the inverse
quantities 1/e? are called the weights. Clearly thisis simply a different word for the same thing, but
in practice the use of these words sometimes means that the interpretation of e? as variances or squared
errors is not straightforward. The word weight often implies that only the relative weights are known

(“point two is twice as important as point one”) in which case there is apparently an unknown overal

normalization factor. Unfortunately the parameter errors coming out of such afit will be proportional to
thisfactor, and the user must be aware of thisin the formulation of his problem.

The e? may also be functions of the fit parameters a (see [5], pp.170-171). Normally this resultsin
somewhat slower convergence of the fit since it usually increases the nonlinearity of the fit. (In the
simplest case it turnsalinear problem into a non-linear one.) However, the effect on the fitted parameter
values and errors should be small.

If the user’s chi-square functionis correctly normalized, he should use UP=1. 0 (the default value) to get
the usual one standard-deviation errors for the parameters one by one. To get two-standard-dev.eviation
errors, use ERROR DEF 4.0, etc., since the chisquare dependance on parameters is quadratic. For more
general confidence regionsinvolving more than one parameter, see section 13.2.

13.1.2 Likelihood normalization

If the user function is a negative log-likelihood function, it must again be correctly normalized, but the
reasons and ensuing problems in this case are quite different from the chisquare case. The likelihood
function takes the form (see[5], p. 155):

F=— Zlnf(:z:i,a)

where each z represents in general avector of observations, the a are the free parameters of the fit, and
the function f representsthe hypothesisto befitted. Thisfunction f must be normalized:

/f(:z:l, a)dz;dez,...dz, = constant
that is, theintegral of f over al observation space z must be independent of the fit parameters a.

The consequence of not normalizing f properly is usualy that the fit simply will not converge, some
parameters running away to infinity. Strangely enough, the value of the normalization constant does
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not affect the fitted parameter values or errors, as can be seen by the fact that the logarithm makes a
multiplicative constant into an additive one, which simply shifts the whole log-likelihood curve and

affectsitsvalue, but not the fitted parameter valuesor errors. In fact, the actual value of the likelihood at
the minimum is quite meaningless (unlike the chi-square value) and even depends on the unitsin which

the observation space z isexpressed. The meaningful quantity isthe differenceinlog-likelihood between

two pointsin parameter-space, which is dimensionless.

For likelihood fits, the value UP=0.5 corresponds to one-standard-deviation errors. Or, dternatively, F
may be defined as —2log(likelihood), in which case differences in F' have the same meaning as for
chi-square and UP=1.0 is appropriate. The two different ways of introducing the factor of 2 are quite
equivalent in Minuit, and although most people seem to use UP=0. 5, it is perhaps more logical to put the
factor 2 directly into FCN.

13.2 Non-linearities:MIGRAD versusHESSE versusMINOS

Inthetheory of statistics, onecan show that inthe asymptoticlimit, any of several methodsof determining
parameter errors are equivalent and will give the same result. Let us for the moment call these methods
MIGRAD, HESSE, and MINOS (SIMPLEX is a specia case). It turns out that the conditlons under which
these methods yield exactly the same errors are either of the following:

(1) The model to befitted (y or f) isexactly alinear function of the fit parameters a, or
(2) The amount of observed datais infinite.

It may happen that (1) is satisfied, in which case you don’t really need Minuit, a smaller, simpler, and
faster program would do, since a linear problem can be solved directly without iterations (see [5], p.
163-165), for example with CERN library program LSQQR. Nevertheless, it may be convenient to use
Minuit since non-linear terms can then be added later if desired, without major changes to the method.
Condition (2) is of course never satisfied, although in practice it often happens that there is enough data
to make the problem “amaost linear”, that is there is so much data that the range of parameters allowed
by the data becomes very small, and any physical function behaveslinearly over asmall enough region.

The following sections explain the dirrerences between the various parameter errors given by Minuit.

13.2.1 Errors printed by Minuit

The errors printed by Minuit at any given stage represent the best symmetric error estimates available at
that stage, which may not be very good. For example, at the first entry to FCN, the user’s step slzes are
given, and these may bear no resemblance at al to proper parameter errors, although they are supposed to
be order-of-magnltude estimates. After crude minimizerslike SEEK or SIMPLEX, arevised error estimate
may be given, but thistoo is only meant to be an order-or-magnitude estimate, and must certainly not be
taken serioudly as a physical result. Such numbers are mainly for the internal use of Minuit, which must
after all assume a step size for future minimizations and derivative calculations, and uses these “errors”

as afirst guess to be modified on the basis of experience.

13.2.2 Errors after MIGRAD (or MINIMIZE)

Theminimizing technique currently implemented inMIGRAD isastablevariation (the* switching” method)
of the Davidon-Fletcher-Powell algorithm, described, as are all Minuit minimization algorithms, in
chapter ??. Thisalgorithm convergesto the correct error matrix asit convergesto the function minimum.
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In practice, MIGRAD usually yields good estimates of the error matrix, but it is not absolutely reliable for
two reasons:

(1) Convergence to the minimum may occur “too fast” for MIGRAD to have agood estimate of the error
matrix. Inthe most flagrant of such cases, MIGRAD realizes this and automatically introduces an
additional call to HESSE (described below), informing the user that the covariance matrix is being
recalculated. Since, for n variable parameters, there are n(n + 1)/2 elementsin the error matrix,
the number of FCN calls from MIGRAD must be large compared with n? in order for the MIGRAD
error matrix calculation to be reliable.

(2) MIGRAD gathersinformation about the error matrix as it proceeds, based on function values cal cu-
lated away from the minimum and assuming that the error matrix isnearly constant as afunction of
the parameters, asit would beif the problem were nearly linear. If the problemishighly non-linear,
the error matrix will depend strongly on the parameters, MIGRAD will converge more slowly, and
the resulting error matrix will at best represent some average over the last part of the trajectory in
parameter-space traversed by MIGRAD.

If MIGRAD errors are wrong because of (1), HESSE should be commanded after MIGRAD and will give
the correct errors. If MIGRAD errors are wrong because of (2), HESSE will help, but only in an academic
sense, since in this case the error matrix is not the whole story and for proper error calculation MINOS
must be used.

Asagenerd rule, anyone serioudly interested in the parameter errors should always put at least a HESSE
command after each MIGRAD (or MINIMIZE) command.

13.2.3 Errors after HESSE

HESSE simply calculatesthe full second-derivative matrix by finite differences and invertsit. It therefore
calculates the error matrix at the point where it happensto be when it iscalled. If the error matrix is not
positive-definite, diagnosticsare printed, and an attempt ismade to form apositive-definite approximation.
The error matrix must be positive-definite at the solution (minimum) for any real physical problem. It
may well not be positive away from the minimum, but most algorithmsincluding the MIGRAD algorithm
require a positive-definite “working matrix”.

The error matrix produced by HESSE isused to cal culate what Minuit printsasthe parameter errors, which
therefore contain the effects due to parameter correlations. The extent of the two-by-two correlations
can be seen from the correlation coefficients printed by Minuit, and the global correlations (see [5], p.
23) are also printed. All of these correlation coefficients must be less than one in absolute value. If any
of them are very close to one or minus one, thisindicates an illposed problem with more free parameters
than can be determined by the model and the data.

13.2.4 Errors byMINOS

MINOS isdesigned to calculate the correct errorsin all cases, especially when there are non-linearities as
described above. The theory behind the method is described in [5], pp. 204-205 (where “non-parabolic
likelihood” should of course read “non-parabolic log-likelihood”, which is equivalent to “ nonparabolic
chi-square”).

MINOS actualy follows the function out from the minimum to find where it crosses the function value
(minimum + UP), instead of using the curvature at the minimum and assuming a parabolic shape. This
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method not only yields errors which may be different from those of HESSE, but in general aso different
positiveand negativeerrors (asymmetric error interval). Indeed the most frequent result for most physical
problemsisthat the (symmetric) HESSE error lies between the positive and negative errors of MINOS. The
difference between these three numbers is one measure of the non-linearity of the problem (or rather of
its formulation).

In practice, MINOS errors usually turn out to be close to, or somewhat larger than errors derived from the
error matrix, athough in cases of very bad behaviour (very little data or ill-posed model) anything can
happen. In particular, it is often not true in MINOS that two-standard-deviation errors (UP=4) and three-
standard-deviation errors (UP=9) are respectively two and three times as big as one-standard-deviation
errors, asistrue by definition for errors derived from the error matrix (MIGRAD or HESSE).

13.3 Multiparameter errors

In additionto the difficulties described above, a specia classof problemsariseininterpreting errors when
thereismore than onefree parameter. These problemsare quite separate from those described above and
are really much simpler in principle, although in practice confusion often arises.

13.3.1 The Error Matrix

The error matrix, also called the covariance matrix, isthe inverse of the second derivative matrix of the
(log-likelihood or chisguare) functionwith respect to itsfree parameters, usually assumed to be evaluated
a the best parameter values (the function minimum). The diagonal elements of the error matrix are
the squares of the individual parameter errors, including the effects of correlationswith the other
parameters.

Theinverse of the error matrix, the second derivative matrix, has as diagonal elements the second partial
derivatives with respect to one parameter at a time. These diagonal elements are not therefore coupled
to any other parameters, but when the matrix is inverted, the diagonal elements of the inverse contain
contributions from al the elements of the second derivative matrix, which is “where the correlations
come from”.

Although a parameter may be either positively or negatively correlated with another, the effect of
correlations is always to increase the errors on the other parameters in the sense that if a given free
parameter suddenly became exactly known (fixed), that would always decrease (or at least not change)
the errors on the other parameters. In order to see this effect quantitatively, the following procedure can
be used to “delete” one parameter from the error matrix, including its effects on the other parameters:

(2) Invert the error matrix, to yield the second-derivative matrix.
(2) Remove the row and column of the inverse corresponding to the given parameter.
(3) Re-invert the resulting (smaller) matrix.

Thisreduced error matrix will have itsdiagonal elements smaller or equal to the corresponding elements
in the original error matrix, the difference representing the effect of knowing or not knowing the true
value of the parameter that was removed at step two. Thisprocedure is exactly that performed by Minuit
when aFIX command is executed. Note that it is not reversible, since information has been lost in the
deletion. The Minuit commandsRESTORE and RELEASE therefore cause the error matrix to be considered
lost and it must be recalculated entirely.
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13.3.2 MINOS with several free Parameters

TheMINOS agorithmisdescribedinsomedetail in part 1 of thismanual. Herewe add some supplementary
“geometrical interpretation” for the multidimensional case.

Let us consider that there are just two free parameters, and draw the contour line connecting all points
where the function takes on the value F;, + UP. (The CONTOUR command will do this for you from
Minuit). For alinear problem, this contour line would be an exact ellipse, the shape and orientation of
which are described in [5], p.196 (fig. 9.4). For our problem let the contour be as in figure 13.1. If
MINOS isrequested tofind the errorsin parameter one (the x-axis), it will find the extreme contour points
A and B, whose x-coordinates, relative to the x-coordinate at the minimum (X), will be respectively the
negative and positiveMINOS errors of parameter one.

A Parameter 1

Figure 13.1: MINOS errorsfor parameter 1

13.3.3 Probability content of confidence regions

For an n-parameter problem MINOS performs minimizationsin (n — 1) dimensionsin order to find the
extreme points of the hypercontour of which a two-dimensional example is givenin figure 13.1, and in
thisway takes account of all the correlationswith the other » — 1 parameters. However, the errorswhich
it calculates are still only single-parameter errors, in the sense that each parameter error is a statement
only about the value of that parameter. Thisis represented geometrically by saying that the confidence
region expressed by the MINOS error in parameter one isthe grey area of figure 13.2, extending to infinity
at both the top and bottom of the figure.
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>
A Parameter 1

Figure 13.2: MINOS error confidence region for parameter 1

If UP is set to the appropriate one-standard-deviation value, then the precise meaning of the confidence
region of figure 13.2 is: “The probability that the true value of parameter one lies between A and B
is68.3%" (the probability of a normally-distributed parameter lying within one std.-dev. of its mean).
That is, the probability content of the grey areain figure 13.2 is 68.3%. No statement is made about
the simultaneous values of the other parameter(s), since the grey area covers all values of the other
parameter(s).

If it is desired to make simultaneously statements about the values of two or more parameters, the
situation becomes considerably more complicated and the probabilities get much smaller. The first
problem isthat of choosing the shape of the confidence region, sinceit isno longer simply aninterval on
an axis, but a hypervolume. The easiest shape to express is the hyperrectangle given by:

A < param 1 < B
C < param 2 < D
E < param 3 < F , €iC
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A

Parameter 2

| >
A Parameter 1

Figure 13.3: Rectangular confidence region for parameters 1 and 2

This confidence region for our two-parameter exampleisthe grey areain figure 13.3. However, thereare
two good reasons not to use such a shape:

(1) Some regions inside the hyperrectangle (namely the corners) have low likelihoods, lower than
some regions just outside the rectangle, so the hyperrectangle is not the optimal shape (does not
contain the most likely points).

(2) One does not know an easy way to calculate the probability content of these hyperrectangles
(see[5], p.196-197, especidly fig. 9.5a).

For these reasons one usually chooses regions delimited by contours of equal likelihood (hyperellipsoids
in the linear case). For our two-parameter example, such a confidence region would be the grey region
in figure 13.4, and the corresponding probability statement is: “The probability that parameter one and
parameter two simultaneously take on values within the one-standard-deviation likelihood contour is
39.3%".

The probability content of confidence regions like those shaded in figure 13.4 becomes very small as
the number of parameters NPAR increases, for a given value of UP. Such probability contents are in
fact the probabilities of exceeding the value UP for a chisquare function of NPAR degrees of freedom,
and can therefore be read off from tables of chisquare. Table 13.1 gives the values of UP which yield
hypercontours enclosing given probability contentsfor given number of parameters.
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A

Parameter 2

1

Parameter

Figure 13.4: Optimal confidence region for parameters 1 and 2

Confidence level (probability contents desired inside
Number of hypercontour of x* = x2,;, + UP)
Parameters 50% 70% 90% 95% 99%
1 0.46 1.07 2.70 3.84 6.63
2 1.39 241 4.61 5.99 9.21
3 2.37 3.67 6.25 7.82 11.36
4 3.36 4.88 7.78 9.49 13.28
5 4.35 6.06 9.24 11.07 15.09
6 5.35 7.23 10.65 12.59 16.81
7 6.35 8.38 12.02 14.07 18.49
8 7.34 9.52 13.36 15.51 20.09
9 8.34 10.66 14.68 16.92 21.67
10 9.34 11.78 15.99 18.31 23.21
11 10.34 12.88 17.29 19.68 24.71
If FCN is — log(likelihood) instead of x?2, all values of UP
should be divided by 2.
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Table 13.1: Table of UP for multi-parameter confidence regions
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