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1 Introduction

We describe in this note the method of extended maximum-likelihood analyses applied

to two different data sets.

In a previous note[l], we dealt with the case of two different triggers which give rise
to the same event types of interest. There it was assumed that the two triggers are taken
simultaneously for a given number of hours in an experiment. In this note, we are concerned
instead with a situation in which the same or different trigger has been used in two different
time periods, yielding two different data sets for the same event type of interest. Even if the
same trigger setup had been used, the hardware conditions never remain the same and so

the experimental acceptance must be different for the two data sets.

The task is to devise a set of formulas to be used when the two data sets are combined
in the extended maximum-likelihood analysis, in which one given set of physics amplitudes

is to be determined, corrected for acceptance.

2 Extended Maximum-likelihood Methods

We shall adopt the same notations as in the previous note[l] wherever possible. The
likelihood function for finding ‘n’ events of a given bin with a finite acceptance n(7) is
defined as a product of the probabilities,
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where the first bracket is the Poisson probability for ‘n’ events; I(7) is the distribution

function; and dp(7) = f(7)dr. The Lorentz-invariant phase-space element is embodied in
p(7) (see Appendix).
The expectation value 7 for n is given by
a= [ 1()(r) ap(r) @)

so that

N= / I(r) do(r) (3)
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where N is the predicted number of events, corrected for acceptance. So 7 is equal to N if
the acceptance is 100%, i.e. n(7) = 1. Dropping the factors independent of V’s, the ‘log’ of

the likelihood function now assume the form,

InL = Z InI(r;) — / I(r)n(r) dp() (4)

Now the distribution functions I(7) can be written

I(1) =) Va V3 da(r) $2(7) (5)
where 1, is a suitable decay amplitude with the quantum numbers specified by a. Note that
a and o contain in general certain indices (or quantum numbers) that remain the same,
e.g. the reflectivity € and—if necessary—the baryon helicities & which may be required in a
typical reaction under study. The complex variables V, are the parameters to be fitted in
the maximum likelihood method. The experimental acceptance is denoted by n(7) and it
modifies the normalization integrals. In general, n(7) is not only a function of 7 but also
of other unspecified variables such as the momentum transfer ¢; it is assumed that the data
set has already been suitably devided into bins of a given set in these varaviables, e.g. into

different ¢ bins.

We now follow the same technique employed in the previous note. Assume that a suitable
set {V,} has been found in a maximum likelihood method. Then, by substituting V,, by ¢V
where ¢ is a constant independent of a, one must have
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From this we see that the ‘V’s are normalized according to

n= 30 Va Vi [ $alr) #2(r)1(r) do(r) (7)
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so that

N =3 Va Vi [ dalr) bl dolr) (¥

An inspection of (2) and (7) reveals that the best estimate for 7 is in fact n itself—a natural

result. Note the self consistency in the formulation of the extended likelihood method, in

the sense that (3) and (8) are identical.



The normalization integrals are most expeditiously obtained through the Monte-Carlo
events. Let M; be the number of MC events generated for the data set 1, and let m; be the
number accepted by the acceptance 7; embodying the finite geometry of the experiment and
other software cuts. And similary for the data set 2. The MC acceptance are then given by
m = my/M; and 2 = my/M,. By definition, the accepted m; event set is a subset of the

full MC sample with M; events, where j = 1,2. The appropriate normalization integrals are

W= LS g i)
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for the full MC samples and
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for the accepted MC samples, so that
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are the true accepted normalization integrals, obtained by replacing m; in the denominator

with M; in (10). The MC samples {M;} and {M,} refer to the same event types. So in the

limit of large MC events, one must have

‘Ilaa’ - ‘IJS)I = ‘IJSO)LI (12)

The joint likelihood for the two data sets 1 and 2 is simply the product of the two
likelihoods £, and L,. Let :(7) and 2(7) be the corresponding acceptances. The ‘log’ of
the joint likelihood is therefore given by

L=y ni(n) - [16) B i) + () ot (13)



where n; (ny) is the number of experimental events for the sample 1 (2) and N; (N3) is the
predicted number of events for the sample 1 (2). The key ingredient incorporated in the
formula above®is that the parameter sets {V'} for samples 1 and 2 have the normalizations
N; and N, in (8) and that each must be renormalized by \/W and \/W, in order
that a common set {V'} can be used in the minimization process. (See a later paragraph for

a further clarification of this point.) One sees that

ni+nz
ln[,—Zln{ZV Y (i) ] DRA [chpg;,+%n¢<>] (14)

aa’ aa’

and N
17712 V aa"|'_7722 V ozaz’_nl—l_n2 (15)

and the predicted numbers of events N are

N, .
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or, from (12),
Y VoVl e = N (17)

For an acceptable fit, one must demand, for the samples 1 and 2 seaparately,
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There is one serious problem in the formulation of the likelihood analysis outlined above;

the numbers N; and N, are unknown quantities. One obvious remedy is that one sets
N, :n1/771, and N, :'ﬂz/??z (19)

initially; minimize (14); and then one substitutes the resulting parameter set {V'} into (17)
and (18) to solve for new N; and N,. It is hoped that a few iteration would yield stable
N; and N,. Note that the initial values of N; and N, given in (19) lead to nonsensical
results in (18). Note, in addition, that both (18) and (19) break down if either n; or n,

& The reader may note that this formula is fundamentally different from the one given in my previous
note. Here we deal with two different data sets; in my previous note, I dealt with two different triggers
obtained in a single experimental run.



(correspondingly, either n; or ny ) is zero. One must remember in this case that the whole
idea of combining two data samples 1 and 2 becomes moot; note in particular that (13)
itself becomes meaningless since either N; or N, cannot be determined and hence N itself

becomes indeterminate.

There is an alternative—perhaps better—way of determining N; and N,. One simply
performs the extended likelihood analysis on both data sets 1 and 2 separately, and use the
resultant values N;, N, and N in a combined fit. To the extent that the N'’s thus determined
are already close to the correct values, one needs to perform only a few additional iterations

for convergence in the combined fit. Note that the initial V’s to be introduced in the
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where the superscripts refer to the V'’s found in separately in data sets 1 and 2. The new

combined fit are given by

V’s should have a normalization equal to (17).

One may redefine the parameters in a manner similar to the previous note,

ny + N2
m +n2
so that V'’s are nearly independent of the number of events from bin to bin. Then the new

V- 14 (21)

‘log’ of likelihood is given by

ny+n2
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and the new normalizations are
N
177123 VoV ‘I’io)u*‘—’?zz VoV @8, =+ (23)

and
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One sees that, from (23),
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Appendix

Consider a reaction, for example,
T p— X p, X > K. K n° (26)
Then, the phase-space element is given by
f(r) =p,, dr = (dadcos S dvy) (dE; dE,) (27)

where p_ is the breakup momentum of X and the final proton in the overall center-of-mass
system; {a, 3,7} are the Euler angles describing the orientation of the K K7 system in its
rest frame; and E; and E, are the energies of any two of the three particles in the same
rest frame.The reader may consult Appendix B of my CERN Yellow Report[2] for further

information.

Let W be the effective mass of the K K7 system. The form of the phase-space element
(27) implies that the cross section must be given by, neglecting the factors which depend on

/s alone,
do

o = [ M@ 0(r) = [IME)F f(r)ar 28)

where M(7) is the Lorentz-invariant amplitude for Reaction (26) and 6 is the angle between
p, and the beam direction in the overall center-of-mass system. So the distribution function

I(r) introduced in (1) has two forms:
I(r) oc [M(T)? (29)
if the binning is done in W? and cos §, and
I(1) o« W [M(r)? (30)

if the binning is in W and cos §.



Let t stand for the four-momentum transfer between the initial and final protons in Re-
action (26). Note that, neglecting the factors which depend on 4/s alone and so independent
of W, one has

dt o< p, dcosd (31)

so that
I(7) (1) o< IM(T)|? (32)
if the binning is done in W? and ¢, and
I(r) f(r) o« W IM(T)[? (33)

if the binning is in W and ¢.

Reaction (26) comes with two ‘external’ variables ¢t and W. If the analysis is carried
out in two dimensions ¢ and W?, the formula (32) shows that the phase-space element is
constant (independent of W or ¢) and hence can be set to 1, if its variables are chosen to be

{a,B,7} and {E;, E;}. To summarize, one sees that

dtdWZ ( )/|M )?dp(T) /|M ?(dad cos Bdy) (dE; dE,) (34)

It is very important that one keep scrupulous track of mass-dependence in a global fit to a
finite region of mass W. Only with the choice of the variables chosen above, one can set the
Lorentz-invariant phase-space factor to a constant—to be mated to a set of Lorentz-invariant

production and decay amplitudes in M (7).
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