
DYNAMIC CLASS MODEL
IN OBJECT-ORIENTED DESIGN

Marcin Skowron

Institute of Computer Science

Jagiellonian University
Nawojki 11, 30-072 Kraków, Poland

Tel. (+48-12) 632-3355 Fax (+48-12) 634-1865
Marcin.Skowron.Student@softlab.ii.uj.edu.pl

Abstract

This paper proposes design with the help of objet-oriented modelling. The class model of designed object can be dynamically changed by

a system. Thanks to the specificity of the class model we receive new emergent solutions and a warranty of space sparing. The advantage of

the proposed approach is a well-grounded theoretical base and polynomial time of operations. It gives a possibility of practical applications

and extensions of proposed model.

Keywords: Object-oriented design. Abbreviated title: Dynamic class model.

1. Classes, objects and their relationships

In object-oriented modelling we are using the fact that in perception of world people use three methods of

organisation:

 differentiation of experience on individual objects and attributes,

 distinction between whole objects and their parts,

 creation classes of objects and distinction between them [1].

In object-oriented modelling, classes, objects, and their relationships are the primary modelling elements.

Classes and objects model the part of the reality describing in the system. The relationships between them

describe the structure of this part.

An object is an item we can talk about and manipulate. A class is a description of an object type. All objects

are instances of the class, where the class describes the properties and behaviour of one type of objects.

The relationships that can be used are e.g. associations, aggregations (which is a special case of

associations) and generalisations:

 an association is a connection between classes, which means that it is also a connection between objects of

those classes,

 an aggregation indicates that the relationship between classes is some sort of “whole-part”,

 1

 a generalisation is a relationship between a more general and more specific element. The more specific

element can contain only additional information. An instance (an object is an instance of a class) of the more

specific element may be used wherever the more general element is allowed.

A class diagram is a model type. A class diagram describes the view of system in terms of classes and

relationships among the classes. An object diagram shows specific instances of those classes and specific links

between those instances.

2. Dynamic class model

Changes of a class model of created software most often demand programmer interference. For example,

when cash machines have arisen, bank software has been modified with a class “cash machine” and right

relationships.

It seems that in systems aiding design of hierarchical objects (for example floor layouts) the class model

should be dynamically changed by a system. In this case the class model can be used as a part of knowledge base

of objects already created (see Sec. 8).

This approach gives a warranty of space sparing thanks to the generalisation. It will be presented that thanks

to specificity of class model we receive new emergent solutions (see Sec. 9).

The formal definition of the class model is created using one of the most powerful models used in computer

science – graphs, exactly hypergraphs. It is defined a hierarchical hypergraph schema – equivalent to the class

model. The hierarchical hypergraph schema is a hypergraph in which one subset of nodes and two subsets of

edges are distinguished. Nodes from the distinguished subset of nodes describe common features of others nodes

and are called abstract nodes. Distinguished subsets of edges correspond to the relation of generalisation („is-a”)

and to the relation of aggregation („whole-part”).

3. Example – design of floor layouts

We start with a simple example of representing two floor layouts by means of the proposed formalism [3][4].

Fig.1.

Let us consider two floor layouts shown in Fig. 1. Fig. 2 and Fig. 3 present structures of floor layouts

shown in Fig.1a and Fig.1b, respectively. The structures are described by means of hierarchical hypergraphs,

which correspond to an object diagram [2]. The hierarchical hypergraph is a hypergraph in which a subset of

edges corresponding to the relation of aggregation is distinguished (Definition 5.3). In Fig. 2 and Fig. 3

rectangles with round corners represent nodes. Edges are represented by rectangles with lines spreading out of

them. Edges corresponding to the relation of aggregation are marked with a diamond and labelled with ‘A’.

 2

Edges corresponding to the relation of wall between rooms are labelled with ‘W’ and to the relation of wall with

a door between rooms are labelled with ‘P’.

The structures described by means of hierarchical hypergraphs in Fig. 2 and Fig. 3 are compatible with the

schema of a hierarchical hypergraphs presented in Fig. 4 (Definition 6.7). The schema of hierarchical

hypergraphs corresponds to a class diagram [2]. Compatible means that hierarchical hypergraphs in Fig. 2 and

Fig. 3 are instances of the schema of a hierarchical hypergraphs in Fig. 4. Hierarchical hypergraphs compatible

with the schema of a hierarchical hypergraph constitute a subset of the set of all hierarchical hypergraphs.

The schema of a hierarchical hypergraph is a description of this subset. It is possible to observe common parts

for all the elements of this subset and differences between them.

Fig. 2.

The hierarchical hypergraph schema is a hypergraph in which one subset of nodes and two subsets of edges

are distinguished (Definition 5.1). Nodes from the distinguished subset of nodes do not have their own instances.

They describe common features of others nodes and are called abstract nodes. In the schema presented in Fig. 4

there are five abstract nodes labelled “Ground floor {abstract}”, “Hall {abstract}”, “Kitchen {abstract}”,

“Dining room {abstract}” and “Living room {abstract}”. Distinguished subsets of edges correspond to a relation

of generalisation („is-a”) and to a relation of aggregation („whole-part”). In Fig. 4 edges corresponding to

the relation of generalisation are marked with a triangle and labelled with ‘G’.

Fig. 3.

We can see that the house is defined as an object consisting of a ground floor. The ground floor consists of

a hall, a bathroom, a dinning-living part and some other elements (for example rooms). The dinning-living part

has to consist of rooms functioning as a kitchen, a dining room and a living room. Floor layouts described

in Fig. 2 and Fig. 3 differ in the structure of the dinning-living part. Moreover nodes labelled “Hall 2”, “Ground

floor 2” in structure of floor layouts in Fig. 3 are specialisations of nodes labelled “Hall 1”, “Ground floor 1” in

structure of floor layouts in Fig. 2, respectively.

Fig. 4.

To use a dynamic class model in systems aiding design we should define: a hierarchical hypergraph schema

(equivalent to the class model), a hierarchical hypergraph (equivalent to an object model) (Sec. 5), when the

hierarchical hypergraph is an instance of the schema, how to receive the hierarchical hypergraph from the

schema (Sec. 6) and how to extend the schema (Sec. 7).

 3

4. Preliminaries - hypergraphs

In this section some concepts which are necessary in the sequel are presented. The definition of a hypergraph is

recalled [5][6].

Definition 4.1 Let C be a finite set, called the label alphabet. A hypergraph (over C) is a system

H = (V, E, s, t, labV, labE) where V is a finite set of hypernodes, E is a finite set of hyperedges, s : E → V* is a

function of sources of hyperedges1, t : E → V* is a function of targets of hyperedges, labV : V → C is a node

labelling function, labE : E → C is an edge labelling function. The set of all hypergraphs over C is denoted by

HC. �

Definition 4.2 Let H = (V, E, s, t, labV, labE), H’= (V’, E’, s’, t’, lab’V, lab’E) ∈ HC. H is a subhypergraph

of hypergraph H’, what is denoted H ⊆ H’, if V ⊆ V’, E ⊆ E’, s = s’|E , t = t’|E , labV = lab’V|V, labE = lab’E|E . �

Definition 4.3 Let H = (V, E, s, t, labV, labE), H’= (V’, E’, s’, t’, lab’V, lab’E) ∈ HC. H is isomorphic with

H’ if ∃ hV : V → V’, hE : E → E’ - bijections ∀ e ∈ E, v ∈ V : s’(hE(e)) = h*V(s(e)) ∧ t’(hE(e)) = h*V(t(e)) ∧

labE’(hE(e)) = labE(e) ∧ labV’(hV(v)) = labV(v). �

Definition 4.4 Let H1 = (V1, E1, s1, t1, labV1, labE1), H2 = (V2, E2, s2, t2, labV2, labE2),

H3 = (V3, E3, s3, t3, labV3, labE3) ∈ HC, H1 ⊆ H3, H2 ⊆ H3. The sum of hypergraph H1 and hypergraph H2 we call

hypergraph H = (V, E, s, t, labV, labE) such that: V = V1 ∪ V2 , E = E1 ∪ E2 , s = s3|E , t = t3|E , labV = labV3|V,

labE = labE3|E , what we denote H = H1 ∪ H2. �

The following definitions are my propositions of a directed hypergraph, a hypergraph tree and some

auxiliary concepts.

Definition 4.5 Let H1 = (V1, E1, s1, t1, labV1, labE1), H2 = (V2, E2, s2, t2, labV2, labE2),

H = (V, E, s, t, labV, labE) ∈ HC, H1 ⊆ H, H2 ⊆ H. The set of edges connecting the hypergraph H1 with the

hypergraph H2 is defined as:

E(H1,H2;H) = { e ∈ E : ∃ i, j ∈ N : [si (e) ∈ V1 \ V2 ∧ tj (e) ∈ V2 \ V1] ∨

[tj (e) ∈ V1 \ V2 ∧ si (e) ∈ V2 \ V1] ∨

[si (e) ∈ V1 \ V2 ∧ sj (e) ∈ V2 \ V1] ∨

[ti (e) ∈ V1 \ V2 ∧ tj (e) ∈ V2 \ V1] }
2. �

1 For any set A, A* denotes the set of finite sequences over A, including the empty sequence λ.
2 For any sets A, B and any function f : A → B*, fi : A → B denotes a function given by fi (a) = bi for i ≤ k and fi (a) = λ for i > k, where
f(a) = b0b1...bk for all i ∈ N and a ∈ A.

 4

Definition 4.6 Let H1 = (V1, E1, s1, t1, labV1, labE1), H2= (V2, E2, s2, t2, labV2, labE2) ∈ HC, H2 ⊆ H1.

Difference H1 and H2 is called H ∈ HC such that:

H = (V1 \ V2, E1 \ (E2∪E(H1,H2;H1)), s1|E1\ (E2∪E(H1,H2;H1)), t1| E1\ (E2∪E(H1,H2;H1)), labV1|V1\ V2, labE1| E1\ (E2∪E(H1,H2;H1)))

what is denoted H = H1 \ H2. �

Definition 4.7 A directed hypergraph (over C) is a hypergraph H = (V, E, s, t, labV, labE) ∈ HC such that:

s : E → V+, t : E → V+, ∀ e ∈ E ∀ i, j ∈ N : (si (e) ≠ λ ∧ tj(e) ≠ λ) ⇒ (si (e) ≠ tj(e)) . �

Definition 4.8 An acyclic hypergraph H = (V, E, s, t, labV, labE) ∈ HC is called a hypergraph tree when

s : E → V+, t : E → V. �

Definition 4.9 A k length path from a node u to a node v in a hypergraph H = (V, E, s, t, labV, labE) ∈ HC is

a sequence of nodes (v0, ... , vk) such that u = v0 , v = vk and ∀ i ∈ {0, ..., k - 1} ∃ ei ∈ E; l, h ∈ N : sl(ei) = vi

∧ th(ei) = vi + 1 , what is denoted by (v0, ... , vk; H). �

Definition 4.10 Let H = (V, E, s, t, labV, labV) ∈ HC, V1 ⊆ V, E1 ⊆ E. The set of nodes belonging to V1

which have an edge belonging to set E1 is a set V1(E1) = { v ∈ V1 : ∃ e ∈ E1, i ∈ N : si (e) = v ∨ t i (e) = v }. �

Definition 4.11 Let H = (V, E, s, t, labV, labE) ∈ HC, v ∈ V.

A hypergraph SP(H,v) = (VSP,ESP, sSP, tSP, labV
SP, labE

SP) is called a subhypergraph with a beginning in a node v

if SP(H,v) is the biggest subhypergraph of H including v such that for each node u ∈ VSP there is a path from the

node u to the node v in the hypergraph SP(H,v). �

5. Scheme of hierarchical hypergraph and hierarchical hypergraph

In this section introduced concepts of a hierarchical hypergraph schema and a hierarchical hypergraph are

formally defined. There is also defined a schema-isomorphism of hierarchical hypergraph schemes.

Definition 5.1 A schema of a hierarchical hypergraph is a hypergraph GSH=(VSH,ESH,sSH,tSH,labV
SH,labE

SH)

∈ HC with distinguished sets of abstract nodes VA, aggregation hyperedges EA and generalisation hyperedges

EG such that:

VA ⊆ VSH(EG), EA
 ⊆ ESH, EG

 ⊆ ESH, EA ∩ EG = ∅, labV , labE are injections,

GA(GSH) = (VSH(EA), EA, sSH|EA, tSH|EA, labV
SH|VSH(EA), labE

SH|EA) is a directed hypergraph tree, called

an aggregation hypergraph of the schema GSH,

 5

GG(GSH) = (VSH(EG), EG, sSH|EG, tSH|EG, labV
SH|VSH(EG), labE

SH|EG) is a directed acyclic hypergraph, called

a generalisation hypergraph of the schema GSH,

∀v ∈ VSH(EG)\VA ∃ vA ∈VA , (u0, ... ,uk; GG(GSH)) : u0 = v ∧ uk = vA. �

Definition 5.2. Let GSH1=(VSH1,ESH1,sSH1,tSH1,labV
SH1,labE

SH1) and GSH2=(VSH2,ESH2,sSH2,tSH2,labV
SH2,labE

SH2)

be the hierarchical hypergraph schemes. Let VA
SH1, VA

SH2 be sets of abstract nodes of GSH1, GSH2, respectively.

The hierarchical hypergraph schema GSH1 is schema-isomorphic with the hierarchical hypergraph schema GSH2

when the hypergraph GSH1 is isomorphic with the hypergraph GSH2, the aggregation hypergraph GA(GSH1) is

isomorphic with the aggregation hypergraph GA(GSH2), the generalisation hypergraph GG(GSH1) is isomorphic

with the generalisation hypergraph GG(GSH2) and ∃ h : VA
SH1 → VA

SH2 - bijection ∀v ∈ VA
SH1 : labV

SH2(h(v)) =

labV
SH1(v). �

Let us notice very important fact for practical applications of a hierarchical hypergraph schema. Checking

schema-isomorphism of hierarchical hypergraph schemes can be done in time O(n2 + m2n2), where n is a number

of nodes and m is a number of edges. This is because each node and edge has unique label.

Definition 5.3 A schema of a hierarchical hypergraph GH = (VH, EH, sH, tH, labV
H, labE

H) such that the set

of abstract nodes VA = ∅ and the set of generalisation hyperedges EG = ∅ is called a hierarchical hypergraph. �

6. Receiving a hierarchical hypergraph from a hierarchical hypergraph schema

A hierarchical hypergraph can be received from a hierarchical hypergraph schema by a sequence of abstract

nodes replacing operations. We replace abstract nodes by one of his specialisation’s until there are no abstract

nodes left (Definition 6.5). This operation inherits of features, in this case edges, from node ancestors in the

generalisation hypergraph. For example, in a hypergraph schema in Fig. 4 a node labelled “Ground floor 1”

inherits consisting of nodes labelled “Hall”, “Bathroom” and “Dinning-living part” from a node labelled

“Ground floor {abstract}”. In this hypergraph schema we can replace “Ground floor {abstract}” with “Ground

floor 1” (Fig. 2) or with “Ground floor 2” (Fig. 3). Similarly, we can replace nodes labelled “Kitchen

{abstract}”, “Dining room {abstract}” and „Living room {abstract}” with a node labelled “Kitchen, dining room

and living room” (Fig. 2) or with nodes labelled “Kitchen and dining room” and „Living room” (Fig. 3). Let us

see at the following auxiliary definitions.

Definition 6.1 Let GSH =(VSH, ESH, sSH, tSH, labV
SH, labE

SH) be a hierarchical hypergraph schema, v ∈ VSH.

A set Spec(v) = { u ∈ VSH : ∃ (u0, ... , uk; GG(GSH)) : u0 = u ∧ uk = v } is called node v specialisation’s. �

 6

Definition 6.2 Let GSH = (VSH, ESH, sSH, tSH, labV
SH, labE

SH) be a hierarchical hypergraph schema,

vA ∈ VA
SH. A set Specw(vA) = { v∈VSH \ VA

SH : ∃ (u0, ... ,uk; GG(GSH)) : u0 = v ∧ uk = vA ∧ u1, ... , uk-1 ∉ VA
SH }

is called node vA proper specialisation’s. �

Definition 6.3 Let GSH = (VSH, ESH, sSH, tSH, labV
SH, labE

SH) be a hierarchical hypergraph schema, v ∈ VSH.

A set Gen(v) = { u ∈ VSH : v ∈ Spec(u) } is called node v generalisations. �

Definition 6.4 Let GSH = (VSH, ESH, sSH, tSH, labV
SH, labE

SH) be a hierarchical hypergraph schema, v ∈ VSH.

A set GenA(v) = { vA ∈ VA
SH : v ∈ Specw(vA) } is called node v abstract generalisations. �

Let us denote schema shown in Fig. 4 by GSH = (VSH, ESH, sSH, tSH, labV
SH, labE

SH). In the schema shown in

Fig.4 we have: Spec((labV
SH)-1(“Ground floor {abstract}”)) = Specw((labV

SH)-1(“Ground floor {abstract}”)) =

{ (labV
SH)-1(“Ground floor 1”), (labV

SH)-1(“Ground floor 2”) }, Gen((labV
SH)-1(“Ground floor 2”)) =

{ (labV
SH)-1(“Ground floor 1”), (labV

SH)-1(“Ground floor {abstract}”) }, GenA((labV
SH)-1(“Ground floor 2”)) =

{ (labV
SH)-1(“Ground floor {abstract}”) }.

Definition 6.5 Let GSH = (VSH, ESH, sSH, tSH, labV
SH, labE

SH) be a hierarchical hypergraph schema, EG be

a set of generalisation hyperedges of schema GSH, v ∈VSH, GenA(v) ≠ ∅, Spec(v) ∩ VA
SH = ∅. A hierarchical

hypergraph schema created by replacing the node v abstract generalisations by the node v in the schema GSH is a

hierarchical hypergraph schema GGEN(GSH; v) = (VGEN \ VREM, EGEN \ EREM, sGEN, tGEN, labV
GEN, labE

GEN) such

that:

a) G = (VGEN, EGEN, s, t, labV, labE) := GSH \ GR where

GR = ∪ ∪ (SP(GA(GSH) ∪GG(GSH), vS) ,
 vA ∈ GenA(v) vS ∈ Spec(vA)\ (Gen(v) ∪ {v})

b) VREM = ∪ {vA} ∪ ∪ ∪ {vS},
 vA ∈ GenA(v) vA ∈ GenA(v) vS ∈ Spec(vA) ∩ Gen(v)

 EREM = { e ∈ EG : ∃ i, j ∈ N : si (e) ∈ VREM ∪ {v} ∧ t j (e) ∈ VREM ∪ {v}},

c) sGEN
i (e) = si(e) for si(e) ∈ VGEN \ VREM

 v for si(e) ∈ VREM for ∀ e ∈ EGEN\ EREM, ∀ i ∈ N

 tGEN
i (e) = ti(e) for ti(e) ∈ VGEN \ VREM

 v for ti(e) ∈ VREM for ∀ e ∈ EGEN\ EREM, ∀ i ∈ N,

d) labV
GEN = labV|VGEN \ VREM , labE

GEN = labE|EGEN\ EREM �

 7

Let us consider example of this operation working. We will replace a set GenA((labV
SH)-1(“Ground floor 1”))

= { (labV
SH)-1(“Ground floor {abstract}”) } by a node labelled “Ground floor 1” in a schema in Fig. 4. In Fig. 5

the schema GR of this operation is marked with red. Nodes from set VREM = {labV
-1(“Ground floor abstract}”)}

and edges from set EREM = {labE
-1(“GG1”), labE

-1(“G1G2”)}are greyed.

Fig. 5.

A result of a replacing a set GenA((labV
SH-)1(“Ground floor 1”)) by a node labelled “Ground floor 1” is

shown in Fig. 6. Edges inherited from ancestors of the node labelled “Ground floor 1” are greyed.

A hierarchical hypergraph received from a hierarchical hypergraph schema is called a compressed schema

of the hierarchical hypergraph.

Definition 6.6 Let G0
SH = (V0

SH, E0
SH, s0

SH, t0
SH, labV0

SH, labE0
SH) be a hierarchical hypergraph schema.

A compressed schema of the hierarchical hypergraph G0
SH is a hierarchical hypergraph schema

Gk
SH = (Vk

SH, Ek
SH, sk

SH,tk
SH,labVk

SH, labEk
SH), such that:

a) k ∈ N,

b) Gi
SH = GGEN (Gi-1

SH; vi) where vi ∈ Vi-1
SH(EG), GenA(vi) ≠ ∅, Spec(vi) ∩ ViA

SH= ∅ for i ∈ {1, ... , k},

c) VkA
SH = ∅. �

Fig. 6.

Now it is easy to define when a hierarchical hypergraph is an instance of a hierarchical hypergraph schema.

Definition 6.7 A hierarchical hypergraph GH is compatible with a schema of a hierarchical hypergraph

GSH if there is a compressed schema of the hierarchical hypergraph GSH schema-isomorphic with GH. �

Hierarchical hypergraphs shown in Fig.2 and Fig.3 are compatible with the schema of the hierarchical

hypergraph shown in Fig.4.

7. Extending a hierarchical hypergraph schema

The hierarchical hypergraph schema is created by separated adding to it hierarchical hypergraphs. It means, we

add only nodes and edges, which are not in the schema yet. New nodes and edges are adequately connected to

generalisation hypergraph of the schema by means of new generalisations function. Than we verify if the added

hierarchical hypergraph is compatible with the modified hierarchical hypergraph schema.

The following example will help to clarify introduced concepts. Let us suppose that a hierarchical

hypergraph schema shown in Fig. 7 is an input schema. We will design ground floor houses, which have to

 8

consist of a hall, a bathroom and a dinning-living part. The dinning-living part has to consist of rooms

functioning as a kitchen, a dining room and a living room.

In Fig. 8 there is the input schema from Fig. 7 after separated adding to it hypergraph schema shown in

Fig. 2 by means of a new generalisations function N1. The function N1 maps a node labelled “Ground floor 1” in

a set consists of node labelled “Ground floor {abstract}”, a node labelled “Hall 1” in a set consists of node

labelled “Hall {abstract}”, a node labelled “Kitchen, dining room and living room” in a set consists of nodes

labelled “Kitchen {abstract}”, “Dining room {abstract}”, ”Living room {abstract}” and the rest of nodes into ∅.

New nodes and edges are greyed in Fig. 8. Let us see that nodes labelled “House”, “Bathroom”, “Dining-living

part” and edges labelled “AHG”, “AGHBDL”, “ADLKDL”, “PHK”, “PHB” from hypergraph in Fig. 2 are not added to

the schema.

In Fig. 9 there is the schema from Fig. 8 after separated adding to it hypergraph schema shown in Fig. 3 by

means of a new generalisations function N2. The function N2 maps a node labelled “Ground floor 2” in a set

consists of node labelled “Ground floor {abstract}”, a node labelled “Hall 2” in a set consists of node labelled

“Hall {abstract}”, a node labelled “Kitchen and dining room” in a set consists of nodes labelled “Kitchen

{abstract}”, “Dining room {abstract}”, a node labelled “Living room” in a set consists of node labelled ”Living

room {abstract}” and the rest of nodes into ∅. New nodes and edges are greyed in Fig. 9. Let us notice that a

node labelled “Ground floor 2” is not directly connected to a node labelled “Ground floor {abstract}” and a node

labelled “Hall 2” is not directly connected to a node labelled “Hall {abstract}” too.

Fig. 7.

This is because new nodes are connected to generalisation hypergraph of the schema in such a way that all

edges, which are already in the schema, must be connected to ancestors of connected node. Therefore the node

labelled “Ground floor 2” is connected to a node labelled “Ground floor 1” and the node labelled “Hall 2” is

connected to a node labelled “Hall 1”.

Fig. 8.

The following definitions are needed to formalisation of extending a hierarchical hypergraph schema concept.

Definition 7.1 Let H1 = (V1, E1, s1, t1, labV
1, labE

1), H2 = (V2, E2, s2, t2, labV
2, labE

2) ∈ HC. Let us denote

V’ := { v2 ∈ V2 : ∃ v1 ∈ V1 labV
1(v1) = labV

2(v2) }, E’ := { e2 ∈ E2 : ∃ e1 ∈ E1 labE
1(e1) = labE

2(e2) }.

A separated sum of hypergraphs H1 and H2 is called a hypergraph H = (V, E, s, t, labV, labE) such that:

 V = V1 ∪ (V2 \ V’),

E = E1 ∪ (E2 \ E’),

 9

∀ v ∈ V, ∀ e ∈ E, ∀ i ∈ N

 si
1(e) for e ∈ E1

 si (e) = si
2(e) for e ∈ E2, si

2(e) ∉ V’

 v for e ∈ E2, si
2(e) ∈ V’ where v ∈ V1, labV

1(v) = labV
2(si

2(e))

 ti
1(e) for e ∈ E1

 ti (e) = ti
2(e) for e ∈ E2, ti

2(e) ∉ V’

 v for e ∈ E2, ti
2(e) ∈ V’ where v ∈ V1, labV

1(v) = labV
2(ti

2(e)),

labV(v) = labV
1(v) for v ∈ V1

 labV
2(v) for v ∈ V2 \ V’,

labE(e) = labE
1(e) for v ∈ E1

 labE
2(e) for v ∈ E2 \ E’

what is denoted by H = H1 ⊕ H2. �

Definition 7.2 Let GSH1 = (VSH1, ESH1, sSH1, tSH1, labV
SH1, labE

SH1) and

GSH2=(VSH2, ESH2, sSH2, tSH2, labV
SH2, labE

SH2) be hierarchical hypergraph schemes. A separated sum of

hierarchical hypergraph schemes GSH1 and GSH2 we call a hypergraph GSH1⊕SH2 such that:

GSH1⊕SH2 = GSH1 ⊕ GSH2,

GA(GSH1⊕SH2) = GA(GSH1) ⊕ GA(GSH2),

GG(GSH1⊕SH2) = GG(GSH1) ⊕ GG(GSH2),

VA
SH1⊕SH2 = VA

SH1 ∪ (VA
SH2 \ { v2 ∈ VA

SH2 : ∃ v1 ∈ VA
SH1 labV

SH1(v1) = labV
SH2(v2) }). �

Fig. 9.

Concepts of a new generalisations function and extending a hierarchical hypergraph schema are defined us

follows.

Definition 7.3 Let GSH = (VSH, ESH, sSH, tSH, labV
SH, labE

SH) be a hierarchical hypergraph schema and

GH = (VH, EH, sH, tH, labV
H, labE

H) be a hierarchical hypergraph.

A function N : VH → Ρ(VA
SH(EG)) is called new generalisations function of schema GSH. �

Definition 7.4 Let GSH = (VSH, ESH, sSH, tSH, labV
SH, labE

SH) be a hierarchical hypergraph schema, vA ∈ VA
SH,

GH = (VH, EH, sH, tH, labV
H, labE

H) be a hierarchical hypergraph and v ∈ VH.

A set GenPROP(vA, v) = { u ∈ Spec(vA) ∪{vA}: ∀ w ∈ Spec(u) :

 10

¬[∃ eSH ∈ ESH, eH ∈ EH, i, j ∈ N : (labE
SH(eSH) = labE

H(eH)) ∧

 (si
SH (eSH) = w ∨ ti

SH (eSH) = w) ∧

 (sj
H (eH) = v ∨ tj

H (eH) = v)]}

is called node v proper generalisations relatively to vA . �

For example proper generalisations of a node labelled “Ground floor 2” in hierarchical hypergraph shown

in Fig. 3 relatively to a node labelled “Ground floor {abstract}” in schema shown in Fig. 8 is a set consists of

a node labelled “Ground floor 1”. The node labelled “Ground floor {abstract}” is not a proper generalisation of

a node labelled “Ground floor 2”. This is because a node labelled “Ground floor 1” is connected with a node

labelled “Room 1” by an edge labelled “AG1R1”.

Definition 7.5 Let GSH = (VSH, ESH, sSH, tSH, labV
SH, labE

SH) be a hierarchical hypergraph schema,

GH = (VH, EH, sH, tH, labV
H, labE

H) be a hierarchical hypergraph, a function N : VH → Ρ(VA
SH(EG)) be a new

generalisations function of schema GSH. Let us denote:

GEXP(GSH,GH,N) := (V, E ∪ E’, s, t, labV, labE
EXP) where:

 a) G := (V, E, s, t, labV, labE) = GSH⊕H,

b) E’ is a subset of a set of generalisation edges of the schema GEXP(GSH,GH,N),

c) ∀ v ∈ VH : N(v) ≠ ∅ ∃! e ∈ E’ : s(e) = v ∧ t(e) = v1...vn where

 n = # (∪ GenPROP(vA, v)) and vi ∈ ∪ GenPROP (vA, v) and vi ≠ vj for i≠j , i, j ∈{1, ... ,n},
 vA∈N(v) vA∈N(v)

d) labE
EXP|E = labE.

The hierarchical hypergraph GH is possible extension of the hierarchical hypergraph schema GSH when GH is

compatible with the hierarchical hypergraph schema GEXP(GSH,GH,N). �

8. The class model as a part of design solution space

One of design problems is a choice a solution from a design solution space compatible with design

requirements [7]. Proper construction of the design solution space and proper connections between elements of

the design solution space and elements of the design requirements space let us to solve this problem.

Let the design solution space consists of hierarchical hypergraph schema and designing objects. Let

connect hierarchical hypergraph schema nodes and/or edges with parts of designing objects. In our example, let

describe floor layouts by means of polygons nets represented as pointers to edges list. In this representation it is

better to connect edges of hierarchical hypergraph schema with edges of polygons net. In Fig. 10 this

connections are marked with blue.

 11

Let suppose that the design requirements space is a sum of design features sets. The choice of solution is

possible with the choice function that maps nodes of hierarchical hypergraph schema and parts of solutions into

set of pairs: (“design feature”, “number from range [0, 1]”). The second element of that pair tells how much

a choice of node/part guarantees fulfilment design requirements given by the first element of the pair. Finding

a solution in the design solution space compatible with design requirements depends on replacing each abstract

node by the node, which is the most compatible with design requirements (see Definition 6.6). In Fig. 10

the choice function mappings are marked with red.

Fig. 10.

Such structure of solution space gives us a possibility of some additional mechanisms. For example we can

create rules [8]. Rules permit modifying found solution, so that it becomes more compatible with design

requirements. A rule consists of feature sets, hypergraph schema and solution parts. Example of a rule is given

in Fig. 11.

Fig. 11.

9. An emergent solution

A hierarchical hypergraph schema shown in Fig. 4 was constructed out of two hierarchical hypergraphs shown

in Fig. 2 and Fig. 3. Let us notice that it can be received new emergent hierarchical hypergraphs from this

hierarchical hypergraph schema. It is possible thanks to specificity of class model, which has been used in

a definition of replacing node abstract generalisations by this node. One of emergent hierarchical hypergraphs is

shown in Fig. 12. It was received from the schema shown in Fig. 4 by replacing nodes labelled “Ground floor

{abstract}”, “Hall {abstract}”, “Kitchen {abstract}”, “Dining room {abstract}” and „Living room {abstract}”

with a nodes labelled “Ground floor 1”, “Hall 2”,“Kitchen and dining room” and „Living room”, respectively.

Fig. 12.

One of possibly floor layouts of structure from Fig. 12 is shown in Fig. 13.

Fig. 13

10. A hierarchical hypergraph schema and evolutionary algorithms

Formalism presented above can be used in evolutionary algorithms working on hypergraphs [9][10][11]. A

hierarchical hypergraph schema can be used to determine correct crossing points. Let hierarchical hypergraphs

G1
H, G2

H are compatible with one schema GSH. We say that the set of nodes {u0, ... , un} belonging to the

hierarchical hypergraph G1
H is the same type as the set of nodes {w0, ... , wm} belonging to the hierarchical

hypergraph G2
H when each node belonging to GSH which is an a generalisation of one of nodes {u0, ... ,un} is also

 12

a generalisation of one of nodes {w0, ... , wm}. For example the set of nodes consists of a node labelled “Kitchen,

dining room and living room” in Fig. 2 is of the same type as the set of nodes consists of nodes labelled “Kitchen

and dining room” and „Living room” in Fig.3. Nodes sets of the same type determine crossing points in

evolutionary algorithms.

 It can be defined the operation of exchanging nodes sets of the same type such that the hierarchical

hypergraph generated as a result is compatible with the same schema as input hierarchical hypergraphs. But this

is not necessary. Let us see that the evolutionary algorithm give us the same result as an algorithm based on

receiving a hierarchical hypergraph from a hierarchical hypergraph schema on the basis of the choice function.

The hierarchical hypergraph shown in Fig. 12 is a result of crossing hierarchical hypergraph shown in Fig.2 and

Fig. 3. The first crossing point is given by a node labelled “Hall 1” in Fig. 2 and a node labelled “Hall 2”

in Fig. 3. The second crossing point is given by a node labelled “Kitchen, dining room and living room” in Fig. 2

and nodes labelled “Kitchen and dining room” and “Living room” in Fig. 3. In other point of view this

hypergraph is the result of a receiving a structure of floor layout consists of one room, a living room, a dining

room and kitchen in one room from a hierarchical hypergraph schema shown in Fig. 4.

10. Conclusions

The approach proposed in this paper makes possible smooth transition from object-oriented design to object-

oriented programming. The class model of designed object can be dynamically changed by a system. Changes of

the class model keep design criteria. Thanks to the specificity of the class model we receive new emergent

solutions and a warranty of space sparing. The advantage of the proposed approach is a well-grounded

theoretical base and a possibility of practical applications thanks to polynomial time of operations.

It seems to be valuable to make use of another ideas of object-oriented design. For example multiplicity of

edges let us spare much more space.

REFERENCES

[1] Coad P., and Yourdoun E.: Object-Oriented Design. Prentice Hall, Inc., A Simon & Schuster Company,

 1991.

[2] Eriksson H.E, and Penker M.: UML Toolkit. John Wiley & Sons, Inc. 1998.

[3] Bailey S.F. and Smith I.: Structural and architectural integration in building design, Proc. EG-SEA-AI

 Workshop on AI in CE, Lausanne, 1994, p. 327-341.

[4] Grabska E. And Borkowski A.: Generating floor layouts by means of composite representation, ECCE

 13

 Symposium 1997, RIL, Finland, p. 154-158.

[5] Habel A.: Hyperedge Replacement: Grammars and Languages. Lecture Notes in Computer Science,

 Springer Verlag 643, 1992.

[6] Habel A.: Hyperedge Grammars: Transformational and Algorithmic Aspects. J. Inform. Process. Cybernet.

 EIK 28 (1992) 5, 241-277.

[7] Aamodt A. and Plaza E.: Case-Based Reasoning: Foundational Issues, Methodological Variations, and

 System Approaches, AI Communications. IOS Press, Vol. 7: 1, pp 39-59.

[8] Ron Sun: Robust Reasoning: Integrating Rule-Based and Similarity-Based Reasoning. Artificial Intelligence,

 Volume 75, Number 2, June 1995, 241-295.

[9] Mitchel, M.: An Introduction to Genetic Algorithms, MIT Press, 1996.

[10] Hliniak G., and Strug B.: Graph grammars and evolutionary methods in graphic design.

 Machine GRAPHICS & VISION, Vol.9 No 1/2,2000, 5-13.

[11] Gero, J. and Kozakov, V.: An Exploration-based Evolutionary Model of Generative Design Process.

 Microcomputers in Civil Engineering No. 10, 1996, 209-216.

 14

Captions to illustrations

Fig.1. Examples of floor layouts.

Fig. 2. The structure of floor layout from Fig.1a.

Fig. 3. The structure of floor layout from Fig.1b.

Fig. 4. Structures of floor layouts from Fig.1 described by means of hypergraph schema.

Fig. 5. The schema GR (marked with red), nodes from set VREM (greyed) and edges from set EREM (greyed) of

replacing the set GenA((labV
SH-)1(“Ground floor 1”)) = { labV

-1(“Ground floor {abstract}”) } by a node labelled

“Ground floor 1”.

Fig. 6. The schema shown in Fig. 4 after replacing the set GenA((labV
SH-)1(“Ground floor 1”)) =

{ labV
1(“Ground floor {abstract}”) } by a node labelled “Ground floor 1”. Edges inherited from ancestors of the

node labelled “Ground floor 1” are greyed.

Fig. 7. An input hierarchical hypergraph schema.

Fig. 8. An input schema from Fig. 7 after separated adding to it hypergraph schema shown in Fig. 2 by means of

a new generalisations function N1. The function N1 maps a node labelled “Ground floor 1” in a set consists of

node labelled “Ground floor {abstract}”, a node labelled “Hall 1” in a set consists of node labelled “Hall

{abstract}”, a node labelled “Kitchen, dining room and living room” in a set consists of nodes labelled “Kitchen

{abstract}”, “Dining room {abstract}”, ”Living room {abstract}” and the rest of nodes into ∅. New nodes and

edges are greyed.

Fig. 9. A schema from Fig. 8 after separated adding to it hypergraph schema shown in Fig. 3 by means of a new

generalisations function N2. The function N2 maps a node labelled “Ground floor 2” in a set consists of node

labelled “Ground floor {abstract}”, a node labelled “Hall 2” in a set consists of node labelled “Hall {abstract}”, a

node labelled “Kitchen and dining room” in a set consists of nodes labelled “Kitchen {abstract}”, “Dining room

{abstract}”, a node labelled “Living room” in a set consists of node labelled ”Living room {abstract}” and the

rest of nodes into ∅. New nodes and edges are greyed.

Fig. 10. The design requirements space and the design solution space consists of hierarchical hypergraph schema

and designing objects.

Fig. 11. Example of a rule.

Fig. 12. One of emergent hierarchical hypergraphs that can be received from the schema show in Fig. 4.

Fig. 13. One of possibly floor layouts of structure shown in Fig. 12.

 15

Bathroom

Room 1 Kitchen and
dining room

Hall 2

Living
room

Room 2

Kitchen,
dining room
and living

room

Hall 1

Bathroom Room 1

a) b)

Dynamic class model in object-oriented design, Marcin Skowron, Fig.1.

 16

AGHBDL

AHG

AG1R1

ADLKDL

WR1B

PR1H1

PHK

PHB Bathroom
Dining-living

part Hall 1Room 1

Ground floor 1

Kitchen, dining room
and living room

House

Dynamic class model in object-oriented design, Marcin Skowron, Fig. 2.

 17

AGHBDL

AHG

AG2R2

AG1R1

ADLKDL WR1B

WR2KD PH2LR

PKDLR

PR2H2

PR1H1

PHK

PHB

Kitchen and
dining room Living room

Bathroom
Dining-living

part Hall 2Room 1

Ground floor 2 House

Room 2

Dynamic class model in object-oriented design, Marcin Skowron, Fig. 3.

 18

AGHBDL

AHG

AG2R2

AG1R1 ADLKDL

GKDLKDLR GLLR

GKLKDR

GG1G2

GGG1

GH1H2

GHH1

WR1B

WR2KD
PH2LR

PKDLR

PR2H2

PR1H1

PHK Ground floor 2

PHB

Kitchen and
dining-room

Living room

Living room
{abstract}

Dining room
{abstract}

Kitchen
{abstract}

Bathroom
Dining-living

part Hall {abstract}

Room 1

Ground floor 1

Kitchen, dining room
and living room

Hall 1 Hall 2

Ground floor
{abstract}

House

Room 2

Dynamic class model in object-oriented design, Marcin Skowron, Fig. 4.

 19

AGHBDL

AHG

AG2R2

AG1R1 ADLKDL

GKDLKDLR GLLR

GKLKDR

GG1G2

GGG1

GH1H2

GHH1

WR1B

WR2KD
PH2LR

PKDLR

PR2H2

PR1H1

PHK Ground floor 2

PHB

Kitchen and
dining-room

Living room

Living room
{abstract}

Dining room
{abstract}

Kitchen
{abstract}

Bathroom
Dining-living

part Hall {abstract}

Room 1

Ground floor 1

Kitchen, dining room
and living room

Hall 1 Hall 2

Ground floor
{abstract}

House

Room 2

Dynamic class model in object-oriented design, Marcin Skowron, Fig. 5.

 20

AGHBDL

AHG

AG1R1 ADLKDL

GKDLKDLR GLLR

GKDKDR

GH1H2

GHH1

WR1B

PH2LR

PKDLR

PR1H1

PHK

Ground floor 1 PHB

Kitchen and
dining room

Living room

Living room
{abstract}

Dining room
{abstract}

Kitchen
{abstract}

Bathroom
Dining-living

part Hall {abstract}

Room 1

Kitchen, dining room
and living room

Hall 1 Hall 2

House

Dynamic class model in object-oriented design, Marcin Skowron, Fig. 6.

 21

AGHBDL

AHG

ADLKDL
PHK

PHB

Living room
{abstract}

Dining room
{abstract}

Kitchen
{abstract}

Bathroom
Dining-living

part Hall {abstract}

Ground floor
{abstract}

House

Dynamic class model in object-oriented design, Marcin Skowron, Fig. 7.

 22

AGHBDL

AHG

AG1R1 ADLKDL

GKDLKDLR

GGG1

GHH1

WR1B

PR1H1

PHK

PHB

Living room
{abstract}

Dining room
{abstract}

Kitchen
{abstract}

Bathroom
Dining-living

part Hall {abstract}

Room 1

Ground floor 1

Kitchen, dining room
and Living room

Hall 1

Ground floor
{abstract}

House

Dynamic class model in object-oriented design, Marcin Skowron, Fig. 8.

 23

AGHBDL

AHG

AG2R2

AG1R1 ADLKDL

GKDLKDLR GLLR

GKDKDR

GG1G2

GGG1

GH1H2

GHH1

WR1B

WR2KD
PH2LR

PKDLR

PR2H2

PR1H1

PHK Ground floor 2

PHB

Kitchen and
dining room

Living room

Living room
{abstract}

Dining room
{abstract}

Kitchen
{abstract}

Bathroom
Dining-living

part Hall {abstract}

Room 1

Ground floor 1

Kitchen, dining room
and living room

Hall 1 Hall 2

Ground floor
{abstract}

House

Room 2

Dynamic class model in object-oriented design, Marcin Skowron, Fig. 9.

 24

 25

Hypergraph Schema

Ground floor
{abstract}

House AHG
 AGHBDL

GGG1
 Dining-living

part GG1G2 PHB Bathroom Hall {abstract}Ground floor 1

PHK GHH1 AG1R1 Ground floor 2 ADLKDL

PR1H1 GH1H2Hall 1 Room 1 Hall 2

 AG2R2 WR1B
 Kitchen

{abstract}
Dining room

{abstract}
Living room
{abstract}

Feature Sets

 GKDLKDLR GLLR PR2H2 Room 2

 Kitchen, dining room

and living room
PH2LR

Form of dining-living
part

WR2KD GKLKDR

Kitchen and
dining room PKDLR Living room

1• kitchen, dining room,
 living room

 1

1
 • kitchen and dining

 room, living room

 Bathroom Room 2

Shape Hall 2

• semicircular Kitchen and
dining roomRoom 1 1

 Living

roomDynamic class model in object-oriented design,
Marcin Skowron, Fig. 10.

Solutions

Hall 2

PDKR Kitchen PLDR Living room Dining room

Dining living
part

PH2DR PH2LR PHK

Dynamic class model in object-oriented design, Marcin Skowron, Fig. 11.

1

1 1

1

1

Form of dining living
part

• kitchen and dining
 room, living room

• kitchen, dining room,
 living room

Kitchen and
dining room

Hall 2

Living
room

Hall 2

Kitchen

Dining room

Living
room

PKDLRLiving room Kitchen and
dining room

Dining living
part

PH2LR PHK

Hall 2

Fe
at

ur
e

se
ts

pa

rt

H
yp

er
gr

ap
h

sc
he

m
a

pa
rt

So

lu
tio

ns
 p

ar
t

 26

AHG

AG1R1

WR1B

PR1H1 Room 1

Ground floor 1 House

AGHBDL

ADLKDL

PH2LR

PKDLR

PHK

PHB

Kitchen and
dining room

Living room

Bathroom
Dining-living

part Hall 2

Dynamic class model in object-oriented design, Marcin Skowron, Fig. 12.

 27

Bathroom

Room 1

Kitchen and
dining room

Hall 2

Living room

Dynamic class model in object-oriented design, Marcin Skowron, Fig. 13.

 28

Biographical note
I graduated Computer Science from Jagiellonian University, Kraków, Poland. Now I am
PhD student in Jagiellonian University, in Institute of Mathematics.
I am interested in artificial intelligence and computer graphics.

 29

	Marcin Skowron
	Institute of Computer Science
	Jagiellonian University
	
	Abstract

	2. Dynamic class model
	
	
	
	
	
	
	4. Preliminaries - hypergraphs
	5. Scheme of hierarchical hypergraph and hierarchical hypergraph

	7. Extending a hierarchical hypergraph schema
	The following definitions are needed to formalisation of extending a hierarchical hypergraph schema concept.
	Definition 7.1 Let H1 = \(V1, E1, s1, t1, labV1,
	Concepts of a new generalisations function and extending a hierarchical hypergraph schema are defined us follows.
	Definition 7.3 Let GSH = (VSH, ESH, sSH, tSH, labVSH, labESH) be a hierarchical hypergraph schema and

	8. The class model as a part of design solution space
	
	
	
	
	Fig. 10.
	9. An emergent solution
	10. A hierarchical hypergraph schema and evolutionary algorithms

	10. Conclusions
	
	
	
	
	REFERENCES

	[7] Aamodt A. and Plaza E.: Case-Based Reasoning: Foundational Issues, Methodological Variations, and
	System Approaches, AI Communications. IOS Press, Vol. 7: 1, pp 39-59.
	
	
	
	Captions to illustrations

	Fig. 10. The design requirements space and the design solution space consists of hierarchical hypergraph schema and designing objects.
	
	Biographical note

