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Abstract 

This paper proposes design with the help of objet-oriented modelling. The class model of designed object can be dynamically changed by     

a system. Thanks to the specificity of the class model we receive new emergent solutions and a warranty of space sparing. The advantage of 

the proposed approach is a well-grounded theoretical base and polynomial time of operations. It gives a possibility of practical applications 

and extensions of proposed model. 

Keywords: Object-oriented design. Abbreviated title: Dynamic class model. 
 

1. Classes, objects and their relationships 
 

In object-oriented modelling we are using the fact that in perception of world people use three methods of 

organisation: 

 differentiation of experience on individual objects and attributes, 

 distinction between whole objects and their parts, 

 creation classes of objects and distinction between them [1]. 

In object-oriented modelling, classes, objects, and their relationships are the primary modelling elements. 

Classes and objects model the part of the reality describing in the system. The relationships between them 

describe the structure of this part.  

An object is an item we can talk about and manipulate. A class is a description of an object type. All objects 

are instances of the class, where the class describes the properties and behaviour of one type of objects. 

The relationships that can be used are e.g. associations, aggregations (which is a special case of 

associations) and generalisations: 

 an association is a connection between classes, which means that it is also a connection between objects of 

those classes, 

 an aggregation indicates that the relationship between classes is some sort of  “whole-part”, 
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 a generalisation is a relationship between a more general and more specific element. The more specific 

element can contain only additional information. An instance (an object is an instance of a class) of the more 

specific element may be used wherever the more general element is allowed. 

A class diagram is a model type. A class diagram describes the view of system in terms of classes and 

relationships among the classes. An object diagram shows specific instances of those classes and specific links 

between those instances.  

2. Dynamic class model 
 
Changes of a class model of created software most often demand programmer interference. For example, 

when cash machines have arisen, bank software has been modified with a class “cash machine” and right 

relationships.  

It seems that in systems aiding design of hierarchical objects (for example floor layouts) the class model 

should be dynamically changed by a system. In this case the class model can be used as a part of knowledge base 

of objects already created (see Sec. 8).  

This approach gives a warranty of space sparing thanks to the generalisation. It will be presented that thanks 

to specificity of class model we receive new emergent solutions (see Sec. 9). 

The formal definition of the class model is created using one of the most powerful models used in computer 

science – graphs, exactly hypergraphs. It is defined a hierarchical hypergraph schema – equivalent to the class 

model. The hierarchical hypergraph schema is a hypergraph in which one subset of nodes and two subsets of 

edges are distinguished. Nodes from the distinguished subset of nodes describe common features of others nodes 

and are called abstract nodes. Distinguished subsets of edges correspond to the relation of generalisation („is-a”) 

and to the relation of aggregation („whole-part”).  

 
3. Example – design of floor layouts 

 
We start with a simple example of representing two floor layouts by means of the proposed formalism [3][4]. 

 
Fig.1. 

 
Let us consider two floor layouts shown in Fig. 1. Fig. 2 and Fig. 3 present structures of floor layouts 

shown in Fig.1a and Fig.1b, respectively. The structures are described by means of hierarchical hypergraphs, 

which correspond to an object diagram [2]. The hierarchical hypergraph is a hypergraph in which a subset of 

edges corresponding to the relation of aggregation is distinguished (Definition 5.3). In Fig. 2 and Fig. 3 

rectangles with round corners represent nodes. Edges are represented by rectangles with lines spreading out of 

them. Edges corresponding to the relation of aggregation are marked with a diamond and labelled with ‘A’. 
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Edges corresponding to the relation of wall between rooms are labelled with ‘W’ and to the relation of wall with 

a door between rooms are labelled with ‘P’. 

The structures described by means of hierarchical hypergraphs in Fig. 2 and Fig. 3 are compatible with the 

schema of a hierarchical hypergraphs presented in Fig. 4 (Definition 6.7). The schema of hierarchical 

hypergraphs corresponds to a class diagram [2]. Compatible means that hierarchical hypergraphs in Fig. 2 and 

Fig. 3 are instances of the schema of a hierarchical hypergraphs in Fig. 4. Hierarchical hypergraphs compatible 

with the schema of a hierarchical hypergraph constitute a subset of the set of all hierarchical hypergraphs.       

The schema of a hierarchical hypergraph is a description of this subset. It is possible to observe common parts 

for all the elements of this subset and differences between them. 

Fig. 2.  
 
The hierarchical hypergraph schema is a hypergraph in which one subset of nodes and two subsets of edges 

are distinguished (Definition 5.1). Nodes from the distinguished subset of nodes do not have their own instances. 

They describe common features of others nodes and are called abstract nodes. In the schema presented in Fig. 4 

there are five abstract nodes labelled “Ground floor {abstract}”, “Hall {abstract}”, “Kitchen {abstract}”, 

“Dining room {abstract}” and “Living room {abstract}”. Distinguished subsets of edges correspond to a relation 

of generalisation („is-a”) and to a relation of aggregation („whole-part”). In Fig. 4 edges corresponding to              

the relation of generalisation are marked with a triangle and labelled with ‘G’.  

Fig. 3.  
 

We can see that the house is defined as an object consisting of a ground floor. The ground floor consists of 

a hall, a bathroom, a dinning-living part and some other elements (for example rooms). The dinning-living part 

has to consist of rooms functioning as a kitchen, a dining room and a living room. Floor layouts described            

in Fig. 2 and Fig. 3 differ in the structure of the dinning-living part. Moreover nodes labelled “Hall 2”, “Ground 

floor 2” in structure of floor layouts in Fig. 3 are specialisations of nodes labelled “Hall 1”, “Ground floor 1” in 

structure of floor layouts in Fig. 2, respectively. 

Fig. 4.  
 

To use a dynamic class model in systems aiding design we should define: a hierarchical hypergraph schema 

(equivalent to the class model), a hierarchical hypergraph (equivalent to an object model) (Sec. 5), when the 

hierarchical hypergraph is an instance of the schema, how to receive the hierarchical hypergraph from the 

schema (Sec. 6) and how to extend the schema (Sec. 7). 
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4. Preliminaries - hypergraphs 
 

In this section some concepts which are necessary in the sequel are presented. The definition of a hypergraph is 

recalled [5][6].  

Definition 4.1 Let C be a finite set, called the label alphabet. A hypergraph (over C) is a system                 

H = (V, E, s, t, labV, labE) where V is a finite set of hypernodes, E is a finite set of hyperedges, s : E → V* is a 

function of sources of hyperedges1, t : E → V* is a function of targets of hyperedges, labV : V → C is a node 

labelling function, labE : E → C is an edge labelling function. The set of all hypergraphs over C is denoted by 

HC.                             � 

Definition 4.2 Let H = (V, E, s, t, labV, labE), H’= (V’, E’, s’, t’, lab’V, lab’E) ∈ HC. H is a subhypergraph 

of hypergraph H’, what is denoted H ⊆ H’, if V ⊆ V’, E ⊆ E’, s = s’|E , t = t’|E , labV = lab’V|V, labE = lab’E|E .     � 

Definition 4.3 Let H = (V, E, s, t, labV, labE), H’= (V’, E’, s’, t’, lab’V, lab’E) ∈ HC. H is isomorphic with 

H’ if  ∃ hV : V → V’, hE : E → E’ - bijections ∀ e ∈ E, v ∈ V : s’(hE(e)) = h*V(s(e))   ∧   t’(hE(e)) = h*V(t(e))   ∧ 

labE’(hE(e)) = labE(e)   ∧   labV’(hV(v)) = labV(v).               � 

Definition 4.4 Let H1 = (V1, E1, s1, t1, labV1, labE1), H2 = (V2, E2, s2, t2, labV2, labE2),                             

H3 = (V3, E3, s3, t3, labV3, labE3)  ∈ HC, H1 ⊆ H3, H2 ⊆ H3. The sum of hypergraph H1 and hypergraph H2 we call 

hypergraph H = (V, E, s, t, labV, labE) such that: V = V1 ∪ V2 , E = E1 ∪ E2 , s = s3|E , t = t3|E , labV = labV3|V,  

labE = labE3|E , what we denote H = H1 ∪ H2.                � 

The following definitions are my propositions of a directed hypergraph, a hypergraph tree and some 

auxiliary concepts. 

Definition 4.5 Let H1 = (V1, E1, s1, t1, labV1, labE1), H2 = (V2, E2, s2, t2, labV2, labE2),                             

H = (V, E, s, t, labV, labE) ∈ HC, H1 ⊆ H, H2 ⊆ H. The set of edges connecting the hypergraph H1 with the 

hypergraph H2 is defined as: 

E(H1,H2;H) = { e ∈ E : ∃ i, j ∈ N : [ si (e) ∈ V1 \ V2  ∧  tj (e) ∈ V2 \ V1 ] ∨ 

[ tj (e) ∈ V1 \ V2  ∧  si (e) ∈ V2 \ V1 ] ∨ 

[ si (e) ∈ V1 \ V2  ∧  sj (e) ∈ V2 \ V1 ] ∨ 

[ ti (e) ∈ V1 \ V2 ∧  tj (e) ∈ V2 \ V1 ] }
2.                   � 

                                                           
1 For any set A, A* denotes the set of finite sequences over A, including the empty sequence λ. 
2 For any sets A, B and any function f : A → B*, fi : A → B denotes a function given by  fi (a) = bi for i ≤ k and fi (a) = λ for i > k, where      
f(a) = b0b1...bk  for all i ∈ N and a ∈ A. 
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Definition 4.6 Let H1 = (V1, E1, s1, t1, labV1, labE1), H2= (V2, E2, s2, t2, labV2, labE2) ∈ HC, H2 ⊆ H1. 

Difference H1 and H2 is called H ∈ HC such that: 

H = (V1 \ V2, E1 \ (E2∪E(H1,H2;H1)), s1|E1\ (E2∪E(H1,H2;H1)),  t1| E1\ (E2∪E(H1,H2;H1)), labV1|V1\ V2, labE1| E1\ (E2∪E(H1,H2;H1))) 

what is denoted H = H1 \ H2.                  � 

Definition 4.7 A directed hypergraph (over C) is a hypergraph H = (V, E, s, t, labV, labE) ∈ HC such that:   

s : E → V+,  t : E → V+, ∀ e ∈ E  ∀ i, j ∈ N  :  (si (e) ≠ λ  ∧ tj(e) ≠ λ ) ⇒  (si (e) ≠ tj(e)) .           � 

Definition 4.8 An acyclic hypergraph H = (V, E, s, t, labV, labE) ∈ HC is called a hypergraph tree when      

s : E → V+,  t : E → V.                            � 

Definition 4.9 A k length path from a node u to a node v in a hypergraph H = (V, E, s, t, labV, labE) ∈ HC is 

a sequence of nodes (v0, ... , vk) such that u = v0 , v = vk  and ∀ i ∈ {0, ..., k - 1}  ∃ ei ∈ E; l, h ∈ N : sl(ei) = vi   

∧  th(ei) = vi + 1 , what is denoted by (v0, ... , vk; H).                         � 

Definition 4.10 Let H = (V, E, s, t, labV, labV) ∈ HC, V1 ⊆ V, E1 ⊆ E. The set of nodes belonging to V1 

which have an edge belonging to set E1 is a set V1(E1) = { v ∈ V1 :  ∃ e ∈ E1, i ∈ N : si (e) = v  ∨  t i (e) = v }.   � 

Definition 4.11 Let H = (V, E, s, t, labV, labE) ∈ HC, v ∈ V.  

A hypergraph SP(H,v) = (VSP,ESP, sSP, tSP, labV
SP, labE

SP) is called a subhypergraph with a beginning in a node v 

if SP(H,v) is the biggest subhypergraph of H including v such that for each node u ∈ VSP there is a path from the 

node u to the node v in the hypergraph SP(H,v).               � 

 
5. Scheme of hierarchical hypergraph and hierarchical hypergraph 

 
In this section introduced concepts of a hierarchical hypergraph schema and a hierarchical hypergraph are 

formally defined. There is also defined a schema-isomorphism of hierarchical hypergraph schemes. 

Definition 5.1 A schema of a hierarchical hypergraph is a hypergraph GSH=(VSH,ESH,sSH,tSH,labV
SH,labE

SH) 

∈ HC with distinguished sets of abstract nodes VA, aggregation hyperedges EA and  generalisation hyperedges 

EG such that: 

VA  ⊆ VSH(EG),  EA
  ⊆ ESH,  EG

  ⊆ ESH,  EA ∩ EG = ∅, labV , labE  are injections, 

GA(GSH) = (VSH(EA), EA, sSH|EA, tSH|EA, labV
SH|VSH(EA), labE

SH|EA) is a directed hypergraph tree, called                       

an aggregation hypergraph of the schema GSH, 
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GG(GSH) = (VSH(EG), EG, sSH|EG, tSH|EG, labV
SH|VSH(EG), labE

SH|EG) is a directed acyclic hypergraph, called             

a generalisation hypergraph of the schema GSH,  

∀v ∈ VSH(EG)\VA  ∃ vA ∈VA , (u0, ... ,uk; GG(GSH)) : u0 = v ∧ uk = vA.                               � 

Definition 5.2. Let GSH1=(VSH1,ESH1,sSH1,tSH1,labV
SH1,labE

SH1) and GSH2=(VSH2,ESH2,sSH2,tSH2,labV
SH2,labE

SH2) 

be the hierarchical hypergraph schemes. Let VA
SH1, VA

SH2 be sets of abstract nodes of GSH1, GSH2, respectively. 

The hierarchical hypergraph schema GSH1 is schema-isomorphic with the hierarchical hypergraph schema GSH2 

when the hypergraph GSH1 is isomorphic with the hypergraph GSH2, the aggregation hypergraph GA(GSH1) is 

isomorphic with the aggregation hypergraph GA(GSH2), the generalisation hypergraph GG(GSH1) is isomorphic 

with the generalisation hypergraph GG(GSH2) and ∃ h : VA
SH1 → VA

SH2 - bijection ∀v ∈ VA
SH1 : labV

SH2(h(v)) = 

labV
SH1(v).                             � 

Let us notice very important fact for practical applications of a hierarchical hypergraph schema. Checking 

schema-isomorphism of hierarchical hypergraph schemes can be done in time O(n2 + m2n2), where n is a number 

of nodes and m is a number of edges. This is because each node and edge has unique label. 

Definition 5.3 A schema of a hierarchical hypergraph GH =  (VH, EH, sH, tH, labV
H, labE

H) such that the set 

of abstract nodes VA = ∅ and the set of generalisation hyperedges EG = ∅ is called a hierarchical hypergraph. � 

 
6. Receiving a hierarchical hypergraph from a hierarchical hypergraph schema 

 
A hierarchical hypergraph can be received from a hierarchical hypergraph schema by a sequence of abstract 

nodes replacing operations. We replace abstract nodes by one of his specialisation’s until there are no abstract 

nodes left (Definition 6.5). This operation inherits of features, in this case edges, from node ancestors in the 

generalisation hypergraph. For example, in a hypergraph schema in Fig. 4 a node labelled “Ground floor 1” 

inherits consisting of nodes labelled “Hall”, “Bathroom” and “Dinning-living part” from a node labelled 

“Ground floor {abstract}”. In this hypergraph schema we can replace “Ground floor {abstract}” with “Ground 

floor 1” (Fig. 2) or with “Ground floor 2” (Fig. 3). Similarly, we can replace nodes labelled “Kitchen 

{abstract}”, “Dining room {abstract}” and „Living room {abstract}” with a node labelled “Kitchen, dining room 

and living room” (Fig. 2) or with nodes labelled “Kitchen and dining room” and „Living room” (Fig. 3). Let us 

see at the following auxiliary definitions. 

Definition 6.1 Let GSH =(VSH, ESH, sSH, tSH, labV
SH, labE

SH) be a hierarchical hypergraph schema, v ∈ VSH. 

A set Spec(v) = { u ∈ VSH  :  ∃ (u0, ... , uk; GG(GSH)) : u0 = u  ∧  uk = v } is called node v specialisation’s.          � 
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Definition 6.2 Let GSH = (VSH, ESH, sSH, tSH, labV
SH, labE

SH) be a hierarchical hypergraph schema,                 

vA ∈ VA
SH. A set Specw(vA) = { v∈VSH \ VA

SH : ∃ (u0, ... ,uk; GG(GSH)) : u0 = v ∧ uk = vA ∧ u1, ... , uk-1 ∉ VA
SH } 

is called node vA proper specialisation’s.                                 � 

Definition 6.3 Let GSH = (VSH, ESH, sSH, tSH, labV
SH, labE

SH) be a hierarchical hypergraph schema, v ∈ VSH. 

A set Gen(v) = { u ∈ VSH  :  v ∈ Spec(u) } is called node v generalisations.                       � 

Definition 6.4 Let GSH = (VSH, ESH, sSH, tSH, labV
SH, labE

SH) be a hierarchical hypergraph schema, v ∈ VSH. 

A set GenA(v) = { vA ∈ VA
SH  :  v ∈ Specw(vA) } is called node v abstract generalisations.              � 

Let us denote schema shown in Fig. 4 by GSH = (VSH, ESH, sSH, tSH, labV
SH, labE

SH). In the schema shown in 

Fig.4 we have: Spec((labV
SH)-1(“Ground floor {abstract}”)) = Specw((labV

SH)-1(“Ground floor {abstract}”)) =      

{ (labV
SH)-1(“Ground floor 1”), (labV

SH)-1(“Ground floor 2”) }, Gen((labV
SH)-1(“Ground floor 2”)) =                      

{ (labV
SH)-1(“Ground floor 1”), (labV

SH)-1(“Ground floor {abstract}”) }, GenA((labV
SH)-1(“Ground floor 2”)) =       

{ (labV
SH)-1(“Ground floor {abstract}”) }. 

Definition 6.5 Let GSH = (VSH, ESH, sSH, tSH, labV
SH, labE

SH) be a hierarchical hypergraph schema, EG be      

a set of generalisation hyperedges of schema GSH, v ∈VSH, GenA(v) ≠ ∅, Spec(v) ∩ VA
SH = ∅. A hierarchical 

hypergraph schema created by replacing the node v abstract generalisations by the node v in the schema GSH is a 

hierarchical hypergraph schema GGEN(GSH; v) = (VGEN \ VREM, EGEN \ EREM, sGEN, tGEN, labV
GEN, labE

GEN) such 

that:  

a) G = (VGEN, EGEN, s, t, labV, labE) := GSH \ GR where 

GR =      ∪               ∪     (SP(GA(GSH) ∪GG(GSH), vS) , 
                vA ∈ GenA(v)   vS ∈ Spec(vA)\ (Gen(v) ∪ {v}) 

b)  VREM =     ∪ {vA}     ∪      ∪                ∪  {vS}, 
     vA ∈ GenA(v) vA ∈ GenA(v)   vS ∈ Spec(vA) ∩ Gen(v)     

  EREM = { e ∈ EG : ∃ i, j ∈ N : si (e) ∈ VREM ∪ {v}  ∧  t j (e) ∈ VREM  ∪ {v}}, 

c) sGEN
i (e) =     si(e)      for si(e) ∈ VGEN \ VREM 

                       v      for si(e) ∈ VREM         for ∀ e ∈ EGEN\ EREM, ∀ i ∈ N 

 tGEN
i (e) =     ti(e)      for ti(e) ∈ VGEN \ VREM 

                            v       for ti(e) ∈ VREM         for ∀ e ∈ EGEN\ EREM, ∀ i ∈ N, 

d) labV
GEN = labV|VGEN \ VREM , labE

GEN = labE|EGEN\  EREM                      � 
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Let us consider example of this operation working. We will replace a set GenA((labV
SH)-1(“Ground floor 1”)) 

=  { (labV
SH)-1(“Ground floor {abstract}”) } by a node labelled “Ground floor 1” in a schema in Fig. 4. In Fig. 5   

the schema GR of this operation is marked with red. Nodes from set VREM = {labV
-1(“Ground floor abstract}”)} 

and edges from set EREM = {labE
-1(“GG1”), labE

-1(“G1G2”)}are greyed. 

Fig. 5. 
 

A result of a replacing a set GenA((labV
SH-)1( “Ground floor 1”)) by a node labelled “Ground floor 1” is 

shown in Fig. 6. Edges inherited from ancestors of the node labelled “Ground floor 1” are greyed. 

A hierarchical hypergraph received from a hierarchical hypergraph schema is called a compressed schema 

of the hierarchical hypergraph. 

Definition 6.6 Let G0
SH = (V0

SH, E0
SH, s0

SH, t0
SH, labV0

SH, labE0
SH) be a hierarchical hypergraph schema.         

A compressed schema of the hierarchical hypergraph G0
SH is a hierarchical hypergraph schema                          

Gk
SH = (Vk

SH, Ek
SH, sk

SH,tk
SH,labVk

SH, labEk
SH), such that: 

a)  k ∈ N, 

b)  Gi
SH = GGEN (Gi-1

SH; vi)  where  vi ∈ Vi-1
SH(EG), GenA(vi) ≠ ∅, Spec(vi) ∩ ViA

SH= ∅   for  i ∈ {1, ... , k}, 

c)  VkA
SH = ∅.                            � 

Fig. 6.  
 
Now it is easy to define when a hierarchical hypergraph is an instance of a hierarchical hypergraph schema.  

Definition 6.7 A hierarchical hypergraph GH is compatible with a schema of a hierarchical hypergraph 

GSH if there is a compressed schema of the hierarchical hypergraph GSH schema-isomorphic with GH.          � 

Hierarchical hypergraphs shown in Fig.2 and Fig.3 are compatible with the schema of the hierarchical 

hypergraph shown in Fig.4. 

 
 

7. Extending a hierarchical hypergraph schema 
 
The hierarchical hypergraph schema is created by separated adding to it hierarchical hypergraphs. It means, we 

add only nodes and edges, which are not in the schema yet. New nodes and edges are adequately connected to 

generalisation hypergraph of the schema by means of new generalisations function. Than we verify if the added 

hierarchical hypergraph is compatible with the modified hierarchical hypergraph schema. 

The following example will help to clarify introduced concepts. Let us suppose that a hierarchical 

hypergraph schema shown in Fig. 7 is an input schema. We will design ground floor houses, which have to 

 8



consist of a hall, a bathroom and a dinning-living part. The dinning-living part has to consist of rooms 

functioning as a kitchen, a dining room and a living room. 

In Fig. 8 there is the input schema from Fig. 7 after separated adding to it hypergraph schema shown in  

Fig. 2 by means of a new generalisations function N1.  The function N1 maps a node labelled “Ground floor 1” in 

a set consists of node labelled “Ground floor {abstract}”, a node labelled “Hall 1” in a set consists of node 

labelled “Hall {abstract}”, a node labelled “Kitchen, dining room and living room” in a set consists of nodes 

labelled “Kitchen {abstract}”, “Dining room {abstract}”, ”Living room {abstract}” and the rest of nodes into ∅. 

New nodes and edges are greyed in Fig. 8. Let us see that nodes labelled “House”, “Bathroom”, “Dining-living 

part” and edges labelled “AHG”, “AGHBDL”, “ADLKDL”, “PHK”, “PHB” from hypergraph in Fig. 2 are not added to 

the schema. 

In Fig. 9 there is the schema from Fig. 8 after separated adding to it hypergraph schema shown in Fig. 3 by 

means of a new generalisations function N2. The function N2 maps a node labelled “Ground floor 2” in a set 

consists of node labelled “Ground floor {abstract}”, a node labelled “Hall 2” in a set consists of node labelled 

“Hall {abstract}”, a node labelled “Kitchen and dining room” in a set consists of nodes labelled “Kitchen 

{abstract}”, “Dining room {abstract}”, a node labelled “Living room” in a set consists of node labelled ”Living 

room {abstract}” and the rest of nodes into ∅. New nodes and edges are greyed in Fig. 9. Let us notice that a 

node labelled “Ground floor 2” is not directly connected to a node labelled “Ground floor {abstract}” and a node 

labelled “Hall 2” is not directly connected to a node labelled “Hall {abstract}” too.  

Fig. 7.  
 

This is because new nodes are connected to generalisation hypergraph of the schema in such a way that all 

edges, which are already in the schema, must be connected to ancestors of connected node. Therefore the node 

labelled “Ground floor 2” is connected to a node labelled “Ground floor 1” and the node labelled “Hall 2” is 

connected to a node labelled “Hall 1”. 

Fig. 8.  
 

The following definitions are needed to formalisation of extending a hierarchical hypergraph schema concept. 

Definition 7.1 Let H1 = (V1, E1, s1, t1, labV
1, labE

1), H2 = (V2, E2, s2, t2, labV
2, labE

2) ∈ HC. Let us denote     

V’ := { v2 ∈ V2 :  ∃ v1 ∈ V1 labV
1(v1)  = labV

2(v2) }, E’ := { e2 ∈ E2 :  ∃ e1 ∈ E1 labE
1(e1)  = labE

2(e2) }. 

A separated sum of hypergraphs H1 and H2 is called a hypergraph H = (V, E, s, t, labV, labE) such that: 

 V = V1 ∪ (V2 \ V’),  

E = E1 ∪ (E2 \ E’), 
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∀ v ∈ V, ∀ e ∈ E, ∀ i ∈ N 

  si
1(e)  for e ∈ E1 

            si (e) =   si
2(e)  for e ∈ E2, si

2(e) ∉ V’ 

        v  for e ∈ E2, si
2(e) ∈ V’ where v ∈ V1, labV

1(v)  = labV
2(si

2(e))           

  ti
1(e)  for e ∈ E1 

    ti (e) =   ti
2(e)  for e ∈ E2, ti

2(e) ∉ V’ 

        v  for e ∈ E2, ti
2(e) ∈ V’ where v ∈ V1, labV

1(v)  = labV
2(ti

2(e)), 

labV(v) =    labV
1(v)   for v ∈ V1  

              labV
2(v)   for v ∈ V2 \ V’, 

labE(e) =     labE
1(e)   for v ∈ E1  

     labE
2(e)   for v ∈ E2 \ E’ 

what is denoted by H = H1 ⊕ H2.                          � 

Definition 7.2 Let GSH1 = (VSH1, ESH1, sSH1, tSH1, labV
SH1, labE

SH1) and  

GSH2=(VSH2, ESH2, sSH2, tSH2, labV
SH2, labE

SH2) be hierarchical hypergraph schemes. A separated sum of 

hierarchical hypergraph schemes GSH1 and GSH2 we call a hypergraph GSH1⊕SH2 such that:  

GSH1⊕SH2 = GSH1 ⊕ GSH2, 

GA(GSH1⊕SH2) = GA(GSH1) ⊕ GA(GSH2), 

GG(GSH1⊕SH2) = GG(GSH1) ⊕ GG(GSH2), 

VA
SH1⊕SH2 = VA

SH1 ∪ (VA
SH2 \ { v2 ∈ VA

SH2 :  ∃ v1 ∈ VA
SH1 labV

SH1(v1)  = labV
SH2(v2) }).                   � 

Fig. 9.  
 

Concepts of a new generalisations function and extending a hierarchical hypergraph schema are defined us 

follows. 

Definition 7.3 Let GSH = (VSH, ESH, sSH, tSH, labV
SH, labE

SH) be a hierarchical hypergraph schema and  

GH = (VH, EH, sH, tH, labV
H, labE

H) be a hierarchical hypergraph. 

A function N : VH → Ρ(VA
SH(EG)) is called new generalisations function of schema GSH.                  � 

Definition 7.4 Let GSH = (VSH, ESH, sSH, tSH, labV
SH, labE

SH) be a hierarchical hypergraph schema, vA ∈ VA
SH, 

GH = (VH, EH, sH, tH, labV
H, labE

H) be a hierarchical hypergraph and v ∈ VH. 

A set GenPROP(vA, v) = { u ∈ Spec(vA) ∪{vA}: ∀ w ∈ Spec(u) :   
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¬[ ∃ eSH ∈ ESH, eH ∈ EH, i, j ∈ N : (labE
SH(eSH)  = labE

H(eH)) ∧  

           (si
SH (eSH) = w  ∨ ti

SH (eSH) = w) ∧   

           (sj
H (eH) = v  ∨ tj

H (eH) = v)]}  

is called node v proper generalisations relatively to vA .                         � 

For example proper generalisations of a node labelled “Ground floor 2” in hierarchical hypergraph shown 

in Fig. 3 relatively to a node labelled “Ground floor {abstract}” in schema shown in Fig. 8 is a set consists of        

a node labelled “Ground floor 1”. The node labelled “Ground floor {abstract}” is not a proper generalisation of  

a node labelled “Ground floor 2”. This is because a node labelled “Ground floor 1” is connected with a node 

labelled “Room 1” by an edge labelled “AG1R1”. 

Definition 7.5 Let GSH = (VSH, ESH, sSH, tSH, labV
SH, labE

SH) be a hierarchical hypergraph schema,  

GH = (VH, EH, sH, tH, labV
H, labE

H) be a hierarchical hypergraph, a function N : VH → Ρ(VA
SH(EG)) be a new 

generalisations function of schema GSH. Let us denote: 

GEXP(GSH,GH,N) := (V, E ∪ E’, s, t, labV, labE
EXP) where: 

 a) G := (V, E, s, t, labV, labE) =  GSH⊕H, 

b) E’ is a subset of a set of generalisation edges of the schema GEXP(GSH,GH,N), 

c) ∀ v ∈ VH : N(v) ≠ ∅  ∃! e ∈ E’ :  s(e) = v ∧  t(e) = v1...vn   where  

         n = # ( ∪   GenPROP(vA, v))  and  vi ∈   ∪ GenPROP (vA, v)   and  vi ≠ vj  for i≠j , i, j ∈{1, ... ,n}, 
         vA∈N(v)              vA∈N(v)  

d) labE
EXP|E = labE. 

The hierarchical hypergraph GH is possible extension of the hierarchical hypergraph schema GSH when GH is 

compatible with the hierarchical hypergraph schema GEXP(GSH,GH,N).                       � 

8. The class model as a part of design solution space 
 
One of design problems is a choice a solution from a design solution space compatible with design 

requirements [7]. Proper construction of the design solution space and proper connections between elements of 

the design solution space and elements of the design requirements space let us to solve this problem.  

Let the design solution space consists of hierarchical hypergraph schema and designing objects. Let 

connect hierarchical hypergraph schema nodes and/or edges with parts of designing objects. In our example, let 

describe floor layouts by means of polygons nets represented as pointers to edges list. In this representation it is 

better to connect edges of hierarchical hypergraph schema with edges of polygons net. In Fig. 10 this 

connections are marked with blue. 
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Let suppose that the design requirements space is a sum of design features sets. The choice of solution is 

possible with the choice function that maps nodes of hierarchical hypergraph schema and parts of solutions into 

set of pairs: (“design feature”, “number from range [0, 1]”). The second element of that pair tells how much        

a choice of node/part guarantees fulfilment design requirements given by the first element of the pair. Finding            

a solution in the design solution space compatible with design requirements depends on replacing each abstract 

node by the node, which is the most compatible with design requirements (see Definition 6.6). In Fig. 10               

the choice function mappings are marked with red.  

Fig. 10.  
 

Such structure of solution space gives us a possibility of some additional mechanisms. For example we can 

create rules [8]. Rules permit modifying found solution, so that it becomes more compatible with design 

requirements. A rule consists of feature sets, hypergraph schema and solution parts. Example of a rule is given   

in Fig. 11. 

Fig. 11. 

 
9. An emergent solution 

 
A hierarchical hypergraph schema shown in Fig. 4 was constructed out of two hierarchical hypergraphs shown  

in Fig. 2 and Fig. 3. Let us notice that it can be received new emergent hierarchical hypergraphs from this 

hierarchical hypergraph schema. It is possible thanks to specificity of class model, which has been used in          

a definition of replacing node abstract generalisations by this node. One of emergent hierarchical hypergraphs is 

shown in Fig. 12. It was received from the schema shown in Fig. 4 by replacing nodes labelled “Ground floor 

{abstract}”, “Hall {abstract}”, “Kitchen {abstract}”, “Dining room {abstract}” and „Living room {abstract}” 

with a nodes labelled “Ground floor 1”, “Hall 2”,“Kitchen and dining room” and „Living room”, respectively. 

Fig. 12.  
 
One of possibly floor layouts of structure from Fig. 12 is shown in Fig. 13. 
 

Fig. 13 

 
10. A hierarchical hypergraph schema and evolutionary algorithms 

 
Formalism presented above can be used in evolutionary algorithms working on hypergraphs [9][10][11]. A 

hierarchical hypergraph schema can be used to determine correct crossing points. Let hierarchical hypergraphs 

G1
H, G2

H are compatible with one schema GSH. We say that the set of nodes {u0, ... , un} belonging to the 

hierarchical hypergraph G1
H is the same type as the set of nodes {w0, ... , wm} belonging to the hierarchical 

hypergraph G2
H when each node belonging to GSH which is an a generalisation of one of nodes {u0, ... ,un} is also 
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a generalisation of one of nodes {w0, ... , wm}. For example the set of nodes consists of a node labelled “Kitchen, 

dining room and living room” in Fig. 2 is of the same type as the set of nodes consists of nodes labelled “Kitchen 

and dining room” and „Living room” in Fig.3. Nodes sets of the same type determine crossing points in 

evolutionary algorithms. 

 It can be defined the operation of exchanging nodes sets of the same type such that the hierarchical 

hypergraph generated as a result is compatible with the same schema as input hierarchical hypergraphs. But this 

is not necessary. Let us see that the evolutionary algorithm give us the same result as an algorithm based on 

receiving a hierarchical hypergraph from a hierarchical hypergraph schema on the basis of the choice function.                 

The hierarchical hypergraph shown in Fig. 12 is a result of crossing hierarchical hypergraph shown in Fig.2 and  

Fig. 3. The first crossing point is given by a node labelled “Hall 1” in Fig. 2 and a node labelled “Hall 2”           

in Fig. 3. The second crossing point is given by a node labelled “Kitchen, dining room and living room” in Fig. 2 

and nodes labelled “Kitchen and dining room” and “Living room” in Fig. 3. In other point of view this 

hypergraph is the result of a receiving a structure of floor layout consists of one room, a living room, a dining 

room and kitchen in one room from a hierarchical hypergraph schema shown in Fig. 4. 

 
10. Conclusions 

 
The approach proposed in this paper makes possible smooth transition from object-oriented design to object-

oriented programming. The class model of designed object can be dynamically changed by a system. Changes of 

the class model keep design criteria. Thanks to the specificity of the class model we receive new emergent 

solutions and a warranty of space sparing. The advantage of the proposed approach is a well-grounded 

theoretical base and a possibility of practical applications thanks to polynomial time of operations. 

It seems to be valuable to make use of another ideas of object-oriented design. For example multiplicity of 

edges let us spare much more space. 
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Captions to illustrations 
 
Fig.1. Examples of floor layouts. 

Fig. 2. The structure of floor layout from Fig.1a. 

Fig. 3. The structure of floor layout from Fig.1b. 

Fig. 4. Structures of floor layouts from Fig.1 described by means of hypergraph schema. 

Fig. 5. The schema GR (marked with red), nodes from set VREM (greyed) and edges from set EREM (greyed) of 

replacing the set GenA((labV
SH-)1( “Ground floor 1”)) = { labV

-1(“Ground floor {abstract}”) } by a node labelled 

“Ground floor 1”. 

Fig. 6. The schema shown in Fig. 4 after replacing the set GenA((labV
SH-)1( “Ground floor 1”)) =                          

{ labV
1(“Ground floor {abstract}”) } by a node labelled “Ground floor 1”. Edges inherited from ancestors of the 

node labelled “Ground floor 1” are greyed. 

Fig. 7. An input hierarchical hypergraph schema. 

Fig. 8. An input schema from Fig. 7 after separated adding to it hypergraph schema shown in Fig. 2 by means of 

a new generalisations function N1.  The function N1 maps a node labelled “Ground floor 1” in a set consists of 

node labelled “Ground floor {abstract}”, a node labelled “Hall 1” in a set consists of node labelled “Hall 

{abstract}”, a node labelled “Kitchen, dining room and living room” in a set consists of nodes labelled “Kitchen 

{abstract}”, “Dining room {abstract}”,  ”Living room {abstract}” and the rest of nodes into ∅. New nodes and 

edges are greyed. 

Fig. 9. A schema from Fig.  8 after separated adding to it hypergraph schema shown in Fig. 3 by means of a new 

generalisations function N2.  The function N2 maps a node labelled “Ground floor 2” in a set consists of node 

labelled “Ground floor {abstract}”, a node labelled “Hall 2” in a set consists of node labelled “Hall {abstract}”, a 

node labelled “Kitchen and dining room” in a set consists of nodes labelled “Kitchen {abstract}”, “Dining room 

{abstract}”, a node labelled “Living room” in a set consists of node labelled ”Living room {abstract}” and the 

rest of nodes into ∅. New nodes and edges are greyed. 

Fig. 10. The design requirements space and the design solution space consists of hierarchical hypergraph schema 

and designing objects. 

Fig. 11. Example of a rule. 

Fig. 12. One of emergent hierarchical hypergraphs that can be received from the schema show in Fig. 4. 

Fig. 13. One of possibly floor layouts of structure shown in Fig. 12. 

 
 

 15



 

Bathroom

Room 1 Kitchen and 
dining room 

Hall 2 

Living 
room 

Room 2 

Kitchen, 
dining room 
and living 

room 

Hall 1 

Bathroom Room 1

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

a) b) 
 

Dynamic class model in object-oriented design, Marcin Skowron, Fig.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 16



 
 

AGHBDL 

AHG 

AG1R1 

ADLKDL 

WR1B 

PR1H1 

PHK 

PHB Bathroom 
Dining-living 

part Hall 1Room 1 

Ground floor 1

Kitchen, dining room 
and living room 

House  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Dynamic class model in object-oriented design, Marcin Skowron, Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 17



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AGHBDL 

AHG 

AG2R2 

AG1R1 

ADLKDL WR1B 

WR2KD PH2LR 

PKDLR

PR2H2 

PR1H1 

PHK 

PHB 

Kitchen and 
dining room Living room 

Bathroom 
Dining-living 

part Hall 2Room 1 

Ground floor 2 House 

Room 2 

 
 

Dynamic class model in object-oriented design, Marcin Skowron, Fig. 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 18



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

AGHBDL 

AHG 

AG2R2 

AG1R1 ADLKDL 

GKDLKDLR GLLR 

GKLKDR 

GG1G2 

GGG1 

GH1H2

GHH1 

WR1B 

WR2KD 
PH2LR 

PKDLR 

PR2H2 

PR1H1 

PHK Ground floor 2 

PHB 

Kitchen and 
dining-room 

Living room

Living room 
{abstract} 

Dining room 
{abstract} 

Kitchen 
{abstract} 

Bathroom 
Dining-living 

part Hall {abstract}

Room 1 

Ground floor 1 

Kitchen, dining room 
and living room 

Hall 1 Hall 2 

Ground floor 
{abstract} 

House 

Room 2 

 
Dynamic class model in object-oriented design, Marcin Skowron, Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 19



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AGHBDL 

AHG 

AG2R2 

AG1R1 ADLKDL 

GKDLKDLR GLLR 

GKLKDR 

GG1G2 

GGG1 

GH1H2

GHH1 

WR1B 

WR2KD 
PH2LR 

PKDLR 

PR2H2 

PR1H1 

PHK Ground floor 2 

PHB 

Kitchen and 
dining-room 

Living room

Living room 
{abstract} 

Dining room 
{abstract} 

Kitchen 
{abstract} 

Bathroom 
Dining-living 

part Hall {abstract}

Room 1 

Ground floor 1 

Kitchen, dining room 
and living room 

Hall 1 Hall 2 

Ground floor 
{abstract} 

House 

Room 2 

 
Dynamic class model in object-oriented design, Marcin Skowron, Fig. 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 20



 
 
 

AGHBDL 

AHG 

AG1R1 ADLKDL 

GKDLKDLR GLLR 

GKDKDR 

GH1H2

GHH1 

WR1B 

PH2LR 

PKDLR

PR1H1 

PHK 

Ground floor 1 PHB 

Kitchen and 
dining room

Living room 

Living room 
{abstract} 

Dining room 
{abstract} 

Kitchen 
{abstract} 

Bathroom 
Dining-living 

part Hall {abstract}

Room 1 

Kitchen, dining room 
and living room 

Hall 1 Hall 2 

House  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dynamic class model in object-oriented design, Marcin Skowron, Fig. 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 21



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AGHBDL 

AHG 

ADLKDL 
PHK 

PHB 

Living room 
{abstract} 

Dining room 
{abstract} 

Kitchen 
{abstract} 

Bathroom 
Dining-living 

part Hall {abstract}

Ground floor 
{abstract} 

House 

 
Dynamic class model in object-oriented design, Marcin Skowron, Fig. 7.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 22



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AGHBDL 

AHG 

AG1R1 ADLKDL 

GKDLKDLR 

GGG1 

GHH1 

WR1B 

PR1H1 

PHK 

PHB 

Living room 
{abstract} 

Dining room 
{abstract} 

Kitchen 
{abstract} 

Bathroom 
Dining-living 

part Hall {abstract}

Room 1 

Ground floor 1 

Kitchen, dining room 
and Living room 

Hall 1 

Ground floor 
{abstract} 

House 

Dynamic class model in object-oriented design, Marcin Skowron, Fig. 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 23



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AGHBDL 

AHG 

AG2R2 

AG1R1 ADLKDL 

GKDLKDLR GLLR 

GKDKDR 

GG1G2 

GGG1 

GH1H2

GHH1 

WR1B 

WR2KD 
PH2LR 

PKDLR 

PR2H2 

PR1H1 

PHK Ground floor 2 

PHB 

Kitchen and 
dining room

Living room

Living room 
{abstract} 

Dining room 
{abstract} 

Kitchen 
{abstract} 

Bathroom 
Dining-living 

part Hall {abstract}

Room 1 

Ground floor 1 

Kitchen, dining room 
and living room 

Hall 1 Hall 2 

Ground floor 
{abstract} 

House 

Room 2 

 
Dynamic class model in object-oriented design, Marcin Skowron, Fig. 9.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 24



 25

Hypergraph Schema

Ground floor 
{abstract} 

House AHG  
 AGHBDL 
 

GGG1  
 Dining-living 

part GG1G2 PHB Bathroom Hall {abstract}Ground floor 1  
 

PHK GHH1  AG1R1 Ground floor 2 ADLKDL 
 

PR1H1 GH1H2Hall 1  Room 1 Hall 2 

 AG2R2 WR1B  
 Kitchen 

{abstract} 
Dining room 

{abstract} 
Living room 
{abstract}  

Feature Sets  
 
 GKDLKDLR GLLR PR2H2 Room 2
 
 Kitchen, dining room 

and living room 
PH2LR 

Form of dining-living 
part 

WR2KD GKLKDR 
 

Kitchen and 
dining room  PKDLR Living room 

1• kitchen, dining room,  
   living room 

 
 
 1

1
 • kitchen and dining 

   room, living room  
 
 
 
 
 Bathroom Room 2 
 
 

Shape Hall 2 

 
 

• semicircular Kitchen and 
dining roomRoom 1 1

 
 Living 

roomDynamic class model in object-oriented design, 
Marcin Skowron, Fig. 10. 

 

Solutions



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hall 2 

PDKR Kitchen PLDR Living room Dining room 

Dining living 
part

PH2DR PH2LR PHK 

Dynamic class model in object-oriented design, Marcin Skowron, Fig. 11. 

1

1 1

1

1 

Form of dining living 
part 

• kitchen and dining 
   room, living room 

• kitchen, dining room,  
   living room  

Kitchen and 
dining room 

Hall 2 

Living 
room 

Hall 2 

Kitchen 

Dining room 

Living 
room

PKDLRLiving room Kitchen and 
dining room 

Dining living 
part

PH2LR PHK 

Hall 2 

Fe
at

ur
e 

se
ts

 
pa

rt
 

 

H
yp

er
gr

ap
h 

sc
he

m
a 

pa
rt

 
So

lu
tio

ns
 p

ar
t 

 
 

 26



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AHG 

AG1R1 

WR1B 

PR1H1 Room 1 

Ground floor 1 House 

AGHBDL 

ADLKDL 

PH2LR 

PKDLR 

PHK 

PHB 

Kitchen and 
dining room 

Living room

Bathroom 
Dining-living 

part Hall 2

 
Dynamic class model in object-oriented design, Marcin Skowron, Fig. 12. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 27



 
Bathroom

Room 1 

Kitchen and 
dining room 

Hall 2 

Living room

 
 
 
 
 
 
 
 

Dynamic class model in object-oriented design, Marcin Skowron, Fig. 13. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 28



Biographical note 
I graduated Computer Science from Jagiellonian University, Kraków, Poland. Now I am 
PhD student in Jagiellonian University, in Institute of Mathematics.  
I am interested in artificial intelligence and computer graphics. 

 29


	Marcin Skowron
	Institute of Computer Science
	Jagiellonian University
	
	Abstract



	2. Dynamic class model
	
	
	
	
	
	
	4. Preliminaries - hypergraphs
	5. Scheme of hierarchical hypergraph and hierarchical hypergraph



	7. Extending a hierarchical hypergraph schema
	The following definitions are needed to formalisation of extending a hierarchical hypergraph schema concept.
	Definition 7.1 Let H1 = \(V1, E1, s1, t1, labV1,
	Concepts of a new generalisations function and extending a hierarchical hypergraph schema are defined us follows.
	Definition 7.3 Let GSH = (VSH, ESH, sSH, tSH, labVSH, labESH) be a hierarchical hypergraph schema and



	8. The class model as a part of design solution space
	
	
	
	
	Fig. 10.
	9. An emergent solution
	10. A hierarchical hypergraph schema and evolutionary algorithms





	10. Conclusions
	
	
	
	
	REFERENCES



	[7] Aamodt A. and Plaza E.: Case-Based Reasoning: Foundational Issues, Methodological Variations, and
	System Approaches, AI Communications. IOS Press, Vol. 7: 1, pp 39-59.
	
	
	
	Captions to illustrations


	Fig. 10. The design requirements space and the design solution space consists of hierarchical hypergraph schema and designing objects.
	
	Biographical note









