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Abstract

Since a static data distribution does not give satisfactory results for parallel irregular algorithms, there
is need for a dynamic distribution of data that can be adapted to the current runtime behavior of the
algorithm. Task poolsare data structures which can distribute data dynamically to different processors.

This paper discusses the characteristicieask-based algorithmand describes the implementation of
selected types of task pools for shared-memory multiprocessors. Several task pools have been imple-
mented in C with POSIX threads and in Java. Results of these implementations measured on three
different shared-memory systems are shown for a synthetic algorithm and the parallel hierarchical ra-
diosity method.

Key Words: Task Pools, Dynamic Task Scheduling, Irregular Algorithms, Hierarchical Radiosity, Per-
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Abstract tasks for data from the input set are initially stored in the
task pool, and then every processor removes tasks from the
Since a static data distribution does not give satisfactory pool and processes them until all task have been executed.
results for parallel irregular algorithms, there is need for a During the execution of a task, new child tasks may be cre-
dynamic distribution of data that can be adapted to the cur- ated and inserted into the task pool for a later execution.

rent runtime behavior of the algorithriTask poolsare data Task pools offer an easy and reasonable way to design
structures which can distribute data dynamically to differ- parallel algorithms for irregular problems. They can be used
ent processors. as a universal approach to these problems. But since they

This paper discusses the characteristicsask-based al-  hardly take advantage of locality, often methods which ex-
gorithmsand describes the implementation of selected typesploit special properties of the problem give better results.
of task pools for shared-memory multiprocessors. SeveralFor example, methods performing iterative steps could use
task pools have been implemented in C with POSIX threadscost estimates extracted from earlier steps to readapt the
and in Java. Results of these implementations measurediata distribution after each interatia8q.
on three different shared-memory systems are shown for a  Parallel algorithms that use task pools can be described
synthetic algorithm and the parallel hierarchical radiosity by an abstract model. Using this model, the runtime behav-
method. ior of these algorithms can be characterizeddsk graphs

and it is possible to ustask grammargor the description

of the algorithm itself. Thus it can be seen that executing
1. Introduction a task-based algorithm leads to the problem of scheduling

a directed acyclic graph (DAG) to multiple processors dy-

Designing parallel algorithms for irregular problems is namically. This problem i&/"P-hard {].
difficult, because it is not possible to predict the amount of ~ The designer of a task pool can attack this problem by
work connected to a given part of the input data. Therefore introducing heuristic methods that try to reduce the latency
there is no good strategy available to create an initial dataof the schedule. Another possibility is to simply ignore this
distribution that minimizes the communication during the problem. This increases idle time but allows the task pool
execution of the algorithm. To use all available processorsoperations to be implemented very efficiently. This paper
efficiently, irregular algorithms must either allow data to be follows the second approach by minimizing the number of
transferred between processors at runtime or assign compuinstructions of the task pool operations and choosing data
tations to a processor only when the processor becomes idigtructures which allow to reduce contention on shared data.
and makes a request. Implementations of task pools usually use central or dis-

One way to design irregular algorithms for shared- tributed queues to store tasks. If distributed queues are used,
memory multiprocessors is to split the algorithm into sev- there should also be some mechanism to transfer tasks be-
eral types otaskswhich are used as the minimum unit of tween these queues, so that the work load can be balanced.
parallelism. Every task is associated with a quantity of data  If parts of the task pool data structures are shared by sev-
and the work needed to process these data. Tasks are storegtal processors, synchronization must be used to avoid race
in a common data structure, which is caltadk pool Some conditions. This paper describes some possible ways to re-



duce the number of calls to synchronization operations andand stored in a common data structure which is cakbet
the time processors spend waiting to acquire locks. pool. Task instances take arguments which correspond to
Since allocating and freeing objects in main memory is the parameters of the underlying task type.
expensive, one should always try to reduce the number of Task-based algorithms work in two phases. During the
such system calls. This can be done by re-using memoryfirst phase an initial set of tasks is created from the input set
blocks or by allocating larger blocks which hold several ob- and stored in the task pool. This phase is therefore called
jects. Because task pools use dynamic objects to represernhitialization phase The initialization phase can be done
task instances and typically large numbers of task instancesequentially by a single processor or in parallel by multiple
with short execution times are used to achieve a good distri-processors. Its execution time is usually very short com-
bution of work load, saving system calls strongly improves pared to the over-all execution time of the algorithm. For
the performance. that reason it may often be appropriate to execute this phase
This paper describes several types of task pools whichon a single processor. The operation to insert initial tasks
have been implemented in C with POSIX threads and in into the pool is namedhit()
Java. These implementations have been evaluated on three The second phase is calleerking phase because it
different shared-memory systems: a Linux PC, a Sun En-computes the solution of the algorithm from the initial task
terprise 420R and two Sun Fire (3800 and 6800). Resultsset and usually takes nearly all of the total computation
are shown for a synthetic algorithm and taeiosity appli- time. To achieve good performance, it is important that all
cation from the SPLASH-2 application suiteq]. available processors take part in this phase and that the idle
The results for both algorithms show that from the task time of the processors is minimized. The working phase
pools implementedynamic task stealingrovides the best  is organized as a loop that all processors execute in paral-
scalability. Synchronization overhead and waiting times of lel. In this loop each processor requests a task from the task
such task pools can be reduced by using private and pubspool by executing the operatiget() , which the task pool
lic queues. Memory managers can significantly improve provides for this purpose. If a task is returned, the proces-
the performance. As a consequence of optimizing Java Vir-sor will execute it. Otherwise the processor will exit from
tual Machines, the results for the Java implementations arethe loop. Since this process is common to all task-based
more disputable than the results for the implementations inalgorithms, the task pool may provide an operation that im-
C. While the synthetic algorithm gives repeatable results, plements the complete working phase.
theradiosityapplication is harder to evaluate due toits non-  When a task is executed, it can create new child tasks by
deterministic character. executing the task pool operatipot() . Thus every task
The rest of the paper is organized as follows: In Section that is executed in a task-based algorithm and that is not an
an overview of task based algorithms and their representanitial task has exactly one parent task and can have several
tion by graphs and grammars is given. Sectiotien de-  child tasks. Initial tasks differ from that in not having a
scribes the types of task pools that were chosen to be imple-parent.
mented, and Sectiof handles general implementation is-
sues. After this, SectioB briefly compares the potential of 2 1 Representation by graphs
the two programming languages C and Java that have been
used in our work. The task pools we have implemented are
introduced in Sectio®, and the machines and algorithms
investigated are described in SectibnSection8 presents
results for the synthetic algorithm and the radiosity appli-
cation. Related work is presented in Sectkn Finally,
Section10 concludes.

These hierarchical dependences can be described by a
task graph It contains a node for every task, and a directed
edge is drawn between two nodes if the target node is a
child of the source node. The resulting graph is a forest of
trees, the roots of which are the initial tasks. Particularly,
this graph is directed and acyclic.

] If there are data dependences between tasks, they can
2. Task-based algorithms be visualized by introducingependence edge3hese di-
rected edges connect two nodes if the source node provides

To formally describe algorithms that use task pools, a data needed by the target node. The resulting graph is called
model namedask-based algorithntan be used. In this dependence graphin this simple case dependences be-
model the algorithm provides sevetatk typesEvery task  tween two tasks must not introduce circles into the graph.
type consists of a set of instructions from the programming Otherwise deadlock will occur.
language that is used, and it can have several parameters In practice there might be more complex dependences
that specify the data to be processed. When the algorithmbetween tasks when tasks are waiting for certain conditions
is executedjnstancesof these task types (which we will on shared variables at arbitrary times of their execution. In
often calltasksin the following for simplicity) are created this case dependence edges must be labeled with the associ-



same input will usually produce different schedules. The
reason for this is that the order in which tasks are executed
and the assignment of tasks to processors depend on the ex-
ecution times of the tasks. But these execution times are
influenced by the current scheduling decisions of the operat-
ing system. There are also other sources of noise that influ-
ence the execution times of tasks, like caches or concurrent
accesses to limited resources, for instance main memory or
other I/O hardware.

Time

2.2. Task grammars

Figure 1. Example for the visualization of a

Grammars can be used to describe not only specific runs
schedule.

of a task-based algorithm but the algorithm itselfsifple
task grammarconsists of three sets that contain the avail-
able task types, the task types that can be used to create
ated conditions, and the order in which these conditions areinitial tasks and the productions that indicate which task in-
generated and checked must be visible. In a very complexstances each task type can create and in which order this
algorithm it will be necessary to include the data flow inside Would be done. The productions can be derived from the
of the tasks into the graph. Checking such a graph for dead-sequence of operations that each task type identifies.
locks leads to thdalting problemthat cannot be decided More complex grammars may be used to include runtime
[34]. aspects. Suchuntime grammarsonsist of a set of available
Specific runs of a given task-based algorithm may pro- {aSk types, a subset of task types that can be used to create
duce different task graphs even if the same input is used.initial tasks, a set of possible arguments for tasks, a set of
Such algorithms are calledondeterministic In contrast ~ POSSible values of shared variables and, finally, a set of pro-
to this, deterministitask-based algorithms always produce ductions. The productions are more complex than those of
the same task graph when the same input is used. simple task grammars. There may be different productions
Dependences give another way to classify task-based a|jor dlfferent. arguments or values of s'hared yarlaples, and
gorithms. First, there are algorithms with no dependencest® Productions may additionally specify running times be-
between tasks at all. One example is the Barnes-Hut methodWeen two events.
for n-body simulations 30]. Such algorithms create a The grammar
large number of initial tasks that depend only on data that .
was provided before the initialization phase, and no child G =4, Bh{A} P A1, 2} 0]
tasks are created. This class of algorithms is called with productions
Some other algorithms only use hierarchical dependences

between tasks that are caused by the creation of child tasks. P={B— {1},

The according class of algorithms@y. The hierarchical A1) — {1} [A()|A(2)] {1} B {2},

radiosity method is an exampléd, 30]. All other algo- A@2) — {1} B {1}

rithms may have arbitrary dependences. This class will be

named®d ... Obviously, D is a subset b which itself s a simple example for a runtime grammar. The corre-
is a subset 0P .. sponding algorithm uses two task typgsand B, but only

When a task graph is drawn in the plane, the geometrictasks of typed can be created as initial tasks. The integers
representations of nodes and edges can be used to visualr and 2 may be used as arguments to some tasks, and no
ize the temporal progress or schedule of the algorithm. Theshared variables are used. Tasks of typsimply termi-
scheduleassigns a processor, creation time, starting time nate after one time step. The behavior of tasks of tfpe
and termination time to every task. For visualization, the depends on their argument. If 1 is passed as the argument,
coordinates of the plane are used to represent processorsne task of typed will be created after one time step. The
and time. The geometric extent of a node then determinesargument of this child task is chosen from 1 or 2. After a
starting and termination times of the node as well as the pro-second time step, tasks of typewith the argument 1 al-
cessor assigned. The creation time of a node is determinedvays create one task of tyge and finally terminate after
by the source coordinates of the edge that leads from thethey have proceeded for two further time steps. For argu-
parent to that node. Figufeshows an example. ment 2, a task of typel creates a task of typB after one

Repeated runs of a task-based algorithm that use thdime step and terminates after another time step.



As we have seen before, in practice it is impossible to  The static scheduling of a given task graph to a limited
specify the execution time of a task exactly, because noisenumber of processors i§P-hard. But there are many ef-
is introduced by the operating system, other user processeficient approximation algorithmgl]. However, since a task
and hardware. However, to describe an algorithm, it is of- pool does usually not know the resulting task graph during
ten sufficient to use exact values of any needed time basisthe execution of a task-based algorithm, it has to sol-a
If the grammar is used for scheduling decisions by the tasknamicscheduling problem. This lack of information causes
pool, then modeling the execution times by probability dis- that for a limited number of processors the optimal schedule
tributions B1] or fuzzy sets 7] might do better. can only be approximated by heuristics.
In practice the number of processors available is usually
2.3. Usable parallelism and running time of task- ~ Very small compared_ to the size of the task graph. Actu-
based algorithms ally, task-based algorithms are designed to create large task
graphs consisting of small tasks in order to achieve a good

balancing of the work load.
Given a task or dependence graph, it is hard to tell how ¢

many processors should be employed. It can be shown by

constructing an example that algorithms exist which need3: TyPes of task pools

as many processors as the graph contains tasks to achieve

optimal running time. Such algorithms need only twice the ~ This section describes several types of task pools, vari-

execution time of the biggest task. Furthermore, it is possi- ants of which have been implemented in C and Java. While

ble to show that for any given dependence graph there is dmplementation details are the subject of Sectiéns and

schedule that utilizes as many processors as the task grapf, this section concentrates on the high-level description of

has leaves (sed § for details). some types of task pools, some of which were chosen to be
If a task-based algorithm is executed on a single proces-implemented.

sor, the running time of the working phase is given by the ~ The objective for the design of our task pool implemen-

sum of the execution times of all tasks. Thereby the exe-tations has been to provide universal data structures that can

cution time of a task includes the time to request this task Pe used with any task-based algorithm. This implies that no

from the task pool. Since all tasks must be executed, theknowledge about the algorithm may be presumed.

algorithm cannot run faster, and the processor will never be ~ The main goal of our implementations has been to re-

idle, because after one task has completed there must eithefluce the total execution time of the task pool operations. To

be at least one runnable task or no task in the task pool. Ifachieve this, we have tried to reduce the number of instruc-

there were only tasks in the pool that cannot be executed petions that these operations consist of and to avoid expensive

cause some dependence is not met, deadlock has occurreédnction calls. We also have attempted to reduce the num-

When the task pool is empty, the algorithm has completed. ber of concurrent accesses to shared data structures in order
When there are no dependences between tasks —which i§ reduce the conflict rate and implicated waiting times.

the case for algorithms from®, —, only the initially avail- The implementations presented in this paper coesr-

able tasks have to be executed. This implies that all tasksiral, randomized distributed and combined central and

that are stored in the task pool are always runnable. If thedistributedtask pools, and also task pools witynamic task

tasks can be ideally balanced, no idle time needs to occurStéaling Many other implementations may be thought of, a

Thus, if there are processors, a task-based algorithm from few Qf which are outlined i”3[8]-_
D, can be executed in time Since shared-memory multiprocessors were selected as

target systems, the thread model has been employed to im-
Tseq plement the task pools. It provides multiple threads of con-
0 (7 + max {T(”)}> ’ trol that share a common address space. Threads can be
used in C with, for example, the POSIX thread libraby, [
wherer,., is the running time of this algorithm on a single which was used in this study. The other programming lan-
processory is the set of all created tasks, an@) is the guage we have used is Java. Java was designed as a multi-
execution time of task. threaded language2fl]. It provides all necessary classes
An optimal schedule for a given dependence graph with and mechanisms to develop shared-memory applications.
hierarchical or even arbitrary dependences and an unlim-Additional libraries are not required.
ited number of processors can be obtained by applying the
ASAP (as soon as possiblenethod. Here a task willbe ex- 3.1. Central task pools
ecuted right after it has been created. This is possible, since
the number of processors is unlimited and therefore there Central task pools use a single central queue to store
always is a processor available if needed. tasks. This queue is accessed by all processors concurrently.



When a processor accesses the central queue, it must usko do so, each processor is assigned a local queue that it can
mutual exclusionio protect the queue in order to avoid race use exclusively. In addition, a central queue is used for load
conditions. balancing. A processor then adds tasks to the central queue
Mutual exclusion is available with all POSIX thread li- when the size of its local queue exceeds a specified thresh-
braries, which providenutex variabledor this purpose. old. Whenever a processor runs out of tasks, it transfers
Java programmers can usynchronized blocks or tasks from the central to its local queue.
methods. In this approach, mutual exclusion is only needed for the
However, waiting times occur if two queue operations central queue. But the central queue may become a bottle-
are issued simultaneously. The number of access conflictsmeck when the number of processors increases. Therefore
increases with the number of processors. the threshold must be carefully chosen to find a good trade-
off between synchronization and load imbalance.
3.2. Randomized task pools
3.5. Dynamic task stealing
A way to improve the performance of central task pools

is to introduce additional central queues. Since the queues The most promising approach is dynamic task stealing.
are not assigned to processors, all accesses to these queugsses local queues for each processor, but allows proces-
must use mutual exclusion. sors to access foreign queues. A processor then uses its lo-
When a new task is created, it is inserted into a randomly ¢g| queue until it gets empty. When this happens, it tries to
chosen queue. To remove a task, all queues are queried iRtealtasks from another processor by removing tasks from
randomly chosen order until a task has been found or allthig processor's queue.
queues have been visited. To avoid race conditions, mutual exclusion must be used
In the case that there are more queues than processorser al| queue accesses if there is only one queue per proces-
there is a chance that even if all processors are perform-sor. This increases the number of instructions executed in
ing an access simultaneously, no two processors choose thgyery task pool operation, which implicates longer execu-
same queue. For example, the number of queues could bgon times. But since stealing is only done when the queue
bound to the number of processors by a constantfaetor  of 4 processor is empty, there are very few simultaneous ac-

But even in this case the probability that no two proces- cesses to a particular queue, and the over-all waiting time is
sors choose the same queue decreases when the number g 4)1.

processors is increased (sé&€]). Besides, thget() op-
eration becomes very expensive in this case, because thgandomized local pools
number of queues that must be queried in this operation in-

creases. The number of simultaneous accesses to a particular

o gueue can be reduced by introducing additional queues per
3.3. Distributed task pools processor. These may be accessed similarly to central ran-
domized task pools. When a processor is performing an
Distributed task pools avoid access conflicts by not shar- operation on any local pool, it selects one of the queues of
ing any data between processors. Each processor uses it#e local pool at random. To avoid race conditions in the
own queue to store tasks and performs only accesses tgtealing process, mutual exclusion must be used with every
its local queue. Therefore each processor can only pro-access. Waiting times can be reduced further by altering the
cess those tasks that were assigned to it in the initializationqueue when acquiring a lock for a certain queue fails.
phase. This corresponds to a static data distribution. However, increasing the number of queues per processor
Without knowledge of the algorithm and the task types not only reduces waiting times but also increases the over-
used, the task pool cannot estimate the cost of tasks. Thusiead needed to administrate these queues. In this particular
the initial task distribution will be imbalanced in most cases. case, selecting a queue at random may be expensive com-
But this approach has the advantage of not needing anypared to the execution times of the task pool operations of
synchronization operations, since no shared variables argtandard dynamic task stealing.
used, and it allows to evaluate the performance improve-
ments achieved by a dynamic data distribution. Private and public queues

3.4. Combined central and distributed task pools If two queues per processor are used, one can reduce
simultaneous accesses to a queue, waiting times, and syn-
To overcome the problems of the implementations men- chronization overhead by applying different access rights to
tioned above, a combination of these methods can be usedhoth queues.



In order to achieve this, one of the queues is used as anumber of tasks to be stolen may be determined by a con-
private queue. Only the local processor is allowed to ac- stant number, a constant factor, or even the number of pro-
cess it. Therefore no mutual exclusion is needed for the cessors.
private queue and all accesses to it will be very fast. For
the purpose of stealing, each processor is assigpedbiec 4. General implementation issues
gueue. Following some strategy, the owner transfers tasks
from its prlvqte to its public queue. When a processo,r uns 4 4 Ending the working phase
out of tasks, it can steal some from another processor’s pub-
lic queue. Since there may be simultaneous accesses, there

. : The working phase ends when all tasks have been exe-
must be mutual exclusion for the public queue.

. A cuted. To verify this condition, it is not sufficient to check
If the processors mainly work on their private queues,

synchronization operations rarely have to be executed. Onlylf the task pool contains no tasks. Itis still possible that

. . . task that is in execution at the time of the query creates
when occasionally a public queue is accessed, the overhea : :
o N new child tasks, which themselves can create large subtrees
for locking is needed, and only then waiting times may oc-

cur of tasks. If then a processor had already decided to leave
Principally, two oppositional strategies for filling the the working phase, its processing power would be lost for

ublic queues can be thought of. gkeedyprocessor that further computations.

P que g yp . Because of this, there must be some mechanism to de-
uses the first strategy would try to keep most tasks for it- . . . .

X . cide if an idle processor may leave the working phase or if
self as long as possible. Tasks are transferred to the public . .

i . it should wait for new tasks to be created. Which mecha-

gueue only when the public queue is (nearly) empty. Us- .~ . : .
) nism is appropriate depends on the task pool implementa-
ing the second strategy, generousprocessor would hold

nearly all of its tasks in the public queue and only remove a tion used.
y o 1€ p q y The most simple case is given if a distributed task pool
few tasks from it if the private queue gets empty. :

Both strategies are comparable concerning the costs of> present that does not use dynamic task stealing. Since

the task pool operations. While the greedy processor mustaII queues are private, newly created tasks can never be ac-

often check if the public queue is empty, the generous cessed by other processors than their producers. Therefore a

. processor may leave the working phase as soon as its private
processor very often has to move tasks between its local :
) . . gueue is empty.
gueues. Since this task transfer can be implemented by a ; . .
) ) ) . Most other implementations must use a different ap-
few pointer operations, it does not increase the access costs .
. . roach. When there are central queues, the idle processors
considerably. On the other hand, the greedy strategy m|ghtp X
) . ; . : must check all these central queues. In case of dynamic
lead to additional idle time, since stealing processors may R - - : .
) task stealing it is sufficient to visit only a few neighboring
find some queues empty even though there are many tasks
. . . queues. If now all processors agree that there are no more
stored in the according private queues. . |
tasks left, the working phase is completed. Thus a processor
which could not find any task to execute keeps waiting until
either new tasks are created or all other processors reach the
Waiting times can be reduced by decreasing the numbersame state. _ _ _ _
of simultaneous accesses to queues. One way to achieve this This mechanism can be put into practice with the help
is to keep the number of stealing operations small. There-of conditional waiting which the POSIX thread libraries
fore using a simple heuristics to steal a large amount of provide by the concept afondition variablesand which is
work may be worth the costs. included in Java as theait() -notify() mechanism.
Such heuristics can be used, for example, when there
are many hierarchical dependences between tasks and thé.2. Implementation of queues
owner processes its local queuedast in first out(LIFO)
order. That means that this processor always uses the same From the task pools’ point of view, queues are data struc-
ends of its queues to enqueue and dequeue tasks, respetures that store a set of objects. They must provide opera-
tively. As a result, the corresponding task graph is processedions to insert a given object and to extract an arbitrarily
in depth-first order. If now tasks are stolen from the oppo- chosen object.
site end of the queue that is not used by the owner, thereisa The order in which the objects are removed is not im-
good chance that the stolen task will create a large subtreeportant for the functionality of the task pool, but it becomes
In the best case this task is one of those that were created imore interesting when heuristics shall be used to dynam-
the initialization phase. ically optimize the schedule. For nondeterministic algo-
Other approaches may attempt to steal several tasks atithms the order in which tasks are executed can also in-
once in order to gather a large amount of work. Then the fluence the resulting task graph.

Heuristics for stealing



Another important effect of the execution order on all to develop data structures that doek-free(e.g. B5]) or
task-based algorithms is the impact on the maximum mem-non-blocking(e.g. [4, 23, 27]). In our investigations
ory required. When a task graph is executed, the tasks thasuch data structures have not been implemented, because
are currently being stored in the task pool define a borderthey rely on machine-dependent primitives like@PARE
line through the task graph that divides the tasks whose ex-& SwAP.
ecution has already been started or even finished from those
that have not been created yet. Now, if the task graph is pro-4.3. Mutual exclusion
cessed depth-first, the maximum number of tasks to store is
equal to the depth of the task graph. If instead a breadth first
search is used, the breadth of the task graph determines th

space needed. important synchronization mechanism for task pools. It

_ Since th(_e execution time_s of the task pool_operations will must be used to protect queues or even single tasks when
increase with the complexity of the underlying data struc- qncurrent operations are performed.

tures, it is important to find simple and efficient queue im-
plementations. Usually single- or double-linked lists, or ar-

Besides conditional waiting, which was used to detect
fhe end of the working phase, mutual exclusion is the most

Usually, mutual exclusion is realized lpcks A proces-
) g X ; sor that wishes to access a protected object must acquire the
rays with one or more index pointers are appropriate. AlSO aached Jock before it is allowed to read or manipulate the
lists of arrays are conceivable. object. After the processor has finished the manipulation, it
Compared to lists, arrays have the advantage that memsy st release the lock. The implementation of the lock must
ory for all items of the array is allocated with a single sys- ansyure that no two processors can possess the lock at the
tem call when the array is created. Furthermore, manipula-ggme time.
tion of the index pointers can be done with fewer instruc-  gjnce some task pools need to lock objects in every
tions than are necessary to insert or delete elements of But() orget() operation, the overhead required for mu-
list. Another point is locality, which will be discussed in ;5| exclusion may significantly influence the total execu-
Sectiod.5 o tion time of the algorithm.
On the other hand, arrays only have a limited size. If  Because locks are commonly used in multi-threaded pro-
a queue is implemented by a single array, the size of thegrams, all thread libraries or multi-threaded languages pro-
array must be increased when the number of objects 0 b&/ige mechanisms for locking. The POSIX thread libraries
stored exceeds the size of the array. In some cases this imyqvide locks as special objects that are catiaatex vari-
plicates that the data of the array must be copied to a secondyp|eg Separatdock() andunlock()  operations can
larger array. Otherwise, if the array was not enlarged, the pe performed on these variables. In the Java programming
task pool would set limitations to the task-based algorithm |ngyage, implicit locks are attached to each class or object.
which would not be acceptable in practice. There are no separate operations for acquiring and releasing
A good trade-off is found in a list of arrays. Instead of these locks. Insteasynchronized  blocks and methods
enlarging the array that has become too small, in this case ayre used to implicitly create a correct pair of these opera-
new array is linked to the preceeding one, and new objectstons.
are stored in this new array. These locking mechanisms provided by libraries or lan-
In order to avoid race conditions, often mutual exclusion guages often are based on complex data structures. This is
is used to protect queues as a whole. In these cases Uslhecessary in a multiprogrammed environment to save the
ally no simultaneous manipulations are allowed. But it is processing time of waiting threads for other threads or pro-
possible to implement queues that can be accessed simuleesses, respectively. Synchronization mechanisms for such
taneously by multiple processors when multiple locks per environments are discussed 8.
gueue are used. A Simple and efficient LIFO queue that When a task-based a|gorithm is the on|y process run-
only needs two locks and allows an enqueue and a dequeuging on a selected target system, other approaches can be
operation to be executed in parallel is presente@8h [ considered. Since using more threads than processors in-
If lock granularity is reduced further to the level of sin- creases scheduling overhead because more context switches
gle tasks, queues can be implemented which allow two si-must be performed, often exactly as many threads as there
multaneous dequeue operations. This is of importance forare processors are used. In this case, the operating system
task pools with dynamic task stealing. But since for these can assign a separate processor to every thread. But in this
queues a dequeue operation needs to acquire a total of thresituation, suspending waiting threads does not improve the
locks, the task pool operations become expensive even if ngperformance. Therefore, if there are the same numbers of
waiting times occur. threads and processors, threads can wait actively by polling
The problem of concurrent accesses to a shared data shared variable in a loop. Locks on this basis are called
structure is well known. Therefore attempts have been madespin lockg21].



4.4, Memory management ory cells. When linked lists are used, their elements will
be arbitrarily located in memory. In order to avoid spatial
Since tasks are the minimum unit of parallelism, typical locality, task blocks may be surrounded with dummy ele-
task-based algorithms create plenty of small tasks that musfnents which are never accessed.
be stored in the shared memory. Thus lots of small mem-  Temporal localitywill improve the performance of both
ory blocks must be allocated and freed during the working single- and multiprocessing systems as it accelerates re-
phase. peated accesses to identical memory cells by the same pro-
If a system call is executed for each such action, optimal CESSOr.
performance can never be reached. This is because system The edges of the dependence graph of a task-based algo-
calls are usually more expensive than calls to user functions fithm show where tasks re-use data that has been provided
In addition to that, system calls may create a bottleneck in by other tasks. If we assume that tasks perform complex
the case that the operating system executes system calls s€omputations which supersede the arguments given as in-
quentially or uses central free-lists for all threads or pro- Put, after a task has completed always one of its child tasks
cesses, respectively. should be executed. Thereby the output of the task is re-
Therefore task pools should always be accompanied byused as the input of the child. This strategy leads to a depth-
a memory manager that reduces the number of system callsfirst search of the task graph. On the other hand, if the child
The task pool then requests memory blocks from this mem-tasks do not significantly change their initial cache state, the
ory manager and returns used memory blocks back to it foroutput of a task could be re-used several times if more than
a later re-use. one of its child tasks are processed right after its comple-
The memory manager can use various approaches to retion.
duce the number of system calls. The most important of ~But in general a depth first search implemented by a
all is to re-use memory blocks. Another important strategy LIFO queue will usually take better advantage of locality
is to allocate several objects in advance by a single systemfompared to a FIFO queue realizing a breadth first search.
call. If tasks are executed in FIFO order, a child inserted into the
To re-use memory blOCkS, free blocks are collected in queue will not be executed before all tasks have been pro-
free-lists. If a processor later requests a block of the samecessed that were being stored in the queue when the child
type, it can be removed from one of the free-lists. was created. All these tasks potentially overwrite the cache
Since free-lists are nothing but queues, the memory man-data that have been moved into the cache by the parent of
ager can be organized similar to the task pools. The free-the child. Using LIFO order, at least one of the children
lists can be eithecentral randomized distributed com- ~ created by a task is executed directly after its parent. If a
bined central and distributedr usestealing FIFO queue is used, a child can only be executed immedi-
The free-lists are usually implemented as linked lists. To ately after its parent if at the time of the creation of the child
link the memory blocks, special items can be used that storeth® queue was empty.
a pointer to a free memory block and a pointer to the next
item. A solution with much less complexity links the mem- 5, Potential of C and Java
ory blocks directly by storing a single pointer inside of each

block. In this case the memory manager must ensure that g a programming language that is close to hardware. C
all memory blocks are large enough to store this pointer. programs may be written very compact, but they tend to be-
) come unreadable and error-prone then. Provided that appro-
4.5. Locality priate libraries are used, “everything” can be done with C.
The extension C++ also provides very complex but flexible

All of the current high-performance machines are classes. Multithreaded programming is not part of the lan-
equipped with caches. But the fast access times for cacheyuage but is available with, for example, the POSIX thread
data can only be exploited if the application programs are library. C programs are compiled to native code and run
designed to shovocality. very fast on the dedicated target machine.

If a program featurespatial locality, accesses to adja- In contrast, Java has been designed to be a platform in-
cent memory cells by the same processor will be speededdependent programming language that allows the develop-
up. On a multiprocessing system locality in space may alsoment of interactive applications for the Internet. The syntax
have negative effects if multiple processors share data inof Java is close to C, but elements that often caused mis-
their cachesfélse sharing11, 32)). takes were omitted. Great importance was attached to keep

A task pool may either increase or decrease spatial lo-the language simple and easy to learn. Java is fully class-
cality explicitly. If the task queues or free-lists are imple- based and multithreaded. To be platform independent, Java
mented by arrays, their elements will occupy adjacent mem-programs are compiled to intermediate code, which can be



interpreted on any target machine on whicaxa Virtual But even though the synchronization primitives of Java
Machineis available. are less flexible than those of C, they allow to develop syn-
Though by now there are very fast virtual machines, they chronization classes which can be used just like the C mech-
cannot meet the performance of native C code. But besidesanisms R4]. But using such classes creates higher over-
there are differences in the structure of the programminghead.
languages which give C some advantages over Java.
First of all, in Java all variables either have a basic type, 6. Implementation
like int orchar , an array type, or arebject references

These object references can be compared to pointers to class s section gives a brief overview of the task pools and

instances in C++. No compound type, liseruct in hemory managers we have implemented in C and Java. A
C, exists. ' Ipstead instances of classes mqst be used. Th'EompIete list of all memory managers implemented in C is
makes efficient use of memory more complicated. displayed in Tabld.. Because of the difficulties outlined in

An eXampIe for this are local variables. In C the memory Sectionsl No memory managers have been imp|emented in

of a local variable that has a compound type is allocated onjava. The task pools implemented in C and Java, respec-
the stack by incrementing the stack pointer when the scopeijyely, are contrasted in Tabl@sand3.

of the variable is entered. Since in Java class variables are
only object references, memory on the stack is allocatedg 1. |nterface of the libraries
only for a pointer. The object must be created explicitly by

calling thenew operator, which then allocates the memory .4 145k pools and memory managers implemented in C
needed. _ o _ comply with the layout displayed in Figuge Task types are
Apart from that, in Java it is not possible to allocate jmplemented as C functions, and task instances are repre-
memory for several objects at once. While in C it is easy gented by instances of a compound type that stores a pointer
to allocate an array for a compound type, an array of an ob-tg the function that implements the type of the task instance
ject type only provides memory for the references and eachgng g pointer to a fixed-size memory block that contains the

object must be allocated separately in Java. arguments of the task instance.
Another important point is the recycling of task in-  Theinitialization of the task pools is done by the function
stances. If all task types use the same compound type in Ctpool_create() . It can be called by multiple threads,

used task instances can be collected in free-lists and can bgut a single call by one thread is sufficient. The number of
re-used later easily. Yet in Java, different task types would threadsn, and the maximum space needed to store argu-
use incompatible classes. This makes it difficult for a uni- ments for task instances are taken as arguments. The func-
versal task pool that has no knowledge about task types tajon tpool_finalize() destroys the task pool. It takes
recycle them, because there must be separate free-lists fofo arguments and a single call is sufficient.
each task type in order to be able to efficiently implement 7o get along with only one function call, the initializa-
the allocation operations. tion and the finalization must be executed sequentially. The
Except for memory management, the synchronization disadvantage of this approach is that these sequential phases
primitives of Java are much less flexible than those of can decrease the possible speed-up if their execution time is
POSIX threads. At first, mutual exclusion is done in C by long.
two separate function calls for locking and unlocking that  During the initialization phase of the task-based al-
can be placed at any desired position in the source codegorithm, task instances can be created by the function

In Javasynchronized  blocks must be used that insert a tpool_init() . tpool_put() is used by task in-
pair of similar instructions implicitly into the intermediate stances to create new child tasks during the working phase.
code. Both functions identify the calling thread by an integer ar-

Conditional waiting also sets limitations to the Java pro- gument, supposing that all threads using the task pool are
grammer. POSIX threads only requires that the function numbered from O ta — 1. Additionally, they need to know
call to suspend a waiting thread is executed when the assothe task type and the arguments of the task instance, which
ciated mutex variable is locked. The call to wake up one are given in form of a pointer to a function and a pointer to
or several threads can be done at any place in the sourca data structure, respectively.
code. In contrast to POSIX threads, Java additionally re- The working phase is executed by a call to
quires the wake-up callan¢tify() ) to be placed inside  tpool_run() with the thread number as argument.

a synchronized  block on the object to wait for. This  This function is identically implemented for all task pools.
introduces an unnecessary bottleneck if the thread that genit is realized by a loop in which task instances are removed
erates the condition does not need synchronization on thifrom the task pool withtpool _get() . If the call
object for its manipulations. to tpool_get() was successful, the task instance is



Il interface of the task pools
typedef void (*tpool_function_t)(nt, void *);

void tpool_creatd(t n,int arg_size);
void tpool_finalize();

void tpool_init(nt tid, tpool_function_t fyoid *arg);
void tpool_put{nt tid, tpool_function_t fvoid *arg);

void tpool_run(nt tid);
I/ task pool internal data structures and functions
typedef struct

{

tpool_function_t function;
void *argument;

Il pool specific data
} tpool_task_t;

I/ pool specific data
int tpool_get{nt tid, tpool_function_t *f,void **arg);
Il interface of the memory managers

void tpool_init_memoryifit task_sizeint arg_size);
void tpool_finalize_memory();

void *tpool_alloc_argint tid);
void tpool_free_arg(t tid, void *arg);

void *tpool_alloc_taskifit tid);
void tpool_free_task(t tid, void *task);

Figure 2. Layout of the C task pools.

10

classTaskPool

{

public static classTask

{

I/ pool specific data
public void run(nt tid) {}

// pool specific data
public TaskPoolipnt n) {}

public void init(int tid, Task T) {}
public void put(nt tid, Task T) {}

private Task getint tid) {}

public void run(nt tid) {}
}

Figure 3. Layout of the Java task pools.

executed and the loop is continued. Otherwise the function
returns. Care must only be taken to decouple the working
phase from the initialization phase. This is necessary to
avoid corruption of the data structuregpbol_init()

is allowed to write to unprotected non-local queues.

The memory managers are initialized by the function
tpool_init_memory() with the maximum sizes of the
data structures for task instances and arguments as argu-
ments. The finalization is done by calling the function
tpool_finalize_memory() . Both functions must al-
ways be paired. Successive or even concurrent calls to one
of these functions are not allowed. But it is permitted to use
multiple initialization/finalization pairs if necessary.

Memory for task instances and arguments can be
allocated by the functionstpool alloc_task()
and tpool_alloc_arg() , respectively. To free
task instances or argumentpool_free_task() or
tpool_free_arg() must be called, respectively.

The layout of the Java task pools is shown in Fig8re
They use classes derived from the classk to represent
task types. These derived classes must overwrite the method
run() in order to implement the desired functionality of
the task type. Task instances are represented by instances
of the classes derived froiffask . Arguments are stored in
fields of the derived classes by an appropriate constructor
that every derived class that takes arguments must imple-
ment.

The task pools are initialized by creating an instance
of the correspondingaskPool class. In doing so, the
number of threads using the task pool must be given as
an argument to the constructor. No explicit finalization is



necessary, because the garbage collector will free all allo-or array has been allocated (suffix").

cated memory automatically when the task pool object is  Except forclf , all memory managers that use both cen-

not longer referenced. tral and distributed free lists link the objects stored in the
Similar to the C implementations, there are two meth- free-lists by additional items. But not all of these memory

odsinit() andput() to insert task instances into the managers use a central free-list for the items. Therefore all

task pool during the initialization and working phase, re- memory managers which do use a central free-list for items

spectively. The working phase is executed by the methodhave the suffix b” added to their name.

run() , which removes tasks from the pool with the help In the case that central and distributed free-lists are used,

of the methodyet() . there are two different implementations of thgbk” ap-
proach. When the application requests a memory block
6.2. Memory managers implemented in C from the memory manager and the local free-list for this

type of memory blocks is found empty, the memory man-

Various memory managers have been implemented in@J€r can either first check the central free-list before it

C to investigate the performance improvements that canChecks if some element is left from the last callrtal-
be achieved by optimizing the memory operations of task |0¢() ., or vice versa. The versions which do not check the
pools. A complete list of all memory managers that have central free-list first, are indicated by the suffik™in their
been implemented is shown in Taldle names.
In order to measure the variation in performance caused
by the memory managers compared to the case that nd-3. Task pools implemented in C and Java
memory manager is used, a dummy memory manager
calledbs has been implemented, which capsulates the op- We have implemented a number of task pools in C and
erating system functionsialloc() andfree() by the in Java. The names of the task pools allow to distinguish
memory manager interface. between four basic types of task pools:
Besides recycling of freed objects, allocating several ob-
jects at once is another important strategy to improve the (&) central task pools with a single queusert ),
performance. All memory managers that use this strategy
are named Bk”. The memory managers which only rely
on recycling are named “.
On the bas.ls of the types of free-hst's. uged, the mem- (c) combined task pools which use one central and several
ory managers implemented can be classified into three types distributed queuess@g* ), and
which all use free-lists to recycle objects and thus try to im-
prove the performance. The first of these types only uses(d) randomized task poolsq* ).
central free-lists. The names of these memory managers do
not contain any prefixes. The second type only uses dis-In most cases, there are several implementation variants of
tributed free-list, which is indicated by the prefid™in each basic type. These variants are distinguished by num-
their names. The last type implemented uses distributedbers which are added to the names of the implementations
free-lists and additional central free-lists for balancing. The as a suffix. Table2 and3 list all the task pools we have
memory managers of this type are named with the prefiximplemented.
“c”. Four variants of central task poolsgl to sg4, have
Two ways of linking the objects in the free-lists have been implemented in C and one in JasgX). sql and
been implemented. The first uses special items to link ob-sg2 both use LIFO queues, and both lock the entire queue
jects, and the second approach uses the memory space ifer every access. They differ in the implementation of the
side of freed objects to store a pointer to the next object. Thequeues asql uses a single-linked list whileq2 uses an
names of the memory managers which do not use items ararray of a fixed sizesq3 andsg4 are both FIFO queues
tagged with the suffixf”. with reduced lock granularity. Both allow simultaneous en-
The memory managers which allocate several objects atqueue and dequeue operatiosg3 locks single tasks, but
once either allocate large fixed-size arrays during the initial- sq4 is based on the two-lock queue frora3[ and only
ization (no additional prefix), or allocate blocks for a small needs to lock head and tail of the queue.

(b) distributed task pools with or without dynamic task
stealing €g* ),

number of objects when required (prefif”). The elements The two distributed task pools without dynamic task
of these arrays or blocks are either directly returned to thestealing implemented in C are namddl anddg3. In
application by successivpool_alloc_*() function Java onlydql has been implemented. They both use LIFO

calls (no additional suffix), or all of the elements are in- queues, budgl implements them by single-linked lists
serted into the corresponding free-lists right after the block while dgq3 uses fixed-sized arrays.
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| Free Lists | Items| Memory Allocation | Block Handling | Locking | Name |

— — | elements — — bs
central yes | elements — central lists I
central yes | blocks for whole lists elements are removed when needed | central lists bk
distributed | yes | elements — — dl
distributed | no | elements — — dif
distributed | yes | blocks for whole lists elements are removed when needed | — dbk
distributed | yes | blocks for whole lists elements are removed after allocationn — dbko
distributed | yes | blocks for some elements| elements are removed when needed | — dgbk
distributed | yes | blocks for some elements | elements are removed after allocation — dgbko
distributed | no | blocks for some elements | elements are removed after allocation — dgbkof
centraf+ .
distributed | Y&S elements — central lists cl
central + .
distributed no | elements — central lists clf
giesrt]:irkiljre dq| ves elements — central lists clb
centrai+ elements are removed when needed if .

- yes | blocks for some elements - central lists cgbk
distributed central free list is empty
central + elements are removed when needed if .

o yes | blocks for some elements S central lists || cgbkb
distributed central free list is empty
giesr::irki:e d yes | blocks for some elements | elements are removed after allocation central lists || cgbko
central + . .
distributed | Y&S blocks for some elements| elements are removed after allocation central lists || cgbkob
centra+ elements are removed when needed; .
distributed | Y&S blocks for some elements plo:_:ks are allocated when central freg central lists || cgbkl

listis empty
central + elements are removed when needed; .
distributed | Y&S blocks for some elements Iplc:c_:ks aretallocated when central freg central lists || cgbklb
istis empty

2 no central free lists for items

Table 1. Memory managers implemented in C.
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Type | Details | Queues | Access | Memory Allocation | Locking || Name |
central single-linked list LIFO when needed gqueue sql
central array LIFO during initialization | queue sQ2
central double-linked list | FIFO when needed tasks sq3
central single-linked list | FIFO when needed head + tail sq4
distributed single-linked lists | LIFO when needed — dgl
stealing from working end single-linked lists | LIFO when needed all queues dg2
distributed arrays LIFO during initialization | — dg3
stealing randomized local poolg single-linked lists | LIFO when needed all queues dg4
stealing from opposite end double-linked list | LIFO when needed all queues dg5
stealing from opposite end double-linked list | LIFO when needed tasks dg6
stealing from working end arrays LIFO during initialization | all queues dg7
stealing public and private single-linked lists, LIFO when needed public queues|| dg8
gueues arrays
cgntral * single-linked list, LIFO when needed central queue || sdql
distributed arrays
randomized rand_r, floating point | single-linked lists | LIFO when needed all queues rql
randomized :\rﬁl'[eersg:me Twister, single-linked lists | LIFO when needed all queues rq2
randomized Mer;enne .TW'Ster' single-linked lists | LIFO when needed all queues rq3
floating point
Table 2. Task pools implemented in C.
Type | Details | Queues | Access| Locking || Name |
central notify() in everyput() single-linked list LIFO | queue sql
distributed single-linked list LIFO | — dgl
stealing from working endnotify() in everyput() single-linked lists | LIFO | all queues dg2
stealing from opposite endpotify() in everyput() single-linked lists | LIFO | all queues dgs
stealing public and private queuenptify() in every | single-linked lists, LIFO | public queues| dq8
put() arrays
stealing er%r;t;//vorklng endpotify() only if queue is single-linked lists | LIFO | all queues dg9
. from working end; busy-wait instead of . r .
stealing wait() andnotify() single-linked lists | LIFO | all queues dql0
central + : : single-linked lists,
distributed notify() in everyput() arrays LIFO | central queue|| sdgl
randomized Mersenne Twister, floating poimptify() single-linked lists | LIFO | all queues rq3
in everyput()

Table 3. Task pools implemented in Java.
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Six task pools with dynamic task stealirdf2 anddg4 many central queues as there are processors. They differ
to dg8, have been implemented in C. In Java, five such only in the way of random number computatiogl uses
task poolsdq2, dg5, anddg8 to dgl0, have been imple-  the standard library functiorand_r()  combined with
mented.dq? is used as a reference implementation. It usesfloating point arithmetic to select queues. The other two
single-linked lists as LIFO queues, and task are stolen fromrely on the Mersenne Twiste2?], which was supposed to
the working end. All other task pools with dynamic task run faster than the standard library functiog2 uses inte-
stealing differ fromdg2 in usually only one implementa- ger arithmetic, andq3 uses floating point arithmetic.
tion detail.

dg4 uses an additional queue for every thread and orga-7. Target machines and algorithms
nizes its queues as randomized local pools.

dg5 implements the heuristics introduced3rb by steal-
ing tasks from the end opposite to the working end.

To study the task pools that we have implemented, three
different shared-memory multiprocessors have been used.
All of them have been used to investigate the performance
of the task pools for a synthetic algorithm and the hierarchi-
cal radiosity method in C with POSIX threads and in Java.

dq7 implements its queues by fixed-sized arrays rather
than lists.

dg8 uses a private and a public queue for each thread.
The private queues are implemented by small, fixed-sized7 1. Machines
arrays, and the public queues are single-linked lists of
such arrays.

The first of the three shared-memory systems is an Linux
A slight exception to this rule idg6 . It uses double-linked  pC with two Pentium IIl processors at 600 MHz. The pro-
lists and reduces the lock granularity to the level of tasks to cessors have two first level caches of 16 KB for data and
allow two concurrent dequeue operations on the two endsinstructions, respectively, and a 256 KB second level cache
of a queue. Therefore itis more similardg5 than todq2 for both data and instructions. They are interconnected by
and, for this reason, should be compared wligfs . the AGTL+ Frontside Bus
The C implementations all execute wake-up calls every 114 operating system on this machine is Linux. All C

time a task is inserted into a queue. This can be done bey,4rams have been compiled with the default optimization

cause the wake-up calls fihread_cond_signal() level undergcc-2.95.2 . The Java programs have been
are quite fast, and thus a processor which missed a wake-URyacuted in a Java 1.3 HotSpot Virtual Machine.

call because it was busy trying to steal a task from another

processor will only sleep until the next task is inserted. Oth-

erwise unnecessary idle time would be introduced. How-

ever, this approach is not optimal in Java, because

tify() calls must always be enclosed int@ynchro-

nized block, and thus a bottleneck is created wimen

tify() is executed in everput() operation. But to

be comparable with the C implementations, the Java im-

plementations execute theotify() operation in every

put() operation by default. To investigate the impact of

this bottleneck,dq9 and dgl0 have been implemented.

dq9 executesotify() only when a task is inserted into

an empty queue, ardhj10 eliminates the problem by using > 119 HHPIETTE ;

a flag combined with a busy wait instead of tait() which included a just-in-time (JIT) compiler.

notify() mechanism. The largest machines available have been two Sun Fire
One task pool with one central and several distributed With 8 (Sun Fire 3800) and 24 (Sun Fire 6800) Ultra-

queues has been implemented in C and in Java (sdql)SPARC Il processors at 750 MHz, which communicate by

The second multiprocessor is a Sun Enterprise 420R
with four UltraSPARC Il processors at 450 MHz. It also has
two separate 16 KB L1 caches for instructions and for data,
respectively, but is equipped with a much larger L2 cache
of 4 MB. The interconnection system between processors
and other system components is tltra Port Architec-
ture (UPA). Efficient access to main memory is provided by
crossbar switches.

The E420R runs Solaris 8, and the C compiler is part
of the Sun WorkShop 6. The default optimization level
has been used as on the Linux PC. For our experiments on
this machine, an implementation of Java 1.2 has been used,

Its implementation is very similar tdg8, since its local

the Sun Fireplane Interconnect. Each processor has 32 KB

queues are fixed-sized arrays and the central queue is a list1 cache for instructions, 64KB L1 cache for data and

of arrays.

Three very similar randomized task pootgl , rq2 ,
andrg3 , have been implemented in C, but omy3 has
been implemented in Java. All of them use four times as
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8 MB L2 cache for both instructions and data.

The operating system of both machines is Solaris 8. As
on the E420R, the C compiler from Sun WorkShop 6 and
Java 1.2 have been used.



k P(k) the tasks to increase the share of time needed to execute the
15 5149 task pool operations. This allows to uncover bottlenecks
20 57290 in the task pool operations, which could not be observed if
25 635593 the computation time of the tasks is orders of magnitudes
30| 7049122 higher than that of the task pool operations. Furthermore,
31| 11405739 since the absolute difference of the execution times of the
32 | 18454894 task pool operations can be very small, increasing the num-
33| 29860667 ber of tasks executed allows to measure a multiple of this
34 | 48315596 difference as the difference of the overall execution times

necessary to execute all tasks.
Table 4. Total number of tasks created by the To see how the task pools implemented perform with
synthetic algorithm  P(k) for some values of a realistic application, theadiosity application from the
k. SPLASH-2 benchmark suit8§] was chosen to be inves-
tigated. The SPLASH-2 suite was developed to provide a
set of shared-memory applications which facilitate the eval-
7.2. Algorithms uation of different hardware architectures.
Theradiosityapplication is an implementation of the hi-
To investigate the different task pool variants in detail, a erarchical radiosity method 8, 30]. This global illumina-
synthetic algorithm has been implemented which is deter-tion algorithm computes radiosity values for a given geo-
ministic and provides user control of its runtime behavior. metric scene by an adaptive hierarchical subdivision of the
It uses only one task typd that can be described by the object surfaces. For each of the resulting surface elements, a

following productions: radiosity value is computed by taking all interacting surface
_ elements of other object surfaces into consideration.
{100/} fori <0, As a C implementation of this method, trediosity ap-
A(i) — (10£} A(i —2) {50/} plication from the SPLASH-2 suite could be used directly

by applying only minor modifications. To investigate the
task pools written in Java, the application had to be ported.
The values in curly braces determine simulated computa- ' heradiosityapplication can be considered as a nonde-
tion times. The unit of time is the number of iterations of a t€rministic algorithm, because different execution orders of
loop that is used to simulate computations. The fagtcan the tasks can be observed to produce a marginally diffe_rent
be used to adjust the computation time of the tasks. SharediUmber of surface elements and, as a consequence, slightly
variables are not used. Though no locality in the computa- different numbers of interactions are processed.
tions can be exploited, this approach has the benefit that no  Since the task pools have been designed as universal data
synchronization operations are necessary to protect sharegtructures that can be used with any task-based algorithm,
variables and thus performance limits that are due to syn-they cannot make assumptions about the application which
chronization are only set by the task pools themselves. exceed the model of task-based algorithms. Therefore dif-
When called with argumerdt, in the initialization phase  ferent task pools can use different execution orders and in-
the algorithm sequentially creatéstasks with the argu- ~ duce different execution times of thadiosity application.
mentsk — 1 to 0. It can be shown by induction that the total Furthermore, in parallel runs, the order of task execution is
number of tasks processed by the algorithm grows expo-affected by the concurrent behavior of the processors.
nentially withk as fast as the sequel of Fibonacci numbers A first approach to minimize the effects of nondetermin-
[18]. The total number of tasks that the synthetic algorithm ism is averaging the execution times of multiple runs. An-
creates for selected values/ofs displayed in Tabld. All other approach is to use statistical information combined
the results we present for the synthetic algorithm have beerwith the execution time to assess a particular run of the
measured wittk = 32 and f = 40. With these parameters algorithm. For example, the total number of interactions
the algorithm has to process a total of 18 454 894 tasks.  processed per second or the number of visible interactions
The synthetic algorithm is well suited to investigate the processed per second allow a good comparison. This ap-
scalability of the task pools. It provides a deterministic proach has the advantage that it measures the performance
task creation scheme that produces a highly unbalanced taskf the task pools as the ratio of work per unittime. Thusitis
graph. The parameters of the algorithm can be controlled bynearly independent of the execution order used by specific
the user, which allows to investigate the influence of thesetask pools.
parameters on the performance of the task pools. For in- Three input scenes, “test”, “room” and “largeroom”, are
stance, it is possible to decrease the computation time ofincluded in the SPLASH-2 application. For our experiments

A(i —1) {1001} fori > 0.
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Figure 4. Szene “largeroom”.

Figure 5. Szene “Halle”.

Figure 6. Szene “Rauml1lw”.
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the largest input scene, “largeroom” (Figuhe was chosen

to be investigated. After the sequential creation of the BSP
tree, this scene consists of 532 patches, and 5 to 8 iterations
are performed to compute about 240 000 interactions. This
number may vary by 0.9 %. The number of surface elements
created for this scene is 21 000 and may vary by 1.4 %. The
average number of visible interaction is 89 000 and varies
by maximum 1.2 %.

Since in our first experiments on the smaller machine the
results of the task pools for thadiosityapplication showed
only minor differences, on the larger machines we have also
measured results for two more-detailed scenes, “Halle” and
“Raum11w”. For this purpose, the extensions implemented
in [26] have been used to enable tlagliosityapplication to
read the input scene from a file. Scene “Halle” (Fig&ye
consists of 1157 patches, and about 440000 interactions,
184 000 of which are visible, are processed in usually 4 it-
erations. The scene “Rauml1lw” (Figuds even larger. It
contains 2 979 patches, which lead to about 553 000 visible
interactions from a total of 1 700 000 that are processed in
about 4 iterations. For both scenes, the number of surface
elements and the total number of interactions do not change
if the program execution is repeated. But the number of
visible interactions still varies by maximum 1.2 %.

8. Results
8.1. C versions of the synthetic algorithm

To assess the task pools implemented in C, the execu-
tion times for all memory managers have been measured.
Then, the minimum execution time has been used as basis
for the assessment, arguing that this value is the best exe-
cution time that can be achieved with a specific task pool
variant provided that the most suitable memory manager is
used.

In order to investigate the ability of the task pools to ex-
ploit locality, we have used the PCL librarg][to measure
the misses of both L1 and L2 caches.

Linux PC

The minimum execution times of the C versions of the
synthetic algorithm measured on the Linux PC are shown in
Table5. Table7 shows the corresponding speed-ups. The
cache misses measured are displayed in Téable

As expected, the two distributed task poadgjl and
dg3, do best if only one thread is used, because all their
gueues are private and they therefore do not need to exe-
cute any synchronization operations to protect the queues.
When run in parallel, they usually take more time than all
other task pools, since the initialization phase of the syn-
thetic algorithm was designed to create an unbalanced data
distribution and no transfer of tasks is taking place.



Table 5. Comparison of the minimum execu-
tion times of the C versions of the synthetic
algorithm on the Linux PC.

Algorithm Test,k = 32, f =40 Radiosity, “largeroom”
Language C Java C Java
Threads 1 2 1 2 1 2 1 2
sql 0.96 1.76] 0.92 1.41]] 1.00 1.92][ 0.99 1.14
sq2 096 1.79| - - || 100 191 - -
sg3 0.90 1.63| - - || 099 1.90 - -
sq4 095 1.73| - - || 099 1.84 - -
dql 1.00 1.59| 098 1.54| 1.00 1.78| 0.99 1.14
dg2 0.95 1.85| 0.96 1.67|| 1.00 1.95| 1.00 1.14
dqg3 1.00 1.60| - - || 100 176 - -
dg4 095 1.82| - - || 1.00 1.95 - -
dg5 0.95 1.86| 0.89 1.71|/ 1.00 1.95| 0.99 1.19
dqgé 091 1.77| - - || 099 1.95 - -
dq7 095 1.86| - - || 1.00 1.94 - -
dg8 1.00 1.96| 093 1.82| 1.00 1.78| 1.00 1.18
dq9 - - 1092 1.75| - - | 1.00 1.19
dq10 - - | 095 1.83| - - | 1.00 1.18
sdg1 1.00 1.96| 1.00 1.90|| 1.00 1.95| 0.99 1.19
rql 094 1.74| - - || 099 1.94 - -
rq2 093 1.74| - - || 099 1.93 - -
rq3 0.93 1.73| 0.85 1.41|/ 0.99 1.93| 0.98 1.14
Table 7. Speed-ups on the Linux PC.
Number of Threads Cache L1 L2
1 2 Threads 1 | 2 1 | 2
1| dg3  3149s dg8  160.7s sql 11 [ 148327 3] 77750
2| dgl  +0.2%| sdgql  +0.0% sg2 8 | 121847 2| 66222
3 |sdgl +0.4%| dq7  +5.4% Sq3 || 46843 | 174486/ 38712| 95179
4| dg8  +0.4%| dg5  +5.6% sq4 23881 | 207935|| 19210 107188
5| sq2  +4.6%| dg2 = +57% dql 10 | 45598 3| 24150
6| sql  +47%| dg4  +8.0% dg2 14 | 46648 3| 25340
7| dg2  +4.9%| sq2 @ +9.7% dqg3 8 | 39404 2| 20353
8 | dg7  +5.1%| dg6 +10.9% dg4 1527 | 103861 45 | 52361
9| dg5 +5.1%)| sql +11.3% dg5 16 | 45155 3| 24189
10 | dg4 +55%| rq2 +12.3% dg6 19 | 46240 4| 24791
11| sg4 +5.6%| rql +12.4% dq7 10 | 38158 3 19815
12| rql +6.8%| rq3 +12.9% dg8 12| 27896 3| 15176
13| rg3  +7.0%| sg4 +13.1% sdql 12 | 32246 3| 17927
14| rg2  +7.3%| sq3 +20.1% rql 2871 | 146912 90 | 77257
15| dg6 +10.4%| dg3 +22.4% rq2 3886 | 164280 97 | 82909
16 | sq3 +11.2%| dgl +23.3% rq3 3954 | 173149 92 | 86549

Table 6. Average number of cache misses (in
thousands) of the C versions of the synthetic
algorithm on the Linux PC.
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To comparedql anddg3, the array implementation of Number of Threads
the queues ilg3 seems to be slightly faster than the list 1 2
implementation of the queues gl. This can be ex- 1| dif 328.9s| dbko 172.1s
plained by the lower complexity and the higher locality of 2 | dgbkof  +0.1%]| dbk +0.1%
the array implementation. Since the data of the queues is not 3| d +0.3% | dgbko +1.0%
shared, false sharing can only occur if threads are assigned 4 | clf +0.3% | cgbkl +1.2%
to different processors during their lifetime. 5 | dbko +0.4%| dgbkof +1.5%

The best parallel results are achieved by the two task 6| cl +0.5% | cgbklb  +1.6%
poolsdg8 andsdql . dg8 implements dynamic task steal- 7 | cgbko +0.5%| cgbk +1.7%
ing with private and public queues, whitelql is a com- 8 | dgbk +0.5% dif +2.1%
bined central and distributed task pool. They both have in 9 | dgbko  +0.5%| cgbkb +2.1%
common that synchronization operations do not have to be 10 | cgbk +0.6%)| dgbk +2.3%
executed in every task pool operation. This reduces syn- 11 | cgbkl +0.6 %] cgbko +2.4%
chronization overhead as well as the number of simultane- 12 | dbk +0.6% | cl +2.7%
ous accesses to queues. Additionally, since tasks are orga- | 13 | clb +1.2% | cgbkob ~ +2.8%
nized in small blocks of four tasks, they show very good lo- 14 | cgbkob  +1.2% clf +3.2%
cality. But this block organization also has the drawback to 15 | cgbklb  +1.3%| dl +3.3%
coarsen the available parallelism, since now the minimum 16 | cgbkb +1.3%| clb +4.6 %
unit of parallelism is a block of four tasks. 17 | bs +8.1%| bs +15.9%

The central queue aidql does notimpose a bottleneck 18 | bk +10.2%| bk +27.6%
since the number of processors is extremely small. Because 191 +103% | | +29.8%

of the reduced synchronization overhedd8 andsdql

also obtain the best sequential execution times of all task
pools that allow the balancing of tasks. As a result, the best
speed-up for the C versions of the synthetic algorithm on
the Linux PC of 1.96 has been measured wit8 and two
threads. Because their results are nearly identical, it is not

Table 8. Comparison of the averaged execu-
tion times of the memory managers for the
synthetic algorithm on the Linux PC.

possible to comparéq8 andsdgl on this machine. ducing the lock granularity to tasks increases the synchro-
Central and randomized task pools obtain about the samenization overhead so much that the resultsigé are the
performance. Even thougiy3 andsg4 allow two simul-  worst of all task pools with dynamic task stealing.
taneous queue operations they cannot outperfayin be- Using a suitable memory manager has significant impact
cause of their higher complexity and worse locality (see Ta- on the execution time of a task based algorithm. On the
ble 6). As it was the case for the two distributed task pools, Linux PC the best memory managegbko , achieves an
the array implementation of the central queuesq® is average speed-up of about 16 % compared to the memory
faster than the listimplementationsd1 . Due totheirvery  manager of the operating systetys) when the synthetic
similar implementations, the execution times of the three algorithm runs with two threads. A comparison of the mem-
randomized task pools show hardly any differences. ory managers on the Linux PC is shown in TaBle
In general, best performance is provided by dynamictask  As expected, on the Linux PC the central free-list$ of
stealing. Since those task pools do not use central dataandbk lead to even worse execution times than those of
structures, the task pool operations are not sequenced. Onljs. The results of the other memory managers, which use
synchronization overhead and waiting times in the stealing distributed free-lists and sometimes also central free-lists in
process slow them down. Therefalg8, which uses pri-  addition, are — in individual cases — 10 to 20 % better than
vate and public queues, is the fastest task pool with dynamicthose ofbs.
task stealing, because it only needs to synchronize the pub- |n general, the results of the memory managers imply
lic queues. that it is not necessary to implement additional central free-
To compare the other task-stealing pools, it can be seerlists for balancing. One should rather choose a simpler and
that implementing queues by arrays, like it was done for faster implementation of distributed free-lists only, because
dq7, achieves better performance than the list implemen-the central free-lists will introduce a bottleneck if the num-
tation of dg2. The stealing heuristics used fdg5 also ber of processors increases, and — even without central free-
outperforms the standard implementatdg® . lists — memory blocks are transferred between processors
Randomized local pools have been implementedbgs when there is a transfer of tasks. Allocating memory for
They decrease the performance due to the higher complexmultiple tasks at once seems to be a good idea.
ity of the data structure and reduced locality. Similarly, re-  On the Linux PC the best memory managers also show
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4 Cache L1 L2

o — Threads| 1 | 4 1 [ 4
a5 | sql |[[ 118400] 30259 10 7
sQ2 98907 | 24767 5 2

sq3 356917 | 169633 || 22397 | 5626
sq4 163206| 40422 11663| 3013

dgl 39231 | 10028 9 3
5 251 dg2 119473| 28960 5 5
32 dg3 19920 5198 5 1
g L0 dg4 || 140185| 35731 80| 25
dg5 116670 28873 11 77
dg6 275189 | 72251 17 20
15 dq7 146148| 26822 11 1
dg8 23029 6452 13 2
1 sdgl 23027 6658 11 30
rql 133225| 35147 31 25
05 rq2 || 143140| 38634 87| 88
1 15 2 25 3 35 4 rq3 152281 | 40418 94 34
Threads

Table 9. Average number of cache misses (in

Figure 7. Speed-ups of the C versions of the thousands) of the C versions of the synthetic

synthetic algorithm on the Sun E420R. algorithm on the Sun E420R.

the least cache misses on both L1 and L2 caches. So localitya speed-up of 3.88 with four thread8 only obtains 3.82.
seems to be the reason that some memory managers thathe number of processors is small enough that the central
use items are even faster than the corresponding memoryjueue ofsdgl does not become a bottleneck.

managers that do not. Dynamic task stealing provides the best scalability on
this machine as well, and the results measured for these task
Sun Enterprise 420R pools imply the same order as on the Linux PC.

Compared tadq2, the stealing heuristics improves the
On this machine a similar order of the execution times of performance ofig5. But this is not the case falg6, be-
the different types of task pools as on the Linux PC can be cause the costs to reduce the lock granularity are very high.
observed. Dynamic task stealing and combined central anddg4 with randomized local pools also cannot match the per-
distributed task pools provide the best results. Using four formance ofig2. The array implementation alfg7 speeds
threads, the randomized task pools outperform the centralup even better than the heuristicsoof5 .
task pools. The distributed task pools achieve the worst re-  All central task pools do not scale very well. If only two
sults. processors are used, the best central task pools can still com-
As on the Linux PC, the distributed task poalg,l and pete with the worst task pools with dynamic task stealing.
dg3, achieve the best sequential results, but are very slowBut if the number of processors is increased, the bottleneck
when run in parallel. Their execution times improve when of the central queue limits the performance.
the number of threads slightly exceeds the number of pro- Reducing the lock granularity of the central queue in-
cessors. In this case the operating system can utilize arcreases its complexity. Therefore the sequential execution
idle processor by assigning one of the additional threads totimes ofsq3 andsg4 are worse than those of the compa-
it. If the number of threads is increased even further, the rable task poasql . Another reason for the large execution
overhead for thread scheduling will be more expensive thantimes of bothsq3 andsg4 is that they process the tasks in
performing synchronization operations on the distributed FIFO order, which leads to a high number of cache misses
queues. Agaimlq3 is slightly faster tharlql. The speed-  (see Tabl®). Yet, if the number of processors is increased,
ups fordgl anddg3 measured with four threads are 2.18 they do better thasgl. With four threads, the speed-ups
and 2.20, respectively. measured fosq3 andsg4 are 2.67 and 2.72, respectively,
The best parallel results are achieveddoy andsdql while sql only reaches 2.62.
like it was the case on the Linux PC. But on this machine  Since the complexity a§g4 , which is based on the two-
our results show minor advantagessdfjl , which reaches  lock queue from23], is much lower than that afq3 which
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agers with dg8 for the synthetic algorithm on
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locks single taskssg4 runs faster. As for the two dis- Figure 9. Speed-ups of the C versions of the
tributed task pools, the array implementation of the central ~ Synthetic algorithm on the Sun Fire.

gueue ofsq2 is faster than the list implementation 1 .

It obtains a speed-up of 2.75.

The three randomized task pootgl , rq2 andrg3,  managers in the first group show execution times of about
have bad sequential execution times. This is due to the highy40 s, but the memory managers in the second group need
costs of random number computation and the reduced Iocal-omy about 330s. These large differences in the execution
ity. However, when run on multiple processors, the random- tjmes of these groups cannot be explained by the different
ized task pools scale better than the central task pools, butmplementations of the memory managers since for other
cannot compete with dynamic task stealing. The speed-upsask pools different groups can be found. Additionally, con-
they achieve range from 3.15 to 3.27. sidering only thed* andc* memory managers, the results

Since the three randomized task pools differ only in the for the Linux PC show that the impact of the different mem-
way of random number computation, no advantage of onegry manager implementations is only very small compared
version over the other can be measured. Only the stan+o the ratio of3 that could be measured in the example of
dard library functionrand_r()  used forrql seemsto  dqg8 on the Sun E420R.
do slightly better than the Mersenne Twist@2] used for Since the effects also occur in the single-threaded runs,
rq2 andrg3 . the concurrent behavior of the threads cannot be the rea-

The results of the memory managers (Tab® confirm son. Moreover, in contrast to the Linux PC, no clear corre-
the significance of their use. When run with four threads, on lation between locality and the execution time of a memory
this machine some of our memory mangers are even 90 %manager can be observed. This implies that the discovered
faster than the memory manager that capsulataioc() grouping effect is a result of the complex relationship be-
andfree() ,bs. tween the locality of memory references and implementa-

Comparing the memory managers on the Sun E420R istion details of both the memory managers and the specific
difficult. Investigating a selected task pool, the execution task pool variants as well as the characteristics of the hard-
times for the different memory managers can often be clas-ware architecture of the machine.
sified into several groups of similar execution times. The
difference of the execution times of two different groups Sun Fire 3800 and 6800
is then quite large. For different task pools the number of
groups and the affiliation of the memory managers to the  Due to the larger numbers of processors, smaller differ-
groups varies. ences in the scalability of the task pools become visible on

Figure8 shows the runtimes of the memory managers for these machines. Figu@&shows the results for the C ver-
dg8 as an example. It can be seen that there are two groupsions of the synthetic algorithm measured with up to 22
of memory managers in the case of one thread. The memonthreads. It can be seen that the scalability of the central task
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Number of Threads
1 2 4 8
1 | dgbkof  375.8s| dbk 207.8s| dbk 120.9s| dbk 119.7s
2| c +2.9% | dgbkof  +0.8%| dgbkof  +0.7%/ dgbkof +1.3%
3 | dbk +3.4% | dbko +2.7%/| dbko +3.1%/| dbko +5.1%
4 | clb +3.8% | dgbk +4.1%/| dgbk +3.8%/| dgbk +5.7%
5 | dbko +4.0%]| cl +4.8% | cgbk +4.1%/| cgbklb +5.5%
6 | dgbk +4.1%| clf +4.8% | cgbkb +6.2%| cgbkb +5.7%
7 | clf +4.2% | cgbklb  +5.5%| cgbklb  +6.4%| clf +5.8%
8 | d +4.3% | cgbkb +5.7%| clf +6.7% | cgbk +7.2%
9 | cgbklb  +5.1%| dI +6.0% | cl +8.2% | cl +9.4%
10 | cgbkb +5.2%| cgbk +6.1%/| cgbkl +8.6 %| cgbko +10.2%
11 | cgbko +6.2%| clb +6.5% | dl +9.0% | di +10.5%
12 | cgbk +6.2%| cgbkl +6.6 %| cgbko +9.4%| cgbkl +10.9%
13 | cgbkl +6.2%| cgbko +7.2%| dgbko +9.8%]| clb +10.9%
14 | dif +7.2% | dif +8.4% | clb +10.2% | dif +12.0%
15 | bk +12.3%| dgbko  +12.1%| dIf +10.9% | cgbkob  +12.0%
16 | dgbko  +13.0%| cgbkob +14.6%)| cgbkob +13.2%)| dgbko +12.6 %
17 | bs +13.0%| bk +27.1%| bk +91.4%| bk +151.8%
18 | | +13.4% | bs +28.8%)| bs +92.9%| | +181.4%
19 | cgbkob +14.0% | +27.9% | | +94.0% | bs +210.4%

Table 10. Comparison of the averaged execution times of the memory managers for the synthetic
algorithm on the Sun E420R.

pools is very poor. The maximum speed-up reached with aLinux PC
central task pool is 4.14. It was measured veidgfd running
with six threads. Table1l1 compares the results of the Java versions of the
The distributed task pools also restrict the achievable synthetic algorithm on the Linux PC. The speedups mea-
speed-up. They both reach speed-ups of 2.56 when 1Zured are shown in Table
threads are used. Speed-ups for larger numbers of threads |n the run with a single threagdql is the fastest task
have not been measured, because they were expected to inpool. The other task pools are between 2.2d¢2) and
prove only insignificantly. Another task pool that limits the 18.1 % ¢q3 ) slower. If two threads are usestjql obtains
scalability of the synthetic algorithm ©g6. It reaches a  the best speed-up of 1.90. Thdql0, dg8 anddq9 fol-
speed-up of 5.34 with 8 threads. low. All of these four task pools execute fewer synchroniza-
All other task pools provide nearly linearly increasing tion operations than the other task pools, exceptdigt,
speed-ups. The best speed-up of 21.29 has been measurele slow execution time of which results from the static data
with dg8. sdql reaches a speed-up of 20.87. The maxi- distribution it uses.
mum speed-up achieved with the reference implementation  The heuristics used idqg5 attains better results than the
of dynamic task stealinglg2, is 19.46.dq7, whichimple-  reference implementation dfj2. Because of the expensive
ments its queues by arrays, can outperform this result. Duérandom number computations, the randomized task pool,
to the heuristics used, in most casiEb is slightly faster rq3 , is even slower than the distributed task poddl .
thandg2. Only in the run with 22 threads its results are The central task pookql , reaches the worst results. This
worse than those alq2. The randomized task pools and s due to the contention for the central queue.
dg4 reach speed-ups of about 16.8 to 17.6. The best task A difference between the mechanisms for conditional
pool of this group isql . waiting in POSIX threads and Java is that in Java the oper-
ation to wake up sleeping threads must only be called when
the corresponding lock has been acquired. The results for
dg9 anddgl0 show that the performance of the task pools
Since no memory managers have been implemented inmproves if the number of such calls is reduced, because
Java, only one version of each task pool exists, and the taskhus the sequencing of callspait() can be avoided.
pools can be compared directly by their execution times. While in C synchronization behavior, the number of ex-

8.2. Java versions of the synthetic algorithm
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Number of Threads
1 2 4
sdql 335.99 sdqgl 176.79 sdql 178.4 9
dgl +2.2%| dgl0 +4.0%| dg8 +3.4%
dg2 +3.7%]| dq8 +4.4%| dgl0 +7.1%
dgl0 +4.9%| dq9 +8.6%| dq9 +9.1%
dg8 +7.7%| dg5 +10.9%| dgl +11.3%
dq9 +8.8%| dgq2 +13.6%| dg5 +34.9%
sql +9.0%| dgl +23.3%| dg2 +37.1%
dg5 +12.2%| rg3 +345%| rg3 +44.8%
rq3 +18.1%| sql +34.7%| sql +94.4%

O©CoO~NOOOTA,WNPE

Table 11. Comparison of the execution times of the Java versions of the synthetic algorithm on the
Linux PC.

ecuted operations and locality are the main factors that in-
fluence the execution time of an algorithm, the execution
time of a Java program also depends on the abilities of the
virtual machine to speed up the interpretation of the inter-
mediate code. Certainly different programs are different to
access for optimization techniques. And current virtual ma-
chines reduce the execution time of a program remarkably.
For example, with Java 1.3, the best task pool executed on

the Linux PC with one thread lags only about 7 % behind the
best C implementation. When a version of Java 1.2 without

a just-in-time compiler was used, the Java programs were
about 40 times slower than the C programs.

RN
s

Sun Enterprise 420R

The execution times of the Java versions of the synthetic

algorithm on the Sun E420R are shown in Tab® The
speed-ups achieved are illustrated in Figlide

Speed-Up

On this machine the results measured with Java are very
similar to the C versions. The only distributed Java task

pool, dql, gives the best result for one thread, but suffers
from load imbalance when run with multiple threads and

only attains a speed-up of 2.15. 0%
As in C,sdgl anddg8 have the best parallel perfor- o
mance. With four threads they reach speed-ups of 3.64 and 1 15 2 25 3 35
3.54 respectively. Threads
dgl0 anddq9 only reach speed-ups of 3.03 and 2.96,
respectively. Compared g8, they have to execute more Figure 10. Speed-ups of the Java versions of

synchronization operations, because they have to acquire a the synthetic algorithm on the Sun E420R.
lock every time they access their local queue.
dg5 anddg2 achieve speed-ups of 2.57 and 2.54, re-
spectively. They acquire an additional lock to execute a
wake-up call every time a new task is inserted into the pool.
Because the computation of the random numbers is ex-
pensive, the randomized task paw3 , and the distributed
task pooldgl, reach about the same speed-ups of 2.11 and
2.15, respectively.
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Number of Threads
1 2 4 8
dgl 711.5s| dg8 358.4s| sdgl 189.69 dqg8 182.7s
dg8 +0.1%| sdgl  +0.3%| dq8 +0.3%| sdqgl +2.0%
sdql +0.4%| dqg9 +6.2%/| dq9 +8.1%| dgl0 +12.3%
sql +1.1%| dgl0 +8.6%| dql0 +9.0%]| dg9 +12.5%
dgl0 +1.4%| dg2 +8.7%| dg2 +11.9%| dqgl +68.0%
dg9 +1.9%| sql +9.0%| dg5 +145%| dg2 +100.2%
dgs5 +2.8%| dg5 +11.7%| rqg3 +25.2%| dg5 +111.1%
dg2 +4.5%| rq3 +18.2%]| dql +71.5%| rqg3 +121.6%
rq3 +6.4%| dgql +24.2%| sgql +303.8%| sql +405.2%

©Coo~NOULA, WNPE

Table 12. Comparison of the execution times of the Java versions of the synthetic algorithm on the
Sun E420R.

25 they both do not execute wake-up calls every time a new
task is inserted, their speed-up curves are nearly linear and
reach a maximum speed-up of 16.07 and 16.59 with 22
threads, respectively.

dg2, dg5 andrg3 all suffer from the bottleneck created

S w by the wake-up call. So they reach their maximum speed-
up of 2.93 to 3.33 with only four threads. The central task
pool,sql, performs even worse. Its maximum speed-up of
S 1.77 was measured with only two threads. The distributed
/ P task pooldql, reaches its maximum speed-up of 2.57 with
10 Zar about 16 threads.
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»{f.’j""l 8.3. C versions of theradiosity application

< ) % The C versions of theradiosity application are more
0 S S — difficult to evaluate than those of the synthetic algorithm
0 5 10 15 20 25 L :

because the execution times of different program runs may

Threads Lo .

vary due to nondeterministic behavior. We therefore de-
cided to take statistical information about the computations
into account. More precisely, we used the sum of com-
pletely and partially visible interactions divided by the exe-
cution time as the assessment basis. In particular, we use the
average over the interaction rates of all memory managers

Due to the contention for the central queue the centralto compare the task pools.

task poolsqgl, reaches its maximum speed-up of 1.19 with
two threads. When executed with more threads, the perfor-
mance ofsql even decreases.

Figure 11. Speed-ups of the Java versions of
the synthetic algorithm on the Sun Fire.

Linux PC

Sun Fire 3800 and 6800 The results for theadiosity application show a similar
order of the execution times of the different types of task
Figure11 shows the speed-ups for the Java versions of pools as the results for the synthetic algorithm (Table
the synthetic algorithm for up to 22 threads. Here the bestBut it is hardly possible to compare different task pool ver-
task pool issdql . Its speed-up increases up to 19.41 mea- sions of the same type, because the results are very close
sured with 22 threadsdg8 obtains the second best speed- to each other. The only remarkable exceptiodd8, the
up of 18.87. results of which amount to those of the two distributed task

dg9 anddqlO have about equal speed-ups. Because pools.
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Figure 12. Speed-ups of the C versions of the
radiosity application (scene “largeroom”) on

the Sun E420R.
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Figure 13. Speed-ups of the C versions of the
radiosity application (scene “Halle”) on the

Sun E420R.
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Figure 14. Speed-ups of the C versions of the
radiosity application (scene “Rauml1lw”) on
the Sun E420R.

Sun Enterprise 420R

The results for the C versions of thediosityapplication
on the Sun E420R are shown in Figur2 The best speed-
up measured here (3.86) is about equal to the best speed-up
of the synthetic algorithm. But for theadiosity application
all task pools show good scalability on this machine. The
reason for this behavior is that thediosity application ex-
ecutes a smaller number of tasks which are computationally
more intensive.

The worst speed-ups, which have been measured for the
two distributed task pools, are 3.10 and 3.08, respectively.
sq3 and sqg4 respectively reach speed-ups of 3.72 and
3.71. These two task pools execute the tasks in FIFO or-
der. All other task pools reach a speed-up of at least 3.80.
Because of the close results, itis hardly possible to compare
the task pools within this group.

The speed-up curves we have measured for the scenes
“Halle” and “Raum11w” are very similar to those of “large-
room”, so they also do not allow a more detailed compari-
son of the task pools (Figurd8 and14).

Sun Fire 3800 and 6800

Because of the higher number of processors, on these
machines those memory managers that were known to
strongly limit the performance of the task pools were not
included in the average interaction rate.
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Figure 15. Speed-ups of the C versions of the
radiosity application (scene “largeroom”) on
the Sun Fire.
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Figure 16. Speed-ups of the C versions of the
radiosity application (scene “Halle”) on the
Sun Fire.
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Figure 17. Speed-ups of the C versions of the
radiosity application (scene “Rauml1lw”) on
the Sun Fire.

All speed-up curves for the scene “largeroom” reach
their maximum with less than 24 processors (FigLsg
The speed-ups of the distributed task pools slowly increase
to 6.1 measured with 20 threads. The central task pools
reach their maximum speed-ups of 7.8 to 8.1 with 12
threads. The best speed-up of 12.40 has been measured with
dg6 and 20 threads.

The other task pools reach their maximum speed-ups of
9.9 to 10.5 with 16 threads. Up to 20 threads the speed-ups
of the SPLASH-2 implementation are slightly better than
the speed-ups of the task pools in this group. The reason
for this is that our task pools have been assessed by the av-
erage interaction rate of several memory managers. If only
the best memory managers had been considered, some task
pools of this group would have shown better results than the
SPLASH-2 implementation. This is particularly surprising
since our implementations are not optimized to exploit the
special properties of thediosityapplication.

For scene “Halle” (Figur&6) againdg6 obtains the best
results. Its speed-up increases up to 16.03 when 24 threads
are used. In contrast to the results mentioned above, the
speed-ups of the distributed task poalgl anddqg3, can
also profit from all 24 processors. They reach speed-ups of
12.41 and 12.47, respectively.

All other task pools reach their maximum speed-ups of
about 9.0 with 16 threads. The only exceptions sgé ,
sq2 andsq4. This is caused by the non-linear speed-ups
of some combinations of task pools and memory managers



which influence the average interaction rates displayed. If
only the minimum execution times of all memory managers
were displayed, the results 8§11 andsg2 would be about
equal to the other task pools of this grogg4 would even
reach better speed-ups than the distributed task pools.

For our measurements with the scene “Raum11w” only
20 processors could be used (Figli7g. The results for this
scene are similar to those for scene “Halld6 achieves
the best speed-up of 14.34 with 20 threads. The distributed
task poolsdqgl anddqg3, achieve speed-ups of 10.98 and
11.06, respectively.

The other task pools also reach their maximum speed-
ups with 16 threads, but a decrease of the ascents of their
speed-up curves can be observed that implies that they
would hardly profit from additional processors.

Speed-Up

8.4. Java versions of theadiosityapplication

. 05
Linux PC 1 15 2 25 3 35 4

i L. . Threads
The results for the Java versions of tiadiosityapplica-

tion on this machine (Tablé) divide the task pools into two Figure 18. Speed-ups of the Java versions of
groups. The group with the better interaction rates consists e radiosity application (scene “largeroom”)
of dg5, dg9, sdgl, dg8 anddglO. Their results only on the Sun E420R.

vary by 1%. The results of the other group, which consists
ofdqgl, dg2, sql andrq3 , are about 4 % worse than those
of the best task pootig5 . The differences of the interaction
rates in this group are even smaller than in the first group.
Except fordg5 anddql, the task pools in the first group A
execute fewer synchronization operations than the members ideal

of the second groupq1 is slower because of the static data R
distribution it uses. The reason wly5 does best probably 3.5 - ggg o
lies in the stealing heuristics. ggg o

3+ dglo e
Sun Enterprise 420R sdgl —a—

2.5 > ’% -

To compare the Java versions of ttagliosity applica-
tion is even more difficult than to compare the C versions,
because the speed-ups reached only range from 2.39t0 2.575 2
in Java. This is especially the case since the order of the
task pools varies with the number of threads and does not

eed-Up

. . 15

correspond with the results of the C versions.

The speed-ups for the Java versions ofrrdudiosity ap-
plication are generally lower than those of the C versions. 1
Furthermore, the ascent of the speed-up curves decreases
with the number of processors (see Figut8s19 and20). 05

1 1.5 2 25 3 35 4

Sun Fire 3800 and 6800 Threads

The Java versions of thadiosityapplication could only Figure 19. Speed-ups of the Java versions of
be measured for up to 20 processors on the larger of the two  the radiosity application (scene “Halle”) on
machines. The results are shown in Figi2&s22 and23. the Sun E420R.

Though the speed-up curves differ for different scenes,
the individual task pools bring about very similar results.
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Figure 20. Speed-ups of the Java versions of

the radiosity application (scene “Raumllw”)
on the Sun E420R.
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Figure 21. Speed-ups of the Java versions of
the radiosity application (scene “largeroom”)
on the Sun Fire.
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Figure 22. Speed-ups of the Java versions of

the radiosity application (scene “Halle”) on
the Sun Fire.
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Figure 23. Speed-ups of the Java versions of
the radiosity application (scene “Raum11lw”)
on the Sun Fire.



For scene “largeroom” the maximum speed-up measuredthat provides a global address space for distributed arrays
was 4.74. It was measured witfg9 running with 10 on message-passing machines.

threads.dqg5, dq10 anddg2 achieve the next best results. A combined dynamic and static scheduling that simulta-
Their speed-ups are 4.54, 4.46 and 4.44, respectively. Theneously balances processor loads and maintains locality is
speed-ups ofiq8, sdgl, rg3 andsql range from4.31to  the fractiling technique that combines factoring and tiling
3.91.dql can only obtain the worst speed-up of 3.46. [15, 2]. This technique can be applied to parallel loops

For scene “Halle” the task pools reach their maximum whose iterations have variable running tim& §nd has
speed-ups with 16 or 20 threads. The best task pairi9 been successfully used to the fast multipole method by Ban-
which achieves a speed-up of 9.78q2, dg5, sgl1 and icescu [l]. Different dynamic scheduling methods for paral-
dgl0 are next with speed-ups ranging from 8.24 to 7.81. lel loops including factoring, weighted factoring and adap-
The speed-ups a3 , sdgql anddg8 are lying between  tive weighted factoring have been compared by Carino and
7.70 and 7.50dq1 is the slowest with a speed-up of 7.05. Banicescu] for loops with different characteristics.

The maximum speed-ups for scene “Raum1lw” were Another class of scheduling algorithms aims at distribut-
also reached with 16 or 20 threads. Agdi® obtains the  ing runnable tasks equally among the processors. This class
best speed-up of 8.53. The speed-updaB anddg2 are of algorithms is usually referred to dsad balancingal-

7.68 and 7.53, respectively. As for the other scenes, thegorithms. Kumar et al.]9 compare several load balanc-
slowest task pool isigl with a speed-up of 6.60 The other Ing techniques. TuckeBB]| has done research in schedul-

task pools achieve speed-ups between 7.25 and 7.06 ing on multiprogrammed shared-memory multiprocessors.
Durand et al. 10] study load balancing in self-scheduling

schemes on Non-Uniform Memory Access (NUMA) ma-
9. Related work chines.
Load balancing schemes using task queues are de-

A lot of research has been done in developstgtic ~ Scribed in Dandamundi and Ayac8|[ Rudolph et al. 29,
scheduling algorithms for DAGs. An overview can be found Wen [36] and Podehl et al25]. Dandamundi and Ayact®]
in the book of Brucker4] or the article of Kwok and Ah- ~ Present a processor scheduling scheme based on a hierar-
mad 0]. Static scheduling provides that a complete task chical run queue organization. Rudolph et &9][pro-
graph with task execution times and communication costsPose a load balancing scheme using a collection of local
is given. This graph is used to compute a schedule that carivorkpiles. Wen 86] describes the implementation of a dis-
later be used to execute the tasks of the DAG in an efficientributed task queue on the CM5. Podehl et28] have used
order. a parallel queue implemented by multiprefix operations to

If task execution times cannot be modeled exactly, improve the performance of tmadiosityapplication on the

Tongsima, Chandrapornchai et al. have proposed model-SB-PRAM.

ing the execution times by probabilistic distributior8l]

or fuzzy setsT]. 10. Conclusions

In special cases, static scheduling can be used to speed
up irregular applications. Gerasoulis, Jiao and Yabg [ We have presented results of several task pool imple-
have applied the static scheduling system PYRRUBp mentations for shared-memory systems. These have been
the Fast Multipole Method (FMM). obtained using a synthetic algorithm and taeliosity ap-

In general,dynamicscheduling is necessary to exploit plication from the SPLASH-2 suite.
parallelism in irregular algorithms optimally. Various ap- Task pools provide an easy way to implement irregular

proaches have been proposed towards the efficient parallealgorithms but have the disadvantage to compromise local-
execution of irregular computations: Johnsti[proposes  ity. The implementations presented have been designed to
a Dynamic Task Graph (DTG) used to store tasks createdbe usable with any task-based algorithm. In practice, task-
at runtime. Cosnard, Jeannot and Ya8pdropose a Sym-  based algorithms may use specialized task pools, that are
bolic Linear Clustering (SLC) algorithm for Parameterized optimized according to the needs of the algorithm.
Task Graphs (PTGs). A parallel incremental scheduling al-  The implementation of a task pool has great impact on its
gorithm is proposed by WiBE. performance. In order to avoid bottlenecks, no central data
Further approaches concentrate on automatic loopstructures should be used that are accessed concurrently.
scheduling. Rauchwerge®§] proposes runtime paral- Therefore, from the task pools implemented in this paper,
lelization techniques that use inspector/executor or specu-dynamic task stealing provides best scalability. The best of
lative methods to schedule fully and partially parallel loops our implementations of dynamic task stealing uses a private
at runtime. Saltz et al1jg] have used the inspector/executor and a public queue for each thread. Thus the number of syn-
approach to implement the CHAOS runtime support systemchronization operations is reduced as well as the number of
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conflicts caused by task stealing, and speed-ups of 21.29 inty emerge, and often the maximum speed-up is already
C and 19.41 in Java could be measured using 22 processorseached with less than 24 processors.

The combination of central and distributed queues has The speed-ups of the task pools measured foratms-
shown good scalability as well. For the C versions of the ity application are often very close to each other. Because
synthetic algorithm its performance could nearly match dy- these small differences are influenced by errors of the same
namic task stealing with private and public queues. But for order in the measurement introduced by the operating sys-
the Java versions its scalability was limited to 16 proces-tem and other user processes, a definite comparison of the
sors, probably due to the bottleneck created by the centratask pools is not possible for this application.
queue. With the development of Java Virtual Machines, the ex-

As expected, central task pools show poor scalability be- ecution times of Java programs get closer to C. But those
cause of the bottleneck that the central queue imposes. Disecompilers make it more difficult to compare Java programs,
tributed task pools which only provide a static data distribu- because their optimizations speed up different programs dif-
tion are also not able to meet the performance of dynamicferently.
task stealing. Reducing lock granularity often decreases the In general, the Java implementations reach smaller
performance due to higher overheads. speed-ups than the C versions. One reason for this is that

Most of our implementations execute wake-up calls ev- the synchronization mechanisms of Java are not as flexible
ery time a new task is inserted into the pool. Because inas those of POSIX threads. There are no independent oper-
C these calls are executed very fast, this does not introduceations for locking and unlocking of objects, and the call to
much overhead but reduces the idle time of processors outvake up conditionally waiting threads must be protected by
of work. In Java theaotify() calls provided for this pur-  the corresponding object lock.
pose must only be called inside of a corresponding critical ~ Another reason is that the Java programming language
region. Thus a bottleneck is created that limits the scala-does not allow to use memory blocks as it can be done in
bility of most of our Java implementations and hinders a C, and therefore many optimizations used in C programs
comparison of these implementations for larger numbers ofcan not be applied in Java. Particularly, a memory manager
threads. in Java would probably be more expensive than using the

But the C versions of the synthetic algorithm allow a built-in functions of the language.
good comparison of the task pools. It can be observed Furthermore, the scalability of any Java application is
that queues implemented by arrays do better than the cordimited by the ability of the virtual machine used to exe-
responding list implementations. Using heuristics to steal cute it. Particularly, in the virtual machine we have used
larger tasks can slightly improve the performance of dy- only a sequential garbage collector was implemented. But
namic task stealing. Even though the efficiency of random- there are other sources of performance loss in the structure
ized task pools is lower than that of dynamic task stealing, of the Java programming language. For example, efficient
randomized task pools can profit from all 24 processor thatmemory management is far more complicated, and the syn-
have been available. chronization mechanisms of Java are not as flexible as those

Our investigations of the cache behavior have shown of POSIX threads.
that locality is exploited best if distributed queues are used  Of course there are many other task pool implementa-
which are processed in LIFO order. Especially central tions that may be thought of. For example, the balancing
gueues and randomized behavior increase the cache missf tasks could be done in a separate phase or by a separate
rates. thread. Other implementations can even model the whole

Due to the high number of memory operations typically task pool as a graph that is searched by all processors in
executed in a task-based algorithm it is very important to parallel [L8]. Also many variations and improvements of
use an appropriate memory manager. Recycling memoryour implementations are possible.
blocks in distributed data structures and anticipatory allo-  The implementations we have presented only show the
cation strategies can remarkably improve the performance general capability of task pools to be used for parallel ir-
This way, on the Sun E420R the execution time of the C regular algorithms. Even though load balancing strategies
versions of the synthetic algorithm could be reduced by that are adapted to the specific application often lead to bet-
more than 90%. Like the task pools, memory managerster performance, in our example, thadiosity application,
should not use central data structures that are accessed cosealability was limited by the application itself. The results
currently. for the synthetic algorithm proved that good task pool im-

The radiosity application is a typical irregular applica- plementations are well able to efficiently use all processors
tion that intensively uses common variables stored in the of our machines.
shared-memory. Because accesses to these variables must Future investigations may concern alternative algorithms
often be synchronized, additional limitations to scalabil- as well as new types of task pools. Most interesting al-
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gorithms are real-world applications which are determinis- [15] S. Hummel, E. Schonberg, and L. Flynn.

tic and provide extensive user control. New types of task
pools should be aiming at a further reduction of the over-
head caused by the thread library and at avoiding the bot-[16]

tlenecks present in most of the task pools presented in this

paper. Further investigations may also consider heuristic
approaches to improve the schedule.
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