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ABSTRACT

This paper analyzes the overheads incurred in the exploita-
tion of loop-level parallelism using Java Threads and pro-
poses some code transformations that minimize them. The
transformations avoid the intensive use of Java Threads and
reduce the number of classes used to specify the parallelism
in the application (which reduces the time for class loading).
The use of such transformations results in promising perfor-
mance gains that may encourage the use of Java for exploit-
ing loop-level parallelism in the framework of OpenMP. On
average, the execution time for our synthetic benchmarks
is reduced by 50% from the simplest transformation when 8
threads are used. The paper explores some possible enhance-
ments to the Java threading API oriented towards improving
the application—runtime interaction.

1. INTRODUCTION

Over the last years, Java has emerged as an interesting lan-
guage for the Internet community. This fact has its basis
in the design of the Java language. This design includes,
among others, important aspects such as portability and ar-
chitecture neutrality of Java code, or its multithreading fa-
cilities. The latter, is achieved through the built-in support
for threads in the language definition. The Java library pro-
vides the Thread class definition, and Java runtimes provide
support for thread, monitor and condition lock primitives.
These characteristics, besides others like its familiarity (due
to its resemblance with C/C++), its robustness and secu-
rity or its distributed nature have made it an interesting
language for scientific parallel computing.

However, the use of Java for scientific parallel programming

*Preliminary versions of the material presented in this paper
appeared in the proceedings of the ACM 2000 Java Grande
Conference and The Second Workshop on Java for High Per-
formance Computing (ICS’2000).

has to face with the large overheads caused by the inter-
pretation of the bytecodes, that leads to unacceptable per-
formances. Many current JVM try to reduce this overhead
by Just-in-Time compilation. This mechanism tries to com-
pile JVM bytecodes into architecture-specific machine code
at runtime (on the fly). In any case, the naive use of the
Threads support provided by Java may incur in overheads
that may easily offset the gain due to the parallel execution.
Other issues that should be considered include the lack of
support for complex numbers and multi-dimensional arrays.

A lack of suitable standards for parallel programming in
Java is also a concern. The emerging OpenMP standard for
Fortran and C/C++ has lead to the proposal of a similar
paradigm in the scope of Java (JOMP [2]). Although it is, of
course, possible to write shared memory parallel programs
using Java’s native threads model, it is clear that a directive-
based system (as in OpenMP) has a number of advantages
over the native threads approach.

In this paper, we analyze the overheads introduced by the
Java Threads when they are used to exploit loop-level par-
allelism (one of the most important found in scientific ap-
plications). We also present two transformations that could
be applied by an OpenMP compiler for Java in order to
efficiently exploit this parallelism.

The evaluation of the proposals takes into account the over-
head introduced in execution time and the increase in the
number of classes needed for the application (which reduces
the time for class loading). After the experimental evalu-
ation of the proposed transformations, we analyze the be-
havior of the threaded execution on a target machine. This
analysis provides some hints on how to modify the behav-
ior of the multithreaded runtime, which result in significant
performance gains. These results will probably end up in
the proposal of API modifications and extensions.

The document is structured as follows: Section 2 presents
some related work. In Section 3 we describe three different
techniques that could be used by the compiler to exploit
loop-level parallelism in Java. Section 4 evaluates the trans-
formations. Section 5 explores some possible enhancements
to the Java threading API that may provide some kind of
interaction between the application and the threading layer
of the system. Finally, Section 6 concludes the paper.



2. RELATED WORK

Most of the current proposals to support the specification
of parallel algorithms using Java mirror the large number
of alternatives that have been proposed for other languages
like FORTRAN or C. Some of them [10, 5] are based on the
implementation of common message-passing standards, such
as PVM or MPI [6, 17] by means of Java classes that, in turn,
make use of Java communication classes [8] or some modified
version of them [13, 14, 15]. These ideas and proposals are
oriented to distributed processing, and do not attempt to
deal with shared-memory parallelism.

There are also a number of proposals for making Java a data-
parallel language, such as HPJAvA, TITANIUM or SPAR [3,
4,18, 19], in which parallelism could be expressed in a more
natural way. These proposals, however, imply the modifi-
cation of the Java language itself (in fact, these extensions
become a Java superset or a Java dialect), in order to allow
the definition of data-parallel operations, non-rectangular
or multi-dimensional arrays or to allow some kind of data
locality.

Finally, other authors propose the use of a shared-memory
paradigm and the automatic restructuring of Java programs
for parallelism exploitation based either on code annotations
or compiler-driven analysis. For instance, Bik et al. [1] de-
scribe the restructuring process that should be carried out in
order to exploit the parallelism found in loops or multi-way
recursive methods. These works, however, make intensive
use of Java Threads to exploit the parallelism available. As
we will show in this paper there are other possibilities that
allow the exploitation of some of this parallelism without
having to pay the possible overhead introduced by the in-
tensive use of the Java threading system.

3. EXPLOITING PARALLELISM WITH
JAVA MULTITHREADING SUPPORT

This section presents and compares some transformations
that can be applied to Java programs in order to exploit
loop-level parallelism by means of the use of Java built-in
multithreading support. This work does not try to deal
with compiler optimizations or automatic detection of par-
allelism. Along these sections, we will assume the existence
of some compiler or restructurer that is at least capable of
transforming Java programs based on OPENMP-like anno-
tations made by the user in the source code. Since we are
not focusing into the restructurer itself, but in the trans-
formations that the Java language does permit, we will not
try to enter into discussions about the syntax or semantics
of these annotations (for more information see [1, 2]). Al-
though oriented towards code generated by a restructuring
compiler, the transformations presented in this paper can
be also applied manually.

In this section we describe three different alternatives that
could be used to restructure parallel loops written in Java
in order to exploit their inherent parallelism. The par-
allelized loops are substituted with some scheduling code
that is in charge of spawning parallelism, providing work to
other threads and waiting for the termination of that work.
The alternatives presented differ in where the parallelism is
spawned and how work is supplied to other threads. Two of

them require new packages that provide runtime support to
the code generated by the compiler. The three alternatives
could be summarized as follows:

Thread-based : Creates instances of a subclass of the
Thread class, defined for each loop. This strategy is
similar to the one suggested in [1].

WorkDescriptor-based : Creates instances of a subclass
defined for each loop that describes the work to be
done (WorkDescriptor), and supplies these instances
to previously pre-created instances of a subclass of the
Thread class.

ReflectionWorkDescriptor-based : Combines the pre-
vious transformation with the use of the Java Reflec-
tion package to describe the work to be done and avoid
the definition of a new class for each parallel loop.

Each one of these transformations is presented in detail in
the following sections. Figure 1 presents the source code
for a simple example (with only one parallel loop and using
the directives proposed in [2]) that will be used in order to
illustrate the transformations.

public class Loop {
public static void
main (String args[]) {
// ...}
void foo() {
// omp parallel for private(i)
// schedule(static)
for (int i=0;i<100;i++) {
/* Do some work */
}
}
}

Figure 1: Source code for a simple example, with
JOMP annotations

3.1 Thread-based transfor mation

The first transformation makes intensive use of threads for
executing parallel loops (like [1]). The transformation in-
cludes the definition of one subclass of the Thread class for
every parallelized loop.

The constructor of that class receives as parameters the in-
formation needed to execute the parallel loop. This infor-
mation may include a reference to the instance where the
parallel loop is located (we will call this its “target” ), that
might be null if the method is a static method. The run
method of the new class invokes a concrete method of the
target. The method invoked in the target contains the par-
allelized loop. The loop header is transformed so that each
thread executes only in a subset of the whole iteration space,
and some auto-scheduling code is added prior to the execu-
tion of the loop. The original loop is replaced with code that
creates as many instances of the loop associated Thread sub-
class as indicated by the user by means of some command
line arguments (by definition of properties) and waits for
the completion of all them. Figure 2 presents the resulting
code when this transformation is applied to the original ex-
ample. The Thread-based transformation replaces the loop



public class Loop {
static int NumThreads;
public static void main (String args[1l) {
String sNumThreads =System.getProperty
("JAVA_MP_THREADS");
if (sNumThreads!=null)
NumThreads = new
Integer (sNumThreads) .intValue();
} else NumThreads = 1;
//...

void foo() {
//scheduling code
int thNum=NumThreads;
workerThread_0 threads[]=new
workerThread_O[thNum] ;
for (int th=0;th<thNum;th++) {
threads[th]=new
workerThread_O(this,th);
threads[th].start();
}
//join code
for (int th=0;th<thNum;th++) {
try { threads[th].join();
} catch (Exception e) {}
}
¥
//new code
void parallelLoop_0 (int me){
int chunk=(((100)-(0))/NumThreads);
int rest=((100)-(0))-chunk *
NumThreads;
int down=(0)+chunk*me;
int up=down+chunk;
if (me==NumThreads-1) up+=rest;
for (int i=down;i<up;i++) {
/* Do some work */
¥
}
}
class workerThread_O extends Thread {
Loop target;

int me;

public workerThread_O(Loop t, int m) {
target = t;
me = m;

}

public void run(){
target.parallelLoop_0(me);

Figure 2: Transformed code using Java Threads

with scheduling and joining code in order to create Java
Threads, supply work to them, and wait the completion of
that work. Some initialization code is also inserted in the
Main method of the application. A new method has been
created in the sample class. This method contains a mod-
ified version of the original loop plus some code that is in
charge of the modification of the iteration space of the loop
(this step is common to all three transformations). Notice
the definition of a new subclass of Thread that is in charge
of executing the loop method with the necessary parameter
to modify the iteration space: the thread number (assuming
a static work distribution scheme). The definition of a new
class is mandatory when using the Thread-based transfor-
mation or WorkDescriptor-based transformation, since the
only starting point of a Java Thread is the run method, and
each parallel loop is encapsulated in a separated function.

Table 1: Overheads (in milliseconds)

| Operation | SGI | Compaq | Sun |
Thread Creation 1.790 0.920 2.820
Integer Creation 0.002 0.001 1.7E-4
WorkDescriptor Creation | 0.002 0.001 9.5E-4
Reflection Use 0.030 0.020 0.127
Reflection Invoke 0.003 0.001 0.045

There may be different variations on this transformation,
but we have tried to present here the simplest one. Some
implementations like [1] define additional classes that give
a more structured view of the transformation (for example,
a class that represents the loop, a class that implements
the scheduling policy to divide the iteration space among
threads, a class that provides synchronization facilities, and
so on). However, the excessive overhead due to the mas-
sive creation of objects or the intensive use of synchronized
methods may reduce the gain due to the parallel execution
itself.

This transformation may lead to an undesired high overhead
due to the intensive creation of Java threads. In order to
support the proposals in the next sections, we first try to
quantify the overhead incurred in the creation of a Thread
object and compare it with the creation of other kinds of
objects. Table 1 shows the overhead for some basic actions
considered in this paper. The first two rows in Table 1 com-
pare the overhead for Thread and Integer class creations on
three different architectures and JVMs. The other rows will
be described later. The SGI column presents times obtained
in a SGI Origin 2000 with MIPS R10000 processors at 250
MHz and JVM version 3.1.1 (Sun Java 1.1.6). The SUN
column presents times obtained in a SUN Ultra 170E with
a UltraSPARC processor running at 167 MHz, and JVM
1.2.1.03 (Java version 1.2.1). The Compaq column presents
times obtained in a CompPAQ DEC Alpha Server 8400 with
ALPHA 21264 processors running at 525 MHz, and JVM
1.1.6.03. All JVM were run with Just-in-Time compilation
and native threads, and without asynchronous garbage col-
lection. Notice that the overhead for creating a thread is
several orders of magnitude larger than the overhead of cre-
ating an integer object.

This overhead, however, depends on the underlying native
threads library that is supporting the JVM. The definition
of the JVM does not states how Java threads are mapped
into kernel entities nor into the JVM threading system, so
there is no control, from a Java application, of how Java
threads are mapped onto kernel threads. In the worst case,
a Java thread creation implies the creation of a kernel thread
and, therefore, a large overhead.

3.2 WorkDescriptor-based transformation

The second transformation tries to cope with the overhead
due to intensive creation of Thread objects. This objective
is approached by the implementation of an application-level
work dispatching mechanism. Threads are pre-created and
remain alive until they are not needed for any parallel work
( [11] identified the excessive object, and specially thread
creation as an important source of overhead). In our case,



we create them at the beginning of the application, and they
remain alive until the end of the execution. But the creation
and destruction points might be moved to some other points,
for example, the creation of threads could be moved to the
start of a code block that contains lot of parallel loops, and
the destruction of the threads could be inserted at the end
of that block. This kind of decisions might be made by the
user, by a parallelizing compiler or even by the class that im-
plements the application-level work dispatching mechanism,
in order to make efficient use of system resources.

The modifications performed on the source program differ
from the explained in the previous section. The scheduling
code that replaces the parallelized loop is not creating in-
stances of a Thread subclass; instead, the scheduling code
creates instances of a class that acts as a work descriptor.
There is one work descriptor class for each parallelized loop.
Every one of those subclasses is descendant of an abstract
class that defines a constructor and a run method. Actu-
ally, this approach splits the transformation described in
the previous section into two parts: the creation of the
threads themselves and the supply of work to them. Fig-
ure 3 presents the resulting code when this transformation
is applied to the original example. This transformation does
also modify the Main method of the application, inserting a
call to an static method of the LoopThread class. This class
spawns as many threads as specified by the user’s command
line parameters, and set them to start looking for work. The
original loop is also replaced with code for creating work,
scheduling it to slave Threads and waiting the completion
of that work. There is also defined a new class that is in
charge of executing the method that encapsulates the mod-
ified loop body.

3.21 ThelLoopThread class

The LoopThread class is the class that we have developed
to implement the application-level work dispatching mech-
anism. It is a very simple example of a class that provides
the basic operations to spawn threads (initPackage), to dis-
tribute work among them, either globally or individually
(supplyWork, supplyGlobalWork), and to wait the comple-
tion of that work (joinWork, joinGlobalWork). The package
also offers an additional service to ask for the number of
threads that are taking part in the execution of the parallel
loop (threadsTeam). Notice that this is a very simple class
utilized as an example, and that has some limitations (for
example, only one level of parallelism can be spawned, syn-
chronization is done by busy-waiting mechanisms, among
others).

The run method of the LoopThread class is an infinite loop
that looks for work by calling the doWork method. Instances
of the LoopThread class are marked as daemons as they are
created, in order to point to the JVM that it must not wait
for the completion of these threads.

Notice that there exists the possibility of supplying the same
WorkDescriptor to all the threads. The code we have shown
in figure 3 makes use of that facility. This is of importance in
the case of loop-level parallelism, because, in the assumption
of N slave threads, we only have to create a WorkDescriptor
and supply it to all the Threads, avoiding the creation of N-
1 WorkDescriptors. Other work distribution schemes may

public class Loop {
public static void main (String args[]) {
LoopThread.initPackage() ;
/...
}
void foo() {
// scheduling code
LoopThread.supplyGlobalWork (new
workDescriptor_0(this));
// join code
LoopThread. joinGlobalWork() ;
}
//new code
void parallelLoop_0 (int me){
int chunk=(((100)-(0)) /
LoopThread.threadsTeam()) ;
int rest=((100)-(0))-chunk *
LoopThread.threadsTeam() ;
int down=(0)+chunk#*me;
int up=down+chunk;
if (me==LoopThread.threadsTeam()-1)
up+=rest;
for (int i=down;i<up;i++) {
/* Do some work */
}
}
}
class workDescriptor_0 extends
workDescriptor{
Loop target;
public workDescriptor_0(Loop t) {
target = t;
}
public void run(int me){
target.parallelLoop_0(me);

}

Figure 3: Transformed code using Work Descriptors

need the individual supply of work using different WorkDe-
scriptors for every of them.

3.2.2 TheWorkDescriptor classes

The basic WorkDescriptor class is an abstract class. The
transformation defines one subclass of the WorkDescriptor
class for each loop being parallelized. These subclasses de-
fine a run method that only performs a call to the method
that contains the transformed loop in the target (the in-
stance or class where the original parallel loop was located).

The main differences between this transformation and the
previous one are:

e Only one object (WorkDescriptor) is created for each
loop, and can supply work to as many threads as needed.

e The created object is not a Thread, and its creation
is faster than the creation of a Thread object. The
third row in Table 1 shows the overhead incurred in the
creation of a WorkDespcriptor, which includes the cre-
ation and supply (what is identified by the scheduling
code comment in Figure 3).

3.3 ReflectionWorkDescriptor-based transfor-
mation

The last transformation we consider makes use of the reflect
package, that provides classes and interfaces for obtaining
reflective information about Java classes and objects.



import java.lang.reflect.Method;

public class Loop {
public static void main (String args[]) {
ReflectionLoopThread.initPackage() ;
/...
}
void foo() {
Class formalArgs[] = {int.class};
Object o[] = {null};
try {
// scheduling code
Method m=Loop.class.getDeclaredMethod
("parallellLoop_0",formalArgs);
ReflectionLoopThread.supplyGlobalWork(
new ReflectionWorkDescriptor(
this,m,0));
// join code
ReflectionLoopThread. joinGlobalWork() ;
} catch (Exception e) {
System.err.println(e);
System.exit(-1);
}
}
//new code
void parallelLoop_0 (int me){
int chunk=(((100)-(0))/
ReflectionLoopThread.threadsTeam()) ;
int rest=((100)-(0))-chunk *
ReflectionLoopThread.threadsTeam() ;
int down=(0)+chunk#*me;
int up=down+chunk;
if (me==
ReflectionLoopThread.threadsTeam()-1)
up+=rest;
for (int i=down;i<up;i++) {
/* Do some work */

}

Figure 4: Transformed code using Reflection

The two previous transformations enforce the definition of a
new class for each parallelized loop. This new class can have
as its ancestor either the Thread class or the WorkDescriptor
class. This is because the only starting point for a Java
Thread is the run method of its target object or the run
method of the object itself if it is an instance of a subclass
of the Thread class [9]. Other languages, such as C, allow
us to access the address of a function, and make use of that
address to invoke it, but this is not possible in Java.

The java.lang.reflect package, however, makes us able to
adopt a similar approach. This package can be used in order
to obtain an object that represents a method of a given class,
and to invoke it. With this mechanism in our hands, we can
apply a different transformation to our Java programs, in or-
der to avoid the definition of a new class for each parallelized
loop, and thus avoid the associated overhead

As in the Descriptor-based transformation, this one also
makes use of a user-level work dispatching mechanism, de-
fined in the ReflectionLoopThread class, that is quite similar
to the one used for the work-descriptor transformations, but
it makes use of a ReflectionWorkDescriptor class instead of
a WorkDescriptor class.

The reflection-based transformation does not need to de-

fine an additional WorkDescriptor class for each parallelized
loop, since the general description of all methods that encap-
sulate a parallelized loop can be expressed with Reflection
as a single work-descriptor that contains a target Object, a
Method to invoke in that object, and a vector of arguments.
So, the number of classes defined by the parallel applica-
tion remains constant independently of the number of paral-
lelized loops. Figure 4 presents the resulting code when this
transformation is applied to the original example. This last
transformation, does not need to define any new class. The
Main method of the application is also modified in order to
insert a call to the ReflectionLoopThread class initialization
code, that works pretty much like in the LoopThread case.
The transformation includes, again, the definition of a new
method that encapsulates the modified loop body, which
has been replaced with scheduling/join code. This schedul-
ing code makes use of the java.lang.reflect package to obtain
information about the method that encapsulates the corre-
sponding loop in order to fill a generic work descriptor that
is supplied to the slave threads. Notice that there is no need
to define a new class for each thread, since java.lang.reflect
gives also to ReflectionLoopThread the capability of invok-
ing the loop method by the use of the “invoke” method on
the reflective information that represents the method that
contains the loop (an instance of the Method class).

The last two rows in Table 1 show the overheads associated
with the use and invocation of reflection. The Reflection
Use overhead includes the creation of the work descriptor
and supply (i.e. all the code below the scheduling code
comment in Figure 4. The Reflection Invoke is the additional
overhead incurred in the library due to the invocation.

4. EXPERIMENTS

In this section, we evaluate the performance of the described
transformations on three Java programs:

e LUAppl: kernel that performs an LU reduction over a
matrix of 512x512 double precision numbers.

e Diamond: This is a synthetic benchmark that iterates
800 times over a single parallelized loop that performs
one million of multiplications.

e Stress: This is also a synthetic benchmark that con-
tains different parallel loops that perform one million
of square roots each one. We run experiments with
number of loops varying between 40 and 256.

These programs have been specifically prepared to evaluate
the behavior of the code transformations proposed. How-
ever, their structure reflects in some way the structure of
the parallel computation found in numerical applications.
All the results presented here were obtained in the SGI sys-
tem described in section 3.1. The speed-up is calculated
relative to the sequential version.

In the following performance plots “JTH” corresponds to
the Thread-based transformation, “WD” corresponds to the
WorkDescriptor-based transformation and “Reflection WD”
corresponds to the ReflectionWorkDescriptor-based trans-
formation.
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4.1 LUAppl

Figure 5 shows the speed-up obtained for the LUAppl kernel.
For this kernel, the use of threads in the “JTH” transfor-
mation reduces the execution time as the number of Threads
utilized increases. However, transformations “WD” and “Re-
flectionWD” produce better results due to a considerable
reduction of the overhead for spawning parallelism. On the
average, “WD” improves the execution time by 32% (48%
when 8 threads are used), and “Reflection WD” can also do
it by 37% (49% when 8 threads are used).

4.2 Diamond

Figure 6 shows the speed-up obtained for the Diamond bench-
mark. This graph is quite similar to the one shown for
the LUAppl kernel (actually, the structure of both bench-
marks is quite similar). We can observe again how the two
Descriptor-oriented transformations work better than the
Thread-oriented transformation. The use of “WD” and “Re-
flectionWD” reduces the execution time by 40% and 51% on
average ( 68% and 70% for the 8 threads case), respectively.
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Figure 6: Speed-up for the Diamond benchmark
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Figure 7: Speed-up for the Stress benchmark (4
Threads)

4.3 Stress

Figure 7 presents the speed-up for Stress. In this plot the
number of threads is fixed to 4, and the number of parallel
loops in the application varies between 40 to 256. Notice
that both “WD” and “ReflectionWD” outperform “JTH”.
In particular, “WD” reduces the execution time by 11% on
average (21% with 8 threads), and “ReflectionWD” reduces
the execution time by 21% on average (31% with 8 threads).

As the number of parallel loops increases, the difference be-
tween “WD” and “ReflectionWD” becomes noticeable (for
256 loops, the difference between them is 10% ). This is due
to the definition of a new class for each parallel loop. When
the “WD” transformation is used, the overhead due to work
creation is reduced; however, we cannot avoid the loading
of the class that represents the WorkDescriptor correspond-
ing to that parallel loop. This class-loading is done in the
critical path of the application and, as can be deduced from
the graphs, influences the execution time of the application.
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Figure 8: Number of classes needed depending on
the number of parallel loops
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Figure 9: Visualization of the LUAppl running with the Java Threads transformation (4 threads)

The same may apply to JIT engines: if these engines com-
pile all methods the first time they are executed, then they
are compiling code that will never be reused, and they are
enforced to compile new code for each parallel loop. The
“ReflectionWD” transformation does not imply a class-load
for every parallel loop, since the number of different classes
needed to execute the application remain constant indepen-
dently of the number of parallel loops (this transformation
makes use of the same class for every one of them). Figure 8
illustrates that fact.

5. RUNTIME POLICIESAND
MULTITHREADING PERFORMANCE

The results shown in the previous section expose a large
performance improvement between the basic transforma-
tion (using Java Threads) and the two advanced transfor-
mations (WorkDescriptor and ReflectionWorkDescriptors).
However, these results show performance gains due to the
use of the two later transformations, but also due to a better
behavior of the underlying thread system indirectly incurred
by the transformations themselves.

In order to analyze these effects and discover performance
bottlenecks, the behavior of the LU kernel is studied using
JIS [7]. JIS is an instrumentation framework for Java pro-
grams based on the DITo0OLS [16] code interposition tool
and the Paraver [12] trace visualization and analysis tool.

5.1 LU behavior

Figure 5 reports an speed—up for the “JTH” transformation
close to 2 and 3 when 4 and 8 threads are used, respectively.
Figure 9 shows a Paraver window in which the behavior of
the LU application with 4 threads is shown. The horizon-
tal axis represents execution time (in microseconds). The
vertical axis shows the different Threads used by the appli-
cation: MAIN stands for the main thread of the Java ap-
plication (the one executing the public static void main
method), and USER4 to USER?Y are slave threads created
by the MAIN thread, as result of the “JTH” code trans-
formations. Each thread evolves through a set of states
(INIT, RUNNING, BLOCKED and STOPPED). For exam-
ple, light blue in the trace reflects that the thread is being

created, dark blue reflects that the thread is running, red in-
dicates that the thread is blocked and white indicates that
the thread has finished.

As can be deduced from the graphical representation, the
number of threads with dark blue color (RUNNING state)
at a given time gives us the parallelism level achieved by
the application. So notice that, although four slave Java
Threads are created for each loop, only two of them are
running simultaneously. This is due to the fact that the mul-
tithreading runtime system used (pthreads in SGI's JVM)
is only providing two virtual processors (kernel threads) to
support the execution of the four slave Java Threads. This
explains the poor performance gains in the LU application.

The observations obtained from the LUAppl instrumenta-
tion were utilized to perform some modifications in the be-
havior of the JVM and its interface with the multithreading
runtime. By default, the threads library adjust the level of
concurrency itself as the application runs. We made use of
JIS in order to give the library a hint about the concurrency
level needed by the application. With the use of JIS, we
automatically insert a call to the pthread_setconcurrency
(int level) service of the threads library. Argument level
is used to inform about the ideal number of kernel threads
needed to schedule the available Java threads. Figure 10
shows the execution trace after setting the level value to
the maximum parallelism degree of the application. Notice
that, in this execution, 4 pthreads and kernel threads are
used to schedule the 4 slave Java threads, with the conse-
quent performance improvement. This results in a reduction
of the execution time close to 50%. Table 2 shows the exe-
cution time for different problem sizes.

Figure 11 shows the speed—up achieved in the execution
of the LU application (size 512x512) for different numbers
of threads when using the JTH and WD code transfor-
mations, after setting pthread_setconcurrency to the num-
ber of threads. Compared to Figure 5, notice that the
pthread_setconcurrency call improves the behavior in the
two versions. However, the improvement is more significant
in the JTH version due to the inability of the multithreading
runtime system to determine the required number of kernel
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Figure 10: Visualization of the LUAppl running with the Java Threads transformation (4 threads) and the

pthread_setconcurrency service

[ Problem Size | Original | Set_concurrency |

64X64 916 715 (22 % )
128X128 4473 2813 (37 % )
256X256 53319 17652 (66 % )
512X512 215525 110128 (49 % )
Table 2: Execution time (milliseconds) for

the LUAppl wusing JTH and after

pthread_setconcurrency to 4

setting

threads for this code transformation. The WD code trans-
formation creates the Java threads at the beginning and
therefore gives more chances to the multithreading runtime
system to determine this number.

5.2 Application—+untime communication

—e— JTH + set_concurrency
—a— WD + set_concurrency

0 — T T T
0 2 4 6 8
Number of threads

Figure 11: Speed-up for the LU kernel (512x512
matrix) when using the JTH and WD code transfor-
mations and after setting pthread_setconcurrency to
the number of threads

As can be deduced from the previous results, a good co-
operation between the application and the multithreading
runtime could speedup the application execution time. But
the Java specification does not considers the interaction be-
tween the runtime and the application. For instance, the
application is not able to specify, for example, the concur-
rency level or force a specific mapping of the Java threads
into kernel threads.

This observation drive us to propose new extensions to the
Java API in order to provide these services. These modifi-
cations includes, among others:

e System.setConcurrency(int value) method to set the
concurrency level of the application.

e System.getMPConfig() method in order to inform the
application about the underlying architecture: number
of nodes and processing elements per node, latencies
in NUMA/UMA memory organizations, ...

e KernelThread class including, for instance, services to
control the binding of Java threads to kernel threads
(KernelThread.bind ( Thread t) method).

These proposals and their implementation are subject of our
current research.

6. CONCLUSIONSAND FUTURE WORK

In this paper, we have presented an overview of some trans-
formations available to efficiently exploit loop-level paral-
lelism of Java applications running on shared-memory mul-
tiprocessors. We have analyzed three different transforma-
tions that might be applied by a restructuring compiler in
order to exploit that parallelism based either on:

1. Intensive use of Thread creation for each parallel loop.

2. Conservative use of Thread creation combined with the
creation of an object that describes work to be done
for each parallel loop.



3. Conservative use of Thread creation combined with the
creation of an object that describes work to be done
for each parallel loop, and avoiding the definition of
one class for each parallel loop by means of the uti-
lization of the java.lang.reflect package. This reduces
the time needed for class loading, thus improving the
final performance.

The proposed transformations are evaluated using a set of
synthetic applications. We have concluded that the use of
the two latter transformations (i.e. avoiding the massive cre-
ation of Java Threads for each parallel loop) outperforms the
performance obtained by the utilization of the first one. The
evaluation includes a comparison taking into account the
number of classes utilized by each transformation. We con-
clude that the “ReflectionWD” transformation can reduce
the overhead introduced by the need of class-loading (and
possible Just-in-time compilation) for each parallel loop in
the two former transformations (JTH, WD), and it reduces
the size of the resulting bytecodes.

Finally we foresee some possible enhancements to the Java
threading API (such as the ability to give hints about con-
currency level to the runtime system) can improve the per-
formance of parallel applications. As a future work, we
will further investigate how to improve Java support for
Threads, and how to give users more control on how ap-
plication threads map into kernel threads. At the moment,
users have to blindly rely in the run-time libraries that give
multithreading support to the JVM. Its our thought that,
currently, the JVM hides too much information to the user
and does not permit a powerful user-level scheduling (for
example, a user cannot decide where a Java thread is go-
ing to run, and the Java API does not have any standard
mechanism, for example, to expose to the application the
underlying architecture). These decisions ease application
development, but it may reduce the performance that can
be obtained in certain kind of applications.
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